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We revisit static, spherically symmetric solutions to anti–de Sitter (AdS)-Einstein gravity with a
conformally coupled scalar field (and no self-interaction potential) in four dimensions. We first observe that
a convenient choice of coordinates leads to a significant simplification of the field equations, which enables
one to identify various roots of the indicial equations and thus distinct branches of solutions. Next, we
construct an explicit 2-parameter hairy black hole solution in terms of an infinite power series around the
event horizon. The black hole is nonextremal with a regular scalar field on and outside the event horizon,
and it reduces to the Schwarzschild-AdS metric in the limit of vanishing hair. Its properties are illustrated
for various values of the parameters and compared with previous numerical results by other authors. In
addition, the analysis reveals the presence of a photon sphere and how the scalar field affects its size and the
angular radius of the corresponding shadow. The thermodynamics of the solution is also briefly discussed.
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I. INTRODUCTION

According to the well-known “no-hair conjecture” [1],
the endpoint of gravitational collapse is expected to be a
black hole completely characterized by its conserved
charges—any other independent parameter (“hair”) cannot
be supported. While this is sustained by various no-hair
theorems in electrovac General Relativity, numerous hairy
black holes have been constructed in more general contexts
(cf., e.g., the reviews [2,3] and [4–7] on uniqueness
theorems and hairy black holes, respectively).
In particular, no-hair theorems can be bypassed if one

considers a scalar field conformally coupled to gravity.
Among other reasons, the interest in conformal scalar fields
stems from the fact that their stress-energy has interesting
properties from a quantum viewpoint [8], and it has been
considered as a source in semiclassical general relativity
(e.g., in [9]) and in inflationary models (cf., e.g., [10] for
references). An early (static, spherically symmetric, asymp-
totically flat) black hole supporting a conformal scalar was
discovered by Bocharova, Bronnikov, Melnikov and
Bekenstein (BBMB) [11,12]. Within the same theory, an
exact spherical solution in the presence of a cosmological
constant Λ > 0 has been obtained more recently in [13]
(dubbed MTZ in what follows), and subsequently extended
to topological black holes with Λ < 0 in [14,15]. However,
the solutions [13–15] require admitting also a fine-tuned
quartic self-interaction (or a constant scalar field), and do
not possess an independent hair parameter. It would thus be
desirable to clarify if black holes with conformal hair and
nonzero Λ exist also when no self-interaction is included in

the theory. In such a case, according to a no-hair theorem
of [16], a black hole solution conformally coupled to a
scalar field with Λ > 0 cannot be asymptotically de Sitter.
However, the existence of static, spherical black holes with
Λ < 0 and without self-interaction has been demonstrated
numerically in [16] (see also [17]).1 But constructing a
corresponding exact solution seems a challenging task, also
because one needs two independent metric functions2 to
characterize such black holes [16,17] (as opposed to the
solutions of [11–15]). It is the purpose of the present
contribution to reconsider this problem analytically, thus
providing analytic support to the numerical findings of
[16,17], as well as adding several new observations (in
particular regarding the presence of a photon sphere and the
thermodynamics).
The plan of the paper is as follows. In the remaining part

of this section we present the theory under consideration
and the corresponding field equation. In Sec. II, taking
advantage of conformal properties of the theory and
following [22], we first cast the reduced field equations
for a static, spherically symmetric ansatz in a convenient
form that is considerably simpler than the one obtained in
the standard Schwarzschild-like coordinates. Those will be
therefore amenable to an analytic treatment, and we

*Contact author: ortaggio@math.cas.cz

1References [16,17] contain also results in the presence of a
mass term or a self-interaction potential for the scalar field, as
well as topological and higher-dimensional black holes. Some of
these solutions have also been shown to be linearly stable under
spherically symmetric perturbations [16,17].

2See Refs. [18–20] for the invariant meaning of this fact in
terms of null alignment properties of the curvature, and [21] for
related observations.
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describe how to solve them in terms of infinite power series.
This will reveal the existence of distinct branches of
solutions characterized by various roots of the indicial
equations and different numbers of free parameters (inte-
gration constants). By focusing on an expansion around an
event horizon, in Sec. III we construct an explicit black hole
solution characterized by 2 parameters (horizon radius and
scalar hair), in addition to a negative Λ. Its mathematical
(convergence) and physical properties (vacuum limit,
asymptotic behavior, photon sphere and shadow) are
discussed and further illustrated by several graphs. Some
comments on the thermodynamics are also provided.

Concluding remarks are given in Sec. IV. Appendix briefly
discusses the energy-momentum tensor and some of the
energy conditions for the hairy black hole solution of
Sec. III.
We will consider the theory

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2Λ − SÞ; ð1Þ

where S is the full trace of the following Riemann-like
tensor [23]

Scdab ¼ ϕ2Rcd
ab þ δ½c½a½−4ϕ∇d�∇b�ϕþ 8ð∇b�ϕÞ∇d�ϕ − 2δd�b�ð∇eϕÞ∇eϕ�; ð2Þ

i.e.,3

S ¼ Sabab ¼ ϕ2R − 6ϕ□ϕ: ð3Þ

Noticing that R̃cd
ab ¼ ϕ−4Scdab corresponds to the Riemann

tensor of a conformally rescaled metric

g̃ab ¼ ϕ2gab; ð4Þ

and R̃c
a ¼ ϕ−4Sca ¼ ϕ−4Scbab to its Ricci tensor (cf.,

e.g., [27]), the variations of the action (1) giving rise to
the tensorial and scalar field equations Eab ¼ 0, Es ¼ 0 can
be written compactly as

Eab ¼ Gab þ Λgab − ϕ2G̃ab; ð5Þ

Es ¼ −2ϕ3R̃; ð6Þ

where Gab ¼ Rab − R
2
gab and G̃ab ¼ R̃ab − R̃

2
g̃ab ¼

ϕ−2ðSab − S
2
gabÞ are the Einstein tensors of gab and g̃ab,

respectively. The term G̃ab in (5) is traceless after imposing
Es ¼ 0 with (6), so that the trace of (5) gives −Ea

a ¼
R − 4Λ (and thus R ¼ 4Λ on shell).

