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The aether scalar-tensor (AeST) theory is an extension of general relativity, proposed for addressing
galactic and cosmological observations without dark matter. By casting the AeST theory into a 3þ 1 form,
we determine its full nonperturbative Hamiltonian formulation and analyze the resulting constraints. We
find the presence of four first class and four second class constraints and show that the theory has six
physical degrees of freedom at the fully nonlinear level. Our results set the basis for determining the
propagation of perturbations on general backgrounds and we present the case of small perturbations around
Minkowski spacetime as an example stemming from our analysis.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been
extraordinarily successful and remains the paradigmatic
theory of gravity. Data from a wide range of astrophysical
systems, from precision tests of gravity in the solar
system [1] to recent measurements of gravitational waves [2]
are in accord with its predictions. It is expected that
corrections to GR will become important at extremely high
energy scales/short length scales (for instance in the early
universe [3]), however, a question mark hangs over whether
additional structure in the gravitational sector may play a
prominent role on cosmological and certain astrophysical
scales.
Extending GR with additional structure relevant in the

low gradient/curvature regime—the conditions on galactic
and cosmological scales—is an intriguing possibility con-
sidering that, otherwise, immense observational evidence
points to additional nonbaryonic matter driving the gravi-
tational dynamics in those regimes: dark matter. A notable
early example are the observations that rotation curves of
spiral galaxies are asymptotically flat [4,5], captured more
recently by the radial acceleration relation (RAR) [6,7].
Assuming GR, this is only possible if galaxies are
immersed within dark matter halos. Dark matter halos
are seen to be even more prominent concerning dwarf and
ultrafaint dwarf galaxies [8]. On larger scales, dark matter is

necessary in explaining observations of galaxy clusters [9],
weak lensing tomography [10], cluster lensing [11] and
galaxy-galaxy [12] strong lensing. Notable are the cases of
merging galaxy clusters, indicating an offset of the bar-
yonic mass seen through x rays, and the dynamical mass
seen through lensing [13]. Finally, at the largest scales, the
observed clustering of galaxies and voids, e.g., [14,15], and
the cosmic microwave background [16] indicate five times
more dark matter than baryonic matter. The Λ cold dark
matter (ΛCDM), where dark matter is modeled as a
distribution of collisionless particles with cold initial
conditions, is the simplest model which fits the totality
of the data (although a few tensions with ΛCDM have
emerged in the recent years, e.g., [17–20]).
Despite there being many proposed candidates for what

dark matter may be, see [21–24] for reviews, and several
experiments searching for particle dark matter either
through nuclear recoil, see [25,26] or astrophysical pro-
duction mechanisms [16,27], the actual particle is currently
undetected. Thus, there remains the possibility that what is
being observed may not be the effect of the presence of dark
matter, but that of additional gravitational degrees of free-
dom leading to a change of theway known matter affects the
gravitational field. For this to manifest, an extension of GR
must be at play.
Modified Newtonian Dynamics (MOND) is a nonrela-

tivistic framework proposed by Milgrom [28], as a way of
addressing galactic observations without dark matter. In one
formulation, Newton’s second law of motion is changed
below an acceleration scale a0 ∼ 1.2 × 10−10 m=s2 while
nonrelativistic gravity is governed by Poisson’s equation.
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In another formulation, Newton’s second law is kept but the
gravitational equation determining the nonrelativistic poten-
tial Φ from the matter density is generalized and departs
from Poisson’s equation at low potential gradients deter-
mined by a0. Several instances of the second formulation
exist, starting from a single potential formulation of
Bekenstein and Milgrom [29], to other later formulations
involving additional potentials [30,31]. The RAR [6,7] and
the (baryonic) Tully-Fisher relation [32,33] comfortably
emerge within the MOND paradigm, lending additional
support for investigating this possibility further.
The MOND proposal leads to a wide variety of predic-

tions that can be compared against astrophysical data [34,35]
though has the inherent restriction that in the absence of a
relativistic completion, it has not been clear what the realm
of validity of MOND is. This has prompted the construction
of a variety of extensions of GR [29,36–55], which lead to
MOND behavior at the quasistatic weak-field limit.1

