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In Einstein-Aether gravity, we revisit the issue of linear stabilities of black holes against odd-parity
perturbations on a static and spherically symmetric background. In this theory, superluminal propagation
is allowed and there is a preferred timelike direction along the unit Aether vector field. If we choose the
usual spherically symmetric background coordinates with respect to the Killing time t and the areal radius
r, it may not be appropriate for unambiguously determining the black hole stability because the constant t
hypersurfaces are not necessarily always spacelike. Unlike past related works of black hole perturbations,
we choose an Aether-orthogonal frame in which the timelike Aether field is orthogonal to spacelike
hypersurfaces over the whole background spacetime. In the short wavelength limit, we show that no-ghost
conditions as well as radial and angular propagation speeds coincide with those of vector and tensor
perturbations on the Minkowski background. Thus, the odd-parity linear stability of black holes for
large radial and angular momentum modes is solely determined by constant coefficients of the Aether
derivative couplings.
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I. INTRODUCTION

General relativity (GR) is a fundamental pillar of modern
physics for describing the gravitational interaction. GR
enjoys the invariance under transformations in the Lorentz
group. From the perspective of quantum gravity and high-
energy theories, however, there are some indications that
Lorentz invariance may not be an exact symmetry at all
energies [1–5]. Lorentz violation at high energies may
allow for the possibility of regularizing field theories, while
recovering Lorentz symmetry at low energies [6]. Although
broken Lorentz invariance for the standard model matter
fields is highly constrained from numerous experiments,
the bounds on Lorentz violation in the gravitational sector
are not so stringent yet [7–9].
To accommodate broken Lorentz invariance for the

gravitational fields without losing the covariant property
of GR, there is a way of introducing a unit timelike vector
field uμ satisfying the relation uμuμ ¼ −1. This is known as
Einstein-Aether theory [10], in which a preferred threading
with respect to the Aether field is present. To maintain

general covariance of Einstein gravity, we require that the
preferred threading is dynamical. Since the timelike Aether
field is nonvanishing at any spacetime points, it always
breaks local Lorentz invariance. In this sense, Einstein-
Aether theory is distinguished from other Lorentz-violating
theories restoring Lorentz invariance at some particular
energy scales.
The covariant action of Einstein-Aether theory, which

was introduced by Jacobson and Mattingly [10], contains
four derivative couplings of the Aether field with dimension-
less coupling constants c1;2;3;4 besides the Ricci scalar R.
The unit vector constraint on the timelike Aether field can be
incorporated into the action as a Lagrange multiplier of the
form λðuμuμ þ 1Þ. We should mention that there was also an
equivalent approach based on a tetrad formalism advocated
by Gasperini [11]. The Einstein-Aether framework can
encompass several classes of vector-tensor theories such
as the spontaneous breaking of Lorentz invariance in
string theory [8] and cuscuton theories with a quadratic
scalar potential [12,13]. There are also extended versions of
Einstein-Aether theory in which a symmetry-breaking
potential for the vector is introduced [14] or the Aether
coupling functions are generalized [15,16]. The generalized
Einstein-Aether theory of Ref. [15] is subject to severe
constraints on the coupling functions, if c1 þ c3 ≠ 0 [17].
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The perturbative analysis of Einstein-Aether theory on
the Minkowski background (with all nonvanishing coupling
constants c1;2;3;4) shows that there are one scalar, two vector,
and two tensor propagating degrees of freedom [18]. As we
will review in Sec. II, their squared propagation speeds are
given, respectively, by Eqs. (2.10), (2.11), and (2.12), all of
which are different from that of light. The gravitational-
wave event GW170817 of a black hole (BH) neutron star
binary, along with the gamma-ray burst 170817A, put a
stringent limit jcT − 1j ≲ 10−15 on the tensor propagation
speed cT [19], thereby translating to the bound jc1 þ c3j ≲
10−15 [20,21]. The coupling constants c1;2;3;4 have been
constrained from other experiments and observations such
as gravitational Cerenkov radiation [22], big bang nucleo-
synthesis [23], solar-system tests of gravity [24], binary
pulsars [25–28], and gravitational waveforms [29–31].
Despite those numerous observational data, there are still
wide regions of parameter space that are compatible with all
these constraints.
If we apply Einstein-Aether theory to the physics on a

static and spherically symmetric (SSS) background, it is
known that there are some nontrivial BH solutions
endowed with the Aether hair [32–50]. Besides the usual
metric horizon at which the time translation Killing vector
ζμ becomes null (ζμζμ ¼ 0), broken Lorentz invariance can
give rise to the existence of a universal horizon at which the
Aether field uμ is orthogonal to ζμ, i.e., uμζμ ¼ 0 [51]. This
universal horizon, which lies inside the metric horizon, can
be interpreted as a causal boundary of any speeds of
propagation. In other words, once a wave signal is trapped
inside the universal horizon, it does not escape from BHs
toward spatial infinity. These distinguished features in
Einstein-Aether theory may manifest themselves for inspi-
ral gravitational waveforms emitted from BH binaries and
BH quasinormal modes in the ringdown phase. Thus, the
upcoming high-precision observations of gravitational
waves will offer the possibility of probing the signature
of BHs with the Aether hair.
The BH perturbation theory, which was originally

developed by Regge-Wheeler [52] and Zerilli [53], plays
a crucial role in computing the quasinormal modes of BHs.
Moreover, the linear stability of BHs is known by studying
conditions for the absence of ghosts and Laplacian insta-
bilities in the small-scale limit. In scalar-tensor Horndeski
theories [54], for example, the second-order actions of odd-
and even-parity perturbations on the SSS background were
derived in Refs. [55–57] for exploring the linear stability of
hairy BHs. In Refs. [58–60], it was found that the angular
propagation speeds of even-parity perturbations, besides
other stability conditions, are important to exclude a large
class of hairy BHs due to Laplacian instabilities. As a
result, the presence of a Gauss-Bonnet term coupled to the
scalar field plays a prominent role in the realization of
linearly stable BH solutions in Horndeski theories [61].

In Einstein-Aether theory, the second-order action of
odd-parity perturbations was derived in Ref. [62] by using a
standard SSS coordinate introduced later in Eq. (3.23). The
odd-parity sector contains two propagating degrees of
freedom: (1) one tensor mode arising from the gravitational
perturbation χ, and (2) one vector mode arising from the
Aether perturbation δu. The no-ghost conditions and
propagation speeds for χ and δu were obtained by dealing
with the t coordinate as a time clock [62]. In Einstein-
Aether theory, however, there is a preferred timelike
direction along the unit Aether field. Since the timelike
property of t coordinate is not always ensured in this setup,
the choice of t and r coordinates should not be necessarily
appropriate for discussing the linear stability of BHs.
On the SSS spacetime where the background Aether

field does not have vorticity, it is possible to locally choose
a timelike coordinate ϕ in the form uμjbackground ¼ −η∂μϕ,
where η is a nonvanishing function. This scalar field ϕ,
which was named “khronon” in Ref. [63], defines the
timelike direction in the foliation structure of spacetime.
On the SSS background, one can introduce an Aether-
orthogonal frame in which the Aether field is orthogonal
to spacelike hypersurfaces. Indeed, it is known that [64]
Einstein-Aether theory in such a configuration is equiv-
alent to the infrared limit of the nonprojectable version of
Hořava gravity [65].1

