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This paper combines the post-Minkowskian expansion of general relativity with the language of
intersection theory. Because of the nature of the soft limit inherent to the post-Minkowskian expansion, the
intersection-based approach is of enhanced utility in that theory compared to a generic quantum field
theory. In the language of intersection theory, Feynman integrals are rephrased in terms of twisted cocycles.
The intersection number is a pairing between two such cocycles, and its existence allows for the direct
projection onto a basis of master integrals. In this paper we use this approach to compute the second post-
Minkowskian contribution to the scattering of two compact astronomical objects, getting results in
agreement with previous findings.
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I. INTRODUCTION

The groundbreaking discovery of gravitational
waves [1,2] from colliding compact astronomical objects,
such as black holes and neutron stars, leads to much renewed
interest in methods for analytical precision calculations in
the theory of general relativity. One such method is the post-
Minkowskian expansion (PM) [3,4] which treats the problem
perturbatively in Newton’s constantGN , but keeps it exact in
all other quantities. This expansion is reminiscent of
perturbative quantum field theory (QFT), and indeed it
turns out that many aspects of QFTs can be adapted to this
completely classical problem [5–12] (see, e.g., Refs. [4,13]
for summaries). In particular, the inspiraling phase that is of
the highest astrophysical interest may be mapped to the
scattering problem often studied in perturbative QFT
through an analytical continuation [14]. Furthermore, in
this paper we will only consider the scalar approximation in
which spin effects and internal structures of the astronomical
objects are disregarded, allowing us to treat them as scalars
in the QFT context [6].
When performing precision calculations in a QFT, it is

usually the computation of the Feynman integrals that is
the source of the most inconvenience and the cause of the
greatest computational effort. It is therefore worthwhile to
make sure that the number of Feynman integrals that has to
be computed is minimal. Away to do this is to express the
Feynman integrals appearing in the problem in terms of a
minimal set of objects, known as master integrals, which
form a basis for the vector space of Feynman integrals of a

given scattering amplitude. A reduction to a basis of master
integrals is traditionally done using integration by parts
(IBP) identities [15] as systematized by Laporta’s algo-
rithm [16] and implemented in a number of public [17,18]
computer programs. Laporta’s algorithm has as a necessary
step the solution of a system of linear equations relating
various Feynman integrals, and that system can grow to
enormous size for complicated Feynman integral families.
That makes this step a genuine bottleneck, and it motivates
the search for alternative approaches to deriving Feynman
integral relations.
One such approach to the master integral decomposition

of Feynman integrals has been developed recently, under
the headline of intersection theory. This theory [19–21]
had its origin in the study of (Aomoto-Gel’fand) hyper-
geometric functions, a class of function to which Feynman
integrals in dimensional regularization evaluate when
treated as exactly in d. In a groundbreaking paper [22]
it was realized that this mathematical formalism provides a
natural framework in which to analyze Feynman integrals,
and in particular to derive the relations between them,
something that until then had been the purview of the IBP
framework. This work leads to many further developments
and refinements [23–30] of the theory, with the complexity
of the integrals that can be successfully tackled with the
intersection-based approach increasing quickly. For sum-
maries of that theory, see e.g. Refs. [31,32].
In this paper, we will combine these two approaches, the

post-Minkowskian expansion and the intersection approach
for Feynman integral relations. This extends the work of of
Ref. [33] that outlined the feasibility for the first time.
Combining these two approaches reveals that the structure
of the integrals needed for the PM expansion makes the
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intersection approach more powerful in this setting than it is
for a generic QFT. We limit our discussion to the second
post-Minkowskian (2PM) amplitude contribution, corre-
sponding to Feynman integrals with one loop. We recog-
nize, of course, that this is a well-studied problem [5–7,10]
(the state of the art is 4PM [34–36] with the first published
results at 5PM appearing in the literature [37–39]). Yet we
will claim that this setting is sufficient to make our point and
show the enhanced applicability of the intersection-based
approach to Feynman integrals in the PM expansion.

II. CONVENTIONS AND SETUP

We will consider the scattering process as depicted in
Fig. 1. The momenta are defined as “all incoming” so
p1 þ p2 þ p3 þ p4 ¼ 0. In particular, we have

p2
1 ¼ p2

2 ¼ m2
1; p2

3 ¼ p2
4 ¼ m2

2: ð1Þ

Furthermore, we define the Mandelstam variables

s ¼ ðp1 þ p4Þ2; t ¼ ðp1 þ p2Þ2 ð2Þ

with the third Mandelstam variable being related through

u ¼ ðp1 þ p3Þ2 ¼ 2m2
1 þ 2m2

2 − s − t: ð3Þ

To obtain the Feynman rules for a given field theory, it is
usually helpful to write down its action. For a scalar
gravitational interaction, the action has the following form:

S ¼ 2

κ2
ðSEH þ SgfÞ þ Sϕ; ð4Þ

where SEH is the Einstein-Hilbert action, Sgf is the gauge
fixing action, Sϕ is the scalar action, and κ2 ¼ 32πGN . To
perform the perturbative expansion we linearize the metric
gμν ¼ ημν þ hμν. For the gauge fixing, we chose the de
Donder gauge. That gauge choice is defined by ημν∂μgσν −
1
2
ημν∂σgμν ¼ 0 and is thus linear in hμν making it suitable for

our purposes. For the derivation and the specific expressions
for the Feynman rules, see, e.g., Refs. [33,40,41].
A part of the post-Minkowskian expansion corresponds

to taking the classical or soft limit of the momentum
exchange between the two scalars [42]. With our defini-
tions here, that corresponds to the limit t → 0. Of the
Feynman diagrams naively contributing to the scattering
process, some will vanish in that limit. In particular, there

will be no contributions from diagrams containing tadpoles
or bubbles. With this in mind, the diagrams that give a
nonvanishing contribution the 2PM amplitude are depicted
in Fig. 2.
The first diagram, the box, may schematically be written

as a Feynman integral as

Z
ddk

iπd=2
NðkÞ

k2ððkþp1Þ2−m2
1Þðkþp1þp2Þ2ððk−p4Þ2−m2

2Þ
;

ð5Þ

where NðkÞ is the numerator of the Feynman diagram.
Similar expressions hold for the remaining diagrams.
To apply intersection theory, it is useful to transform the

Feynman integrals to a parametric representation, with the
Baikov representation [43] being the most convenient. At
one loop, the Baikov representation reads as follows:

I ¼ JG
E−Dþ1

2

Γ
�
D−E
2

�
iπ

E
2

Z
NðzÞBðzÞD−E−2

2 dEþ1z
za11 � � � zann : ð6Þ

Here E is the number of independent external momenta
(i.e., 3 in our case), D is the spacetime dimensionality, zi
are the Baikov variables that at one loop equal the
propagators of the diagram in the top sector, and ai are
the powers of those propagators. G and B are Gram
determinants of the external momenta, and all momenta,
respectively, i.e.,

B ¼ detðGðk;p1; p2; p3ÞÞ; G¼ detðGðp1; p2; p3ÞÞ ð7Þ

with B being known as the Baikov polynomial. Last,
J ¼ 2−E is the Baikov Jacobi determinant. For more on
the Baikov representation see, e.g., Refs. [31,44,45].

III. INTERSECTION THEORY

In this section we will summarize the parts of the
mathematical topic of intersection theory relevant for our
current problem. We will first, in Sec. III A, set up our
notation and describe the mathematical framework. Then,
in Sec. III B we will describe how to use an inner product to
perform a reduction to a master integral basis. In Sec. III C
we will then introduce that inner product as the intersection
number in the univariate case. From there we will discuss
the generalization to the multivariate case in Sec. III D.

FIG. 1. The kinematics considered. The arrows indicate
whether the scalar is incoming or outgoing.

FIG. 2. The six Feynman diagrams that give a nonvanishing
contribution in the soft limit.
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Finally, in Sec. III E, we will introduce the concepts of delta
bases and relative cohomology.

A. Framework: Twisted cohomology

As master integrals form a basis for a given family of
Feynman integrals, decomposing a Feynman integral into
master integrals can be simplified if the space has a
structure allowing for an inner product. Intersection theory
suggests such a structure exists for Feynman integrals,
facilitating a new method of determining the coefficients.
To begin with, we will consider a general multivariate
integral that has a form:Z

γ
P1ðzÞα1 � � �PmðzÞαmdz; ð8Þ

where PiðzÞ; i∈ f1;…; mg are multivariate polynomials in
z, αi ∈CPn=Z where CPn is the complex projective space,
and γ is the integration contour that lies in X ¼ C= ∪m

j¼1 Dj.
Dj is a hypersurface defined by the polynomial equation
PiðzÞ ¼ 0, such that Dj ¼ fz∈C∶Pj ¼ 0g, and D ¼
∪m
i¼1 Di, which is termed the divisor.
PiðzÞα can be separated into a multivalued function uðzÞ

on X and a part belonging to the differential of dz that
together form a smooth n-form φ on X.
We notice that the Baikov representation of Eq. (7) is of

the form given by Eq. (8) [at least if we take the ai of
Eq. (7) to be generic]. Specifically, we may (ignoring
constant prefactors) write the integral as

I ¼
Z
γ
uðzÞφðzÞ; ð9Þ

where

uðzÞ ¼ B
D−E−2

2 and φðzÞ ¼ NðzÞ
za11 � � � zann dz: ð10Þ

To determine the integral of a multivalued n-form uφ
on γ in D, it is necessary to define a branch of u on γ, that
is, γ ⊗ uγ, with uγ being a fixed branch of u that is
integrated along γ. The integral thus formally becomes
I ¼ Rγ⊗uγ

uðzÞφðzÞ. We will in the following simply write

u instead of uγ. In the notation of intersection theory, the
integral Eq. (9) readsZ