However, none of these extensions have been shown to
fit the observations of the Cosmic Microwave Background
radiation as most recently reported by the Planck Surveyor
satellite [16,66]. Moreover—although exceptions may be
found—they usually do not lead to a gravitational wave
tensor mode speed equaling the speed of light as required
by data [2,67].
Starting from a general class of theories based on a

metric, a unit-timelike vector field and a scalar field [68],
the aether scalar-tensor (AeST) theory [69] was con-
structed to have a massless spin-2 graviton which prop-
agates at the speed of light while tending to MOND in the
weak-field quasistatic regime relevant to galaxies. The
property of the vector field to be unit-timelike is important
for employing the Sanders mechanism [37] to lead to
correct gravitational lensing for isolated masses in the
absence of dark matter [69]. It was further required to have
a Friedman-Lemaitre-Robertson-Walker (FLRW) behavior
extremely close to that of the ΛCDM model by having
features akin to shift-symmetric k-essence [70] and ghost
condensate theory [71,72]. The closeness to ΛCDM

persists also when linear fluctuations around FLRW are
included, which enable the theory to provide a similarly
goodmatch to precision cosmological data (for example, the
linear matter power spectrum and CMB temperature and
polarization anisotropy power spectra) to theΛCDMmodel.
It was further shown that linear fluctuations on Minkowski
spacetime propagate two massless tensor modes, two
massive vector modes, and one massive scalar mode, all
of which are healthy provided certain constraints on the
theory parameters are satisfied [73]. A sixth mode was
shown to have a linear t dependence and to have positive
Hamiltonian for momenta larger than a mass scale, which
observationally is ≲10−30 eV and negative otherwise. This
behavior is akin to a Jeans instability and does not cause
quantum vacuum instability at low momenta [74]. Further
studies of the AeST theory have been performed in [75–82].
We also note that the new Khronon proposal of [83] shares
several features of AeST theory and can also fit the large-
scale cosmology, however, it is simpler in that it does not
contain a vector field.
Despite these promising features of the theory, it is crucial

that it can match the success of GR in all cases where it has
been tested, while fitting observations in the regimes where
a successful account of the data in the context of GR and
known matter requires the addition of dark matter. This will
require finding solutions to the theory in systems that might
not be describable by linear perturbations propagating on
highly symmetric backgrounds. Towards these ends, an
important first step will be to cast the equations as first-order
evolution equations in time—this will enable both analytical
and numerical solutions for more complicated situations to
be more easily found.
In this paper we develop the canonical/Hamiltonian

formulation of the theory, following the Dirac-Bergman
formulation [84–89] which was developed in the case of
GR.2 This allows us to put the theory’s equations of motion
in the form of Hamilton’s first-order equations of motion.
The completion of the canonical analysis also enables
clarification of other issues, such as, the number of degrees
of freedom that the theory possesses and whether the theory
is an example of an irregular system, that is, a theory where
the canonical structure varies throughout phase space. A
manifestation of the latter can be that perturbations around
some backgrounds describe different number of degrees
of freedom than perturbations around other backgrounds,
see [96,98] for examples.

1Extended dark matter models have also been proposed for
accommodating some of the MOND phenomenology, and
which have ΛCDM behavior on a FLRW Universe plus linear
fluctuations. We enumerate some of these here. The dipolar dark
matter model [56,57] leads to MOND behavior in galaxies,
while predicting novel behavior such as time-varying non-
Gaussianities [58], but has been shown to have an instability
which may lead to the evaporation of galaxies [59]. In [60,61]
dark matter has a superfluid phase whose excitations (phonons)
lead to MOND in galaxies while retaining ΛCDM behavior
cosmologically. The self-interacting dark matter model [62,63]
has been shown to accommodate the RAR and predicts cored
halo profiles in contrast with pure cold dark matter (CDM)
haloes which in ΛCDM have cuspy profiles [64]. Another class
of models are based on a dark matter-baryon interaction [65],
also retaining ΛCDM behavior on the largest scales while
recovering the RAR and other MOND phenomenology in
galaxies.

