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Direct observation of gravitational waves from binary black hole (BBH) mergers has made it possible to
test the laws of black hole thermodynamics using real astrophysical sources. These tests rely on accurate
and unbiased parameter estimates from the pre and postmerger portions of a signal. Due to numerical
complications, previous analyses have fixed the sky location and coalescence time when independently
estimating the parameters of the pre and postmerger signal. Here we overcome the numerical complications
and present a novel method of marginalizing over sky location and coalescence time. Doing so, we find
that it is not possible to model only the pre or postmerger portions of the signal while marginalizing over
timing uncertainty. We surmount this problem by simultaneously yet independently modeling the pre
and postmerger signal, with only the sky location and coalescence time being shared between the models.
This allows us to marginalize over all parameters. We use our method to measure the change in area
ΔAmeasured ¼ Af − Ai between the final and initial black holes in the BBH merger GW150914. To measure
the final black hole’s area Af we do an analysis using quasinormal modes (QNMs) to model the postmerger
signal, and another analysis using the postmerger portion of an inspiral-merger-ringdown (IMR) template.
We find excellent agreement with expectations from general relativity. The Hawking area theorem (which
states that Af ≥ Ai) is confirmed to 95.4% and 99.5% confidence using the QNM and IMR postmerger
models, respectively. Both models yield ΔAmeasured=ΔAexpected ∼ 1, where ΔAexpected is the expected change
in area derived from fits to numerical relativity simulations.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs)
throughout the past decade has been one of the most
significant advancements in observational relativity. These
observations not only confirmed the existence of GWs, but
also opened the door to direct tests of general relativity
(GR) in the strong-field regime. One such prediction that
can be verified is Hawking’s area theorem, which states that
the remnant from a binary black hole (BBH) merger must
have an event horizon surface area greater than the sum of
the progenitor horizon areas [1].
Tests of the area theorem using GWs have been carried

out previously [2–4]. Generally, they involve measuring the
initial two black holes’ mass and spin (from which the total
initial area Ai is derived) from the premerger part of the
signal, during which the two black holes inspiral into each
other. The area of the final black hole is independently

measured using the GW that is emitted during the post-
merger, or “ringdown” phase. In both cases Bayesian
inference is used to produce a “posterior” probability
density on the black holes’ parameters. Ideally, all param-
eters that describe the BBH should be allowed to vary in
the analysis, in order to fully account for all statistical
uncertainties. However, previous tests of the area theorem
have fixed the sky position and coalescence time tc of the
events to nominal values when doing their analysis [2,4].
Fixing the values in this way may lead to biases in the
resultant parameter estimates, obfuscating the true nature
of the system [3,5]. At the very least, it may cause an
underestimate of the statistical uncertainty of measured
parameters, yielding constraints on deviations from GR that
are misleadingly strong.
The sky location and tc have been fixed in earlier studies

due to technical hurdles in calculating the likelihood
function. In order to independently analyze the pre and
postmerger portion of the signal it is necessary to excise the
post and premerger data, respectively, from the analysis.*Contact author: cdcapano@syr.edu
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Excising the premerger data is also necessary when just
analyzing the postmerger signal for tests of the no-hair
theorem using quasinormal modes (known as black hole
spectroscopy). In either case, the excision (or “gate”)
results in a modified likelihood function that cannot be
solved using conventional, frequency-domain means.
Existing pipelines for doing such analyses in the time
domain, such as pyring [6,7] and ringdown [8], instead
calculate the likelihood by numerically inverting the noise
covariance matrix for the data. This calculation can be
numerically costly [5,9]. If the sky location and tc are not
fixed, the gate will vary in time, and the full likelihood will
need to be recalculated for every unique gate time,
significantly increasing computational costs. However, if
the sky location and tc are fixed, the gate is static, and the
most computationally demanding part of the calculation
need only be done once.
Finch and Moore [10] devised a method to overcome this

issue and vary the sky location and tc. In their method the
inspiral and merger are modeled with a wavelet series
stitched to the beginning of the ringdown. This allows them
to use the traditional frequency-domain likelihood, and
vary the start time of the ringdown. However, this does not
allow for an area theorem test, since the parameters of the
initial black holes cannot be estimated from the wavelet
signal model. Furthermore, the traditional frequency-
domain likelihood causes the start of the ringdown to be
coupled to information from just before the merger due to
convolution with the whitening filter. This means that
recovered pre and postmerger parameters will not be
independent measurements.
This paper presents a novel method of calculating the

likelihood function using the parameter estimation code
PyCBC Inference [11]. This code already utilizes “gating and
in-painting” [12] to excise data from the analysis, which
allows for cheaper likelihood evaluation under certain
conditions as compared to the methods used by pyring
and ringdown [5,9]. However, an additional normaliza-
tion factor has traditionally been omitted from this calcu-
lation, as this also required computationally expensive
numerical methods to evaluate. This paper presents a
method of linear interpolation that calculates this normali-
zation factor with good approximation. Together, these
methods allow for fast likelihood calculations regardless of
gate position, allowing for marginalization over tc and sky
location and a full accounting of parameter uncertainties.
This paper is structured as follows. Section II describes

the modifications to the likelihood calculation in PyCBC in
detail. Full waveform analyses can be conducted with these
modifications to marginalize over sky location and tc.
However, the method cannot be used in partial waveform
analyses. Section III documents the issues that arise in these
models. Using this method, a test of the Hawking area
theorem is conducted using data from GW150914 [13].
Section IV describes the configuration of the analyses used

in this test, and Sec. V describes and analyzes the results.
Section VI summarizes the findings and the implications of
the marginalization method for future GW analyses.