II. ANSATZ AND REDUCED FIELD EQUATIONS

A. Conformally Kundt coordinates and field equations

In recent works on quadratic gravity [28,29], it has been
pointed out that a convenient choice of coordinates can lead
to a drastic simplification of the field equations of that
theory, which proved extremely useful in the construction
of black hole solutions. Since the quadratic gravity action
contains a conformally invariant term, one might expect

that the coordinates of [28,29] could be suitable also in
other theories possessing some kind of (at least partial)
conformal invariance. As observed in [22], this turns out to
be the case, in particular, for the theory (1), and in the
following we thus employ the conformal Kundt coordinates
defined in [28,29].
We consider a metric of the form

ds2¼Ω2ð−2dudrþHdu2þdΣ2Þ; dΣ2¼ 2P−2dζdζ̄;

P¼ 1þ1

2
ζζ̄; ð7Þ

where dΣ2 is a 2-sphere of constant Gaussian curvature
normalized to 1, and we assume that Ω, H and the scalar
field ϕ depend only on r. This ansatz thus includes all static
metrics with spherical symmetry. The Killing vector field
∂u is timelike where H < 0. In the following we shall
exclude from the analysis the special case Ω ¼ const,
which does not describe black holes since it corresponds
to Kundt metrics [30]. Notice that a coordinate trans-
formation [29,30]

u ¼ α−1û; r ¼ αr̂þ β; ð8Þ

leaves the metric (7) unchanged if H is also rescaled as
H ¼ α2Ĥ (α ≠ 0 and β are constants).
We further observe that Ω−1 ¼ 0 defines conformal

infinity, provided ∇Ω−1 ≠ 0 (and H is regular) there,
and the considered spacetimes are thus asymptotically
simple (at least locally) [31].4 Note also that the Weyl
invariant [29]

3The contribution to the integral (1) from the term 6ϕ□ϕ can
be also written, up to a boundary term, as a standard kinetic term
−6ð∇aϕÞ∇aϕ, as in, e.g., [8,11,24–26].

4Strictly speaking, this is true if, within the spacetime, one can
get arbitrarily close to the hypersurface Ω−1 ¼ 0 (without, e.g.,
encountering a singularity). The specific character of conformal
infinity is determined by the asymptotic sign of H (i.e.,
Minkowskian if H → 0, and (A)dS if H tends to a (negative)
positive value).
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CabcdCabcd ¼ 1

3
ð2þH00Þ2Ω−4; ð9Þ

signals the presence of a possible curvature singularity at
Ω ¼ 0. The spacetime is conformally flat iff 2þH00 ¼ 0,
and of constant curvature if, additionally, ðΩ−1Þ00 ¼ 0
(hereafter a prime denotes differentiation with respect to r).
It is also interesting to point out that the coordinates (7)

appear to be natural for the study of photon spheres [32,33],
which are located at r ¼ rps such that H0ðrpsÞ ¼ 0 with
HðrpsÞ < 0.5 If a static observer sits at r ¼ rO in the (static)
exterior region, the angular radius χO of the black hole
shadow is given by,6

sin2 χO ¼ HðrOÞ
HðrpsÞ

: ð10Þ

These observations will be useful in Sec. III B.
As in [22], it proves convenient to introduce a rescaled

scalar field

Ψ ¼ Ωϕ: ð11Þ
Using the latter, for the ansatz (7) the nonzero components
of the field equations (5), (6) read

1

2
Ω6Euu ¼ Ω3ðΩ−1Þ00 − Ψ3ðΨ−1Þ00; ð12Þ

2P−2Ω6Eζζ̄ ¼ ½HðΩ2 −Ψ2Þ0�0 þ 2ΛΩ4 −H00ðΩ2 −Ψ2Þ
− 6ΩðHΩ0Þ0 þ 6ΨðHΨ0Þ0; ð13Þ

Ω6Eur ¼ ðΩ2 −Ψ2Þ − ΛΩ4 − ðΩ−1Þ0ðΩ3HÞ0
þ ðΨ−1Þ0ðΨ3HÞ0; ð14Þ

−
1

2
Ω3Es ¼ 6ðHΨ0Þ0 þΨð2þH00Þ; ð15Þ

while Err is proportional to Eur.

We observe that once (15) is satisfied the conservation
equation [45] gives Eab

;b ¼ 0, which implies that (13) is
not an independent equation (except in the excluded Kundt
case Ω ¼ const). Keeping this into account and replacing
(14) by the linear combinations Eur − 1

2
HEuu, the system of

independent equations to be solved can thus be written in
the simplified form

Ω3ðΩ−1Þ00 ¼ Ψ3ðΨ−1Þ00; ð16Þ

ðΩ2 −Ψ2Þ þ 1

2
½HðΩ2 −Ψ2Þ0�0 − ΛΩ4 ¼ 0; ð17Þ

6ðHΨ0Þ0 þ Ψð2þH00Þ ¼ 0: ð18Þ

This is more compact than the corresponding system in
Schwarzschild coordinates [16,17,46] (defined in Sec. II B
below), and as a further advantage it is an autonomous
system (see Ref. [29] for similar comments in a different
context).
Let us further note that two other (nonindependent)

simple equations can be obtained which will be useful for
practical purposes in the following. First, the trace of the
Einstein equation reads

Ω4Ea
a ¼ 4ΛΩ4 − ðΩ2 −Ψ2Þð2þH00Þ

− 6ΩðHΩ0Þ0 þ 6ΨðHΨ0Þ0; ð19Þ

so that imposing Ea
a ¼ 0 with (18) gives

6ðHΩ0Þ0 þ Ωð2þH00Þ − 4ΛΩ3 ¼ 0: ð20Þ

Apart from the Λ term, this is a counterpart of (18), upon
interchanging Ω ↔ Ψ (in the Λ ¼ 0 case, this gives rise to
the “duality” first observed in [12] and discussed recently in
arbitrary dimensions in [22,47]).
In addition, using (18) and (20), the linear combination

Eur −HEuu ¼ 0 can be written as

½HðΩ2 − Ψ2Þ�00 − 2ΛΩ4 ¼ 0: ð21Þ

The latter equation immediately reveals that for H ¼ 0
one obtains Λ ¼ 0, therefore throughout the paper we can
assume H ≠ 0, since we are interested in solutions with
Λ ≠ 0. For the same reason we can assume Ω2 ≠ ψ2.

