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We identify an anisotropic divergence-free conformal Killing tensor Kjl for static spherically symmetric
space-times, and write the conformal Killing gravity equations as Einstein equations augmented by this
tensor. The field equations are of second order; this fact allows for analytic solutions and considerably
simplifies the derivation of results of previous studies based on the original Harada equations. In particular,
we prove the equivalence of the known third-order field equations, with the second-order ones obtained by us
in the conformal Killing parametrization. The structure of theRicci tensor and of the conformal Killing tensor
are compatiblewith both anisotropic fluid sources and (non)linear electrodynamics. We reobtain covariantly
and in simple steps the general static spherical solutions for vacuum and linear electrodynamics. Moreover
we recover the purely magnetic Lagrangian functions that induce metrics of interest for black holes.
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I. CONFORMAL KILLING GRAVITY

Recently J. Harada [1,2] introduced a new theory of
gravity, with field equations

Hjkl ¼ 8πTjkl

Hjkl ¼ ∇jRkl þ∇kRlj þ∇lRjk

−
1

3
ðgkl∇jRþ glj∇kRþ gjk∇lRÞ

Tjkl ¼ ∇jTkl þ∇kTlj þ∇lTjk

−
1

6
ðgkl∇jT þ glj∇kT þ gjk∇lTÞ: ð1Þ

Rjk is the Ricci tensor with trace R, and Tkl is the stress-
energy tensor with trace T. The Bianchi identity ∇jRj

k ¼
1
2
∇kR implies ∇jTj

k ¼ 0. Solutions of the Einstein equa-
tions are solutions of the new theory.
Shortly after, we found a parametrization showing that

Harada’s equations are equivalent to the Einstein equations
modified by a supplemental conformal Killing tensor
(CKT) that is also divergence free [3]:

Rkl −
1

2
Rgkl ¼ Tkl þ Kkl ð2Þ

∇jKkl þ∇kKjl þ∇lKjk

¼ 1

6
ðgkl∇jK þ gjl∇kK þ gjk∇lKÞ: ð3Þ

For this reason the theory was named conformal Killing
gravity (CKG). The reformulation makes Harada’s exten-
sion of general relativity (GR) explicit through the con-
formal Killing term, that satisfies∇kKkl ¼ 0 and enters as a
new source term in the equations.
Feng and Chen [4] proposed an action principle for

CKG. Some references on geometrical and physical appli-
cations of conformal Killing tensors are [5–8].
As Rkl contains second order derivatives of the metric

tensor, higher orders in the field equations (2) may arise
with the tensorKjk. This does not occur in the present work,
as well as in [3], where we obtained a realization of the
conformal Killing parametrization in the Friedmann-
Robertson-Walker (FRW) background. In [3] the CKT
has the perfect fluid form, is a candidate for representing
the dark sector, and contains the scale factor with no
derivatives. The Friedmann equations are thus second order
in the metric, and reproduced the same forecasting obtained
by Harada [2] with Eqs. (1). Vacuum cosmological sol-
utions, and wormhole and black hole solutions were
obtained by Clément and Nouicer [9]. In the FRW back-
ground, CKG is embraced by a general parametrization of
Codazzi tensors [10].
In the next work [11] we deepened the geometrical

aspects and the cosmological consequences. In particular
we showed that the density contrast in the matter era
behaved as in ΛCDM and provided a fit of the Hubble
parameter versus redshift with cosmic chronometers (CC)
and baryonic acoustic oscillations (BAO), with a forecast of
future singularities.
Most papers on CKG dealt with a static background.

Barnes [12] found the general spherically symmetric
vacuum solution and [13,14] the general solution with a
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Maxwell source. Junior et al. [15] investigated regular
black hole solutions of CKG coupled to nonlinear electro-
dynamics and scalar fields. Further in [16] they explored
black bounce solutions in CKG coupled to nonlinear
electrodynamics and scalar fields. pp-wave solutions were
studied by Barnes [17].
In this paper we show a realization of the conformal

Killing parametrization in a static spherically symmetric
background

ds2 ¼ −b2ðrÞdt2 þ f21ðrÞdr2 þ f22ðrÞdΩ2
2:

There are clear advantages in the parametrization approach
(2): the results based on the equations (1) are here
reobtained with simplicity and covariantly.
In Sec. II we recollect the covariant description of the