II. DETERMINANT APPROXIMATION

PyCBC Inference [11] utilizes Bayesian inference to conduct
parameter estimation on GW events. Bayes’ theorem is
used to extract information about the parameter space ϑ
from a dataset s [14]. Assuming the dataset is composed of
a signal h and noise n such that s ¼ nþ h, the probability
of observing a specific ϑ is given by

pðϑjs; hÞ ¼ pðsjϑ; hÞpðϑjhÞ
pðsjhÞ : ð1Þ

The term pðsjϑ; hÞ is the likelihood, which describes the
probability of observing a signal s assuming the event
has a parameter space ϑ. The term pðϑjhÞ is the prior,
a distribution that describes the a priori probability of
observing ϑ given a signal model h. The denominator
pðsjhÞ is the evidence, a normalization factor used to
compare analyses using different models for h. The
resultant probability distribution on the left-hand side of
the equation is known as the posterior.
The prior is chosen at the discretion of the analyst based

on assumed plausible values for ϑ, whereas the likelihood is
calculated directly from the data. For a system of K
detectors each taking N time series samples of an event
with a stochastic Gaussian noise background, the like-
lihood can be written as [15]

pðsnetjnÞ ¼
exp ½− 1

2

P
K
d¼1 s

T
dΣ−1

d sd�
½ð2πÞNK

Q
K
d¼1 detΣd�1=2

; ð2Þ

where Σd is the covariance matrix associated with n in
detector d.
To evaluate the likelihood, further assumptions must be

made to calculate Σ−1
d . The result of these assumptions is

pðsnetjnÞ ∝ exp

"
−
1

2

XK
d¼1

hsd; sdi
#
; ð3Þ

where the inner product is defined by Eq. (A14). (The full
derivation of this likelihood function is given in
Appendix A). This gives the likelihood function for a
signal that is assumed to be entirely noise. To get the
likelihood function with respect to the signal model h
evaluated for a parameter space ϑ, Eq. (3) can be rewritten
by substituting sd → sd − hdðϑÞ on the right-hand side,
yielding
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logpðsnetjϑ; hÞ ¼ −
1

2

XK
d¼1

hsd − hdðϑÞ; sd − hdðϑÞi

−
1

2

"
NK log 2π þ

XK
d¼1

log detΣd

#
: ð4Þ

(Here and throughout, we use log to refer to the natural
logarithm.) For a GW analysis that examines the entirety
of s, this expression is easily evaluated using the approxi-
mated eigenvalues of Σd. However, many analyses only
examine a portion of the time series (generally either the pre
or postmerger signal). Therefore, a region of s is omitted, or
“gated”, to reduce numerical biases due to the merger.
Doing this also requires excising rows and columns from
Σd, thereby breaking the Toeplitz form of the matrix and
the corresponding approximations. The inverse of the
truncated covariance matrix Σd;tr is evaluated in PyCBC

using “gating and in-painting” (explained in detail in [12]
and Appendix B), allowing for easy calculation of the first
term of Eq. (4).
The second term, however, requires the calculation of

log detΣd;tr, which is a notoriously expensive numerical
problem. The most widely used matrix decomposition
methods are ∼OðN3Þ [16], which become impractical for
GW time series such as GW150914, where N ∼ 104. This
problem is amplified when varying sky position and tc in a
gated analysis. The start and end times of the gate must be
converted between the geocentric and individual detector
frames. The time conversions directly depend on the time
of merger tc and the sky location of the event relative to
the detectors. Therefore, when varying sky location and tc,
the gate times in the detector frames will also vary.
Subsequently, the elements of Σd;tr will vary with each
unique sky location and tc value. Analyses that marginalize
over these parameters require recalculating log detΣd;tr on
multiple steps of the sampler, which would be impractical
using numerical decomposition methods. This is not an
issue if the sky location and tc are fixed, since in that case
detΣd;tr will not change throughout the analysis (and in fact
can be ignored, as it amounts to a constant normaliza-
tion term).
In order to marginalize over sky location and tc it is

necessary to have a fast method for calculating detΣd;tr. We
find that log detΣd;tr is strongly linearly correlated to the
length of the power spectral density (PSD) of the data,
which is equivalent the number of rows and columns in
Σd;tr. Figure 1 shows this relationship using log detΣd;tr

values calculated for various gate sizes applied to
GW150914 data. Using a least squares fit to the points, the
correlation coefficient was calculated as 0.999 < R2 < 1,
which for a sample of eight points implies a highly
significant correlation [17].
We also find that the position of the gate in the time

series has no significant effect on the value of log detΣd;tr.

The maximum range over which the determinant values
varied was ∼10−6. However, since these values were
generally of order ∼106, this represents a maximum frac-
tional change of ∼10−12 over the entire time domain. While
gate position does have a minor effect on determinant
value, the relative effect is so small that the value is well-
approximated as a constant for a static gate length.
Using these two facts, we calculate the normalization

term in Eq. (4) using a linear interpolation based solely on
the size of Σd;tr. Specifically, a least squares linear fit is
generated using the determinant values for the full matrix
and three differently-sized truncated matrices. The full
matrix determinant is calculated using its approximated
eigenvalues, while the truncated determinants are calcu-
lated numerically using SciPy [18]. The determinant can
then be calculated on each step through linear interpolation
based on the size of the truncated covariance matrix.

III. NEED FOR JOINT ANALYSES

The strategy outlined in Sec. II fixes the technical hurdle
of calculating the likelihood when the gate length and
position are varied. Even with that, however, we find that it
is not possible to only model a portion of a signal—whether
it be the postmerger or the premerger—if tc or sky location
are uncertain. This is because a larger likelihood can
generally be obtained if the gate is shifted such that it
removes as much of a signal as possible.
From Eq. (4) it is evident that the likelihood is maxi-

mized as sd − hdðϑÞ → 0. When analyzing the entire time
series this can only occur if the template hdðϑÞ is similar to
the signal that exists in the data (as desired). However, if a
variable gate is involved, then a large likelihood can also
be obtained if the gate is shifted such that it excises most