γ
uðzÞφðzÞ ¼ hφjγ ⊗ uðzÞ� ¼ hφjC� ð11Þ

(with the latter equation providing the definition of jC�).
hφj and jC� are known as a twisted cocycle and cycle,
respectively, and are to be understood as members of the
twisted cohomology group Hn and the twisted homology
group Hn [46]. That is,

h•j•�∶HnðX;∇ωÞ × HnðX; uÞ → C: ð12Þ

In the Baikov representation, IBP identities may be
expressed as

0 ¼
Z
γ
d

�
B

D−E−2
2

za11 � � � zann ζ

�
; ð13Þ

where Bð∂γÞ ¼ 0; ζ is an (n − 1) differential form
ζ ¼Pn

i¼1ð−1Þiþ1ζi, with ζi ¼ ζ̂dz1 ∧ � � � ∧ d̂zi ∧ � � � ∧
dzn and each ζ̂i a rational function in the variables z ¼
ðz1;…; znÞ whose coefficients may depend on the kin-
ematic invariants. Here we may identify ξ ¼ ζ

z
a1
1
…zann

, where

different ξ correspond to the different integrals with their
respective integers that are linked through IBPs. We may
thus write Eq. (13) as

0 ¼
Z
γ
dðuðzÞξÞ ¼

Z
γ
uðzÞ∇ωξ: ð14Þ

The covariant connection ∇ω on the manifold X is
defined as

∇ωξ ¼ dðξðzÞÞ þ ωðzÞ ∧ ξðzÞ; ð15Þ

where ωðzÞ is a holomorphic one-form and the connection
coefficient of the manifold X

ωðzÞ ¼ d log uðzÞ ¼ duðzÞ
uðzÞ ¼

X
i

ω̂idzi: ð16Þ

The covariant connection is an element of the tangential
vector space that is formed by the IBPs. Equation (14)
implies that the integral is invariant under a shift in the
single-valued one-form φ by φþ∇ωξ:Z

γ
uðzÞφ ¼

Z
γ
uðzÞðφþ∇ωξÞ: ð17Þ

Intuitively, φ → φþ∇ωξ can be visualized as a gauge
transformation on the tangential vector bundle of X. This
suggests that there exists an equivalence class of φ and
φþ∇ωξ, and indeed the cocycles hφj are representatives
of these equivalence classes. These ideas were first
formulated in the work of Refs. [23,31,32,47].
As discussed in the Introduction, the motivation for

considering the intersection number is that it may play the
role of an inner product between Feynman integrals. What
it is in detail is an inner product, not between the Feynman
integrals themselves, but between the cocycles and their
duals

hφjφ∨i; ð18Þ
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where the dual cohomology group is defined by integrals
of the form of Eq. (9), except that u → u−1, i.e.,
I∨ ¼ Rγ u−1ϕ∨. For a discussion of the physical interpre-
tations of these dual integrals, see, e.g., Refs. [28,48,49].
Before giving any explicit definitions, let us show in
generality how such an inner product can help with
performing reductions onto a master integral basis.

B. Integral reductions using projections

We may write a given Feynman integral in terms of a
basis of master integrals, as

I ¼
Xν
i¼1

ciI i; ð19Þ

where ν is the number of master integrals in the given
family. The integrals on the right-hand side (RHS) are the
master integrals, and they may be written as

I i ¼
Z
γ
uðzÞeiðzÞ; ð20Þ

where, importantly, u and γ are the same as in Eq. (9) and
the different integrals differ only by the value of the ei.
Furthermore, we have that

ν ¼ # of solutions of “ω ¼ 0” ð21Þ

with the ω being given by Eq. (16). This is known as the
Lee-Pomeransky criterion after Ref. [50] and is equivalent
to the statement ν ¼ dimðHnÞ ¼ dimðHnÞ.
The decomposition of an arbitrary Feynman integral of

the form Eq. (9) into its master integral basis corresponds, in
the language of intersection theory, to the decomposition of
hφj∈HnðX;∇ωÞ into the basis he1j;…; heνj∈HnðX;∇ωÞ.
A similar decomposition may be performed for their
respective duals. It follows that

I ¼ hφjC� ¼
Xν
i¼1

ciheijC�: ð22Þ

This is master integral decomposition in the language of
intersection theory.
We are now ready to express the decomposition coef-

ficients ci in terms of our inner product: We may formally
define such an inner product between our basis cocycles
heij and a corresponding set of dual cocycles jhji. In fact,
we may define a Gram matrix for these cocycles:

Cij ¼ heijhji: ð23Þ

This matrix will have dimensions ν × ν and be of full
rank. We may express unity as Ic ¼

P
ν
i;j¼1 jhjiðCÞ−1ij hejj.

Multiplying on the left with hφj and comparing with
Eq. (22) yields

hφj ¼
Xν
i¼1

ciheij with ci ¼
Xν
j¼1

hφjhjiðC−1Þji: ð24Þ

This is the master decomposition formula. Importantly, the
values of ci are the same as in Eq. (22); the choice of
contour plays no role. A detailed derivation of Eq. (24) can,
for example, be found in Refs. [22,32,33]. Thus, we realize
why a consistent definition of an inner product between our
twisted cocycles may be of great help for the very practical
purpose of master integral decomposition.