Ricci tensor of a spherically symmetric static space-time
found in [18]. Then we show that an anisotropic conformal
Killing tensor is naturally hosted in such spaces. It extends
the perfect fluid form recently shown by Barnes in [17] in
spherical symmetry.
In Sec. III we write the field equations of CKG for an

anisotropic fluid source: they are second order differential
equations in the metric functions, as in GR.
An interesting result for the metric coefficients is

obtained: if f2 ¼ r then pr þ μ ¼ 0 if and only if
bf1 ¼ ðκ3r2 þ κ4Þ−1=2. It extends the result obtained by
Barnes [13] and Clément and Noucier [9] for vacuum
space-times and linear electrodynamics.
In Sec. IV the vacuum case is analyzed. We prove the

equivalence of the third order differential equation (26) for
b2ðrÞ by Barnes with the second-order one obtained by us,
Eq. (25). The first one descends from Harada’s equa-
tions (1), and the latter descends from (2).
We show that the (unique) Schwarzschild-like solution is

the vacuum by Harada and remark that it cannot originate
from a perfect fluid CKT.
In Sec. V we write the CKG equations for nonlinear

electrodynamics. The same result for the metric functions
in Sec. III is proven in the nonlinear case.
In the linear case (electric and magnetic monopoles) the

general solution by Barnes [13] and Clément and
Noucier [9] is here obtained as a solution of a second-
order equation.
For the purely magnetic case, we write the second-order

equation (44) for b2 with generic magnetic Lagrangian. It
straightforwardly reproduces the Lagrangians obtained for
black-hole solutions by Junior et al. [15], and a generali-
zation of the Hayward metric.

II. ANISOTROPIC CKT

A covariant characterization [18–20] of static space-
times is the existence of a timelike unit vector field that is
shear, expansion, and vorticity free, with closed acceler-
ation u̇j ¼ uk∇kuj:

∇kuj ¼ −uku̇j; ∇ju̇k ¼ ∇ku̇j: ð4Þ

With η ¼ u̇ku̇k the normalized acceleration vector is

χk ¼
u̇kffiffiffi
η

p : ð5Þ

We focus on static spherically symmetric space-times

ds2¼−b2ðrÞdt2þf21ðrÞdr2þf22ðrÞðdθ2þsin2θdϕ2Þ: ð6Þ

In this (comoving) frame, u0 ¼ −b, uμ ¼ 0, u̇0 ¼ 0,
u̇r ¼ b0=b, u̇θ ¼ u̇ϕ ¼ 0. A prime denotes a derivative in
the variable r. Then,

ffiffiffi
η

p ¼ b0

f1b
ð7Þ

and χ0 ¼ 0, χr ¼ f1, χθ ¼ χϕ ¼ 0.
The covariant expression of the Ricci tensor was

obtained in [18], Eq. (85):

Rkl ¼
Rþ 4∇pu̇p

3
ukul þ

Rþ∇pu̇p

3
gkl

þ ΣðrÞ
�
χkχl −

ukul þ gkl
3

�
; ð8Þ

where the coefficients are [Eqs. (87) and (89) of [18] ]

∇pu̇p ¼ 1

bf21

�
b00 − b0

�
f01
f1

− 2
f02
f2

��
; ð9Þ

ΣðrÞ ¼ −
1

bf21

�
b00 − b0

�
f10

f1
þ f20

f2

��

−
1

f21

�
f21
f22

þ f200

f2
−
�
f20

f2

�
2

−
f10f20

f1f2

�
: ð10Þ

R ¼ Rk
k, and the curvature R⋆ of the spacelike submani-

fold [Eqs. (90) and (91) of [18] ] are:

R ¼ R⋆ − 2∇pu̇p; ð11Þ

R⋆ ¼ 2

f22
−

2

f21

�
2
f002
f2

− 2
f01
f1

f02
f2

þ
�
f02
f2

�
2
�
: ð12Þ

In the background (6) we consider a symmetric tensor
with the anisotropic structure of the Ricci tensor:

Kkl ¼ AðrÞukul þ BðrÞgkl þ CðrÞχkχl: ð13Þ

The following result shows that a static spherically sym-
metric space-time always hosts an anisotropic conformal
Killing tensor (the proof is in Appendix B):
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Theorem 1. In the static spherically symmetric space-
time (6) the tensor (13) is a divergence-free conformal
Killing tensor if and only if

A ¼ κ2f22 − 2κ3b2;

B ¼ κ1 þ 2κ2f22 þ κ3b2

C ¼ −κ2f22;

where κ1, κ2 and κ3 are arbitrary constants.
A, B, and C are combinations of the metric functions b,

f1, f2 with no derivatives. Therefore, the CKG equa-
tions (2) and (3) contain derivatives of the metric not higher
than second order.
Example 1: Perfect fluid CKT. Zj ¼ buj is a Killing

vector, ∇jZk þ∇kZj ¼ 0. Following the strategy proposed
in [7], Kjk ¼ αZjZk þ βgjk with constant α and scalar
function β, is a CKT. The divergence-free condition is
β ¼ − 1

2
αb2 þ γ. The resulting tensor is:

Kjk ¼ αb2
�
ujuk −

1

2
gjk

�
þ γgjk

is the divergence-free CKT recently shown by Barnes
in [17]. It is a particular case of Theorem 1 with κ2 ¼ 0.