FIG. 1. Plot of log detΣd;tr versus PSD length for GW150914
in the Hanford detector. Blue points represent determinants
calculated exactly using SciPy functions [18], while the black
dashed line is a least squares linear fit. The correlation coefficient
of 0.999 < R2 < 1 indicates a highly significant linear correla-
tion between log detΣd;tr and the size of Σd;tr.
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(or all) of the signal in the data. The template then only
needs to match the remaining noise. Since the noise
manifold is larger than the signal manifold, a larger volume
of prior space will generally be able to match the noise than
the volume that matches the signal. For example, when
using a quasinormal mode (QNM) model, if the gate is
shifted such that it excises the entire signal then one only
needs to reduce the amplitude of the QNM template below
noise level to get a relatively large likelihood. The same
likelihood would then be obtained regardless of what the
other parameters describing the template are set to. The end
result is that the posterior probability will favor excising the
entire signal even if the template that is being used can
match the signal.
Specifically, in premerger-only analyses, the gate will

be shifted to as early a time that is possible while in
postmerger-only analyses, the gate will be shifted to as late
as possible. These phenomena are illustrated in the middle
row of Fig. 2. Shown are the results from separate
premerger and postmerger analyses of a simulated signal
in which the gate time is varied due to time and sky-location
marginalization. The maximum likelihood template in the
premerger-only analysis has a tc roughly 25 ms earlier

than what was injected. This significantly shortens the
premerger signal, leading to inaccurate measurements in
parameters such as total spin. Meanwhile, the maximum
likelihood template for the postmerger-only analysis had a
ringdown start time ∼10M⊙ later than the injected value,
well into the regime where the signal is expected to be noise
dominated. This leads to a “prior-in prior-out” posterior—a
roughly uniform distribution across parameter space—as
the signal model can fit any arbitrary model to late-
time noise.
Fundamentally, this problem is due to the gated signal

model not being the appropriate model for the observed
data. Excising data from the analysis is mathematically
equivalent to assuming that the excised data is Gaussian
noise and marginalizing over all possible realizations of it.
A property of multivariate Gaussian distributions is that
marginalizing over a subset of dimensions yields another
multivariate Gaussian distribution with the marginalized
dimensions excised from the covariance matrix. This is
exactly the same form as Eq. (3); in our case, each time
sample is a dimension in the multivariate Gaussian. The
problem is the excised times are not Gaussian noise. They
contain a signal, albeit a portion of the signal that we want

FIG. 2. Comparison of waveform templates fitting to a simulated signal similar to GW150914 in the Hanford detector. The simulated
signal (“injection”) is generated using the maximum likelihood values from a 4-OGC analysis of GW150914 [19] and added to zero
noise. The ungated zero-noise injection is plotted with a gray line on each set of axes. The plots on the left (right) contain maximum
likelihood premerger (postmerger) waveform templates plotted with blue (red) lines. In each analysis, a 1-second gate is applied to the
data, represented by a shaded gray region and a dashed green line representing the start (end) of the gate. The data with this gate applied
is shown with a black line. The horizontal axes represent the time in seconds relative to the geocentric gate start (end) time. The top plots
show the waveform templates for analyses where the sky location was fixed to the same values as the injection. The center plots show the
templates for analyses where the sky location was allowed to vary and the pre and postmerger signals were modeled separately. Notice
that the premerger (postmerger) gate is significantly earlier (later) than the injected values shown in the corresponding fixed sky location
templates. The bottom plots show the templates from an analysis with variable sky location where the pre and postmerger signals were
modeled simultaneously. Besides sky location and tc, the parameter distributions were independent of each other. The resultant gate
positions are similar to those observed in the fixed sky location analyses.
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to ignore. Consequently, a gated signal model is not
representative of the data.
This issue could be mitigated by modifying the prior to

exclude the portion of parameter space that matches the
noise while keeping the portion that matches the signal.
With a QNM template this would mean setting a lower
bound on the amplitude such that it is above noise level.
However, modifying the prior in this manner is challenging
to do in an unbiased way, as it would require a priori
knowledge of both the noise and signal properties. It also
does not solve the fundamental problem that the gated
signal model is not representative of the data.
We resolve this issue by simultaneously yet independ-

ently modeling both the pre and postmerger signals. Each
domain is treated as a separate gated analysis. The signal
parameters used in each domain are independent of each
other, except for a set of common parameters ϑcom. In our
case the common parameters are the right ascension α,
declination δ, and geocentric coalescence time tc. These
parameters determine the coalescence time tdc in each
detector d, which the gate time depends on. The likelihood
is calculated in each domain, then combined to get the
overall likelihood.
Explicitly, our algorithm to calculate the likelihood

for a given set of parameter values ϑ ¼ fϑinsp;ϑrd;ϑcomg
isas follows:
(1) Generate the premerger (“inspiral”) template hinsp

using parameters ϑinsp;
(2) Project the template into each detector’s frame

using ϑcom ¼ fα; δ; tcg;
(3) Excise times after tdetc by gating and in-painting the

residual sd − hinspd ðϑinsp;ϑcomÞ using a 1s gate that
spans ½tdc; tdc þ 1Þ;

(4) Calculate the premerger likelihood pðsnetjϑinsp;ϑcom;
hinspÞ via Eq. (4);

(5) Repeat steps 1–4 for the postmerger (“ringdown”)
template hrd to get the postmerger likelihood
pðsnetjϑrd;ϑcom; hrdÞ. However, for the ringdown
the gate spans ½tdc − 1; tdcÞ; i.e., it ends at tdc whereas
it starts at tdc for the premerger. The data used in each
domain is thereby (nearly) mutually exclusive (see
Appendix B for more details);

(6) The total likelihood is then

pðsnetjϑ; hÞ
¼ pðsnetjϑinsp;ϑcom; hinspÞpðsnetjϑrd;ϑcom; hrdÞ: ð5Þ

We fix the issue of the gate trying to excise the signal by
using this hierarchical likelihood. The two domains offset
each other; in order for the postmerger gate to shift to later
times the premerger template must match more of the
signal, and vice versa. This also addresses the fundamental
issue with the gated signal model highlighted above; our

global model for the entire dataset now contains a non-
Gaussian element (the other domain’s signal model) in each
domain’s excised region. Note also that no coupling occurs
across the domain boundaries due to the whitening filter.
The bottom plots in Fig. 2 show the maximum likelihood

waveform templates from an analysis with this configura-
tion. Besides sky location and tc, both models generated
independent parameter measurements. The resultant wave-
form templates closely match those obtained by fixing sky
location and tc to the injected values (top row of Fig. 2); the
erroneous gate motion observed in the pre and postmerger-
only analyses is no longer present.