C. The univariate intersection number

Let us begin by discussing how to define an intersection
number in the univariate case, i.e., the case where
the integrals of Eq. (9) involve one integration only.
This derivation comes from Ref. [20], and see also
Refs. [22,31,32,51] for further discussion.
The intersection number is a bilinear, nondegenerate

pairing among the elements hφj∈H1ðX;∇ωÞ and their
dual jφ∨i.
Following our intuition that the intersection number

defines an inner product, it takes the form

hφjφ∨i ¼
Z
X
RðφðzÞÞ ∧ φ∨ðzÞ ð25Þ

with h•j•i∶H1ðX;∇ωÞ × H1ðX;∇−ωÞ → C. The operator
RωðφÞ is a regulator that is needed to account for the
potentially divergent behavior at the edge of X and the fact
that the numerator of the integral may have a dz ∧ dz ¼ 0.
In particular, problems may arise near the members of P,
which consists of the set of poles of ω ¼ d log juj, i.e., the
set of critical points of log juðzÞj including ∞.
Since φ and RωðφÞ are in the same cohomology class,

they only differ by a covariant derivative:

φ −RωðφÞ ¼ ∇ωξ: ð26Þ

R is defined such that ξ is given by

ξ ¼
X
i∈P

hiψ i; ð27Þ

where hi is the following bump-shaped function:

hiðz; z̄Þ ¼

8><
>:

1 onUi

0 ≤ hi ≤ 1 onVinUi

0 outsideVi

; ð28Þ

where the regions Ui and Vi are centered on the corre-
sponding member of P (i.e., a pole of ω). See, e.g.,
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Refs. [21,32] for more discussion along with explanatory
figures.
On Ui=zi, where RðφÞ ¼ 0, we have the following

differential equation:

∇ωψ j ¼ φ: ð29Þ

If we rewrite in the integral Eq. (25), RðφÞ, as Eqs. (26)
and (27), write the covariant connection on the manifold as
Eq. (15), and consider the cases given in Eq. (28), we arrive
after a short calculation at the following expression:

hφjφ∨i ¼ −
Xm
i¼1

Z
∂Vi

ψ iφ: ð30Þ

Using the residue theorem, we may finally derive

hφjφ∨i ¼ −2πi
X

xi ∈Pω

Resðψ iφ
∨Þ: ð31Þ

This is the equation we will use for the computation of
intersection numbers in the univariate case, though for
practical purposes we will suppress the 2πi prefactor.
Using Eq. (31) requires the solution of the differential

equation (29). This may be done using a power series
expansion, in which the coefficients may be found recur-
sively [32,52]. If we let fi denote the ith term in the series
expansion of f, and let minf denote the smallest i for which
fi is nonzero, the recursive solution is

ψminφþ1 ¼
φ̂minφ

minφ þ 1þ ω̂−1
;

ψmþ1 ¼
1

mþ 1þ ω̂−1

 
φ̂m −

Xm−minφ−1

q¼0

ω̂qψm−q

!
; ð32Þ

where the coefficients on the RHS are known up to the mth
order. Although it is possible to calculate the coefficients up
to an arbitrary order, our primary interest is in the lower
order terms, since the objective is to determine the residue
in Eq. (31).

D. The multivariate intersection number

We are now ready to discuss the intersection number in
the more involved multivariate case. The multivariate
intersection number, to the best of our knowledge, was
first introduced in Ref. [51] and further discussed in
Refs. [23,24]. The multivariate intersection algorithm dis-
cussed here has been successfully applied in the context
of Feynman integrals as well as for hypergeometric func-
tions [23,24]. Multivariate intersection theory applies to
integrals of the form of Eq. (8). The first step is to endow the
manifold with a variable ordering fzi1 ;…; zing where the
in-index informs of the order of the variables from 1 to n.

To calculate the multivariate intersection number for
n-differential forms, it is necessary to know νk ¼ dimðHkÞ.
It can be obtained in a manner similar to the system of
Eq. (21) [23,33]. The number k of discrete elements
is k∈ fi1;…; ikg ⊂ f1;…; ng. We obtain a set of dimen-
sions fν1;…; νng for the iterative integral in the variables
ffzi1g;…; fzi1 ;…; zingg, respectively, such that 1 ¼
fi1g; 2 ¼ fi1; i2g;…;n ¼ fi1;…; i2g. We must point out
that although νn is independent of the order of the
integration variables, νk may depend on which specific
subset k of f1; 2;…; ng is chosen and in which order. As a
working principle, we choose the order that minimizes νk
for all k forms k∈ f1;…; ng. We can count the number of
master integrals on the inner manifold, in a manner similar
to that before; see Eq. (21). For further discussion of the
counting of variables in the individual layers, see,
e.g., Ref. [30].
The aim is then to express the n-variable intersection

number hφðnÞjφðnÞ∨i in terms of the intersection number in
(n − 1) variables on the inner manifold. The choice of
variables and their orienting parametrization of the inner
and outer manifolds is arbitrary. As before, we use k≡
fi1; i2;…; ikg to denote the variables. Therefore, the n-
forms hφðnÞj∈HnðX;∇ωÞ and hφðnÞ;∨j∈HnðX;∇−ωÞ can
be decomposed, and the decomposition formula takes the
following form:

D
φðnÞ

��� ¼Xνn−1
i¼1

D
eðn−1Þi

��� ∧ DφðnÞ
i

���; ð33Þ

���φðnÞ∨
E
¼
Xνn−1
i¼1

���hðn−1Þi

E
∧
���φðnÞ∨

i

E
ð34Þ

with an in principle arbitrary basis ðheðn−1Þ1 j;…, heðn−1Þνn−1 jÞ as
the basis for Hn−1ðXn−1;∇ωjdzn¼0Þ and likewise for its dual

ðjhðn−1Þ1 i;…; jhðn−1Þνn−1 iÞ. In the above expression, hφðnÞ
i j and

jφðnÞ∨
i i are one-forms in the variables zn and are treated as

coefficients of the basis expansion. They can be obtained
by projection, using an analog of the master decomposition
formula Eq. (24):

D
φðnÞ
i

��� ¼Xνn−1
j¼1

D
φðnÞ

���hðn−1Þj

E
ðC−1

ðn−1ÞÞji; ð35Þ

���φðnÞ∨
i

E
¼
Xνn−1
j¼1

ðC−1
ðn−1ÞÞij

D
eðn−1Þj

���φðnÞ∨
E

ð36Þ

with

ðCðn−1ÞÞij ¼
D
eðn−1Þi

���hðn−1Þj

E
: ð37Þ
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To define a generalization of the differential equation (29),
we need to define a covariant connection on the whole
manifold X, and for that we need to define a connection
coefficient Ω̂n on X that takes the nested structure of the
manifold into account. That connection coefficient is a
νn−1 × νn−1 matrix with entries given by

Ω̂ðnÞ
ij ¼

Xνðn−1Þ
k¼1

D
∇ωn−1

eðn−1Þi

���hðn−1Þk

E
ðC−1

ðn−1ÞÞkj: ð38Þ

The connection reads as follows:

ð∇ΩðnÞ Þijð•Þj ¼ δijdð•Þj þ ðΩðnÞÞij ∧ ð•Þj: ð39Þ

The differential equations then have the following form:

∇Ωnψ ðnÞ
xi ¼ φðnÞ ð40Þ

around each point xi from the set of PðnÞ
Ω , where ψxi is a

vector-valued solution of the differential equation (40). As
the connection coefficient ΩðnÞ is matrix valued, the regu-
larization map [corresponding to Eq. (26) in the univariate
case] now has the form

RΩðnÞ ðφðnÞÞ ¼ φðnÞ −
X

xi ∈PΩðnÞ

∇ΩðnÞ ðhxiðzn; z̄nÞψxiÞ: ð41Þ

The recursive formula for the intersection number then
becomesD
φðnÞ

���φðnÞ∨
E
¼

X
xi ∈PΩðnÞ

Reszn¼xi

�
ψ ðnÞ
xi;i

·Cðn−1Þ
ij · φðnÞ∨

j

�
:

ð42Þ

This is the expression we will use for the computation of
multivariate intersection numbers.

E. Delta bases and relative cohomology

There is a problem with the theory as discussed so far,
which is that Feynman integrals in the Baikov representa-
tion as given by Eq. (7) are not directly on the form of
Eq. (8). The reason for that is that the propagator powers ai
of Eq. (7) are integer, while the powers αi of Eq. (8)
specifically have to be noninteger for the theory to be valid.
One type of fix is an introduction of regulators ρ, in which
we specifically introduce the noninteger powers as

u → ureg ¼ u
Y
i

zρii ; ð43Þ

and then at the very end of the calculation the regulators
may be put to zero. While that approach is completely valid
and produces correct results, also for the calculation
considered in this paper [33], it introduces a new scale ρi

for each variable that significantly complicates the compu-
tations. Wewill therefore pursue a different approach, which
is the introduction of delta bases. The delta bases as
discussed here were introduced in Refs. [28,30,48], and
some of the mathematical background is given in Ref. [53].
They have their origin in the mathematical framework of
relative cohomology in which one explicitly works modulo
the zero locus of the set of propagators going on-shell. The
way this works in practice is that the new type of dual forms
are allowed, which may be written as

φ∨ ¼ δsξ; ð44Þ

where s is some subset of the n variables and ξ is a ðn − jsjÞ-
form. Having such a delta in the dual basis makes the
intersection number

hϕjδsξin ¼ hRess1¼0;…ðϕÞjξin−jsj: ð45Þ

In other words the δ works as a residue operator.
The benefits of the delta bases are threefold: First, they

remove the need for the ρ-regulators discussed above.
Second, they simplify the computation of the intersection
numbers, in that Eq. (42) now has to be applied, not for all
the n variables but only for n − jsj whenever a delta is
present. Finally, many of the intersection numbers will
trivially be zero whenever the residue in Eq. (45) vanishes,
making the matrix C of Eq. (23) block triangular.
We are now ready to apply our theory to the gravity

problem under discussion.