B. Schwarzschild coordinates

For later discussion, let us note that metric (7) can be cast
in standard Schwarzschild-like coordinates

5The definition of a photon spheres for static, spherically
symmetric spacetimes in Schwarzschild coordinates (22), (24)
reads 2f ¼ ρf;ρ with g > 0, where both conditions must hold at
the photon surface radius ρ ¼ ρps, see Ref. [34] (cf. also
[32,33,35,36]). To our knowledge, the use of the conformal
Kundt coordinates (7) in this context had not been considered in
the literature so far—however, a “potential” which equals (up to a
sign) our metric function H was conveniently defined in [35].

6This follows readily from Eq. (43,[37]) keeping into account
the comments in footnote 5 but an equivalent formula was given
earlier in [38] (cf. also [39]). For simplicity, here we have
assumed there is a single photon sphere in the exterior region
(as will be indeed the case in the rest of the paper, cf. Sec. III). A
more general discussion, including the angular radius of shadows
defined for comoving observers in asymptotically de Sitter
spacetimes, can be found in [40]—cf. also the review [41] and
references therein. In the special case of the Schwarzschild black
hole, formula (10) was first obtained in [42,43], and extended to
include Λ in [44] (see again [41] for more references and for an
overview of the various terminology used in this context in the
literature).
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ds2 ¼ −fðρÞdt2 þ dρ2

gðρÞ þ ρ2dΣ2; ð22Þ

via the transformation [28]

dt ¼ −duþ dr
H

; ρ ¼ Ω; ð23Þ

giving

f ¼ −Ω2H; g ¼ −
�
Ω0

Ω

�
2

H: ð24Þ

In regions where H < 0, ∂t is timelike and throughout
the paper it will be assumed to be future oriented (so that
∂u ¼ −∂t is past oriented).
We observe that the above coordinate transformation is

not defined if Ω ¼ const (corresponding to Kundt metrics)
or H ¼ 0—those cases are, however, not relevant to the
present paper, as mentioned above.

C. Power series expansions and summary
of solutions

Similarly as in [29], in order to construct analytic
solutions, we will employ a Frobenius-like method (cf.,
e.g., [48]), which consists in expanding the unknown
functions around an arbitrary, finite value of the radial
coordinate r ¼ r0 as infinite power series

Ω¼Δn
X
k¼0

akΔk; Ψ¼Δq
X
k¼0

bkΔk; H¼Δp
X
k¼0

ckΔk;

ð25Þ

where Δ≡ r − r0, and ðn; p; qÞ and ak, bk and ck are
constants, with a0; b0; c0 ≠ 0. Then, by plugging (25) into
the field equations (16)–(18), one is first typically able to
constraint the permitted values of the exponents ðn; p; qÞ
by considering the terms of lowest orders in Δ in the
resulting equations. The next step consists in using higher

orders to construct a set of recurrence formulas such that
the coefficients ak, bk and ck in (18) for an arbitrary k are
determined in terms of those with lower indices. This
enables one to identify the coefficients which remain
arbitrary as integration constants (the details depending
on the specific solution under consideration), and to
evaluate the metric functions as accurately as desired at
any point within the convergence radius of the series.
Different values of ðn; p; qÞ (i.e., the “indices” [48])

correspond to different branches of solutions. The deriva-
tion of all possible cases is straightforward but lengthy and
we shall present a thorough analysis elsewhere. For the
purposes of the present contribution, it suffices to only
summarize here the resulting possibilities in Table I.
Among those, it is easy to identify the branch ðn ¼ 0;
p ¼ 1; q ¼ 0Þ as an expansion around a nonextremal
Killing horizon—these are thus solutions which may
describe black holes and will be analyzed in the rest of
the paper. We also observe that an expansion around a
degenerate horizon would require n ¼ 0 and p ¼ 2—no
such solutions are thus present in the class constructed
with the above method.7 The remaining cases will be
analyzed elsewhere.
Let us further notice that the scaling freedom (8) rescales

the coefficients in (25) as âk ¼ αnþkak, b̂k ¼ αqþkbk and
ĉk ¼ αp−2þkck, and thus always allows one to normalize
arbitrarily one of those (provided it is nonvanishing), along
with r̂0 ¼ α−1ðr0 − βÞ. This will be useful in the following
to get rid of one unphysical parameter and write the
solutions in a canonical form.

III. BLACK HOLE SOLUTIONS:
CASE ðn= 0; p= 1; q= 0Þ

The focus of this paper is on black holes with a
nonextremal horizon. From now on we thus study the

TABLE I. Summary of possible values of the exponents ðn; p; qÞ for solutions with Λ ≠ 0 ≠ ϕ, ordered by increasing value of n. The
last column indicates the number of essential [i.e., after using the gauge freedom (8)] integration constants which characterize a given
branch of solutions. It should be emphasized that, for a particular (infinite) set of n∈Nþ, there exists also a special branch with
n ¼ q > 0, p < 2 and a20 − b20 ¼ 0 which has been omitted from this table. Such solutions do not represent expansions near a black hole
horizon and will be discussed elsewhere.

ðn; p; qÞ Expansion at Behavior of ϕ Parameters

(−1, 0, 0) Conformal infinity (ρ → ∞) ϕ ∼ ρ−1 3

(−1, 0, 1) Conformal infinity (ρ → ∞) ϕ ∼ ρ−2 2

(0, 0, 0) Generic point ϕ → const 4
(0, 0, 1) Zero of ϕ ϕ → 0 3
(0, 1, 0) Nonextremal horizon ϕ → const 2
(1, 0, 0) Non-Schwarzschildian Singularity ϕ → ∞ 3

7This is due to the assumption Λ ≠ 0—in the case Λ ¼ 0 one
would recover the well-known extremal solution of [11,12].
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branch of solutions with exponents ðn ¼ 0; p ¼ 1; q ¼ 0Þ,
which means we are expanding the metric near a nonex-
tremal Killing horizon, located at r ¼ r0. The particular
value r0 can be shifted at will by choosing β in (8)
arbitrarily and has therefore no physical meaning. The
physical (dimensionful) horizon radius is given in
Schwarzschild coordinates (22) by the integration constant
a0 (cf. more comments in the following)

ρðr0Þ ¼ a0 > 0: ð26Þ

The sign of a0 has been fixed (without losing generality)
thanks to the invariance of (7) under Ω → −Ω.
By taking an appropriate sign of α in (8) one can

further also set a1 > 0, such that near and across the
horizon ρ is monotonically increasing with r.8 Since
our aim is to study the spacetime in the vicinity of an
outer black hole horizon, we then need to assume c0 < 0
(which ensures that ∂u is timelike, cf. [49] for related
comments). Hereafter we therefore restrict ourselves to the
parameter range

a1 > 0; c0 < 0: ð27Þ

Let us emphasize that the solution obtained in the
following admits any sign of Λ (see Sec. III A 1 for
Λ ¼ 0). However, because of the result of [16] mentioned
in Sec. I, in the discussion of black holes we will restrict
ourselves to the case Λ < 0.