IV. METHODS

We performed eight analyses in total. Each analysis
was differentiated by the waveform used, postmerger
approximant, and whether or not sky location and tc
were marginalized over. All other aspects of the analyses
were kept constant. Both the pre and postmerger
signals in all models utilized the PyCBC model
GatedGaussianMargPol, which inherits the normali-
zation protocols described in Sec. II. The DYNESTY

sampler [20] was used to generate posterior distributions.
The samplers in these analyses used 4000 live points to
ensure the convergence of each model (see Appendix C).
Half of the analyses used the original data of GW150914

with a sample rate of 2048 Hz obtained from the
Gravitational Wave Open Science Center [21]. To validate
these results, we repeat each run on a simulated signal in
zero noise. The simulated signal was generated using the
IMRPhenomXPHM waveform approximant [22] with the maxi-
mum likelihood parameters for GW150914 from Ref. [19].
All template models utilized IMRPhenomXPHM (abbrevi-

ated here on as IMR) to model the premerger signal of the
waveform. Half of the models used this IMR approximant
to model the postmerger signal. The other half utilized a
QNM approximant to model the postmerger section of the
waveform. Table I lists the sampled parameters and priors
used in the premerger models, and Table II lists the same
for the postmerger models. The QNM approximant was
configured such that the ringdown was composed of a
dominant (2, 2, 0) mode and a subdominant (2, 2, 1) mode
as proposed by [23]. All models apply the ringdown model
starting at merger time tc. The priors of the QNM
postmerger models were restricted such that the (2, 2, 0)
mode contribution to the postmerger signal-to-noise ratio
(SNR) was at least 2. This condition was imposed to ensure
that the dominant mode was present in the model, prevent-
ing possible “label switching” that may occur due to the
(2, 2, 1) mode erroneously matching to the (2, 2, 0) mode in
the signal.
Only half of the models allowed for sky location and tc to

vary. The other half fixed these parameters to nominal values
for GW150914 to replicate previous works. Specifically, the
fixed parameter analyses set α ¼ 1.95, δ ¼ −1.27, and
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tc ¼ 1126259462.408, in accordance with the maximum
likelihood values in [23].
As a preliminary test, the sky location posteriors of the

analyses with variable sky=tc parameters on real data
were plotted. As seen in Fig. 3, the analyses were able
to recover most of the posterior for the full IMR analysis
conducted in [19].

V. AREA THEOREM

The simplest area theorem test is to compare the
progenitor horizon areas A1 and A2 to the remnant horizon
area Af to check that

A1 þ A2 ≡ Ai ≤ Af: ð6Þ

In natural units (G ¼ c ¼ 1) the area of each black hole is
given by [1]

A ¼ 8πM2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
; ð7Þ

where M the black hole’s mass and χ ¼ J=M2 is its
dimensionless spin.
A more robust test can be performed by comparing the

measured change in area to the expected change in area [2]

H ¼ Af;measured − Ai

Af;expected − Ai
: ð8Þ

Here, Af;measured is the area of the final black hole inferred
from the postmerger analysis and Ai is the sum of the initial
areas inferred from the premerger analysis. The expected
area of the final black hole Af;expected is derived from the
initial masses and spins measured from the premerger
analysis. These are converted into an estimated final mass
and spin using fits from numerical relativity, which is then
converted into an area via Eq. (7).
Since Af;expected is evaluated with numerical relativity

using A1 and A2, the denominator of Eq. (8) is positive
definite. Therefore, if H < 0, then Af;measured < Ai and the
area theorem is violated. The confidence interval in favor
of the area theorem is the fraction of the posterior for

TABLE I. Varied parameters in IMR models and their associated prior distributions. The subscript (1=2) indicates
that the same prior was used for the primary and secondary masses. The third column indicates the sampling method
for each prior. Parameters listed in this column indicate uniform sampling over those parameters rather than what is
listed in column 1. (For example, Mchirp is sampled using uniform priors for M1 and M2.)

Parameter Description Prior distribution Prior range

tc Coalescence time Uniform 1126259462.43þ ½−0.05; 0.05� s
α Right ascension Uniform ½0; 2π�
δ Declination Sine angle ½−π=2; π=2�
ι Inclination Sine angle ½0; π�
Mchirp Source frame chirp mass M1, M2 ½23; 42�M⊙
q Mass ratio M1=M2 M1, M2 [1, 4]
χa;ð1=2Þ Spin magnitude Uniform [0, 0.99]
χθ;ð1=2Þ Spin polar angle Solid angle ½0; 2π�
χϕ;ð1=2Þ Spin azimuthal angle Solid angle ½0; π�
ϕc Reference phase Uniform ½0; 2π�
VC Comoving volume Uniform ½5000; 92918664351� Mpc3

TABLE II. Varied parameters in ringdown models and their associated priors. The tc, ι, and sky location priors
used in ringdown analyses were identical to those shown in Table I. The amplitude priors indicate the amplitudes of
the corresponding quasinormal modes at the start of the ringdown model (i.e., at the merger). The third column
indicates the sampling method for each prior. Here, log10 indicates a uniform distribution over the base 10 logarithm
of the given parameter.