III. CKG FOR THE ANISOTROPIC FLUID

The structures of the Ricci tensor (8) and of the CKT (13)
are compatible with the stress-energy tensor of an aniso-
tropic fluid without heat flow:

Tkl ¼ ðμþ p⊥Þukul þ p⊥gkl þ ðpr − p⊥Þχkχl: ð14Þ

μ is the energy density, pr and p⊥ are the radial and
transversal pressures in the comoving frame, and
χk ¼ u̇k=

ffiffiffi
η

p
. The tensor is rewritten as

Tkl ¼ðμþPÞukulþPgklþðpr−p⊥Þ
�
χkχl−

gklþukul
3

�
;

where P ¼ 1
3
ðpr þ 2p⊥Þ is the total pressure. The CKG

equations with the fluid source are

Rþ 4∇pu̇p

3
ukul þ

2∇pu̇p − R

6
gkl þ Σ

�
χkχl −

ukul þ gkl
3

�

¼ ðμþ PÞukul þ Pgkl þ ðpr − p⊥Þ
�
χkχl −

ukul þ gkl
3

�

þ
�
AþC

3

�
ukul þ

�
BþC

3

�
gkl þC

�
χkχl −

ukul þ gkl
3

�
:

They give three scalar equations:

1

3
ðRþ 4∇pu̇pÞ ¼ ðμþ PÞ þ Aþ 1

3
C

1

6
ð2∇pu̇p − RÞ ¼ Pþ Bþ 1

3
C

Σ ¼ ðpr − p⊥Þ þ C:

Rearranging terms and using R ¼ R⋆ − 2∇pu̇p and
Theorem 1 we obtain the following.
Proposition 1. The field equations of CKG in the static

spherically symmetric metric (6) with the anisotropic CKT
Eq. (13) are

R⋆

2
¼ μ − 3κ3b2 − κ2f22 − κ1

∇pu̇p ¼ 3

2
Pþ 1

2
μþ 2κ2f22 þ κ1

Σ ¼ ðpr − p⊥Þ þ C: ð15Þ
Remark 1. Let f2 ¼ r and consider Eqs. (15) for a perfect

fluid (pr ¼ p⊥). In GR they are μ ¼ 1
2
R⋆, P ¼ 2

3
∇pu̇p −

1
6
R⋆ and Σ ¼ 0: three equations for the unknowns μ, p, b,

and f1. A further condition, such as an equation of state, is
needed. The same occurs for the conformal Killing
equations.

A. Properties of metric functions

Hereafter we consider the static spherical metric with
f2 ¼ r, and set f1 ¼ h=b.

ds2 ¼ −b2ðrÞdt2 þ h2ðrÞ
b2ðrÞ dr

2 þ r2dΩ2: ð16Þ

We prove a remarkable property of the metric function
hðrÞ. First we assert the following geometric result.
Lemma 1.

R⋆

2
þ∇pu̇p þ Σ ¼ 3b2

r
h0

h3
ð17Þ

Proof. Using (9), (10), and (12) the following relations
are straightforwardly obtained:

R⋆ ¼ 2

r2
þ 4b2

r
h0

h3
−
4bb0

rh2
−

2

r2
b2

h2
ð18Þ

∇pu̇p ¼ 1

h2
ðb02 þ bb00Þ − bb0

h2
h0

h
þ 2bb0

rh2
ð19Þ

Σ ¼ −
1

h2
ðb02 þ bb00Þ þ bb0

h0

h3
þ 1

r2
b2

h2
−

1

r2
þ b2

r
h0

h3
: ð20Þ

The result (17) follows. ▪
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We are ready to prove the following.
Proposition 2. Consider CKG in the metric (16) with an

anisotropic fluid source. Then

1

h2
¼ κ3r2 þ κ4 ⇔ pr ¼ −μ: ð21Þ

Proof. The addition of Eqs. (15) with C ¼ −κ2r2 and
P ¼ 1

3
ðpr þ 2p⊥Þ gives

R⋆

2
þ∇pu̇p þ Σ ¼ 3

2
ðpr þ μÞ − 3κ3b2:

With (17) we obtain

2b2

r
h0

h3
þ 2κ3b2 ¼ pr þ μ:

If pr þ μ ¼ 0 it is h0
h3 ¼ −κ3r that integrates to (21) with κ4 a

constant. Conversely if h−2 ¼ κ3r2 þ κ4 then pr þ μ ¼ 0. ▪
If pr þ μ ¼ 0 it is

f1ðrÞ ¼
1

bðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ3r2 þ κ4

p : ð22Þ

Equation (22) was obtained by Barnes [12] while inves-
tigating vacuum solutions and also in solving CKG field
equations of linear electrodynamics [13].