Since the Aether-orthogonal frame is a proper choice of
the timelike coordinate orthogonal to spacelike hypersur-
faces, we will revisit the linear stability analysis of BHs in
the odd-parity sector for this coordinate system. In Sec. II,
we briefly review current constraints on the coupling
constants c1;2;3;4 of derivative couplings of the Aether field.
In Sec. III, we will see how a naive choice of the usual SSS
coordinate (3.23) can cause apparent instabilities and
introduce the Aether-orthogonal frame as well as relations
between two different frames. In Sec. IV, we transform the
second-order action of odd-parity perturbations derived in
Ref. [62] to that in the Aether-orthogonal frame and show
that, for large radial and angular momentum modes, the no-
ghost conditions and speeds of propagation are identical to
those of vector and tensor perturbations on the Minkowski
background. Thus, unlike the results in Ref. [62], the linear
stability of BHs against odd-parity perturbations does not
add new conditions to those known in the literature. Sec. V
is devoted to conclusions.

1It should be noted that the equivalence between Einstein-
Aether gravity and khronometric theory (or the infrared limit of
nonprojectable Hořava gravity [66]) holds only when the Aether
field has zero vorticity. In particular, their Hamiltonian structures
are different. In fact, while in Einstein-Aether gravity there are
five propagating local physical degrees of freedom, in khrono-
metric theory the number of propagating local physical degrees of
freedom is three [51,67], so is in Hořava gravity [68].
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Throughout the paper, we will use the natural unit in
which the speed of light c and the reduced Planck constant ℏ
are unity. We also adopt the metric signature ð−;þ;þ;þÞ.

II. EINSTEIN-AETHER THEORY
AND CURRENT CONSTRAINTS

Einstein-Aether theory is given by the action [10]

S ¼ 1

16πGæ

Z
d4x

ffiffiffiffiffiffi
−g

p ½RþLæ þ λðgμνuμuν þ 1Þ�; ð2:1Þ

where Gæ is a constant corresponding to the gravitational
coupling, R is the Ricci scalar, g is the determinant of
metric tensor gμν, λ is a Lagrange multiplier, uμ is the
Aether vector field, and

Læ ¼ −Mαβ
μν∇αuμ∇βuν; ð2:2Þ

with

Mαβ
μν ≔ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν: ð2:3Þ

The Greek indices run from 0 to 3, ∇α is a covariant
derivative operator with respect to gμν, and c1;2;3;4 are four
dimensionless coupling constants.
Varying the action (2.1) with respect to λ, it follows that

gμνuμuν ¼ −1: ð2:4Þ

This constraint ensures the existence of a timelike unit
vector field at any spacetime points, so that there is a
preferred threading responsible for the breaking of Lorentz
invariance. Varying Eq. (2.1) with respect to uμ, we obtain

∇μJμα þ λuα þ c4uβ∇βuμ∇αuμ ¼ 0; ð2:5Þ

where

Jμα ≔ Mμν
αβ∇νuβ: ð2:6Þ

Multiplying Eq. (2.5) by uα and using Eq. (2.4), the
Lagrange multiplier can be expressed as

λ ¼ uα∇μJμα þ c4ðuβ∇βuμÞðuρ∇ρuμÞ: ð2:7Þ

The gravitational field equations derived by the variation
of (2.1) with respect to gμν are

Gαβ ¼ ∇μ½uðαJμβÞ þ uμJðαβÞ − uðαJβÞμ�
þ c1ð∇αuν∇βuν −∇νuα∇νuβÞ
þ c4ðuρ∇ρuαÞðuν∇νuβÞ

þ 1

2
gαβLæ þ λuαuβ; ð2:8Þ

where Gαβ is the Einstein tensor.
In general, the theory contains three different species of

propagating degrees of freedoms, i.e., spin-0 (scalar), spin-
1 (vector), and spin-2 (tensor) modes. On the Minkowski
background with the line element

ds2 ¼ ημνdxμdxν ¼ −dt2 þ δijdxidxj; ð2:9Þ

the Aether field is aligned along the t direction, as
uμ ¼ δμ0. According to the perturbative analysis on the
background (2.9), the squared propagation speeds of
spin-0, spin-1, and spin-2 modes are given, respectively,
by [18,21]

c2S ¼
c123ð2 − c14Þ

c14ð1 − c13Þð2þ c13 þ 3c2Þ
; ð2:10Þ

c2V ¼ 2c1 − c13ð2c1 − c13Þ
2c14ð1 − c13Þ

; ð2:11Þ

c2T ¼ 1

1 − c13
; ð2:12Þ

where cij ≔ ci þ cj and cijk ≔ ci þ cj þ ck. The coeffi-
cients of the kinetic terms for each mode are

qS ¼
ð1 − c13Þð2þ c13 þ 3c2Þ

c123
; ð2:13Þ

qV ¼ c14; ð2:14Þ

qT ¼ 1 − c13: ð2:15Þ

So long as the denominators in Eqs. (2.10)–(2.13) do not
vanish, there are one scalar, two vector, and two tensor
propagating degrees of freedom in general.
If we require that the theory: (i) be self-consistent, such

as free of ghosts and Laplacian instabilities; and (ii) be
compatible with all the experimental and observational
constraints obtained so far, it was found that the coupling
constants must satisfy the following conditions [21]:

jc13j ≲ 10−15; ð2:16Þ

0 < c14 ≤ 2.5 × 10−5; ð2:17Þ

c14 ≤ c2 ≤ 0.095; ð2:18Þ
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c4 ≤ 0: ð2:19Þ

It should be noted that the recent studies of the neutron star
binary systems showed that one of the parametrized post-
Newtonian parameters, α1 ¼ −4c14, is further restricted to
jα1j < 10−5 [28]. This translates to the limit

0≲ c14 ≲ 2.5 × 10−6; ð2:20Þ

which is stronger than the bound derived from lunar laser
ranging experiments by one order of magnitude [21].

III. DISFORMAL TRANSFORMATION
AND AETHER-ORTHOGONAL FRAME

A. Disformal transformation

Under a redefinition of the metric accompanied with the
Aether field in the form g̃μν ¼ gμν þ Buμuν, where B is a
constant, the structure of the action (2.1) is preserved with a
change of the coupling constants c̃1;2;3;4 in the transformed
frame [69]. This redefinition stretches the metric tensor in
the Aether direction by a factor 1 − B. On choosing B ¼
1 − c2I for the Minkowski metric gμν ¼ ημν, where the
subscript I is either S, V, T with the squared propagation
speeds c2I given by Eqs. (2.10)–(2.12), it is possible to
transform to a metric frame g̃μν in which one of the speeds
is equivalent to 1 [32,70].
One can perform a more general disformal transforma-

tion [71] of the form

ḡμν ¼ Ω2ðgμν þ BuμuνÞ; ð3:1Þ

where the conformal factorΩ and the disformal factor B are
constants, and the Aether field uμ satisfies the unit-vector
constraint (2.4). The corresponding inverse metric and
determinant are