2The Hamiltonian formulation of other theories beyond GR
has been studied elsewhere, such as, D ¼ 10 supergravity [90],
the Plebanski theory [91], fðRÞ theories [92], the Tensor-Vector-
Scalar (TeVeS) theory [93], the Degenerate Higher-Order
Scalar-Tensor theories (DHOST) which include Horndeski
and beyond-Horndeski theories [94,95], and the minimal vary-
ing Λ theories [96]. The Hamiltonian formulation has also been
used to study the Bondi-Metzner-Sachs group at spatial infinity
in the case of GR [97].
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The outline of the paper is as follows: In Sec. II we
introduce the theory; in Sec. III we introduce the Arnowitt-
Deser-Misner (ADM) [99] formalism and apply it to the
AeST theory and its associated decomposition of fields;
in Sec. IV we cast the theory in Hamiltonian form and
perform a full constraint analysis in Sec. V; in Sec. VI we
restrict the full nonperturbative Hamiltonian to the case
of small perturbations around a Minkowski spacetime
solution and in doing so demonstrate the recovery of the
results previously found in [73]. Finally, in Sec. VII we
present our conclusions.

II. THE THEORY

The theory depends on a metric gμν universally coupled
to matter so that the Einstein equivalence principle is
obeyed, a scalar field ϕ and a unit-timelike vector field
Âμ,3 where the unit-timelike condition is enforced by a
Lagrange multiplier λ. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16πG̃

�
R − 2Λ −

KB

2
F̂μνF̂μν

þ ð2 − KBÞð2Jμ∇μϕ − YÞ

− F ðY;QÞ − λðÂμÂμ þ 1Þ
�
þ Sm½g�; ð1Þ

where g is the metric determinant, ∇μ the covariant
derivative compatible with gμν, R is the Ricci scalar, Λ
is the cosmological constant, G̃ is the bare gravitational
strength, KB is a constant, and λ is a Lagrange multiplier
imposing the unit-timelike constraint on Aμ. We adopt the
ð−;þ;þ;þÞ metric signature convention and—unless
otherwise specified—we employ the Einstein summation
convention. In addition, we have defined the tensors Jμ ¼
Âν∇νÂ

μ and F̂μν ¼ 2∇½μÂν� while the matter action Sm is

assumed not to depend explicitly on ϕ or Âμ. Defining

q̂μν ≡ gμν þ ÂμÂν; ð2Þ

the function F ðY;QÞ depends on the scalars

Q≡ Âμ∇μϕ ð3Þ

and

Y ≡ q̂μν∇μϕ∇νϕ: ð4Þ

The function F is subject to conditions so that the
cosmology of the theory is compatible with ΛCDM on
FRLW spacetimes and a MOND limit emerges in quasi-
static situations [69]. The choice of the action (1) is largely
informed by the phenomenological requirements discussed
in Sec. I, starting from a more general action (19) of [68]
which depends on eight free functions di. As discussed
in [68], setting d1 þ d3 ¼ 0 is sufficient to ensure a tensor
mode propagating at the speed of light on any background.
Several other constraints among the dis ensure MOND
behavior on a quasistatic background as in TeVeS theory
and FLRW cosmology with the AeST fields behaving
as dust.
On a flat FLRW background the metric takes the form

ds2 ¼ −dt2 þ a2γijdxidxj where aðtÞ is the scale factor
and γij is a flat spatial metric. The vector field reduces to

Âμ ¼ ð1; 0; 0; 0Þ while ϕ → ϕ̄ðtÞ leading to Q → Q̄ ¼ ˙̄ϕ
and Y → 0, so that we may define KðQ̄Þ≡ − 1