IV. VACUUM SOLUTIONS

In the absence of matter Eqs. (15) become

R⋆ ¼ −6κ3b2 − 2κ2r2 − 2κ1

∇pu̇p ¼ 2κ2r2 þ κ1

Σ ¼ C ¼ −κ2r2: ð23Þ

It is also h−2 ¼ κ3r2 þ κ4. The remaining metric function
b2 is determined by Σ ¼ C. With the substitution y ¼ b2

the anisotropic term (20) now is

Σ ¼ −ðκ3r2 þ κ4Þ
y00

2
− κ3r

y0

2
þ κ4

y
r2

−
1

r2
; ð24Þ

and the equation Σ ¼ −κ2r2 for yðrÞ is

ðκ3r2 þ κ4Þy00 þ κ3ry0 − 2
κ4
r2

yþ 2

r2
¼ 2κ2r2: ð25Þ

Proposition 3. The second-order equation (25) is equiv-
alent to the third-order equation obtained by Barnes in [12],
Eq. (16), with computer algebra:

ðκ3r2 þ κ4Þr3y000 þ ðκ3r2 − 2κ4Þr2y00
− ðκ3r2 þ 2κ4Þry0 þ 8κ4y ¼ 8: ð26Þ

Proof. The equation Σ ¼ C gives Σ0 ¼ C0. Being
C ¼ −κ2r2 it is C0 ¼ 2

rC. Thus the anisotropic term
satisfies Σ0 ¼ 2

r Σ, and the integral is Σ ¼ C:

Σ0 −
2

r
Σ ¼ 0 ⇔ Σ ¼ C: ð27Þ

The left-hand side of (27) is evaluated,

Σ0 −
2

r
Σ ¼ −

y000

2
ðκ3r2 þ κ4Þ − y00

�
κ3
2
r −

κ4
r

�

þ y0
�
κ3
2
þ κ4

r2

�
− y

4κ4
r3

þ 4

r3
;

and entails the equation by Barnes. ▪
The second-order equation (25) is solved (x ¼ r

ffiffiffiffiffi
κ3

p
,

κ4 ¼ 1): the sum of the homogeneous (with coefficients
c1;2) and the inhomogeneous solutions,

b2ðrÞ ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x
þ c2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x
arcshx − 1

�

þ 1 −
3κ2
2κ23

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x
arcshx − 1 −

x2

3

�
: ð28Þ

Example 2: Case h ¼ 1. The vacuum static spherical
solution of CKG with h ¼ 1 (i.e., κ3 ¼ 0 and κ4 ¼ 1) was
found by Harada [1], and extends the Schwarzschild-de
Sitter solution of GR:

b2 ¼ 1 −
2M
r

−
Λ
3
r2 −

λ

5
r4: ð29Þ

The following result holds.
Proposition 4. Equation (29) is the unique solution with

h ¼ 1 of the vacuum equations (23) with κ1 ¼ −Λ,
κ2 ¼ −λ.
Proof. With κ3 ¼ 0 and κ4 ¼ 1 in (25), the equation

Σ ¼ C is the Euler equation r2y00 − 2y ¼ −2þ 2κ2r4 with
solution

y ¼ b2 ¼ 1þ c1
r
þ c2r2 þ

1

5
κ2r4: ð30Þ

Thus c1 ¼ −2M, c2 ¼ − 1
3
Λ, and λ ¼ −κ2.

The solution must also solve the other equations in (23):
R⋆ ¼ −2κ2r2 − 2κ1 and ∇pu̇p ¼ 2κ2r2 þ κ1.
With h ¼ 1 and b2 ¼ y Eqs. (18) and (19) become

R⋆ ¼ −
2

r
y0 −

2

r2
yþ 2

r2
¼ 2λr2 þ 2Λ

∇pu̇p ¼ 1

2
y00 þ 1

r
y0 ¼ −2λr2 − Λ:

The equations are satisfied with κ1 ¼ −Λ. ▪
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The Schwarzschild de-Sitter metric occurs if and only if
κ2 ¼ 0, i.e., C ¼ 0, giving the perfect fluid CKT. Then, a
perfect fluid CKT in the field equations cannot originate
Harada’s vacuum solution (29).