Parameter Description Prior distribution Prior range

Mf Source frame final mass Uniform ½10; 200�M⊙
χf Final spin Uniform ½−0.99; 0.99�
A220 Initial (2, 2, 0) mode amplitude log10 ½10−25; 8 × 10−17�
ϕ220 (2, 2, 0) mode phase Uniform ½0; 2π�
A221=A220 Initial (2, 2, 1) mode amplitude (as ratio of A220) Uniform [0, 5]
ϕ221 (2, 2, 1) mode phase Uniform ½0; 2π�
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which H > 0. More robustly, H ¼ 1 indicates that signal is
consistent with GR specifically, not just the more generic
class of theories that satisfy the area increase law.
Figure 4 shows the posteriors of the final mass Mf and

final spin χf of the QNM postmerger models on real data.
Specifically, the Mf and χf posteriors from the analysis
with variable sky=tc parameters are compared with the
corresponding posteriors from fixed gate analysis. All
posteriors contain within them the distribution from a
full IMR analysis from 4-OGC [19]. Furthermore, both
posteriors from the variable sky=tc run overlap almost
completely with their corresponding fixed parameter
posteriors.
A similar plot is shown in Fig. 5, except with the

analyses that used an IMR postmerger model on real data.
Again, the premerger and postmerger posteriors from the
analysis with variable sky=tc parameters are compared to
their fixed counterparts as well as the full IMR posterior
from [19]. Notably, while still in very close agreement, the
variable sky=tc posteriors have a greater discrepancy from
their fixed counterparts than seen in Fig. 4. Specifically, the
postmerger posterior tends towards slightly higher masses
and spins, while the premerger posterior includes lower
spin values.
Directly comparing the premerger posteriors in Figs. 4

and 5 shows a slight discrepancy in final mass and spin
estimates. Namely, the analysis with a QNM postmerger
model tends towards higher final mass and spin estimates
than the IMR postmerger model. This indicates minor

FIG. 3. Sky position posteriors for GW150914 analyses. The
colored contours represent analyses done using the normalization
methods described in Sec. II The blue contour represents the
analysis with a QNM postmerger model, and the red contour
depicts the analysis with an IMR postmerger model. The black
contour represents the posterior from a full IMR analysis
conducted in [19]. All contours mark the 90th percentile of each
distribution.

FIG. 4. Final mass and final spin posteriors of GW150914
analyses using a QNM postmerger approximant and real wave-
form data. All masses are in the detector frame. Contours
represent the 90th percentile of each distribution. The darker
colored lines correspond to the model with variable sky location
and tc, and the lighter lines represent the model where these
parameters were fixed. Blue lines correspond to postmerger
results, while red lines correspond to premerger results, obtained
using numerical relativity with the IMR parameters. The inner-
most black contour represents the 4-OGC posterior from [19].

FIG. 5. Final mass and final spin posteriors of GW150914
analyses using an IMR postmerger approximant and real wave-
form data. All masses are in the detector frame. Contours
represent the 90th percentile of each distribution. The darker
colored lines correspond to the model with variable sky location
and tc, and the lighter lines represent the model where these
parameters were fixed. Blue lines correspond to postmerger
results, while red lines correspond to premerger results, obtained
using numerical relativity with the IMR parameters. The inner-
most black contour represents the 4-OGC posterior from [19].
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coupling between the pre and postmerger models caused by
their shared sky and time parameters. However, as made
evident by these two plots, this is not a major effect, and
both premerger models maintain strong consistency with
the full IMR posterior.

Figure 6 compares the H posteriors between the four
analyses of the real GW150914 data. All posteriors agree
with the expected value H ¼ 1, with each distribution
peaking near this value. While the QNM postmerger
posteriors are almost in exact agreement with each other,
there is a slight discrepancy between the IMR postmerger
posteriors. Specifically, the fixed sky=tc posterior has a
much sharper peak at a lower value than the variable gate
counterpart. This may be explained by Fig. 5, where the
fixed IMR postmerger posterior was observed to contain
lower masses and spins than the variable gate model. This
could lead to the slight bias to lower H values seen here.
Table III summarizes the H credible intervals and area

theorem confidence intervals for all eight analyses. All
credible intervals are in agreement with the expected value
H ¼ 1. Additionally, all analyses of the real GW150914
signal have H > 0 at greater than 95% confidence, indicat-
ing very high agreement with the area theorem. Results from
the analysis of the simulated signal are largely consistent
with these results (see Appendix C for equivalent figures).
The area theorem confidence interval of any given

analysis appears to be uncorrelated to whether or not the
sky location and coalescence time were allowed to vary.
However, IMR postmerger models tended to have slightly
higher agreement with the area theorem than corresponding
QNM postmerger models. This pattern may be explained
by trends in the pre and postmerger mass and spin results.
The IMR postmerger models in Fig. 5 had postmerger
measurements that were either in agreement with or greater
than the corresponding premerger estimates. This corre-
sponds to a very high concentration of H measurements
approximating or exceeding 1, with very few points skewed
to negativeH values. Conversely, the postmerger posteriors
shown in Fig. 4 have significant amounts of points with
higher and lower mass and spin values than their premerger

FIG. 6. Posteriors of H ¼ ðAf;measured − AiÞ=ðAf;expected − AiÞ
for the GW150914 analyses with real waveform data. Blue
histograms correspond to QNM postmerger models, while red
lines correspond to IMR postmerger models. Darker histograms
correspond to models with variable sky=tc parameters, while
lighter histograms correspond to models where these parameters
are fixed to the maximum likelihood values from [19]. The
expected value H ¼ 1 is shown with a vertical black dotted line.
Points in the shaded region correspond to H < 0 and therefore
disagree with the area theorem.

TABLE III. Summary of posteriors for H ¼ ðAf;measured − AiÞ=ðAf;expected − AiÞ from various GW150914
analyses. The first column lists the properties of each model, namely whether or not sky location and tc were
allowed to vary, the postmerger model used, and the waveform data used. The approximant IMRPhenomXPHM [22]
was used to model the postmerger signals of analyses labeled “IMR postmerger”, as were all premerger signals.
Analyses with injected waveforms used a zero-noise injection of the GW150914 waveform as input data. The
second column lists the median and the 90% credible interval for each H posterior. The third column lists the
percentage of posterior points for which H > 0, thereby agreeing with the area theorem.