2
F ð0; Q̄Þ.

We require that KðQ̄Þ has a minimum atQ0 (a constant) so
that we may expand it as K ¼ K2ðQ̄ −Q0Þ2 þ � � �, where
the ð…Þ denote higher terms in this Taylor expansion. This
condition leads to ϕ̄ contributing energy density scaling as
dust ∼a−3 akin to [70,71], plus small corrections which
tend to zero when a → ∞. In principle, K could be offset
from zero at the minimum Q0, i.e., KðQ0Þ ¼ K0, however,
such an offset can always be absorbed into the cosmologi-
cal constant Λ and thus we choose K0 ¼ 0 by convention,
implying the same on the parent function F .
In the quasistatic weak-field limit we may set the scalar

time derivative to be at the minimum Q0, as is expected
to be the case in the late universe. This means that we
may expand ϕ ¼ Q0tþ φ. Moreover, in this limit
F → ð2 − KBÞJ ðYÞ, with J defined appropriately as
J ðYÞ≡ 1

2−KB
F ðY;Q0Þ. It turns out that MOND behavior

emerges if J → 2λs
3ð1þλsÞa0 jYj3=2 where a0 is Milgrom’s

constant and λs is a constant which is related to the
Newtonian/GR limit. Specifically, there are two ways
that GR can be restored: (i) screening and (ii) tracking.

In the former, the scalar is screened at large gradients ∇!iφ,

where ∇!i is the spatial gradient on a flat background space
with metric γij, and in the latter, λsφ becomes proportional
to the Newtonian potential, leading to an effective
Newtonian constant

GN ¼
1þ 1

λs

1 − KB
2

G̃: ð5Þ

Screening may be achieved either through terms in J ∼ Yp

with p > 3=2 or through Galileon-type terms which must
be added to (1). Either way, for our purposes in this article,
we may model screening as λs → ∞.
We conclude this section by comparing the AeST model

to other extensions of GR. It is straightforward to extend GR

3We depart from previous expositions of this theory [69,73]
and denote the four-dimensional vector field by Âμ. We reserve
the symbol Aμ (without the “hat”) for the projected vector field on
the three-dimensional hypersurface introduced in Sec. III, see
Eq. (10), as this will feature more prominently than Âμ in the
present work.

AETHER SCALAR-TENSOR THEORY: HAMILTONIAN … PHYS. REV. D 110, 044015 (2024)

044015-3



with the addition of a scalar field and several scalar-tensor
theories have been proposed to play a role of Dark Energy
(DE). While several models exist, they generally fall under
the general Degenerate Higher-Order Scalar-Tensor theories
(DHOST) [95], which include Horndeski [100,101] and
beyond-Horndeski theories [102]. These are not Effective
Field Theories (EFTs) in the strict sense but are covariant
theories leading to at most second order field equations. The
Effective Field Theory of DE (EFTofDE) (see [103] for a
review) is constructed on a general FLRW background plus
linearized perturbations by including all possible terms at
that order that may arise from the metric perturbation, or a
scalar field (typically written in the unitary gauge). The
majority of the terms which are part of DHOST, or
EFTofDE, do not overlap with the AeST action (1). The
only term that may overlap with DHOST is F ðY;QÞ þ
ð2 − KBÞY and only in the specific case where the vector
field can be ignored (e.g., FLRW cosmology). Nevertheless,
AeST could in principle be extended with additional terms
for ϕ coming from DHOSTand obeying the shift symmetry.
Extending GR with a vector field is another direction that