A. General solution with Λ ≠ 0:
hairy AdS black hole

Substituting (25) with ðn ¼ 0; p ¼ 1; q ¼ 0Þ into
(16)–(18) reveals that a solution in this branch is possible
only for a20 − b20 ≠ 0, which will thus be assumed hereafter.
According to the value b0 of the scalar field Ψ at the
horizon, one can thus identify two disconnected branches
of solutions, i.e., those with a20 − b20 > 0 or with
a20 − b20 < 0. In the following we will be focusing mostly
on the former, since it is the only one continuously
connected (for b0 → 0) to the vacuum AdS black holes
(and the only one giving rise a positive entropy, as
discussed later on in Sec. III B 2).
At the lowest orders (16)–(18) further give

a1 ¼ −
a0
c0

þ a30Λð3a20 − 2b20Þ
3c0ða20 − b20Þ

;

a2 ¼
a0
c20

−
2a30Λð3a20 − 2b20Þ
3c20ða20 − b20Þ

þ a50Λ2ð3a20 − b20Þ
3c20ða20 − b20Þ

; ð28Þ

c1 ¼ 2 −
a40Λ

a20 − b20
;

c2 ¼
1

c0
−

4a40Λ
3c0ða20 − b20Þ

þ a60Λ2ð3a20 þ 4b20Þ
9c0ða20 − b20Þ2

; ð29Þ

b1 ¼ −
b0
c0

þ a40b0Λ
3c0ða20 − b20Þ

;

b2 ¼
b0
c20

þ a40b0Λða20Λ − 6Þ
9c20ða20 − b20Þ

: ð30Þ

All higher order coefficients are then obtained recur-
sively as

kðk − 1Þða0ak − b0bkÞ

¼
Xk−1
j¼1

jð2k − 3jþ 1Þðajak−j − bjbk−jÞ; ð31Þ

kðkþ1Þb0ck

¼−6k2c0bk−2bk−1−
Xk−1
j¼1

cj½6kðk− jÞþ jðjþ1Þ�bk−j;

ð32Þ

6k2c0ða20−b20Þbk

¼ 2a0ðb0ak−1−a0bk−1Þ−4a0b0Λ
Xk−1
j¼0

Xk−j−1
l¼0

ajalak−j−l−1

þ
Xk−1
j¼1

�
6k
k−1

jð2k−3jþ1Þðajak−j−bjbk−jÞb0c0

þ½6kðk− jÞþ jðjþ1Þ�a0cjðb0ak−j−a0bk−jÞ
�
; ð33Þ

which thus fully determine [via (25)] the solution.
The three coefficients a0, b0 and c0 remain

arbitrary, but the modulus of c0 can be rescaled as
desired using (8) with α > 0 [recall (27)]. There even-
tually remains two independent free physical parameters
related to mass and scalar hair. Because of (27), they
must obey

1 − Λa20 −
Λ
3

a20b
2
0

a20 − b20
> 0: ð34Þ

For definiteness, it may also be useful to give the leading
terms of the above solution in the Schwarzschild coordi-
nates (22). This gives rise to an expansion at the horizon
radius ρ ¼ a0, which is given, up to the subleading
order, by

8Except in the special case a1 ¼ 0, which we will not consider
in the following.
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f¼ 3a0c20ða20−b20Þ
3ða20−b20Þ−a20Λð3a20−2b20Þ

ðρ−a0Þ−3c20ða20−b20Þ
a40b

2
0Λ2ð6a20−5b20Þþ9ða20−b20Þ½ða20−b20Þ−a40Λ�

½3ða20−b20Þ−a20Λð3a20−2b20Þ�3
ðρ−a0Þ2þ…;

g¼
�
1

a0
−
Λ
3

a0ð3a20−2b20Þ
a20−b20

�
ðρ−a0Þ−

a40b
2
0Λ2ð6a20−b20Þþ9ða20−b20Þ½ða20−b20Þ−a40Λ�
3a20ða20−b20Þ½3ða20−b20Þ−a20Λð3a20−2b20Þ�

ðρ−a0Þ2þ…;

ϕ¼ b0
a0

þ 2b0Λða20−b20Þ
3ða20−b20Þ−a20Λð3a20−2b20Þ

ðρ−a0Þþ…; ð35Þ

where (34) ensures that the above denominators are
nonzero. At the leading order, f and g coincide if one
chooses the gauge a1 ¼ a20 [recall (28)]. In the special case
1 − Λ

3
a20ð3a20 − 2b20Þða20 − b20Þ−1 ¼ 0 (i.e., a1 ¼ 0), expan-

sions in Schwarzschild coordinates need to be treated
differently due to the appearance of nonintegers powers.
As mentioned in Sec. I, a result of [16] implies that, for

Λ > 0, the above black holes are not asymptotically de
Sitter. However, numerics in the caseΛ < 0 shows that they
are compatible with anti-de Sitter asymptotics [16,17].
Before further elucidating their properties, in the following
two subsections we briefly comment on the solutions
of (5), (6) [of the form (7), (25)] possessing an horizon
(also) in the limits Λ ¼ 0 and ϕ ¼ 0.

1. Limit Λ= 0: Schwarzschild (stealth) solution

By setting Λ ¼ 0, one can easily prove by induction that
the coefficients ak, bk and ck obtained in Sec. III A satisfy

ak ¼ a0

�
−

1

c0

�
k
; bk ¼ b0

�
−

1

c0

�
k

ðk ≥ 0Þ;

c1 ¼ 2; c2 ¼
1

c0
; cl ¼ 0 ðl ≥ 3Þ: ð36Þ

This gives rise to series that can be summed up exactly to
obtain the Schwarzschild solution with 2M ¼ a0 and a
constant scalar field ϕ ¼ b0=a0 (after using (8) to set
r0 ¼ −1=a0, c0 ¼ −1=a0, see also Sec. VIII.B.1 of [50] for
a related discussion). This is a stealth solution since
Tab ¼ 0. The outer horizon condition (34) is automatically
satisfied.
This is in agreement with the known result [51–54] that

there exist no nonextremal (nonstealth) black holes in the
case Λ ¼ 0.