ḡμν ¼ 1

Ω2

�
gμν −

B
1 − B

uμuν
�
;

ffiffiffiffiffiffi
−ḡ

p ¼ Ω4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − BÞg

p
; ð3:2Þ

where we are assuming that 1 − B > 0. The Aether field
has a different (but constant) norm with respect to ḡμν as

ḡμνuμuν ¼ −
1

Ω2ð1 − BÞ : ð3:3Þ

Hence, it makes sense to define

ūμ ¼ Ω
ffiffiffiffiffiffiffiffiffiffiffi
1 − B

p
uμ; ūμ ¼ ḡμνūν: ð3:4Þ

The first covariant derivative of the Aether field with
respect to ḡμν is given by [72]

∇μuν ¼ ∇μuν − BδΓρ
μνuρ; ð3:5Þ

where

δΓρ
μν ¼ uðμFνÞρ þ

uρ

1 − B
½∇ðμuνÞ þ Buλuðμ∇λuνÞ�;

Fμν ¼ ∇μuν −∇νuμ: ð3:6Þ

The Einstein-Hilbert action transforms as [72]

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
Ω2

ffiffiffiffiffiffiffiffiffiffiffi
1 − B

p
R −

Ω2Bffiffiffiffiffiffiffiffiffiffiffi
1 − B

p fð∇μuμÞ2 −∇ρuσ∇σuρg

þ Ω2B2

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − B

p
�
uμuνFμρFν

ρ þ 1

2
FμνFμν

��
: ð3:7Þ

On using these relations, in the absence of matter fields,
Einstein-Aether theory for the combination (gμν, uμ) with
the constant parameters (Gæ, c1, c2, c3, c4) is equivalent to
Einstein-Aether theory for the combination (ḡμν, ūμ) with a
different set of parameters (Ḡæ, c̄1, c̄2, c̄3, c̄4), where [69]

Ḡæ ¼ Ω2
ffiffiffiffiffiffiffiffiffiffiffi
1−B

p
Gæ; c̄14 ¼ c14;

c̄123 ¼ ð1−BÞc123; c̄13 − 1¼ ð1−BÞðc13 − 1Þ;

c̄1 − c̄3 − 1¼ 1

1−B
ðc1 − c3 − 1Þ: ð3:8Þ

More explicitly, the coefficients c̄i are related to ci, as

c̄1 ¼
2c1 − 2ðc1 þ c3ÞBþ ðc1 þ c3 − 1ÞB2

2ð1 − BÞ ; ð3:9Þ

c̄2 ¼ c2ð1 − BÞ − B; ð3:10Þ

c̄3 ¼
2c3 − ðc1 þ c3 − 1ÞBð2 − BÞ

2ð1 − BÞ ; ð3:11Þ

c̄4 ¼
2c4 þ 2ðc3 − c4ÞB − ðc1 þ c3 − 1ÞB2

2ð1 − BÞ : ð3:12Þ

We consider the Minkowski background characterized by
the metric tensor gμν ¼ ημν and perform the disformal
transformation (3.1). Upon choosing
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B ¼ 1 − c2I ; where I ¼ S; V; T; ð3:13Þ

and using Eqs. (2.10)–(2.15) and Eqs. (3.9)–(3.12), the
squared propagation speeds c̄2I in the frame (ḡμν, ūμ) yield

c̄2I ¼ 1; ð3:14Þ

for each subscript I ¼ S, V, T. Furthermore, the coeffi-
cients of the time kinetic terms yield

Q̄I ¼ c2IQI; ð3:15Þ

where2

QS ≡ qS; QV ≡ qV
c2V

; QT ≡ qT: ð3:16Þ

Here, we have assumed

c2I > 0; ð3:17Þ

in order to avoid the gradient instability of perturbations.
Under this assumption, the inequality 1 − B > 0 holds and
thus the disformal transformation does not change the
Lorentzian signature of the metric.

B. Aether-orthogonal frame

If the background Aether field has zero vorticity, which
is the case for any spherically symmetric configurations,
one can locally choose the time coordinate ϕ such that

uμjbackground ¼ −η∂μϕ ¼ −ηδϕμ ; ð3:18Þ

where η is a nonvanishing function. This choice of the time
coordinate ϕ for the metric frame gμν is called the Aether-
orthogonal frame. The unit-vector constraint (2.4) gives
gϕϕjbackground ¼ −η−2 and uϕjbackground ¼ η−1.
At each point of physical interest, one can choose a local

Lorentz frame and then perform a local Lorentz trans-
formation so that the metric and Aether field are of the form

gμνjlocal ¼−η2dϕ2þ δijdxidxj; uμjlocal ¼−ηδϕμ : ð3:19Þ

At leading order in the geometrical optics approximation,
i.e., for modes whose wavelengths are much shorter than
the time and length scales of the background, the back-
ground in the vicinity of the point of interest can be
approximated by Eq. (3.19). In particular, in the vicinity of

the point of interest, one can decompose the perturbations
into spin-0 (scalar, I ¼ S), spin-1 (vector, I ¼ V) and spin-
2 (tensor, I ¼ T) modes. Let us consider the perturbations
δχI corresponding to the I-excitation (I ¼ S; V; T). Then,
by definition ofQI and c2I , the kinetic and gradient terms of
δχI should locally have the following structure:

Lkin;I ¼
1

2
CIQI½ðη−1∂ϕδχIÞ2 − c2Iδ

ij
∂iδχI∂jδχI� þ � � � ;

ð3:20Þ

where CI are positive definite coefficients, which should
not be confused with C1; C2; � � � introduced later in Sec. IV,
and � � � represents higher-order terms in the geometrical
optics approximation. By undoing the local Lorentz trans-
formation and going back to the original coordinate system
before choosing the local Lorentz frame, the leading kinetic
and gradient terms (3.20) can be written in a general
coordinate system as

Lkin;I ¼ −
1

2
CIQ̄Iḡ

μν
I ∂μδχI∂νδχI þ � � � ; ð3:21Þ

at leading order in the geometrical optics approximation,
where � � � again represents higher-order terms in the
geometrical optics approximation. We have assumed that
the time and spatial scales involved in the coordinate
transformation between the original coordinate system
and the local Lorentz frame in the vicinity of the point
of interest are sufficiently longer than the wavelengths of
the modes of interest.
The local structure (3.21) clearly states that the pertur-

bations δχI in the Aether-orthogonal frame do not behave
as ghosts so long as QI > 0. Indeed, if we choose the time
coordinate ϕ in the Aether-orthogonal frame, then the
leading time kinetic term is

Lkin;I ∋ −
1

2
CIQ̄Iḡ

ϕϕ
I ð∂ϕδχIÞ2 þ � � �

¼ CIc2IQI

2Ω2
Iη

2
ð∂ϕδχIÞ2 þ � � � ; ð3:22Þ

which is positive.
Rigorously speaking, we have only given a heuristic

argument for the local structure (3.21) without a proof,
which requires analysis similar to that in Ref. [75]. In the rest
of the present paper, we shall show that the kinetic and
gradient terms for odd-parity perturbations (including I ¼ V
and I ¼ T modes) around spherically symmetric BHs
indeed have the local structure (3.21). The same analysis
for even-parity perturbations (including I ¼ S; V; T modes)
will be left for a future work.