GW150914 analysis Credible interval PðH > 0Þ
Variable sky=tc, QNM postmerger, real waveform 1.0þ1.4

−1.0 95.4%

Variable sky=tc, IMR postmerger, real waveform 1.1þ0.6
−0.6 99.5%

Fixed sky=tc, QNM postmerger, real waveform 1.2þ1.2
−1.0 97.4%

Fixed sky=tc, IMR postmerger, real waveform 1.0þ0.6
−0.6 98.4%

Variable sky=tc, QNM postmerger, zero-noise injection 0.9þ1.5
−1.3 89.1%

Variable sky=tc, IMR postmerger, zero-noise injection 0.9þ0.6
−0.6 98.4%

Fixed sky=tc, QNM postmerger, zero-noise injection 1.1þ0.9
−0.9 97.3%

Fixed sky=tc, IMR postmerger, zero-noise injection 1.0þ0.5
−0.5 98.8%
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counterparts. This leads to a wider distribution of H values
to both higher and lower values, allowing for a higher
concentration of negative measurements.

VI. CONCLUSIONS

This paper presented a novel method of marginalizing
over sky location and coalescence time when performing
a pre or postmerger analysis, which allows for a full
accounting of uncertainties in parameter estimates. Tests
of the area theorem were conducted using data from
GW150914 using this method. It was found that the data
for this event agrees very well with the area theorem
regardless of whether sky position and tc were allowed to
vary. The only noticeable changes in agreement in the area
theorem were caused by the postmerger approximant used,
though in general this was a very minor change.
While we focus on tests of the area theorem here, our

method for marginalizing over sky location and tc applies
to any analysis in which only a portion of the signal is
modelled. In particular, black hole spectroscopy involves
analyzing the postmerger signal using a QNM template in
order to perform a test of the no-hair theorem [24–26].
As with previous tests of the area theorem, previous black
hole spectroscopy studies have fixed the sky location and tc
for the reasons discussed in Sec. II [23,27,28]. Our finding
that a signal model is needed for the entire observable signal
applies equally well to black hole spectroscopy, even though
the premerger signal is purposely excluded in such analyses.
The hierarchical method we develop in Sec. III is therefore
equally relevant for marginalizing over sky location and tc
when doing black hole spectroscopy. In Ref. [29] we use our
QNM analysis of GW150914 to investigate the evidence for
the presence of the (2, 2, 1) mode, which has been hotly
contested in the literature [5,23,27,30].
In all our analyses here, we end the premerger analysis

when the postmerger analysis beings. This is necessitated
by our finding that some model must exist for the entire
observable signal when the gate time is allowed to vary.
Since there was no gap between our pre and postmerger
template, we obtained agreement with the area theorem in
excess of 95%. A more rigorous test of the area theorem is to
excise the merger from the data, since any biases introduced
by including the merger as part of the premerger model
would be omitted. References [2,4] did this additional test
with fixed sky location and tc. However, this is not possible
when marginalizing over sky location and tc for the reasons
highlighted in Sec. III. Introducing a gap between the pre
and postmerger will once again favor points that excise as
much of the signal as possible, even when both the pre and
postmerger were modeled simultaneously.
Introducing a gap between the pre and postmerger

models could be achieved by using three subdomains
rather than two: one each for the inspiral, merger, and
ringdown. The gate for one domain would start/end at the
end/start of the next. For the merger domain, an arbitrary

signal model using wavelets could be used, similar to what
Finch and Moore used in Ref. [10]. This would ensure that
pre and postmerger parameters are fully unbiased by the
merger while ensuring that the merger itself is not arbi-
trarily gated out. The initial black hole areas could then
be estimated using an inspiral model and the final area
using a QNM model. This would also be useful in black
hole spectroscopy studies involving fundamental angular
QNMs. These modes are not expected to become relevant
until ∼10M after merger, necessitating a gap between the
merger and the start of the QNM model. We plan to
investigate this in a future study.

This research was conducted using PyCBC [31]. Our data
is available at [32].

ACKNOWLEDGMENTS

A. C. was supported by funds from the Massachusetts
Space Grant Consortium. C. C. acknowledges support from
NSF Grant No. PHY-2309356. All computations were
performed on Unity, a collaborative, multi-institutional
high-performance computing cluster managed by UMass
Amherst Research Computing and Data. This research
has made use of data or software obtained from the
Gravitational Wave Open Science Center [33], a service
of the LIGO Scientific Collaboration, the Virgo
Collaboration, and KAGRA. This material is based upon
work supported by NSF’s LIGO Laboratory which is a
major facility fully funded by the National Science
Foundation, as well as the Science and Technology
Facilities Council (STFC) of the United Kingdom, the
Max-Planck Society (MPS), and the State of
Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of the
GEO600 detector. Additional support for Advanced LIGO
was provided by the Australian Research Council. Virgo is
funded, through the European Gravitational Observatory
(EGO), by the French Centre National de Recherche
Scientifique (CNRS), the Italian Istituto Nazionale di
Fisica Nucleare (INFN) and the Dutch Nikhef, with
contributions by institutions from Belgium, Germany,
Greece, Hungary, Ireland, Japan, Monaco, Poland,
Portugal, Spain. K. A. G. R. A. is supported by Ministry
of Education, Culture, Sports, Science and Technology
(MEXT), Japan Society for the Promotion of Science
(JSPS) in Japan; National Research Foundation (NRF)
and Ministry of Science and ICT (MSIT) in Korea;
Academia Sinica (AS) and National Science and
Technology Council (NSTC) in Taiwan.