2. Limit ϕ= 0: Vacuum Schwarzschild-(A)dS black hole

In the derivation of Sec. III A we assumed ψ ≠ 0.
For a comparison, let us observe that the vacuum
(A)dS black hole can in a similar way be obtained
as a series expansion by solving the Eqs. (16)–(18) with
ψ ¼ 0 (as discussed in [55]). This gives ak ¼ a0ða1=a0Þk
with a1 ¼ a0ðΛa20 − 1Þ=c0, and c1 ¼ 2 − Λa20,

c2 ¼ðΛa20−3ÞðΛa20−1Þ=ð3c0Þ, while ck ¼ 0 for k ≥ 3.9

The parameters r0, a0 and c0 remain arbitrary, but one
can use (8) to set r0 ¼ −a−10 and c0 ¼ ðΛa20 − 1Þ=a0 (i.e.,
a1 ¼ a20), thereby obtaining the standard normalization
Ω ¼ −1=r, H ¼ −r2 þ Λ=3þ a0

3
ðΛa20 − 3Þr3, where the

usual mass parameter is thus given by 2M ¼ a0ð1 − Λ
3
a20Þ.

For M > 0, a photon sphere is located at r−1 ¼ −3M, i.e.,
at ρ ¼ 3M [32,44] in the coordinates (22).
Here (34) gives

1 − Λa20 > 0: ð37Þ

Saturating the inequality in (37) (i.e., taking the limit
1 − Λa20 → 0) gives rise to the standard extremality con-
dition for dS black holes [56]. When 1 − Λa20 < 0, con-
dition (34) is violated, and the horizon r ¼ r0 cannot be an
outer black hole horizon [56] (e.g., it is a cosmological one
for pure dS spacetime, i.e., when a20 ¼ 3=Λ > 0). For the
Schwarzschild-AdS black hole the temperature is given by
T ¼ 1

4πa0
ð1 − Λa20Þ and the entropy by S ¼ πa20 [57].

B. Properties of the solution

1. Geometry and photon sphere

The convergence properties of the series (25) with
(28)–(33) can be analyzed by standard methods. In
Figs. 1 and 2 we give evidence that the roots jakj1k and
jckj1k tend to constant values for a large k (the same is true
for jbkj1k, not displayed) for specific values of the three
arbitrary parameters a0, b0 and c0 and of Λ. Using the root
test (cf., e.g., [58]) one can thus estimate the radius of
convergence of each of the series (25). We have found a
qualitatively similar behavior also for some other values of
the parameters.
The behavior of the metric functions Ω and H in the

exterior region Δ > 0 and up to the convergence radius is
depicted in Figs. 3 and 4. The former indicates that (at least
for certain choices of the integration constants) the

9Here we assume Λa20 − 1 ≠ 0 to avoid solutions of the Kundt
class (for which Ω ¼ const). The special case Λa20 − 1 ¼ 0 gives
rise to the (anti-)Nariai spacetime (cf. [49]).
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convergence of the series breaks down near conformal
infinity, where Ω blows up. The latter shows that H is
regular and enables one to identify a photon sphere [32,33]
at the local minimum (see Sec. II A). Furthermore, having
determined the r-dependence of H, one can compute the
angular radius of the black hole shadow (10) for a static
observer at any r ¼ rO > a0 (within the convergence
radius).
Form a physical viewpoint, however, it is more interest-

ing to characterize the dependence ofH as a function of the

Schwarzschild radial coordinate ρ [cf. (22), (23)] in the
exterior region ρ > a0, which is done in Fig. 5. First, this
enables one to identify the physical radius ρps of a photon
sphere. While for vacuum black holes the ratio between ρps
and the mass M is exactly 3 (and thus independent of Λ,
cf. [32,44] and Sec. III A 2, and [59] for the case Λ ¼ 0),
our findings indicate that the effect of the scalar hair is to
make ρps=M smaller, at least in the considered region of the
parameter space (cf. table II, where the choice a0 ¼ 1
means a unit horizon radius; the definition of M is
discussed below in the rest of this section). It can be

FIG. 1. Plot of jakj1k against k for k ¼ 1;…; 1000 [cf. (31)] with
parameters given by Λ ¼ −1=7, a0 ¼ 1, b0 ¼ 1=3, c0 ¼ −1=5
(such that a20 − b20 > 0 and (27) is satisfied). From the approxi-
mate asymptotic value of jakj1k one can estimate the convergence
radius of the power series for Ω (Eq. (25) with n ¼ 0) using the
standard root test, which thus constraints the range of Δ (for the
given choice of parameters) as jΔj ≲ 0.1748.

FIG. 2. The same as in Fig. 1 (with the same choice of
parameters) but now for the root jckj1k [cf. (32)]. In this case,
the root test indicates a slightly larger convergence radius for the
power series for H [Eq. (25) with p ¼ 1], namely jΔj≲ 0.1856.
A similar estimate for the convergence radius of the power series
for ψ (Eq. (25) with q ¼ 0) can be obtained using the ratio jbkj1k
[cf. (33)]—we omit the corresponding plot since it would not add
relevant new information. For simplicity, in the rest of the paper
we will always refer to the “safer” convergence radius jΔj≲
0.1748 obtained in Fig. 1.

FIG. 3. Plot of Ω (Eq. (25) with n ¼ 0) against Δ≡ r − r0 in
the exterior region Δ > 0 with parameters as in Fig. 1. The plots
are based on expansions taking into account the first 10, 20, 50,
100, and 400 terms, as indicated by the different colors. The event
horizon is located at Δ ¼ 0. The dashed vertical line represents
the radius of convergence as estimated in Fig. 1. The fact that Ω
grows very rapidly as one approaches the radius of convergence
(and as more terms of the series are kept into account) suggests
that the radius of convergence (in the exterior region) is close to
conformal infinity. For example, keeping into account the first
100 terms in (25) one obtains Ω ≈ 102 near the convergence
radius (and bigger values if more terms are summed in the series).