has been considered. In [104] GR was extended with a
massive vector field which generalizes the Proca action (yet
another generalization of Proca theory was studied more
recently in [105] whilst novel couplings between a Proca
field and dark matter were considered in detail in [106]).
In [107], a Scalar-Vector-Tensor (SVT) theory was pro-
posed which blends together Horndeski and generalized
Proca theories; see [108] which reviews DHOST and its
subsets, generalized Proca, SVT, and other theories. In all
those theories, the vector field is not necessarily unit-
timelike as required by AeST and so there is almost no
obvious overlap with AeST (apart from the case described
above, related to DHOST). We note, however, that the SVT
with broken gauge-invariance has six propagating degrees
of freedom which is the same as in AeST theory, as we show
below. Thus it would be interesting to further probe a
possible connection between the two, although there is no
guarantee that there is a concrete connection.
Theories which are mostly related to AeST are those of

ghost condensate [71,72] and gauge ghost condensate [109],
also called the bumblebee model in [110,111]. The vector
field in [109–111] is also not unit-timelike, however, it has a
symmetry-breaking potential which spontaneously breaks
time-diffeomorphisms at its minimum. Indeed, it can be
shown [109] that in the decoupling limit the gauge con-
densate theory becomes the Einstein-aether theory [112],
discovered earlier by Dirac [113], which lends to AeST the
FμνFμν þ λðAμAμ þ 1Þ term.
Rather than extending GR, several models have been

proposed for studying possible extensions of cold dark
matter (CDM) by using a parametrized approach to
encompass as large a landscape of models as possible
rather than specifically referring to particular theories. The
effective theory of structure formation (ETHOS) [114] is a

model that encompasses general interactions of dark matter
with a dark radiation component at the FLRWand linearized
cosmological regime, plus dark matter self-interactions in
the nonlinear regime. Similarly to ETHOS, the Generalized
Dark Matter (GDM) model [115–117] extends CDM in the
linearized regime by letting dark matter have a general time-
dependent equation of state, sound, speed, and viscosity.4

There is no unique nonlinear completion to GDM and
specific theories with GDM limit include ultralight axions
and the Khronon theory [83] (which is a GR rather than a
CDM extension). Neither ETHOS nor GDM is an EFT
theory in the usual sense. The Effective Field Theory of
Large Scale Structures is, however, a rigorous classical EFT
in the usual sense [118–120], particularly suited for para-
metrizing the mildly nonlinear regime of CDM, and can
be extended to include other theories beyond CDM, see,
e.g., [121,122]. Neither MOND nor AeST is captured by the
above formalisms (however, the Khronon theory [83] does
fall under GDM cosmologically).

III. 3 + 1 FORMALISM

A. ADM decomposition

1. Decomposition of the metric and its derivatives

As a necessary first step towards constructing the
Hamiltonian formalism for the theory, we must make a
distinction between space and time. Specifically, we follow
the ADM [99] formalism and assume that for the region of
spacetime of interest, there exists a global time coordinate
tðxμÞ. Given this, we may define a “flow of time” vector
field tμ which satisfies tμ∇μt ¼ 1. We use the notation ḟ ≡
∂tf for some field f. Furthermore, we may define a vector
field nμ, which is normal, to surfaces of constant t; as such,
this field is timelike and may be defined so that it has unit-
norm, i.e., gμνnμnν ¼ −1. We may expand this time field
as tμ ¼ Nnμ þ Nμ, where we have introduced the lapse
function N and shift vector Nμ, which are given respec-
tively by N ¼ −tμnμ and Nμ ¼ qμνtν. We coordinatize
surfaces of constant t by spatial coordinates xi, where i,
j, k will be used throughout to denote spatial coordinate
indices. The full spacetime metric may be decomposed as

gμν ¼ −nμnν þ qμν; ð6Þ

where qμν is the metric on the spatial hypersurface (and
therefore, for example, qμνnμ ¼ 0). Note the difference
between q̂μν defined in (2) and qμν defined in (6).
It is useful to define a spatial derivative b∂μ ¼ qμν∂ν

and covariant derivative Dμ compatible with qμν, i.e.,
Dαqμν ¼ 0. Specifically:

4GDM has some overlap with the linearized regime of ETHOS
as the former can emerge by treating tightly coupled fluids as a
single fluid [116], amongst other possibilities.
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Dμqαβ ¼ b∂μqαβ − γνμαgνβ − γνμβgαν ¼ 0 ð7Þ

where γμαβ are Levi-Civita symbols associated with the

metric qμν and derivative b∂μ. Given qμν and nμ, a further
useful quantity is extrinsic curvature tensor Kμν, defined as

Kμν ≡ 1

2
Lnqμν ¼ qμα∇αnν: ð8Þ

In component form, we need

Kij ¼
1

2N
ðq̇ij −DiNj −DjNiÞ ð9Þ

while the components of the metric, nμ, and the Christoffel
connection are displayed in Appendix A.
We will adhere to the convention that spatial indices are

always lowered and raised with the spatial metric qij,
i.e., Ki

j ¼ qikKkj.

2. Decomposition of the vector field

For the vector field Âμ we consider a similar decom-
position,

Âμ ¼ χnμ þ Aμ; ð10Þ

where Aμ ≡ qμνÂν and

χ ¼ −nμÂμ: ð11Þ

In component form we find

Â0 ¼ −Nχ þ NiAi; Âi ¼ Ai; ð12Þ

Â0 ¼ χ

N
; Âi ¼ Ai −

χ

N
Ni; ð13Þ

leading to NiAi ¼ A0, while

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jA⃗j2

q
ð14Þ

where jA⃗j2 ≡ AiAi ¼ qijAiAj, and have taken the positive
sign of the square root by convention.

B. The 3 + 1 action

We now present the necessary steps in writing the
action (1) in 3þ 1 form. One of the steps involves solving
for ϕ̇ in terms of the canonical momenta δS=δϕ̇ and this
will involve having to invert potentially very complicated

combinations of functions ∂F=∂Y and ∂F=∂Q. Instead we
can move this structure elsewhere in the theory by
introducing auxiliary fields μ and ν such that we set

F ðY;QÞ ¼ −νQ2 þ μY þ Uðν; μÞ: ð15Þ

For the scalar field ϕ, we then find the scalars Q and Y as

Q ¼ χσ þ AiDiϕ ð16Þ

Y ¼ jA⃗j2σ2 þ 2χσAiDiϕþ ðqij þ AiAjÞDiϕDjϕ ð17Þ

where we have defined

σ ¼ 1

N
ðϕ̇ − NiDiϕÞ: ð18Þ

Consider now the vector-dependent terms in (1) involving
F̂μν and Jμ. These depend on the derivatives of Âμ which
are displayed in Appendix A. Using those relations and
letting

Fij ≡ 2D½iAj� ¼ F̂ij ð19Þ

and

Fi ≡ 1

N
F̂0i ¼

1

N
½Ȧi þDiðNχ − NjAjÞ�; ð20Þ

we define the “magnetic” aspect of Ai as

Bk ¼ 1

2
ϵkijFij; ð21Þ

with inverse Fij ¼ ϵijkBk, and the “electric” aspect of Ai as

Ei ¼ Fi þ
1

N
ϵijkNjBk: ð22Þ

With the above relations and again using (A21) and (A22)
we find

J0 ¼ 1

N
A⃗ · E⃗ ð23Þ

Ji ¼ χEi −
A⃗ · E⃗
N

Ni − ϵijkAjBk ð24Þ

so that the 3þ 1 form of (1) is
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S ¼
Z

d4x
N

ffiffiffi
q

p
16πG̃

fRþ jK2j − jKj2 − 2Λþ KBðjE⃗j2 − jB⃗j2Þ þ 2ð2 − KBÞσA⃗ · E⃗þ 2ð2 − KBÞðχE⃗ − A⃗ × B⃗Þ · D⃗ϕ

þ νðχσ þ A⃗ · D⃗ϕÞ2 − ð2 − KB þ μÞ½jA⃗j2σ2 þ 2χσA⃗ · D⃗ϕþ jD⃗ϕj2 þ ðA⃗ · D⃗ϕÞ2� − Uðν; μÞg þ Sm½g� ð25Þ

where R is the Ricci scalar corresponding to the spatial
metric qij, and S is a functional of ðqij; Ai;ϕ; μ; ν; N; NiÞ.