IV. PERFORMING THE REDUCTIONS

Looking at diagrams in Fig. 2 we notice that they all
would contribute to a unitarity cut in the t-channel. This
means that we would not lose a single contribution by
performing the double cut of those two propagators. Doing
so allows us to significantly simplify the computation, in a
way that the intersection-based approach can take full
advantage of, since all intersection numbers needed will be
between two-forms as opposed to the four-forms that would
be needed for the complete problem. Given the recursive
nature of the multivariate algorithm, the step in complexity
from two to four variables is very significant.
Considering first the box diagram (i.e., the first diagram

in Fig. 2), we may perform the Baikov parametrization and
do the cut, yielding (up to an overall constant)

u ¼ Bðd−5Þ=2; ð46Þ

where

B ¼ 4m2
2z

2
1 −m4

2t− tðm2
1 þ z1 − sÞ2 − 4ðm2

1 þm2
2 − sÞz1z2

þ ð4m2
1 − tÞz22 þ 2tððm2

1 þ sþ z1Þðm2
2 þ z2Þ−m2

2z2Þ
ð47Þ
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and where z1 and z2 are the Baikov variables corresponding
to the two uncut propagators; in the parametrization of
Eq. (5) z1 ¼ ðkþ p1Þ2 −m2

1 and z2 ¼ ðk − p4Þ2 −m2
2.

For the last four Feynman diagrams in Fig. 2, the
propagators are a subset of the propagators of the box,
meaning that this representation is valid for them as well.
For the crossed box (i.e., the second diagram in Fig. 2) the
parametrization is related to that of Eq. (47) through s ↔ u,
so we will not need to consider it separately.
Applying the Feynman rules as discussed in Sec. II, we

may then express all our Feynman integrals in terms of
integrals over the variables z1 and z2. In particular, the
following monomials appear:

�
1

z1z2
;
1

z1
;
z2
z1
;
z22
z1
;
1

z2
;
z1
z2
;
z21
z2
; 1; z1; z21; z2; z

2
2

�
ð48Þ

of which wewould like to express the integrals in terms of a
minimal basis of master integrals.

A. Finding a basis

To determine the variable ordering for each layer of the
fibration that gives the minimum basis of the cut-box and
cross-box, we solve Eq. (21) for the set of integration
variables and their possible subsets, and get the dimensions
of the twisted cohomology groups on each layer of the
fibration.

Solve z1 z2 z1,z2

ν 2 2 4

We choose the variable ordering from the inside out z1,
z2. This corresponds to there being two “master integrals”
in the inner basis and four in the outer. The opposite
ordering would have given the same counting, unsurpris-
ingly given the symmetry of the problem.
We now want to figure out what choice of master

integrals is valid in the different layers. This may be done
by introducing regulators in the sense of Eq. (43) and
performing the counting in the presence and absence of
each regulator, respectively. See Ref. [30] for further details
of this algorithm. The results are

Regulated variables
Solve fz1g:
Basis size

Solve fz1; z2g:
Basis size

None 1 1
z1 2 2
z2 1 2
z1, z2 2 4

From the middle column we conclude that if z1 is not
allowed to appear as a propagator in the inner basis, there
will be one basis element; otherwise, there will be two.
Thus a valid inner basis is

eð1Þ ¼
�
1;

1

z1

�
dz1: ð49Þ

Using the same argument we likewise conclude for the
outer basis that a valid set is

eð2Þ ¼
�
1;

1

z1
;
1

z2
;

1

z1z2

�
dz1 ∧ dz2: ð50Þ

This corresponds, of course, to the well-known set of
master integrals consisting of a box, two triangles, and a
bubble.
For the dual basis the prescription for delta bases is that a

pole in the basis translates to an index on the delta in the
dual basis. Thus we get

hð1Þ ¼ f1; δz1g; hð2Þ ¼ f1; δz1 ; δz2 ; δz1z2g: ð51Þ

We are now ready to perform the reduction.

B. Obtaining the coefficients

To compute coefficients of the master integral bases for a
given integral, via intersection theory, we use Eq. (24). To
obtain Cij ¼ heijhji and hφjhji via the multivariate inter-
section number, we need to first decompose the integral in
the Baikov representation into the regulated Baikov poly-
nomial uregðzÞ and the differential form φ. Then, we obtain
the vectorial connection coefficient of the individual
fibration ω; see Eq. (16). Furthermore, we need to know
the basis of the individual layers of the fibration as well as
their respective duals; see Sec. IVA.
The first step in the recursive multivariate intersection

algorithm is to compute the innermost intersection number
based solely on the inner basis and its dual via the
univariate intersection number; see Sec. III C.
Let us introduce the object

λ ¼ Λðm2
1; m

2
2; sÞ

¼ m4
1 þm4

2 þ s2 − 2m2
1m

2
2 − 2m2

1s − 2m2
2s; ð52Þ

where Λ is the Källén function. This is related to the B of
Eq. (47) through

Bðz1 ¼ 0; z2 ¼ 0Þ ¼ −tλ: ð53Þ

In terms of that object the inner intersection yields

Cð1Þ ¼

2
64

4ðd−5ÞðλþstÞðm2
2
tþtz2þz2

2
Þ

ðd−6Þðd−4Þð4m2
2
−tÞ2 0

ðm2
1
−m2

2
−s−z2Þtþ2ðm2

1
þm2

2
−sÞz2

ðd−6Þð4m2
2
−tÞ 1

3
75; ð54Þ

and the connection matrix of Eq. (38) becomes
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ΩT ¼