FIG. 4. The same as in Fig. 3 but here for the plot ofH (eq. (25)
with p ¼ 1) in the exterior region. The local minimum
of H located at Δ ≃ 0.063 identifies a photon sphere [32,33]
(cf. Sec. II A).
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FIG. 5. The same as in Fig. 4 but H is now plotted against the Schwarzschild radial coordinate ρ, cf. (22), (23). The event horizon is
located at ρ ¼ 1, where H ¼ 0, and the photon sphere (cf. the inset) at ρ ≃ 1.571. The “anomalous,” decreasing part of the curve based
on an expansion with only the first 10 terms corresponds to a region well beyond convergence radius, cf. Fig. 3, and should thus not be
taken into account. On the other hand, expansions with a larger number of terms indicate thatH tends asymptotically to a constant—i.e.,
the metric function f [Eq. (24)] behaves as f ∼ ρ2 for a large ρ, as expected in an asymptotically AdS spacetime. By considering a series
with up to 1000 terms (not displayed here) we have obtained a rough estimate of the asymptotic value of H ≈ −0.00148 (this is,
however, an extrapolation based on the value of H at a distance from the horizon of about 103 horizon radii—a more accurate estimate
may require a higher number of terms in the series, as well as a more precise knowledge of the radius of convergence).

TABLE II. The table shows the values attained by the physical quantities which characterize the AdS black hole solution (28)–(32) for
different choices ofΛ and of the hair parameter b0. In particular, the shadow angular radius [cf. (10)] for a static observer close to infinity is
given by χ∞O . In all cases we have chosen a0 ¼ 1 and fixed the gauge as c0 ¼ −1=5 (as in previous graphs) and we have approximated the
solution by considering series (25)with 1000 terms. The particular choiceΛ ¼ −3,b0 ¼ 0.857 corresponds to the case considered in Fig. 2
of [17] (up to a different normalization of the scalar field and a different gauge choice in [17], which does not affect the displayed physical
quantities). For comparison, vacuum Schwarzschild-AdS black holes, for which b0 ¼ 0, are also included (the corresponding exact
expressions, given in Sec. III A 2, have been rounded up here to a limited number of decimal digits, which explains why the displayed ratio
ρps=M does not equals the exact value 3 [32,44]). The symbol ≃means that the displayed values of ρps are approximate (only) because a
finite number of terms are considered in the series (25), whereas≈ is used for quantities that, in addition, involve an extrapolation to large
values of ρ (cf. the main text and Figs. 5 and 7 for further comments). The values obtained for the latter should thus be taken with some
caution and will need to be confirmed by different methods. By contrast, the displayed values of the entropy S (which does not depend on
Λ) are based on the exact formula (39) and thus do not involve any approximation (other than rounding it up to a limited number of decimal
digits). In the last row of both cases Λ ¼ −2 and Λ ¼ −3, the symbols ✗ denotes quantities which we have been unable to compute using
the series expansionmethod. The reason is that, for those particular values of the parameters, the convergence radius is reachedwell before
ρ can approach infinity—the behavior of H and its derivatives (undisplayed) near the convergence radius further suggests that the
corresponding spacetimes are not asymptotically simple [31]. This is presumably due to b0 being too close to the critical value b0 ¼ 1, and
seems compatible with the rapid growth of the mass observed in [17] when b0 → 1.

Λ b0 ρps≃ M≈ ρps=M≈ sin2χ∞O≈ T≈ S≈

0 1.571 05.2 3.02 0.261 0.091 π
1=3 1.571 0.77 2.04 0.267 0.090 2.79

− 1
7

0.600 1.570 1.33 1.18 0.282 0.089 2.01
0.857 1.566 2.16 0.73 0.324 0.087 0.83
0.970 1.578 2.69 0.59 0.388 0.099 0.19

0 2.500 0.83 3.01 0.926 0.239 π
1=3 2.468 0.87 2.84 0.924 0.245 2.79

−2 0.600 2.386 0.95 2.51 0.922 0.263 2.01
0.857 2.236 1.14 1.96 0.917 0.336 0.83
0.970 2.200 ✗ ✗ ✗ ✗ 0.19

0 3.000 1.00 3.00 0.964 0.318 π
1=3 2.941 1.01 2.91 0.963 0.327 2.79

−3 0.600 2.795 1.05 2.66 0.960 0.356 2.01
0.857 2.535 1.17 2.17 0.954 0.467 0.83
0.970 2.421 ✗ ✗ ✗ ✗ 0.19
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further noticed that the general upper and lower bounds
on ρps discussed in [39,60–64] are indeed fulfilled.10 For
comparison, let us observe that the photon sphere of both
the BBMB and MTZ black holes is located at ρps ¼ 2M
(cf. [32,65] for the BBMB case).11

In addition, Fig. 5 shows the typical AdS behavior H →
const < 0 for ρ → ∞. Using an expansion with a large
number of terms one can obtain an estimate of the
asymptotic value of H, and thus compute the angular

radius of the black hole shadow (10) for a static observer
close to infinity, cf. Table II (it will also be needed in
Sec. III B 2 to normalize the timelike Killing vector and
thus compute the temperature). Similarly, the behavior
of the scalar field Ψ in the exterior region is depicted
in Fig. 6, in qualitative agreement with the numerical
findings of [16,17]. Also here one can estimate the
asymptotic value of Ψ.
A few comments on the notion of mass used above and

its values exemplified in Table II are now in order. In an
asymptotically AdS spacetime, one can compute the mass
M using the Ashtekar-Magnon formula [75] (provided the
matter fields have a suitable fall-off [75,76]; cf. [77] for
related comments in the presence of a scalar field).
However, making computations at conformal infinity with
the series method illustrated above means going close or
beyond the convergence radius of the solution and
becomes therefore extremely challenging. As an example
of these difficulties, we plot in Fig. 7 the quantity ρ3Cur

ur,
which [for an asymptotically AdS metric of the form (22)]
should tend to a constant equal to 2M for ρ → ∞ [75].
Figure 7 clearly shows that our expansions are unable to
reproduce the correct asymptotic behavior for an

FIG. 6. Plot of the scalar field Ψ [Eqs. (11) and (25)] as a
function of the radius in Schwarzschild coordinates (22), (23)
with parameters chosen as in Fig. 1. The plots are based on
expansions taking into account the first 50, 70, 100, 150 and 400
terms, as indicated by the different colors. The event horizon is
located at ρ ¼ 1, where Ψ ¼ b0 ¼ 1=3. For the graphs with 100
and more terms, the displayed range of ρð¼ ΩÞ lies fully within
the convergence radius. The fact that Ψ tends asymptotically to a
constant means that the physical scalar fields goes for large ρ as
ϕ ∼ 1=ρ, in agreement with [16,17]. By considering a series with
up to 1000 terms (not displayed here) we have obtained a rough
estimate of the asymptotic value of Ψ ≈ 2.13 (this is, however, an
extrapolation based on the value of Ψ at a distance from the
horizon of about 103 horizon radii, cf. similar comments in
Fig. 5). It also follows from the graphs that Ψ (and thus ϕ) does
not possess any nodes in the exterior region, again in agreement
with the numerical results of [16,17].