V. (NON)LINEAR ELECTRODYNAMICS IN CKG

In [18] we specified the covariant form of the stress-
energy tensor of nonlinear electrodynamics in static spheri-
cally symmetric space-times:

Tnlin
jk ¼ 2ðE2 þ B2Þ½ujuk − χjχk�LFðFÞ

þ 2gjk½B2LFðFÞ − LðFÞ�: ð31Þ

F ¼ 1
4
FjkFjk is the Faraday scalar, LF ¼ dL=dF. In the

static setting it is F ¼ 1
2
ðB2 − E2Þ, where we have the

following.
Proposition 5.

EðrÞ ¼ qe
r2LFðFÞ

; B ¼ qm
r2

: ð32Þ

Proof. Equation (28) in [18] is ∇j½χjELF� ¼ ffiffiffi
η

p
ELF.

Explicitly, using (7) and the formulas in Appendix A,

�
2

rf1
þ b0

f1b

�
ðELFÞ þ

1

f1

d
dr

ðELFÞ ¼
b0

f1b
ðELFÞ:

Terms cancel, and the linear equation gives the first result,
where qe is an integration constant.
Equation (18) in [18] is

ffiffiffi
η

p
χp∇pB¼B½∇pu̇p−η−χs∇sη

2
ffiffi
η

p �.
Using (A4) the equation is integrated and yields the
monopole solution. (Different deductions of the proposi-
tion are in [21,22].) ▪
The tensor structure of the Ricci and of the stress-energy

tensors is matched by the conformal Killing tensor. Thus
the field equations of CKG are

Rþ4∇pu̇p

3
ukulþ

2∇pu̇p−R

6
gklþΣðrÞ

�
χkχl−

ukulþgkl
3

�

¼ 4

3
ðE2þB2ÞLFðFÞukul

þ2

�
1

3
ð2B2−E2ÞLFðFÞ−LðFÞ

�
gkl

−2ðE2þB2ÞLFðFÞ
�
χkχl−

ukulþgkl
3

�

þ
�
AþC

3

�
ukulþ

�
BþC

3

�
gklþC

�
χkχl−

ukulþgkl
3

�
:

By equating the coefficients one obtains three scalar
equations. A rearrangement of terms and use of R ¼
R⋆ − 2∇pu̇p give

1

2
R⋆ ¼ 2LFðFÞE2 þ 2LðFÞ þ A − B

∇pu̇p ¼ 2LFðFÞB2 − 2LðFÞ þ A
2
þ Bþ C

2

Σ ¼ −2ðE2 þ B2ÞLFðFÞ þ C: ð33Þ

Also in this case we are able to show the validity of (22).
The following result holds.
Proposition 6. Consider CKG coupled with nonlinear

electrodynamics in the metric (16). Then

1

h2
¼ κ3r2 þ κ4:

Proof. The sum of Eqs. (33) is 1
2
R⋆ þ∇pu̇p þ Σ ¼

3
2
ðAþ CÞ. Now use Lemma 1 and Aþ C ¼ −2κ3b2. ▪

A. Linear electrodynamics

In linear electrodynamics LðFÞ ¼ F ¼ 1
2
ðB2 − E2Þ. The

electric field is Coulomb EðrÞ ¼ qe=r2, so that

E2 þ B2 ¼ q2

r4
;

with q2 ¼ q2e þ q2m. Equations (33) take the form

1

2
R⋆ ¼ q2

r4
− 3κ3b2 − κ2r2 − κ1 ð34Þ

∇pu̇p ¼ q2

r4
þ 2κ2r2 þ κ1 ð35Þ

Σ ¼ −2
q2

r4
þ C: ð36Þ

Σ is given by (24) and C ¼ −κ2r2. Equation (36) is the
second-order differential equation for y ¼ b2:

ðκ3r2 þ κ4Þy00 þ κ3ry0 − 2κ4
y
r2

þ 2

r2
¼ 2κ2r2 þ

4q2

r4
: ð37Þ

Proposition 7. In CKG coupled with linear electrody-
namics the second-order equation for b2ðrÞ in a static
spherically symmetric background is equivalent to the
following third-order equation:

ðκ3r2 þ κ4Þr3y000 þ ðκ3r2 − 2κ4Þr2y00

− ðκ3r2 þ 2κ4Þry0 þ 8κ4y ¼ 8 −
24q2

r2
: ð38Þ

This is Eq. (14) worked by Barnes in [13] and the “master
equation” by Clément and Noucier [9].
Proof. As in the vacuum case, Σ ¼ −2 q2

r4 þ C gives

Σ0 ¼ 8q2

r5
þC0. Since C¼−κ2r2 it is C0 ¼ 2

rC ¼ 2
r ½Σþ 2 q2

r4 �.