2For the vector perturbation, the no-ghost condition changes
from qV > 0 to QV > 0 if one swaps the roles of the dynamical
variable and its canonical momentum by a canonical trans-
formation. See e.g., Appendix B of [73] or/and Sec. IV of [74]
for a technique to perform canonical transformations at the level of
the Lagrangian.
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C. Spherically symmetric background
and apparent instabilities

Let us consider the SSS background given by the line
element

ds2 ¼ gμνdxμdxν ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2Ωpqdϑpdϑq;

ð3:23Þ
together with the Aether-field configuration

uμ∂μ ¼ aðrÞ∂t þ bðrÞ∂r; ð3:24Þ
where f; h; a; b are functions of r. In Eq. (3.23) the
angular part contains two angles θ and φ, such that
Ωpqdϑpdϑq ¼ dθ2 þ sin2 θdφ2.
The unit-vector constraint (2.4) gives the following

relation:

b ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2f − 1Þh

q
; ð3:25Þ

where ϵ ¼ �1. The existence of the Aether-field profile
(3.25) with b ≠ 0 requires that ða2f − 1Þh > 0.
A metric (Killing) horizon is defined at the radius r ¼ rg

at which the time translation Killing vector ζμ ¼ δμt is null,
i.e., ζμζμ ¼ 0. This translates to the condition

fðrgÞ ¼ 0: ð3:26Þ

So long as h also vanishes on the metric horizon, the
product a2fh is at least a positive constant at r ¼ rg to
satisfy the condition ða2f − 1Þh > 0. This means that, as
r → rþg , the temporal Aether-field component diverges as
a2 ∝ ðfhÞ−1 for the coordinate system (3.23).
The leading-order kinetic and gradient terms of pertur-

bations δχI (where I ¼ S, V, T) for the effective metric
ḡIμν ¼ Ω2

I ½gμν þ ð1 − c2I Þuμuν� (under the geometric optics
approximation) are

Lkin;I ¼ −
1

2
CIQ̄Iḡ

μν
I ∂μδχI∂νδχI ¼

CIQ̄I

2Ω2
I

�
1

f
ð∂tδχIÞ2 − hð∂rδχIÞ2 −

1

r2
Ωpq

∂pδχI∂qδχI þ
1 − c2I
c2I

ða∂tδχI þ b∂rδχIÞ2
�

∋
1

2
fCIQ

apparent
I

�
1

f
ð∂tδχIÞ2 − ðcapparentI;Ω Þ2 1

r2
Ωpq

∂pδχI∂qδχI

�
; ð3:27Þ

where

Qapparent
I ¼ Q̄I

Ω2
I

�
1

f
þ 1 − c2I

c2I
a2
�
; ð3:28Þ

ðcapparentI;Ω Þ2 ¼
�
1þ 1 − c2I

c2I
a2f

�−1
: ð3:29Þ

Therefore, the coefficient Qapparent
I of the kinetic term with

respect to the Killing time t may become negative, despite
the fact that the kinetic term with respect to the time
coordinate in the Aether-orthogonal frame is always pos-
itive as in Eq. (3.22). Also, the apparent angular sound
speed squared ðcapparentI;Ω Þ2 would have nontrivial position
dependence, although the propagation speed squared c2I
relative to the Aether-orthogonal frame is a constant given
by the theory.
These behaviors are due to the deviation of the

Killing time slicing from the Aether-orthogonal frame.
The sound cones are not only narrowed or widened but
also tilted relative to the Killing time slicing.3 On the other

hand, the sound cones are not tilted relative to the Aether-
orthogonal frame.
Near the metric horizon r ¼ rg, we have the following

expansions:

f ¼ f1ðr− rgÞ þ � � � ; a ¼ −
1

2f1α0
ðr− rgÞ−1 þ � � � ;

ð3:30Þ

where f1 and α0 are constants [62]. Note that α0 is the value
of α at r ¼ rg, where α is defined later in Eq. (3.36). In this
regime, the quantities (3.28) and (3.29) can be estimated as4

Qapparent
I ¼ Q̄I

4f21α
2
0Ω2

I

1 − c2I
c2I

ðr − rgÞ−2 þ � � � ; ð3:31Þ

ðcapparentI;Ω Þ2 ¼ 4f1α20
c2I

1 − c2I
ðr − rgÞ þ � � � : ð3:32Þ

Therefore, if c2I > 1, the apparent no-ghost condition is
violated near the horizon. Moreover, the apparent angular

3See Ref. [76] for similar behaviors of sound cones for open
string modes in the context of inhomogeneous tachyon con-
densation in string theory.

4For I ¼ V and c13 ¼ 0, the result is to be compared with
(5.32) and (5.33) of Ref. [62] up to an arbitrary positive overall
factor for qapparentV .
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sound speed squared vanishes at the horizon. Let us stress
again that the kinetic term with respect to the time
coordinate in the Aether-orthogonal frame is always
positive for QI > 0 and that the propagation speed squared
c2I relative to the Aether-orthogonal frame is constant given
by the theory. In Sec. IV, we will address the linear stability
of BHs in Einstein-Aether theory by choosing the Aether-
orthogonal frame as a timelike coordinate.

D. Aether-orthogonal frame on the spherically
symmetric background

The SSS background is described by the line element
(3.23) with the Aether-field profile (3.24). Alternatively,
we can choose the following Eddington-Finkelstein coor-
dinate [48]:

ds2 ¼ −fðrÞdv2 þ 2BðrÞdvdrþ r2Ωpqdϑpdϑq; ð3:33Þ

which is related to the coordinate (3.23) as

dv ¼ dtþ drffiffiffiffiffiffi
fh

p ; BðrÞ ¼
ffiffiffi
f
h

r
: ð3:34Þ

The transformation to the coordinate (3.33) is valid in the
regime f=h > 0, i.e., for the same signs of f and h. On this
background, we take the Aether-field configuration

uμ∂μ ¼ −αðrÞ∂v − βðrÞ∂r: ð3:35Þ

The r-dependent functions α and β are related to a and b in
Eq. (3.24), as

aþ bffiffiffiffiffiffi
fh

p ¼ −α; b ¼ −β: ð3:36Þ

From Eq. (3.25), we obtain the following relations:

a ¼ −
1þ fα2

2fα
; b ¼

ffiffiffiffiffiffi
fh

p 1 − fα2

2fα
: ð3:37Þ

The sign of b depends on that of ð1 − fα2Þ=ðfαÞ. Then, the
Aether field uμ has nonvanishing components,

uv ¼ −α; ur ¼
ffiffiffiffiffiffi
fh

p 1 − fα2

2fα
: ð3:38Þ

Even though a is divergent on the metric horizon (r ¼ rg),
the quantity α can take a finite value α0 due to the relation
fa ¼ −1=ð2α0Þ at r ¼ rg, see Eq. (3.30). On using the
metric components gvv ¼ −f, gvr ¼ grv ¼ B, and grr ¼ 0,
the nonvanishing components of uμ are uv ¼ fα − Bβ and
ur ¼ −Bα, so that