APPENDIX A: LIKELIHOOD FUNCTION
DERIVATION

To calculate the posterior from Bayes’ theorem [Eq. (1)],
one requires a model for both the signal h and the noise n.
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While h can be determined from the linearized EFE wave
solution, n requires more statistical considerations.
To start, consider a network of K gravitational wave

detectors that each sample at a rate Δt over a total time
length T. Defining the total number of samples N ¼ T=Δt,
the full data series snet can be expressed as a series of K N-
dimensional vectors sK such that sK ¼ fsK0 ; sK1 ;…; sKNg and
snet ¼ fs1; s2;…; sKg. To simplify calculations, assume that
the signal is zero such that snet ¼ n. Additionally, assume
that noise model is a stochastic Gaussian distribution and is
uncorrelated between detectors. Under these assumptions,
the noise likelihood function is

pðsnetjnÞ ¼
exp

�
− 1

2

P
K
d¼1 s

T
dΣ−1

d sd
��ð2πÞNK

Q
K
d¼1 detΣd

�
1=2 ; ðA1Þ

where Σd is the covariance matrix of the noise model for
detector d, defined using the ensemble average,

Σd½j; k� ¼ hsd½j�sd½k�i: ðA2Þ

(By dropping the d subscripts, one obtains an equivalent
expression for the full covariance matrix and data. We
do so in the following steps for brevity.) This is the exact
expression of the likelihood function for noise. However,
this function is infeasible to calculate analytically due to the
inverse covariance matrix in the numerator.
To do this, one may expand the covariance matrix

definition in Eq. (A2) as follows, defining Δkj ¼ k − j:

Σ½j; k� ¼ hs½j�s½k�i
¼ hs½j�s½Δkj þ j�i

¼ lim
n→∞

1

n

Xn−1
l¼0

sl½j�sl½Δkj þ j�; ðA3Þ

where in the last step the ensemble average is written
out fully.
In general, this expression is dependent on time tj ¼ jΔt

and displacement τkj ¼ ΔkjΔt. However, one can make the
assumption that the noise is wide sense stationary, where
the mean and variance are both constant in time. Under this
assumption, any constant can be added to the indices in
Eq. (A2) to obtain the same result. This makes Σ symmetric
[since the factors in Eq. (A3) commute] and Toeplitz
(since the elements along the diagonals are equal) [34].
Additionally, since Σ½0;Δkj� ¼ Σ½−Δkj; 0� ¼ Σ½0;−Δkj�,
the elements of Σ are even functions of Δkj.
Additionally, one can assume that the data is ergodic,

meaning that new realizations of s are obtained via time.
Under this assumption and the properties of the elements
of Σ, the ensemble averages in Eq. (A3) can be replaced
with time averages,

Σ½j; k� ¼ lim
n→∞

1

n

Xn−1
l¼0

sl½0�sl½Δkj�

¼ lim
n→∞

1

n

Xn−1
l¼0

sl½l�sl½Δkj þ l�

¼ lim
n→∞

1

2n

Xn−1
l¼−n

sl½l�sl½Δkj þ l�

¼ 1

2
Rssððk − jÞΔtÞ: ðA4Þ

The last step defines the autocorrelation function RssðτÞ,
which describes the correlation between points in the time
series s. If RssðτÞ goes to zero in some finite time τmax,
then all diagonals with jΔkjj > floorðτmax=ΔtÞ ¼ Δmax will
equal zero. This is similar to the form of a circulant matrix
C, a special case of a Toeplitz matrix where each row is a
right-cycle permutation of the same vector (in this case, s).
The eigenvectors of circulant matrices are well-known [34],

up½k� ¼
1ffiffiffiffi
N

p exp ð−2πikp=NÞ: ðA5Þ

This generally is not true for Toeplitz matrices, but one may
take advantage of Eq. (A5) by recognizing that the matrix
described by Eq. (A4) asymptotes to a circulant matrix for
large N,

lim
N→∞

jΣ − Cj ¼ 0: ðA6Þ

Therefore, the eigenvalues λp of Σ can be evaluated using
the usual eigenvalue equation as long as Δmax ≪ N=2,

Σup ≈ λpup: ðA7Þ
Therefore, using the fact that Σ is symmetric and RssðlÞ

is even,

λp ¼ 1

2
Re

( XN=2

l¼−N=2

RssðlÞ expð−2πipl=NÞ
)

¼ 1

2
Re

(XN−1

l¼0

RssðlÞ expð−2πipl=NÞ
)

¼ 1

2
Re

�
R̃ssðpÞ=Δt

�
; ðA8Þ

where R̃ssðpÞ is the discrete Fourier transform of the
autocorrelation function,

R̃ssðpÞ ¼ Δt
XN−1

k¼0

RssðkÞ expð−2πipk=NÞ: ðA9Þ

To simplify Eq. (A8), one may impose the Wiener-
Khinchin theorem [35], which defines the power spectral
density Sn as the Fourier transform of Rss for a wide-sense
stationary stochastic process,
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λp ¼ Sn½p�
2Δt

: ðA10Þ

One can then construct the inverse of Σ using the eigen-
values from Eq. (A10) and the eigenvectors of Eq. (A5),

Σ−1½j; k� ¼ 2Δt
N

XN−1

p¼0

exp½−2πipðj − kÞ=N�
SnðpÞ

¼ 2ΔfðΔtÞ2
XN=2−1

p¼0

e−2πipðj−kÞ=N þ e2πipðj−kÞ=N

SnðpÞ
;

ðA11Þ
using the fact that Sn is symmetric about N=2 and defining
the sample frequency Δf ¼ 1=T ¼ 1=NΔt. Since s is
real and

ðΔtÞ2
XN−1

j;k¼0

s½j�s½k�	e−2πipðj−kÞ=N þ e2πipðj−kÞ=N

 ¼ 2js̃j2½p�;

ðA12Þ
one can write

sTΣ−1s ¼ 4Δf
XN=2−1

p¼0

2js̃j2½p�
SnðpÞ

: ðA13Þ

Finally, if the inner product between two arbitrary
vectors a and b is defined as

ha; bi ¼ 4Re

(
Δf

XN=2−1

p¼0

ã½p�b̃½p�
SnðpÞ

)
; ðA14Þ

Eq. (A13) can be written as an inner product,

sTΣ−1s ¼ hs; si; ðA15Þ
and the likelihood function can be expressed as

pðsnetjnÞ ¼
exp ½− 1

2

P
K
d¼1hsd; sdi�

½ð2πÞNK
Q

K
d¼1 detΣd�1=2

: ðA16Þ

APPENDIX B: GATING AND IN-PAINTING

Generally, BBH models do not require the entire wave-
form to be analyzed at once. For example, the analyses
throughout this paper independently examine the pre and
postmerger portions of the GW150914 waveform. To
maintain independence between the models, any points not
corresponding to the respective model (i.e., after tc for the
premerger model, or before tc for the postmerger model)
were excised, or “gated,” from the data. Here, a gate of
length M applied starting at a sample a will excise all
samples within the range ½a; aþM�, corresponding to a gate