CONFORMAL KILLING GRAVITY IN STATIC SPHERICALLY … PHYS. REV. D 110, 044025 (2024)

044025-5



Thus the anisotropic term satisfies Σ0 − 2
r Σ ¼ 12q2

r5
; on the

other hand the integral is Σ ¼ −2 q2

r4 þ C. The following
equivalence holds:

Σ0 −
2

r
Σ ¼ 12q2

r5
⇔ Σ ¼ −2

q2

r4
þ C: ð39Þ

Using (24) the left-hand side of (39) is evaluated and gives the
third-order equation. ▪
As a check, the second-order equation (37) is solved

for κ4 ¼ 1, x ¼ r
ffiffiffiffiffi
κ3

p
. The solution, evaluated with

Mathematica, coincides with that by Clément and
Noucier [9]:

yðxÞ¼ c1

ffiffiffiffiffiffiffiffiffiffi
1þx

p

x
þc2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p

x
arcshðxÞ−1

�
þ1

−
3κ2
2κ23

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p

x
arcshðxÞ−1−

x2

3

�
þ κ3q2

�
2þ 1

x2

�
:

Example 3: Case h ¼ 1. The metric function

b2ðrÞ ¼ 1 −
2M
r

−
Λ
3
r2 þ q2

r2
−
λ

5
r4 ð40Þ

was obtained in [13,15] with different strategies. In [15]
Junior, Lobo, and Rodriguez posed a functional form of
bðrÞ including the term − λ

5
r4 that characterizes CKG, and

then engineered a nonlinear electrodynamics Lagrangian
and its derivative. On the other hand, in [13] Barnes used
computer algebra to obtain the same and more general
solutions.
Here the solution (40) is achieved in a much simpler way.
Proposition 8. The unique solution of (34)–(36) with

h ¼ 1 (i.e., κ3 ¼ 0, κ4 ¼ 1) is the metric function (40), with
κ1 ¼ −Λ, κ2 ¼ −λ.
Proof. The equation Σ ¼ −2 q2

r4 þ C with Σ in (24) and

y ¼ b2 is Euler’s equation r2y00 − 2yþ 2 ¼ 4 q2

r2 þ 2κ2r4

with the solution

y ¼ b2 ¼ 1þ c1
r
þ c2r2 þ

q2

r2
þ κ2

5
r4: ð41Þ

This is (40) with c1 ¼ −2M, c2 ¼ − Λ
3
, and λ ¼ −κ2.

Let us show that it also solves (34) and (35):

1

2
R⋆ ¼ q2=r4 − κ2r2 − κ1

∇pu̇p ¼ q2=r4 þ 2κ2r2 þ κ1:

With (40), h ¼ 1, and b2 ¼ y, Eqs. (18) and (19) give

1

2
R⋆ ¼ 1

r2
−
1

r
y0 −

1

r2
y ¼ q2=r4 − κ2r2 − 3c2

∇pu̇p ¼ 1

2
y00 þ 1

r
y0 ¼ q2=r4 þ 2κ2r2 þ 3c2:

Equality is achieved with κ1 ¼ 3c2. ▪
Example 4. For κ3 ¼ 1 and κ4 ¼ 0 Eq. (37) is solved by

y ¼ λ −
Λ
3
r2 þm ln r −

1

2r2
þ q2

4r4
: ð42Þ

This is Eq. (19) in Barnes or (2.21) in Clément and Nouicer.

B. Nonlinear electrodynamics: Purely
magnetic solutions

In this case EðrÞ ¼ 0 and B ¼ qm=r2 (magnetic monop-

ole). Then F ¼ B2

2
¼ q2m

2r4. The third equation of (33) is

Σ ¼ −2
q2m
r4

LFðFÞ þ C:

Now LF ¼ dL
dF ¼ dL

dr
dr
dF ¼ −L0 r5

2q2m
, so that the previous

equation rewrites as

Σ ¼ rL0 þ C: ð43Þ

The knowledge of LðrÞ in (43) gives a second-order
differential equation for the metric function b2 ¼ y:

ðκ3r2þ κ4Þy00 þ κ3ry0−
2κ4
r2

yþ 2

r2
¼−2ðrL0− κ2r2Þ: ð44Þ

Example 5: Case h ¼ 1. For κ3 ¼ 0 and κ4 ¼ 1 the
solution by the method of variation of parameters is

yðrÞ ¼ 1þ c1r2 þ
c2
r
−
κ2
5
r4 −

2

r

Z
r
dr0r02Lðr0Þ: ð45Þ

Given LðFÞ, F ¼ q2m=ð2r4Þ, one evaluates bðrÞ.
In [15] a different strategy is pursued: an input metric

with faithful properties (such as regularity in the origin) is
chosen, and the corresponding Lagrangian is reconstructed.
Here this procedure is greatly facilitated by Eq. (43). It is

illustrated to reproduce two interesting examples:
(i) Metric Eq. (34) in [15]:

y ¼ 1 −
2M
r

−
Λ
3
r2 þ q2m

r2
−
λ

5
r4 þ k0

r4
: ð46Þ

With Σ ¼ y−1
r2 − 1

2
y00 we get Σ ¼ λr2 − 2q2m

r4 − 9 k0
r6
.

Equation (43) is easily solved by
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L ¼ ϕ0 þ
q2m
2r4

þ ϕ1r2 þ 3
k0
2r6

¼ ϕ0 þ F þ ϕ1

qmffiffiffiffiffiffi
2F

p þ 3
k0ð2FÞ3=2

2q3m
ð47Þ

with constants ϕ0, ϕ1. This is Eq. (41) in [15].
(ii) Bardeen-type metric Eq. (72) in [15]):

y ¼ 1 −
2Mr2

ðq2m þ r2Þ3=2 −
Λ
3
r2 −

λ

5
r4: ð48Þ

Now Σ ¼ λr2 − 15Mr2

ðq2mþr2Þ7=2. Equation (43) is easily

solved:

L ¼ 3Mq2m
ðq2m þ r2Þ5=2 þ ϕ1r2 þ ϕ0; ð49Þ

with ϕ0 and ϕ1 constants. This is Eq. (73) in [15].
With F ¼ q2m=ð2r4Þ, L can be rewritten as

LðFÞ ¼ 3Mq2m�
q2m þ qmffiffiffiffi

2F
p

�
5=2 þ ϕ1

qmffiffiffiffiffiffi
2F

p þ ϕ0: ð50Þ

This is Eq. (77) presented in [15].
This is a new example:
(iii) Hayward-like solution. The metric

b2 ¼ 1 −
2Mr2

q3m þ r3
−
Λ
3
r2 −

λ

5
r4 ð51Þ

is the Hayward black-hole when λ;Λ ¼ 0 [23]. It is

inferred that Σ ¼ λr2 − 18Mr3q3m
ðq3mþr3Þ3. Then (43) is

solved by

L ¼ 3Mq3m
ðq3m þ r3Þ2 þ ϕ1r2 þ ϕ0

¼ 3Mð2FÞ3=2
ð1þ ð2Fq2mÞ3=4Þ2

þ ϕ1

qmffiffiffiffiffiffi
2F

p þ ϕ0: ð52Þ

VI. CONCLUSIONS

We have shown that static spherically symmetric space-
times naturally host an anisotropic divergence-free conformal
Killing tensor (Theorem 1). This makes the parametrization
(2) of the Harada equations as modified Einstein equations
effective for such a background.
The CKG equations can support an anisotropic fluid

source as well as (non)linear electrodynamics. In both cases
the equations are second order. This is a great advantage
with respect to the solution by components of the third-
order Harada equations found in the existing literature. We

prove the equivalence of our second-order equations with
the third-order ones. Our approach recovers several results
obtained so far in a simple and covariant way, and gives
some new ones.

APPENDIX A: USEFUL FORMULAS

We collect useful formulas for static spherical space-
times, taken from [18].
A scalar function FðrÞ has gradient in the radial

direction, given by the unit spacelike vector χ:

∇jF ¼ χjχ
k∇kF ¼ χj

F0

f1

(the prime is d=dr). In particular,

χs∇sη

2
ffiffiffi
η

p ¼ 1

2
ffiffiffi
η

p 1

f1

d
dr

�
b02

b2f21

�

¼ 1

f21

�
b00

b
−
b02

b2
−
b0f01
bf1

�
: ðA1Þ

The vector χk ¼ u̇k=
ffiffiffi
η

p
is normalized, χkχk ¼ 1.