uv ¼
1þ fα2

2α
; ur ¼ −α

ffiffiffi
f
h

r
: ð3:39Þ

A vector field sμ that is orthogonal to uμ obeys the relation
sμuμ ¼ 0. This has the following nonvanishing components

sv ¼
1 − fα2

2α
; sr ¼ α

ffiffiffi
f
h

r
: ð3:40Þ

Moreover, it satisfies the relation sμsμ ¼ 1.
Now, we introduce the two coordinates ϕ and ψ , as

dϕ ¼ dvþ ur
uv

dr ¼ dv −
2α2

1þ fα2

ffiffiffi
f
h

r
dr; ð3:41Þ

dψ ¼ −dv −
sr
sv

dr ¼ −dv −
2α2

1 − fα2

ffiffiffi
f
h

r
dr; ð3:42Þ

which mean that ϕ is constant on a hypersurface orthogo-
nal to uμ and that ψ is constant on a hypersurface
orthogonal to sμ. Note that sv goes to 0 as r → ∞ and
hence Eq. (3.42) is valid for a finite distance r. Since we
already know the linear stability conditions in the asymp-
totically flat regime [18,21], it is sufficient to focus on the
stability in the region with finite r. If we introduce the
coordinate ψ̃ as dψ̃ ¼ −svdv − srdr instead of ψ to avoid
the divergence of sr=sv at spatial infinity, then ψ̃ is not
integrable due to the r dependence in sv. In this sense we
choose the coordinate system ðϕ;ψÞ, which satisfies the
integrability condition.
Since ∂μϕ¼ δvμ−2α2=ð1þfα2Þ ffiffiffiffiffiffiffiffi

f=h
p

δru from Eq. (3.41),
the background Aether field can be expressed in the form

uμ ¼
1þ fα2

2α
∂μϕ; ð3:43Þ

and hence η ¼ −ð1þ fα2Þ=ð2αÞ ¼ fa in Eq. (3.18). Thus,
the coordinate system ðϕ;ψÞ corresponds to the Aether-
orthogonal frame in which ϕ is the time measured by
observers comoving with the Aether field.
Substituting the first of Eq. (3.34) into Eqs. (3.41)

and (3.42), the relation between the Aether-orthogonal
frame and the coordinate (3.23) is given by [38]

dϕ ¼ dtþ 1ffiffiffiffiffiffi
fh

p 1 − fα2

1þ fα2
dr; ð3:44Þ

dψ ¼ −dt −
1ffiffiffiffiffiffi
fh

p 1þ fα2

1 − fα2
dr: ð3:45Þ

Solving these equations for dt and dr and substituting them
into Eq. (3.23), the line element is expressed as
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ds2 ¼ −
ð1þ fα2Þ2

4α2
dϕ2 þ ð1− fα2Þ2

4α2
dψ2 þ r2Ωpqdϑpdϑq:

ð3:46Þ

Since gϕϕ is always nonpositive, ϕ is a timelike coordinate.
Similarly, ψ is a spacelike coordinate due to the positivity
of gψψ . Note that a universal horizon is defined as the radius
rUH at which the time translation Killing vector ζμ is
orthogonal to uμ, i.e., ζμuμ ¼ 0. This corresponds to the
radius satisfying

ð1þ fα2Þjr¼rUH ¼ 0; ð3:47Þ

at which the metric component gϕϕ in Eq. (3.46) is
vanishing. It is clear that Eq. (3.47) has solutions only
when f < 0, that is, the universal horizon always exists
inside the metric horizon. For more details, see Ref. [38].
From Eqs. (3.44) and (3.45), we have

∂ϕ

∂t
¼ 1;

∂ϕ

∂r
¼ 1ffiffiffiffiffiffi

fh
p 1 − fα2

1þ fα2
; ð3:48Þ

∂ψ

∂t
¼ −1;

∂ψ

∂r
¼ −

1ffiffiffiffiffiffi
fh

p 1þ fα2

1 − fα2
: ð3:49Þ

Then, for a given function F of t and r, the t and r
derivatives of F are given, respectively, by

∂F
∂t

¼ F ;ϕ − F ;ψ ; ð3:50Þ

∂F
∂r

¼ 1ffiffiffiffiffiffi
fh

p
�
1 − fα2

1þ fα2
F ;ϕ −

1þ fα2

1 − fα2
F ;ψ

�
; ð3:51Þ

where F ;ϕ ≔ ∂F=∂ϕ and F ;ψ ≔ ∂F=∂ψ . The relations
(3.50) and (3.51) will be used in Sec. IV.

IV. ODD-PARITY STABILITY
IN THE AETHER-ORTHOGONAL FRAME

In this section, we study the linear stability of SSS BHs
against odd-parity perturbations in the Aether-orthogonal
frame. The second-order action in the odd-parity sector
was derived in Ref. [62] for the line element (3.23). Since
the constant t hypersurfaces are not always spacelike, the
coordinate choice (3.23) is not suitable for studying the
linear stability of BHs. We will express the second-order
action of odd-parity perturbations by using the derivatives
with respect to ϕ and ψ . In the following, we will discuss
the two cases: (A) l ≥ 2, and (B) l ¼ 1, in turn, where l’s
are spherical multipoles.

A. l ≥ 2

On the SSS background (3.23) with Ωpqdϑpdϑq ¼
dθ2 þ sin2 θdφ2, metric perturbations hμν can be sepa-
rated into odd-parity (axial) and even-parity (polar)
sectors [52,53]. We express hμν in terms of the spherical
harmonics Ylmðθ;φÞ. We will focus on axial perturbations
with the parity ð−1Þlþ1. We choose the gauge in which the
components hab vanish, where the subscripts a and b denote
either θ or φ. Then, the nonvanishing components of odd-
parity metric perturbations are given by

hta ¼
X
l;m

Qlmðt; rÞEab∇bYlmðθ;φÞ; ð4:1Þ

hra ¼
X
l;m

Wlmðt; rÞEab∇bYlmðθ;φÞ; ð4:2Þ

where Qlm and Wlm are functions of t and r. The tensor
Eab is antisymmetric with nonvanishing components
Eθφ ¼ −Eφθ ¼ sin θ.
In the odd-parity sector, the Aether field has the

following components:

ut ¼ −aðrÞfðrÞ; ur ¼
bðrÞ
hðrÞ ;

ua ¼
X
l;m

δulmðt; rÞEab∇bYlmðθ;φÞ; ð4:3Þ

where δulm is a function of t and r.
In the following, we will set m ¼ 0 without loss

of generality. We also omit the subscripts l and m from
the perturbations Qlm, Wlm, and δulm. Expanding the
action (2.1) up to quadratic order and integrating it with
respect to θ and φ, we obtain the second-order action
containing the fieldsQ,W, δu and their t, r derivatives. The
dynamical field associated with the gravitational (tensor)
perturbation is given by [62]

χ ≔ Ẇ −Q0 þ 2

r
Qþ C2δ̇uþ C3δu0 þ C4δu

C1

; ð4:4Þ

where a dot and prime represent the derivatives with respect
to t and r, respectively, and

C1 ¼
ð1 − c13Þh

2r2f
; C2 ¼ −

c13b
2r2f

; C3 ¼ −
c13ah
2r2

;