of time length t ¼ MΔt. The gated time series will therefore
take the form sd;tr ¼ fs0; s1;…sa; saþM;…sN−1; sNg.
By doing this, the simplifications made to derive the

likelihood function are no longer valid, since Σd;tr is no
longer Toeplitz (and, subsequently, no longer approxi-
mately circulant for large N). There are numerical methods
to calculate the matrix inverse directly, but in general they
can be unstable and time intensive. Therefore, a method
known as “gating and in-painting” is employed for gated
waveform analyses [12].
First, the method assumes that the noise time series n is

the sum of ng, the noise series with the gated times zeroed
out, and x, a time series containing only the gated samples
in n. The goal of in-painting is to solve the following
equation in the gated region,

Σ−1ðng þ xÞ ¼ 0: ðB1Þ

If the nonzero elements of x are such that ðΣ−1nÞ½k� ¼ 0
for all samples k in the gate ½a; aþM�, then the inner
product nTΣn will be equal for the truncated and raw
dataset. Since x is zero outside of the gate, Σ−1x will form
an M ×M Toeplitz matrix containing the ½a; aþM� rows
and columns of Σ−1. Therefore, Eq. (B1) can be rewritten
within the gated region as

Σ−1x ¼ −Σ−1ng; ðB2Þ

and adding x to ng will give the same result as truncating n
and Σ. Unlike trying to solve for the inverse directly, this
solution is readily found using a Toeplitz solver [18,36].
Given gated data sg containing some gated signal hg,
Eq. (B2) can be evaluated using ng ¼ sg − hg, and the
value xþ sg − hg can be used to calculate the likelihood.
The analyses conducted in this paper utilize gating and

in-painting to apply a gate starting/ending at tc to the
waveform template. In theory, the gates should extend to
the edges of the analysis segment (i.e., the premerger gate
starts at the segment start time, and the postmerger gate
ends at segment end). However, the in-painting algorithm,
which is the dominant cost in our analysis, is ∼OðM2Þ
operations for a gate of M samples. Although the observ-
able signal is only ∼0.2 s long [13], we use an analysis
segment that is 4 s in duration in order to resolve line
artifacts in the PSD. We also use a sample rate of 2048 Hz,
in order to fully capture all observable signal power. The in-
painting would therefore need to spanM ∼ 4096 samples if
the gates were to extend to the beginning/end of the
analysis segment. This is computationally expensive; some
of our analyses would take ∼1month to complete (utilizing
64 CPU cores).
To reduce the computational cost, we instead use a

1-second gate starting (ending) at tc and ensuring that the
remainder of the premerger (postmerger) template h after
(before) the gate is zero. This is equivalent to applying a full
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gate to the template when a whitening filter is applied, since
the early- and late-time template will be identically zero in
both cases.
We do not zero the data s outside of the gates, however,

since doing so would introduce additional ringing arti-
facts at the beginning/end of the analysis segment not
accounted for by the in-painting. This means that the pre
and postmerger models will share data outside of the
gates (namely, greater than 1 second before and after tc).
However, the data is expected to be noise dominated in this
region, yielding an insignificant contribution to the like-
lihood. This can be seen in Appendix C, which portrays the
remnant posteriors for analyses using zero-noise waveform
injections. Since the data in these analyses contain no noise,
the shared data has identically zero contribution to the
likelihood. These results are in strong agreement with
Figs. 4, 5, and 6, indicating that any effects due to early-
and late-time shared noise are indeed negligible.

APPENDIX C: SIMULATION RESULTS

This section contains additional plots showing results
from the analysis of the GW150914-like simulated signal
in zero noise. Figure 7 shows the Mf and χf posteriors for
the QNM postmerger models, and Fig. 8 shows the same
for the IMR postmerger models. Figure 9 shows the H
posteriors for the zero-noise injection models.

FIG. 7. Final mass and final spin posteriors of GW150914
analyses using a QNM postmerger approximant and a zero-noise
waveform injection. All masses are in the detector frame. Contours
represent the 90th percentile of each distribution. The darker
colored lines correspond to the model with variable sky location
and tc, and the lighter lines represent the model where these
parameters were fixed. Blue lines correspond to postmerger results,
while red lines correspond to premerger results, obtained using
numerical relativity with the IMR parameters. The innermost black
contour represents the 4-OGC posterior from [19].

FIG. 8. Final mass and final spin posteriors of GW150914
analyses using an IMR postmerger approximant and a zero-noise
waveform injection. All masses are in the detector frame. Contours
represent the 90th percentile of each distribution. The darker
colored lines correspond to the model with variable sky location
and tc, and the lighter lines represent the model where these
parameters were fixed. Blue lines correspond to postmerger results,
while red lines correspond to premerger results, obtained using
numerical relativity with the IMR parameters. The innermost black
contour represents the 4-OGC posterior from [19].

FIG. 9. Posteriors of H ¼ ðAf;measured − AiÞ=ðAf;expected − AiÞ
for the GW150914 analyses with zero-noise injected waveform
data. Blue histograms correspond to QNM postmerger models,
while red lines correspond to IMR postmerger models. Darker
histograms correspond to models with variable sky=tc parame-
ters, while lighter histograms correspond to models where these
parameters are fixed to the maximum likelihood values from [19].
The expected value H ¼ 1 is shown with a vertical black dotted
line. Points in the shaded region correspond to H < 0 and
therefore disagree with the area theorem.
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APPENDIX D: SAMPLER CONVERGENCE

To test the convergence of the sampler we repeated the
analyses with 2000 and 4000 live points. Figure 10 shows
the Mf and χf posteriors for QNM postmerger models
on real data with 2000 and 4000 live points, while

Fig. 11 depicts the same for the IMR postmerger models.
Both the QNM and IMR models were able to converge
to similar distributions regardless of the number of live
points used. All sky=tc results are reported using 4000 live
points.
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