2
64

ðd−4Þðtþ2z2Þ
2ðm2

2
þtz2þz2

2
Þ

−ðd−4Þð4m2
2
−tÞtðm2

1
þm2

2
−sþz2Þ

2ðm2
2
tþtz2þz2

2
ÞBðz1¼0Þ

0
ðd−5Þð4m2

1
z2−tðm2

2
−m2

1
−sþz2ÞÞ

Bðz1¼0Þ

3
75: ð55Þ

We also need the pairings between the inner and the outer
bases heð1jhð2Þi and heð2jhð1Þi. We will not write those
expressions here; see Supplemental Material [54] for the
full list.
We are then ready to perform the computation in the

outer layer. We follow the algorithm outlined in Sec. III D
to obtain the quantities in Eq. (24):

C ¼

2
66664
C11 0 0 0

C21 C22 0 0

C31 0 C33 0

C41 C42 C43 1

3
77775; ð56Þ

where

C11 ¼
−tðλþ stÞ

4ðd − 7Þðd − 3Þ ;

C21 ¼
tððd − 6Þt − 4ð2d − 11Þm2

1Þðλþ stÞ
2ðd − 7Þðd − 6Þðd − 4Þð4m2

1 − tÞ2 ;

C42 ¼
ðm2

2 −m2
1 − sÞt

ðd − 6Þð4m2
1 − tÞ ;

C41 ¼
t2ð2ðm2

1 −m2
2Þ2 − 2ðm2

1 þm2
2Þsþ stÞ

ðd − 7Þðd − 6Þð4m2
1 − tÞð4m2

2 − tÞ ;

C22 ¼
4ðd − 5Þm2

1ðλþ stÞ
ðd − 6Þðd − 4Þð4m2

1 − tÞ2 ; ð57Þ

and where furthermore fC31; C33; C43g are related to
fC21; C22; C42g through m1 ↔ m2. We see that C is block
triangular as promised in Sec. III E.
To perform the reductions of all the monomials of

Eq. (48), we also need the pairings of each of them with
the dual basis jhi in accordance with Eq. (24), which is the
list of intersection numbers hφijhji. We will not list them
here; see Supplemental Material [54] for the full list. Using
Eq. (24) we may then finally decompose the integrals of the
monomials of Eq. (48) onto our basis of master integrals.
The results for those decompositions may likewise be
found in Supplemental Material [54]. The results are found
to be in agreement with the public IBP code FIRE [17].
Putting it all together we get four master integral

coefficients, c1 − c4, for each of the two families (those
of the box and the crossed box). We did this for each family,
and the s ↔ u symmetry between the two families may be
used as a check. The triangles and the bubbles may be
identified between the two integral families, so at the end we
have five master integral coefficients

fc□;s; c□;u; c△; c▽; cbubg; ð58Þ

the results for which may also be found in Supplemental
Material [54].

V. THE MASTER INTEGRALS

In this section we will look at the master integrals that
end up contributing to 2PM scattering. The section follows
Refs. [10,55]. As mentioned in the Introduction, an integral
part of the PM expansion is the soft limit, in which the
momentum transfer between the two compact objects is
much smaller than other scales in the problem, i.e.,
jtj ≪ s;m2

1; m
2
2. This may be approached with the method

of regions [56,57] in which we take the loop momenta of
the integrals to scale with the size of the transferred
momentum, extracting the soft region, i.e., k ∼ q, where
q ¼ p1 þ p2. To take the classical limit we will also want
to introduce a classical momentum transfer as q̃ ¼ q=ℏ. We
may then express our master integrals in terms of a series
expansion in q̃. Looking first at the box contributions, it
turns out that the box I□;s and the crossed box I□;u only
appear through their sum due to the respective coefficients
becoming the same in the t → 0 limit. This induces some
simplifications, and following Refs. [10,33,55] the result
may be written

I□;Σ ¼ I□;s þ I□;u

¼ ðq̃2Þ−ϵ
�
I ð−1Þ
□

1

jq̃j þ I ð0Þ
□

þOðjq̃jÞ
�
; ð59Þ

where

I ð−1Þ
□

¼ Γð−ϵÞ2Γð1 − ϵÞ − π

2Γð−2ϵÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p4Þ2 −m2

1m
2
2

p ; ð60Þ

I ð0Þ
□

¼
Γ
�
1
2
þ ϵ
�
Γ
�
1
2
− ϵ
�
2

2Γð−2ϵÞ
m1 þm2

ðp1 · p4Þ2 −m2
1m

2
2

; ð61Þ

where we have introduced ϵ ¼ 2 − d=2. A similar compu-
tation for the triangles gives

I▽ ¼ ðq̃2Þ−ϵ
0
B@Γ
�
1
2
þ ϵ
�
Γ
�
1
2
− ϵ
�
2

m1Γð1 − 2ϵÞ þOðjq̃jÞ

1
CA ð62Þ

and likewise for I△ with m1 ↔ m2. Finally, the bubble
integral turns out to vanish in the soft limit and will not
concern us further.
One might worry about the doubly divergent, both in jqj

and in ϵ, contribution I ð−1Þ
□

. Yet it turns out that when
computing a finite physical quantity, such as a scattering
angle, this divergence cancels with a divergence arising
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from the square of the 1PM contribution, in a manner
similar to the cancellation of infrared divergences in
standard QFTs.