C4 ¼
½ð2c14 − c13Þðfa0 þ af0Þrþ 2c13af�h

2r3f
: ð4:5Þ

Taking into account the field χ as a form of the Lagrange
multiplier and varying the corresponding second-order
action with respect to W and Q, we can eliminate W, Q,
and their derivatives from the action. Then, the resulting
quadratic-order action can be expressed in the form [62]
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Sodd ¼
X
l

L
Z

dtdrLodd; ð4:6Þ

where

L ¼ lðlþ 1Þ; ð4:7Þ

and

Lodd ¼
r2

16πGæ

ffiffiffi
f
h

r
ð ˙⃗X t

K
˙⃗X þ ˙⃗X

t
RX⃗ 0 þ X⃗ 0tGX⃗ 0 þ X⃗ tMX⃗Þ:

ð4:8Þ

The vector field X⃗ is given by

X⃗ ¼
�

χ

δu

�
; X⃗ t ¼ ðχ; δuÞ; ð4:9Þ

where χ and δu are the dynamical perturbations arising
from the gravitational and Aether sectors, respectively. K,
R, G, and M are the 2 × 2 symmetric and real matrices,
among which only M has off-diagonal components.
Nonvanishing components of these matrices are

K11 ¼
4C2

1C10

ðL − 2Þða2C2
9 − 4C8C10Þ

;

K22 ¼
C1C5 − C2

2

C1

;

R11 ¼ −
aC9

C10

K11; R22 ¼
C1C6 − 2C2C3

C1

;

G11 ¼
C8

C10

K11; G22 ¼
C1C7 − C2

3

C1

;

M11 ¼ −C1;

M22 ¼ LC12 þ
L½C8C2

11 þ C2
9ðC10 þ aC11Þ�

a2C2
9 − 4C8C10

; ð4:10Þ

where the explicit form of M12ð¼ M21Þ is not shown
here, and

C5 ¼
c1 þ c4a2f

r2f
; C6 ¼

2c4ab
r2

;

C7 ¼
½c4ða2f − 1Þ − c1�h

r2
;

C8 ¼ −
½c13ða2f − 1Þ þ 1�h

2r4
;

C9 ¼
c13b
r4

; C10 ¼
1 − c13a2f

2r4f
;

C11 ¼
c13a
r4

; C12 ¼ −
c1
r4

: ð4:11Þ

Since M12 does not depend on L, it does not affect the
angular propagation speeds in the large l limit (which will
be discussed below).
In Ref. [62], the linear stability conditions of BHs

against odd-parity perturbations were derived by using
the coordinates t and r. As we showed in Sec. III C, unless
a proper coordinate is chosen, we may encounter artificial
ghosts or Lagrangian instabilities in theories with super-
luminal propagation. To overcome this problem, we use
the Aether-orthogonal frame introduced in Sec. III D,
where ϕ defines the causality and chronology: all particles
must move along the increasing direction of ϕ [51,77]. As a
result, the future light cone defined by each particle with any
given speed lies to the future of spacelike hypersurfaces
(ϕ ¼ constant), as explained explicitly in Ref. [75].
We transform the action (4.6) to that in the coordinate

system (3.46). We convert the t and r derivatives of χ
and δu to their ϕ and ψ derivatives by exploiting the
relations (3.50) and (3.51). We also use Eq. (3.37) to
express a and b with respect to α. Then, the second-order
action of odd-parity perturbations yields

Sodd ¼
X
l

L
Z

dϕdψL̂odd; ð4:12Þ

where

L̂odd ¼
1

16πGæ

ffiffiffi
h
f

s
ðX⃗ t

;ϕK̂X⃗ ;ϕ þ X⃗ t
;ψ ĜX⃗ ;ψ þ X⃗ tM̂ X⃗Þ:

ð4:13Þ
Nonvanishing components of the 2 × 2 matrices K̂, Ĝ, and
M̂ are given by

K̂11 ¼
2ð1 − c13Þ2α2r2

ðL − 2Þð1þ fα2Þ2 ; ð4:14Þ

K̂22 ¼
4c14α2

ð1þ fα2Þ2
f
h
; ð4:15Þ

Ĝ11 ¼ −
ð1þ fα2Þ2
ð1 − fα2Þ2 c

2
TK̂11; ð4:16Þ

Ĝ22 ¼ −
ð1þ fα2Þ2
ð1 − fα2Þ2 c

2
VK̂22; ð4:17Þ

M̂11 ¼ −
1

2
ð1 − c13Þ; ð4:18Þ

M̂22 ¼ −L
2c1 − c13ð2c1 − c13Þ

2ð1 − c13Þr2
f
h
; ð4:19Þ

besides the off-diagonal components M̂12 ¼ M̂21 (which
are of order L0). The quantities c2T and c2V are defined,
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respectively, by Eqs. (2.12) and (2.11). We recall that the
Lagrangian (4.8) possesses products of the t and r
derivatives, but the Lagrangian (4.13) does not contain
products of the ϕ and ψ derivatives.
The absence of ghosts for dynamical perturbations χ and

δu requires the two conditions K̂11 > 0 and K̂22 > 0. The
former is satisfied except for c13 ¼ 1 (in which case
K̂11 ¼ 0). The second holds under the inequality

c14 > 0: ð4:20Þ

This is equivalent to the no-ghost condition of vector
perturbations on the Minkowski background [18,21]. On
the other hand, it does not coincide with the no-ghost
condition derived on the SSS background (3.23) with the
coordinates t and r [62]. The latter coordinate choice is not
suitable for discussing the linear stability of BHs, since the
constant t hypersurfaces are not always spacelike.
To study the propagation of small-scale perturbations

with large angular frequencies ω and momenta k, we
assume the solutions to the perturbation equations for χ
and δu in the form,

X⃗ ¼ X⃗0e−iðωϕ−kψÞ; ð4:21Þ

with X⃗0 ¼ ðχ0; δu0Þ, where χ0 and δu0 are constants.
The radial propagation speeds can be known by con-

sidering the modes withωrg ≈ krg ≫ l ≫ 1. In this regime,
we substitute Eq. (4.21) into the perturbation equations
following from Eq. (4.13). This leads to the two dispersion
relations

ω2 ¼ −
Ĝ11

K̂11

k2 ¼ ð1þ fα2Þ2
ð1 − fα2Þ2 c

2
Tk

2; ð4:22Þ

ω2 ¼ −
Ĝ22

K̂22

k2 ¼ ð1þ fα2Þ2
ð1 − fα2Þ2 c

2
Vk

2; ð4:23Þ

which correspond to those of χ and δu, respectively.
Considering a given point P, in the neighborhood of which
we can always express the line element (3.46) in the form,

ds2 ¼ −dϕ̃2 þ dψ̃2 þ r2Ωpqdϑpdϑq; ð4:24Þ

where

dϕ̃2 ¼ ð1þfα2Þ2
4α2

dϕ2; dψ̃2 ¼ ð1−fα2Þ2
4α2

dψ2: ð4:25Þ

Note that ϕ̃ corresponds to a proper time for this coordinate.
Then, the radial propagation speed squared yields

c2r ¼
�
dψ̃

dϕ̃

�
2

¼ ð1 − fα2Þ2
ð1þ fα2Þ2

�
dψ
dϕ

�
2

¼ ð1 − fα2Þ2
ð1þ fα2Þ2

ω2

k2
;