Its covariant derivative is

∇jχk ¼
∇ju̇kffiffiffi

η
p −

χs∇sη

2η
χjχk: ðA2Þ

Since u̇k is closed, χj is also closed: ∇jχk ¼ ∇kχj. A
consequence is χj∇jχk ¼ χj∇kχj ¼ 0.
The gradient of the acceleration is [Eq. (16) in [19] ]

∇ju̇k ¼ −ηukuj þ
χs∇sη

2
ffiffiffi
η

p χjχk

þ 1

2
Njk

�
∇pu̇p − η −

χs∇sη

2
ffiffiffi
η

p
�
; ðA3Þ

where Njk ¼ gjk þ ujuk − χjχk is a projection.
Equation (87) in [18], and Eqs. (7) and (A1) give

∇pu̇p − η −
χs∇sη

2
ffiffiffi
η

p ¼ 2

f21

�
b0

b
f02
f2

�
: ðA4Þ

One then obtains

∇jχk ¼
1

f1

�
f02
f2

−
b0

b

�
ukuj þ

f02
f1f2

ðgjk − χjχkÞ ðA5Þ

∇pχ
p ¼ 2

f02
f1f2

þ b0

f1b
: ðA6Þ

APPENDIX B

Let Kkl ¼ Aukul þ Bgkl þ Cχkχl.
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The conformal Killing condition (3) with the static
equation (4) for ui and the closedness of χi is

0¼∇i

�
B−

1

6
K

�
gjkþ

�
∇jB−

1

6
K

�
gkiþ

�
∇kB−

1

6
K

�
gij

þð∇iA−2Au̇iÞujukþð∇jA−2Au̇jÞukui
þð∇kA−2Au̇kÞuiujþð∇iCÞχjχkþð∇jCÞχkχi
þð∇kCÞχiχjþ2Cðχi∇jχkþχj∇kχiþχk∇iχjÞ:

Since A only depends on r, it is ∇iA ¼ χiχ
k∇kA ¼

χiA0=f1, and similarly for B and C and K. The equation,
multiplied by f1 becomes

0¼
�
B0−

1

6
K0
�
ðχigjkþχjgkiþχkgijÞ

þ
�
A0−2

b0

b
A
�
ðχiujukþχjukuiþ χkuiujÞþ3C0χiχjχk

þ2f1Cðχi∇jχkþχj∇kχiþχk∇iχjÞ: ðB1Þ

Contraction with χiχjχk:

0 ¼ 3B0 þ 3C0 −
1

2
K0 ¼ 1

2
ðA0 þ 2B0 þ 5C0Þ: ðB2Þ

The identity is used to simplify K0 and A0 from the equation

0 ¼
�
A0 − 2

b0

b
A
�
ðχiujuk þ χjukui þ χkuiujÞ

þ C0½3χiχjχk − ðχigjk þ χjgki þ χkgijÞ�
þ 2f1Cðχi∇jχk þ χj∇kχi þ χk∇iχjÞ:

Contraction with uiujχk: 0 ¼ ðA0 − 2 b0
b AÞ þ C0 þ

2f1Cujχ̇j. It is ujχ̇j ¼ −u̇jχj ¼ − ffiffiffi
η

p ¼ −b0=ðbf1Þ.
Then, A0 þ C0 ¼ 2 b0

b ðAþ CÞ, with solution Aþ C ¼
−2κ3b2ðrÞ. Contraction with gijχk:

0 ¼ −A0 þ 2
b0

b
A − 3C0 þ 2f1C∇jχj:

Use (A6) and obtain

0 ¼ −ðA0 þ C0Þ þ 2
b0

b
ðAþ CÞ − 2C0 þ 4

f02
f2

C:

It follows that C ¼ −κ2f22. Then A ¼ −2κ3b2 þ κ2f22.
Equation (B2) gives B ¼ κ3b2 þ 2κ2f22 þ κ1 and K ¼
6κ3b2 þ 6κ2f22 þ 4κ1.
The found parameters A;B;C are inserted in (B1). Up to

a factor of 2κ2f1f22 it is

0 ¼ f20

f1f2
ðχigjk þ χjgki þ χkgijÞ

þ
�
f20

f1f2
−

b0

bf1

�
ðχiujuk þ χjukui þ χkuiujÞ

− 3
f20

f2f1
χiχjχk − ðχi∇jχk þ χj∇kχi þ χk∇iχjÞ: ðB3Þ

With the expression (A5) the conformal Killing equation is
satisfied for any choice of the constants.
Now we prove the opposite statement: in the metric (6),

if A;B;C are those in Theorem 1, then the tensor (13) is
conformal Killing. This is expressed by condition (B1), that
becomes (B3) after substitutions. The latter equation is
identically satisfied. ▪
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