VI. RESULTS

We are now prepared to write down an expression for our
results. We may express our 2PM contribution as

M2PM ¼ κ4ðc□I□;Σ þ c▽I▽ þ c△I△Þ; ð63Þ

where

c□ ¼ ððd − 2Þðm2
1 þm2

2 − sÞ2 − 4m2
1m

2
2Þ2

16ðd − 2Þ2 ; ð64Þ

c△ ¼ −m2
2ððλþ 2m2

1m
2
2Þð4d2 − 17dþ 19Þ

þ2m2
1m

2
2ð4d2 − 15dþ 5ÞÞ=ð16ðd − 2Þ2Þ ð65Þ

where λ is given by Eq. (52). We have used that
c□;s ¼ c□;u ¼ c□, and we also use that c▽ is related to
c△ through m1 ↔ m2. These coefficients equal those of
Eq. (58) in the t → 0 limit.
In particular, if we insert d ¼ 4 these coefficients

reduce to

c□ ¼ 1

4
ðm2

1m
2
2 − 2ðp1 · p4Þ2Þ2;

c△ ¼ 3

16
m2

2ðm2
1m

2
2 − 5ðp1 · p4Þ2Þ;

c▽ ¼ 3

16
m2

1ðm2
1m

2
2 − 5ðp1 · p4Þ2Þ; ð66Þ

in agreement with the expressions given in Refs. [6,58].

VII. DISCUSSION AND OUTLOOK

In Sec. II we introduced the post-Minkowskian approach
to classical gravity. We also introduced the Baikov repre-
sentation and showed the diagrams contributing to the 2PM
contribution.
In Sec. III, which forms the bulk of the paper, we

introduced the intersection theory that we use for the
integral decomposition: In Sec. III A we introduced some
concepts from twisted cohomology theory, which is the
mathematical framework we use. In Sec. III B we showed
how the existence of an inner product on the cohomology
group allows for a direct path to integral decomposition
using the master decomposition formula (24). In Sec. III C
we showed how to define that inner product, the inter-
section number, for the case of univariate integrals. In
Sec. III D we introduce the multivariate intersection
number in a fibration-based approach, including the main
formula used to compute them, Eq. (42). Finally, in
Sec. III E we introduce delta bases that are needed to

compute intersection numbers of objects involving unregu-
lated poles corresponding to uncut propagators.
In Sec. IV we performed the reduction of the Feynman

integrals needed for the 2PM computation onto a basis that
we identified through a systematic analysis. The inter-
mediate and final results may be found in Supplemental
Material [54]. In Sec. V we showed the results for the
master integrals as may be obtained using the soft limit in
the expansion by regions. Finally, in Sec. VI we put it all
together into a result for the 2PM contribution, which was
found to be in agreement with the literature [6,10,55].
This provides evidence for the applicability of intersec-

tion theory to the post-Minkowskian expansion.
It has been proposed in Ref. [59] (under the name of the

bottom-up approach) to apply the intersection-based master
integral decomposition on a set of spanning cuts, of which
each is simpler that performing the full reduction. The
spanning cuts are defined such that each master integral
contributes to at least one cut. Yet we see that due to the
nature of the soft limit taken in the PM approach, all the
diagrams contributing at 2PM could be extracted from a
single t-channel cut. In other words, the set of spanning cuts
has only one member at 2PM. This property will generalize
to higher orders in the PM expansions, where the set of
spanning cuts still only contain cuts in the t-channel even
though there will be several of those at higher orders. Doing
the 3PM calculation with the methods outlined here would
be within reach.
In the work in this paper we performed the reduction

onto the master integral basis before taking the soft limit.
Yet many approaches reverse the order of the two and
consider the integrals in the soft limit only, something that
significantly simplifies the computations, linearizes the
matter propagators (ðk − pÞ2 −m2 → 2k · v), and makes
the integrals effectively one-scale objects [8,9]. We decided
against that approach in this paper, but there is nothing
preventing the use of intersection-based methods to these
soft limit integrals, and presumably many of our inter-
mediate expressions would simplify with such an approach.
For the use of the Baikov representation on such linearized
integrals see, e.g., Ref. [60].
The recent years have seen an explosive growth in the

number of works applying intersection theory in various
branches of physics. Applications have been found in fields
as diverse as cosmology [61,62], lattice gauge theory
[63,64], and gravitational phase-space integrals [65], and
this application in the context of the post-Minkowskian
expansion of general relativity adds another branch to this
growth.
We hope with this work to have added a useful new

perspective to the ongoing investigations into gravitational
waves and black hole physics, further expanding the large
set of amplitude methods that are found to be applicable in
this new regime.
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