FIG. 7. For any asymptotically AdS metric of the form (22), the
Ashtekar-Magnon mass formula [75] boils down to M ¼
1
2
ρ3Cur

urjρ→∞ (cf., e.g., [78]), where Cur
ur is a component of

the Weyl tensor (which falls off asymptotically as Cur
ur ∼ ρ−3).

This is plotted as a function of ρ using expansions with 100, 200,
300 and 400 terms, as indicated by the different colors, and the
parameters are chosen as in Fig. 1. The “flat” part of each curve
(which in all cases falls within the convergence radius, cf. Figs. 1
and 3) indicates a spacetime region where our series correctly
reproduces the asymptotic behavior ρ3Cur

ur → const. From a
series with 1000 terms (not displayed) one can thus extrapolate,
in a region around ρ ≈ 200, an Ashtekar-Magnon mass given
approximately by M ≈ 0.77. Similarly, by choosing the param-
eters Λ ¼ −3, a0 ¼ 1, b0 ¼ 0.857 (which correspond to those
used in figure 2 of [17]) onewould estimateM ≈ 1.17 (cf. table II),
which agrees within 2% with the numerical value obtained in [17]
(see also footnote 13).

10It should be emphasized, however, that Refs. [39,60–64]
typically assume the weak or even the dominant energy con-
ditions, which can be violated in certain spacetime regions by a
black hole sourced by a conformal scalar field (see appendix for
more details). Nevertheless, since the same bounds as obtained
[39,60–64] appear to be satisfied also here, it would be interesting
if those proofs could be extended to cover also the case of a
conformal scalar field—however, this goes beyond the scope
of the present paper.

11In the case Λ ¼ 0, photon spheres and shadows of black
holes with a constant conformal scalar field [46,66–68] have been
studied in [69]. For more general asymptotically flat hairy black
holes, a bound on the size of the “hairosphere” was obtained in
[70] and related to the size of the photon sphere in [71], cf. also
[72,73]. Some results for the case Λ ≠ 0 can be found in [73,74].
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arbitrarily large ρ.12 Nevertheless, for each of the curves
there exists a range of ρ (within the convergence radius,
cf. Figs. 1 and 3) where the curve flattens, thus indicating
a spacetime region where the series solution becomes
close to reproducing the correct asymptotic behavior. By
considering an expansion with a large number of terms,
one may thus attempt an extrapolation to compute (a lower
bound on) the Ashtekar-Magnon mass—cf. Table II. It
follows that, at least for the considered values of the
parameters,M grows monotonically with b0, in agreement
with Fig. 5 of [17]. We should stress, however, that further
analysis with different (e.g. numerical) methods will be
needed to set such kind of estimates on a firmer basis. This
goes beyond the scope of this paper.13

2. Thermodynamics

Wald’s formula enables one to compute the entropy
in any diffeomorphism invariant Lagrangian theory [79].
For Lagrangians involving no more than second derivatives
of the metric and first derivatives of the matter fields, one
has [80–82]

S ¼ −2π
I

Yabcdϵ̂abϵ̂cd; Yabcd ≡ ∂L
∂Rabcd

; ð38Þ

where the integral is taken with respect to the induced
volume element on an arbitrary cross section of the horizon,
and ϵ̂ab is the binormal to the cross section. For the theory
(1), (3) (recalling footnote 3) one has 16πYabcd ¼
ð1 − ϕ2Þga½cgd�b, while a horizon at r ¼ r0 for metric (7)
means ϵ̂ ¼ Ω2du ∧ dr. Then one readily finds

S ¼ Ah

4

�
1 −

b20
a20

�
; ð39Þ

where Ah ¼ 4πa20 is the horizon area. The scalar hair thus
results in a multiplicative factor which affects the standard
area law, making the entropy smaller for a given horizon
radius. As mentioned in Sec. III A, S is positive precisely in

the branch a20 − b20 > 0. Additionally, let us emphasize that
(39) is a closed-form expression (since computed at the
horizon, where only the first term of each of the series (25)
plays a role), from which one can obtain exact numerical
values of the entropy for particular choices of the horizon
radius a0 and the hair parameter b0. For example, choosing
the parameters as in Fig. 1 one obtains S ¼ 8π

9
(cf. Table II).

Modifications to the area law due to nonminimally coupled
scalars have been pointed out previously in [83,84] (see
also [15,85] for specific examples, and [86,87] for
earlier results in 2þ 1 dimensions).14

Finally, let us compute the temperature associated with a
generic Killing vector field ξ ¼ N∂t ¼ −N∂u, for the time
being without specifying the normalization constant N > 0

(ξ has norm ξbξ
b ¼ N2Ω2H and is thus timelike future

oriented where H < 0, and null at the horizon, i.e., for
H ¼ 0). The surface gravity is defined by ∇aðξbξbÞ ≐
−2κξa [27], where the symbol ≐ denotes equality at the
horizon. For the temperature T ¼ κ

2π one thus finds

T ¼ −
Nc0
4π

: ð40Þ

Next, we normalize the Killing field such that ξbξb ∼ Λ
3
ρ2

for ρ → ∞ [57] (cf. [88] for further comments). For a
specific choice of parameters of the solution, one can
employ the asymptotic (approximate) value of H to fix N
(Fig. 5) and thus estimate a numerical value of T. For
example, with the parameters of Fig. 1 one obtains T ≈
0.091 (cf. Table II for different choices of parameters).