ð4:26Þ

where we used ðdψ=dϕÞ2 ¼ ω2=k2. Then, from Eqs. (4.22)
and (4.23), the radial squared propagation speeds of χ and
δu are given, respectively, by

c2r1 ¼ c2T ¼ 1

1 − c13
; ð4:27Þ

c2r2 ¼ c2V ¼ 2c1 − c13ð2c1 − c13Þ
2c14ð1 − c13Þ

: ð4:28Þ

Thus, they are identical to the squared tensor and vector
propagation speeds on the Minkowski background, respec-
tively. These values are different from those derived on the
SSS background (3.23) with the coordinates t and r [62].
To avoid the Laplacian instabilities along the radial direc-
tion, we require the two conditions c2T > 0 and c2V > 0.
Under the no-ghost condition (4.20), they amount to the
inequalities

c13 < 1; ð4:29Þ

2c1 − c13ð2c1 − c13Þ > 0: ð4:30Þ

Under the inequality (4.29), the other no-ghost condition
K̂11 > 0 is also satisfied.
To derive the angular propagation speeds, we consider

the eikonal limit l ≈ ωrg ≫ krg ≫ 1. We substitute the
solution (4.21) into the perturbation equations of motion by
noting that the off-diagonal matrix components M̂12 ¼ M̂21

are of order L0. Then, in the eikonal limit, we obtain

ω2 ¼ −
M̂11

K̂11

¼ ðL − 2Þð1þ fα2Þ2
4ð1 − c13Þα2r2

; ð4:31Þ

ω2 ¼−
M̂22

K̂22

¼ Lð1þ fα2Þ2½2c1− c13ð2c1− c13Þ�
8c14ð1− c13Þα2r2

; ð4:32Þ

which correspond to the dispersion relations of χ and δu,
respectively. In terms of the proper time ϕ̃ in the coordinate
(4.24), the propagation speed squared in the θ direction is
given by

c2Ω ¼
�
rdθ

dϕ̃

�
2

¼ 4α2

ð1þ fα2Þ2
�
rdθ
dϕ

�
2

¼ 4α2

ð1þ fα2Þ2
r2ω2

l2
; ð4:33Þ

where we used dθ=dϕ ¼ ω=l. Substituting Eqs. (4.31)
and (4.32) into Eq. (4.33) and taking the limit l ≫ 1, the
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squared propagation speeds of χ and δu are given,
respectively, by

c2Ω1 ¼
1

1 − c13
¼ c2T; ð4:34Þ

c2Ω2 ¼
2c1 − c13ð2c1 − c13Þ

2c14ð1 − c13Þ
¼ c2V: ð4:35Þ

These values are equivalent to c2r1 and c2r2 derived in
Eqs. (4.27) and (4.28), respectively. Thus, the perturbations
χ and δu propagate with the same sound speeds as those in
the Minkowski spacetime both along the radial and angular

directions. The linear stability of BHs is ensured under the
three conditions (4.20), (4.29), and (4.30).

B. l = 1

For the dipole mode (l ¼ 1 and L ¼ 2), the metric
components hab vanish identically and hence there is a
residual gauge degree of freedom to be fixed. We
choose the gauge W ¼ 0 and introduce the Lagrangian
multiplier χ given by Eq. (4.4). For the coordinate
system (3.23), the second-order action is expressed in
the form Sodd ¼

R
dtdrLodd, where

Lodd ¼
r2

8πGæ

ffiffiffi
f
h

r �
C1

�
2χ

�
−Q0 þ 2Q

r
þ C2δ̇uþ C3δu0 þ C4δu

C1

�
− χ2

�
−
ðC2δ̇uþ C3δu0 þ C4δuÞ2

C1

þ C5δ̇u2 þ C6δ̇uδu0 þ C7δu02 þ ð2C12 þ C13Þδu2
�
; ð4:36Þ

with

C13 ¼
λ

r2
−
c13½ðrh0 þ 2h − 2Þf þ rhf0�

2r4f

−
2c4ðfa0 þ f0aÞah

r3
; ð4:37Þ

and λ is given in the Appendix. Varying the Lagrangian
(4.36) with respect to Q, we obtain

 ffiffiffi
f
h

r
r4C1χ

!0
¼ 0: ð4:38Þ

We can choose an appropriate boundary condition at spatial
infinity, such that Eq. (4.38) gives χ ¼ 0. Then, the
Lagrangian (4.36) reduces to

Lodd ¼
r2

8πGæ

ffiffiffi
f
h

r ��
C5 −

C2
2

C1

�
δu̇2 þ

�
C7 −

C2
3

C1

�
δu02

þ
�
C6 −

2C2C3

C1

�
δu̇δu0 þMδu2

�
; ð4:39Þ

where

M ¼ 2C12 þ C13 −
C2
4

C1

þ
�
C3C4

C1

�0
: ð4:40Þ

Now, we convert the Lagrangian (4.39) to that in the Aether-
orthogonal frame. For this purpose, we replace the deriv-
atives δu̇ and δu0 with δu;ϕ and δu;ψ by using the relations

(3.50) and (3.51). Then, the resulting second-order action
reduces to Sodd ¼

R
dϕdψL̂odd, where

L̂odd ¼
1

8πGæ

ffiffiffi
f
h

r
ðKδu2;ϕ þ Gδu2;ψ þ r2Mδu2Þ; ð4:41Þ

with

K ¼ 4α2c14
ð1þ fα2Þ2 ; ð4:42Þ

G ¼ −
2α2½2c1 − c13ð2c1 − c13Þ�

ð1 − fα2Þ2ð1 − c13Þ
: ð4:43Þ

Thus, the Aether perturbation δu is the only propagating
degree of freedom for l ¼ 1. The ghost is absent under the
condition K > 0, which translates to

c14 > 0; ð4:44Þ

and is the same as Eq. (4.20) derived for l ≥ 2. The radial
squared propagation speed measured in terms of the proper
time ϕ̃ reads

c2r ¼ −
ð1− fα2Þ2
ð1þ fα2Þ2

G
K
¼ 2c1 − c13ð2c1 − c13Þ

2c14ð1− c13Þ
¼ c2V; ð4:45Þ

which is equivalent to the squared propagation speed of
vector perturbations in the Minkowski spacetime. Thus, for
l ¼ 1, there are no additional stability conditions to those
derived for l ≥ 2.
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C. Cases of specific coefficients

For the multiples l ≥ 2, we consider several specific
cases in which some of the coefficients c1;2;3;4 are vanish-
ing. From Eq. (4.15), the matrix component K̂22 vanishes
for c14 ¼ 0. The matrix components Ĝ22 and M̂22 can be
expressed as