IV. CONCLUSIONS

We have studied analytically static, spherically symmet-
ric solutions to AdS-Einstein gravity conformally coupled
to a scalar field, in the absence of any self-interaction
potential. In the first part of our contribution, we have
described how to reduce the field equations to the simple
form (16)–(18) by a choice of suitable coordinates (cf. also
[22], and [28,29] in a different context). This first result,
employed in the rest of the paper, could be useful also in
various future studies. Next, we have set up an ansatz (25)
for a power series solution of the Eqs. (16)–(18). By
analyzing the corresponding indicial equations, we have
identified distinct branches of solutions, summarized in
Table I. These correspond to expansions at physically
different points and may admit different numbers of
integration constants, thus describing physically distinct

12One arrives at a similar conclusion also by studying the
behavior of the dimensionless quantity R

4Λ − 1, which departs
from being zero [the value which should be attained by an exact
solution, cf. (5)] as the value of ρ grows “too large” (for example,
for a series with 1000 terms, an error no larger than 1% is
obtained for ρ≲ 122).

13For values of the parameters similar to those used in figure 2
of [17] (i.e., Λ ¼ −3 and b0 ¼ 0.857, with our normalization),
we extrapolated a value of the Ashtekar-Magnon mass in
agreement within 2% with the numerical value obtained in [17]
(see also Fig. 5 therein), cf. the captions to our Fig. 7 and table II.
For the smaller values b0 ¼ 0.6 and b0 ¼ 1=3 of table II (still
with Λ ¼ −3), we compared M with further numerical data
provided to us privately by Eugen Radu (see also Fig. 5 of [17])
and found an agreement within 1%. However, one would
obviously need to test whether this agreement still holds on a
larger set of values of the parameters.

14It may be useful to further observe that formula (39) has been
obtained off-shell, and is not modified by adding a self-inter-
action potential to the theory (1), cf. [66]. Indeed, when
specialized to the particular case of the Λ > 0 MTZ black hole
[13] (for which a20 − b20 < 0 [46]), it produces a result in agree-
ment with [85], including the negative black hole horizon
entropies discussed there (see Ref. [66] for further comments).
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solutions. While a detailed study of all possible cases will
deserve a separate investigation, in the rest of the paper we
have focused on AdS black holes, by considering an
expansion around a (necessarily nonextremal) Killing
horizon. This gave rise to a solution admitting two
integration constants, corresponding to the horizon radius
and the value of the scalar field Ψ at the horizon. When the
scalar hair vanishes, one recovers the Schwarzschild-AdS
vacuum black hole. Properties of the solutions have been
described, also using various plots, and compared with the
numerical findings of [16,17]. We have, in particular,
shown how the coordinates employed throughout this work
permit naturally to localize a photon sphere and compute its
radius, which is affected by the scalar field but fulfills
known general bounds [39,60–64], as well as the associated
shadow. In addition, we have briefly discussed the thermo-
dynamics of the solutions. While the entropy can be
computed exactly at the horizon, the obtained values of
the mass and temperature rely on an extrapolation at large
radii, and would need to be further studied by other
methods (at least for certain values of the parameters,
however, we have found good agreement with the numerics
of [17]).
The methods used in this paper can be extended to other

contexts, such as black holes with nonspherical horizons, as
well as certain extensions of the theory (1). It will be also
interesting to study analytically the solitons found numeri-
cally in [17]. This will be discussed elsewhere.
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APPENDIX: ENERGY-MOMENTUM TENSOR

The energy-momentum tensor defined by the theory (1)
is given by [cf., (5)] Tab ¼ ϕ2G̃ab, where G̃ab is the
Einstein tensor of the auxiliary metric g̃ab ¼ ϕ2gab. The
spacetimes considered in this paper are of the form (7) with
(11), so that the line element associated with g̃ab reads

ds̃2 ¼ Ψ2ð−2dudrþHdu2 þ dΣ2Þ;

dΣ2 ¼ 2P−2dζdζ̄; P ¼ 1þ 1

2
ζζ̄: ðA1Þ

After computing G̃ab, the nonzero mixed components of
Ta

b in the Schwarzschild coordinates (22)–(24) read

Ω4Tt
t ¼ −½Ψ2 þH0ΨΨ0 þHð2Ψ00Ψ −Ψ02Þ�; ðA2Þ

Ω4Tρ
ρ ¼ −ðΨ2 þH0ΨΨ0 þ 3HΨ02Þ; ðA3Þ

Ω4Tζ
ζ ¼ Ω4T ζ̄

ζ̄
¼ Ψ2 þ ΨðHΨ0Þ0 þHΨ02; ðA4Þ

where we have simplified (A4) using (18), such that
Ta

a ¼ 0 (see the comment at the end of Sec. I).
The energy density is given by −Tt

t (cf., e.g., [89]). By
definition [90], the weak energy condition (WEC) is
satisfied in regions where −Tt

t ≥ 0 along with −Tt
t þ

Tρ
ρ ≥ 0 and −Tt

t þ Tζ
ζ ≥ 0. The dominant energy con-

dition (DEC) requires that, in addition, also −Tt
t − Tρ

ρ ≥ 0

and −Tt
t − Tζ

ζ ≥ 0.
For the black hole solution of Sec. III A one finds at the

horizon (i.e., for H ¼ 0; as in Sec. III B 2, the symbol ≐
denotes equality at the horizon)

Tt
t ≐ −

Λ
3

b20
a20 − b20

> 0: ðA5Þ

Recall that for the hairy solution considered throughout the
paper one has a20 − b20 > 0, therefore the energy density is
negative and thus the WEC is violated at (and, by

FIG. 8. Plot of the energy-momentum components (A2)–(A4)
in the exterior region ρ > 1 of the black hole solution (28)–(33)
(with parameters as in Fig. 1). The plot is based on an expansion
with 400 terms. From the graphs it follows that the energy density
is positive for ρ≳ 1.506, the WEC holds for ρ≳ 1.571, while the
DEC for ρ≳ 1.678. A similar plot has been obtained numerically
in figure 8 of [16].
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continuity, in the vicinity of) the horizon—in agreement
with an observation of [16]. One further has −Tζ

ζ ≐ Tρ
ρ ≐

Tt
t (cf. also [70,89]). However, the plot in Fig. 8 reveals

that (at least in a certain region of the parameter space) both

the WEC and the DEC are satisfied sufficiently far from the
horizon. In particular, the WEC holds precisely outside the
photon sphere (at least within the accuracy of the series
solution), cf. Fig. 5.
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