Ĝ22 ¼ −
2½2c1 − c13ð2c1 − c13Þ�α2

ð1 − c13Þð1 − fα2Þ2
f
h
; ð4:46Þ

M̂22 ¼ −
L½2c1 − c13ð2c1 − c13Þ�

ð1 − c13Þr2
f
h
: ð4:47Þ

Then, the Aether field either behaves as a vector-
type instantaneous mode or exhibits a strong coupling
problem for

c14 ¼ 0; and 2c1 − c13ð2c1 − c13Þ ≠ 0; ð4:48Þ

depending on the behavior of the system at nonlinear
level, the analysis of which is beyond the scope of the
present paper. If we demand that c13 ¼ 0 for the con-
sistency with the observational bound (2.16), then either a
vector-type instantaneous mode or a strong coupling
problem may arise for c14 ¼ 0 and c1 ≠ 0, depending
on the nonlinear behavior of the system. This is the case
for the stealth Schwarzshild BH solution discussed in
Refs. [48,62,78].
If we consider Einstein-Aether theory with c14 ¼ 0,

c1 ¼ 0, and c13 ¼ 0, i.e.,

c1 ¼ 0; c2 ≠ 0; c3 ¼ 0; c4 ¼ 0; ð4:49Þ

we have the following matrix components

K̂11 ¼
2α2r2

ðL − 2Þð1þ fα2Þ2 ;

Ĝ11 ¼ −
2α2r2

ðL − 2Þð1 − fα2Þ2 ;

M̂11 ¼ −
1

2
;

K̂22 ¼ Ĝ22 ¼ M̂22 ¼ 0: ð4:50Þ

The number of propagating degrees of freedom in the odd-
parity sector is 1 at linear level. This indicates either the
absence of vector modes, the presence of a vector-type
instantaneous mode or the strong coupling problem for δu,
depending on the nonlinear behavior of this system.
Fortunately, in this case, we know the nonlinear behavior
since Einstein-Aether theory with the coefficients (4.49) is
equivalent to a class of cuscuton theories with a quadratic
potential [13], provided that the derivative of the expansion

θ ¼ ∇μuμ is nonzero.5 This means that the absence of the
time kinetic term and the gradient term shown above for
the specific coefficients (4.49) simply corresponds to
the absence of vector modes as far as the equivalence
to the cuscuton theory holds on the background with
∂μθ ≠ 0. There is a single dynamical degree of freedom
χ with the propagation speeds given by

c2r1 ¼ c2Ω1 ¼ 1; ð4:51Þ

which are both luminal.

V. CONCLUSIONS

In this paper, we addressed the linear stability of BHs
against odd-parity perturbations in Einstein-Aether theory
given by the action (2.1). In this theory, there is a preferred
threading aligned with a unit timelike vector field. If the
background Aether field uμ has vanishing vorticity, one can
introduce a scalar (Khronon) field ϕ whose gradient ∂μϕ is
timelike and proportional to uμ. This property holds for the
SSS background given by the line element (3.23).
In Einstein-Aether theory, the constant t hypersurfaces in

the coordinate (3.23) are not always spacelike outside the
universal horizon, which now is the boundary of a BH and
is always inside the metric horizon, when superluminal
speeds are allowed [51]. In this sense, the derivation of
linear stability conditions using t as a time clock can lead to
inconsistent results. The proper coordinate choice for
obtaining no-ghost conditions and propagation speeds of
dynamical perturbations should be the Aether-orthogonal
frame in which the Khronon field ϕ is treated as a time
clock, in which case the constant time hypersurfaces are
always spacelike over the whole region outside the uni-
versal horizon, as shown explicitly by the metric (3.46). In
Sec. III C, we argued how the coordinate choice different
from the Aether-orthogonal frame can give rise to apparent
ghost and Laplacian instabilities.
In Sec. IV, we derived the second-order action of odd-

parity perturbations by transforming the action derived for
the SSS coordinate (3.23) in Ref. [62] to the one in the
Aether-orthogonal frame with the line element (3.46).
For this purpose, we exploited transformation properties
(3.50)–(3.51) of the derivatives of perturbations between
the two sets of coordinates. For the multipoles l ≥ 2, there
are two dynamical perturbations χ and δu arising from
the gravitational and vector-field sectors, respectively. The
resulting second-order Lagrangian is of the form (4.13),
which does not contain products of the ϕ and ψ derivatives
[unlike the Lagrangian (4.8) containing products of the t
and r derivatives]. The stability analysis of BHs in the
Aether-orthogonal frame shows that the ghost is absent

5If ∂μθ ¼ 0, then uμ is undetermined by equations of motion
and λ ¼ 0.
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under the inequality c14 > 0, which is the same no-ghost
condition of vector perturbations on the Minkowski back-
ground. In large momentum limits, the radial squared
propagation speeds of χ and δu are equivalent to those of
the tensor and vector perturbations on the Minkowski
background. This is also the case for the angular squared
propagation speeds of χ and δu in the eikonal limit l ≫ 1.
For l ¼ 1, the vector-field perturbation alone propagates
with the same stability conditions of δu as those derived
for l ≥ 2.
We thus showed that the proper odd-parity stability

analysis of BHs based on the Aether-orthogonal frame
gives rise to the same no-ghost conditions and propagation
speeds of dynamical perturbations as those on the
Minkowski background. In Sec. IV C, we discussed several
specific cases of coupling constants in which the strong
coupling problem may arise or the number of degrees of
freedom reduces. It will be of interest to classify surviving
BH solutions free from the linear instability and strong
coupling problems. For this purpose, we plan to extend the

stability analysis in the Aether-orthogonal frame to pertur-
bations in the even-parity sector.
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APPENDIX: THE LAGRANGE MULTIPLIER
IN SPHERICAL SPACETIMES

The quantity λ in Eq. (4.37) is given by

λ ¼ 1

4f2r2ða2f − 1Þ
n
fr2
h
a2ð6c1 þ 3c2 þ 2c13 − 8c14Þhðf0Þ2 þ c2ð2hf00 þ f0h0Þ

i
þ 2a2f4

h
−2a2ð2ðc2 þ c13Þh − c2rh0Þ þ 4ðc14 − c1Þhr2ða0Þ2 þ að−c1 þ c2 þ c13Þrð2hra00 þ a0ðrh0 þ 4hÞÞ

i
− f2

h
rh0ða2ð−2c1 þ 3c2 þ 2c13Þrf0 − 4c2Þ

þ 2hða4ð3c1 þ c2 þ c13 − 4c14Þr2ðf0Þ2 þ a2rðð−2c1 þ 3c2 þ 2c13Þrf00 þ 2ð−2c1 þ c2 þ 2c13Þf0Þ
− að11c1 − 5c2 − 5c13 − 8c14Þr2a0f0 þ 4ðc2 þ c13ÞÞ

i
− ð2c2 þ c13Þhr2ðf0Þ2

þ 2f3
h
a4rðð−c1 þ c2 þ c13Þrf0h0 þ 2hðð−c1 þ c2 þ c13Þrf00 þ ð−2c1 þ c2 þ 2c13Þf0ÞÞ

þ a2ð8ðc2 þ c13Þh − 4c2rh0Þ − 2ð−2c1 þ c2 þ c13 þ 2c14Þhr2ða0Þ2

þ a3ð−11c1 þ 3c2 þ 3c13 þ 8c14Þhr2a0f0 þ aðc1 − c2 − c13Þrð2hra00 þ a0ðrh0 þ 4hÞÞ
io
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