IV. HAMILTONIAN FORMULATION

Having cast the theory into a 3þ 1 form, we now
proceed to determine its Hamiltonian formulation, follow-
ing the standard Dirac-Bergman procedure [84–89] of
constraint Hamiltonian systems.
The first step in passing to the Hamiltonian formulation

is to determine the canonical momenta which are

Πij ≡ δS
δq̇ij

¼
ffiffiffi
q

p
16πG̃

ðKij − KqijÞ ð26Þ

Πi ≡ δS

δȦi
¼

ffiffiffi
q

p
8πG̃

½KBEi þ ð2 − KBÞðσAi þ χDiϕÞ� ð27Þ

Π≡ δS

δϕ̇
¼

ffiffiffi
q

p
8πG̃

½ð2 − KBÞA⃗ · E⃗þ νσ

− ð2 − KB þ μ − νÞA⃗ · ðσA⃗þ χD⃗ϕÞ�: ð28Þ

Letting Π̂≡ Πijqij the inverse relations are

Kij ¼ 16πG̃ffiffiffi
q

p
�
Πij −

1

2
Π̂qij

�
ð29Þ

Ξσ ¼ 8πG̃ffiffiffi
q

p
�
Π −

2 − KB

KB
A⃗ · Π⃗

�
þ
�
2
2 − KB

KB
þ μ − ν

�
χA⃗ · D⃗ϕ ð30Þ

KBEi ¼ 8πG̃ffiffiffi
q

p Πi − ð2 − KBÞðσAi þ χDiϕÞ; ð31Þ

where

Ξ ¼ χ2ν −
�
2
2 − KB

KB
þ μ

�
jA⃗j2 ð32Þ

while the canonical momenta for μ and ν are identically
zero:

ΠðμÞ ≡ δS
δμ̇

≈ 0; ð33Þ

ΠðνÞ ≡ δS
δν̇

≈ 0: ð34Þ

Using (29)–(31) to remove Kij, Ei, and σ from (25) leads
to the Hamiltonian form of the action,

S ¼
Z

d4xfΠijq̇ij þ ΠiȦi þ Πϕ̇þ ΠðμÞμ̇þ ΠðνÞν̇

− NH − NiHi − λðμÞΠðμÞ − λðνÞΠðνÞg; ð35Þ

where we have added Lagrange multipliers λðμÞ and λðνÞ,
imposing the constraints (33) and (34), and where

Hi ¼ −2DjΠ
j
i þ ΠDiϕ − D⃗ · Π⃗Ai − ϵijkΠjBk

þ ΠðμÞDiμþ ΠðνÞDiν ð36Þ

is the diffeomorphism constraint and

H ¼ 8πG̃ffiffiffi
q

p
�
2ΠijΠij − Π̂2 þ 1

2KB
jΠ⃗j2 þ C2

1

2Ξ

�
þ χ

�
C1C2

Ξ
A⃗ · D⃗ϕþ D⃗ · Π⃗ −

2 − KB

KB
Π⃗ · D⃗ϕ

�
þ

ffiffiffi
q

p
16πG̃

�
−Rþ 2Λþ KBjB⃗j2

þ
�
C2
2χ

2

Ξ
þ 2 − KB þ μ − ν

�
½A⃗ · D⃗ϕ�2 þ 2ð2 − KBÞA⃗ × B⃗ · D⃗ϕþ

�
2 − KB þ μþ ð2 − KBÞ2

KB
χ2
�
jD⃗ϕj2 þ U

�
ð37Þ

the Hamiltonian constraint. We have defined

C1 ≡ Π −
2 − KB

KB
A⃗ · Π⃗; ð38Þ
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C2 ≡ 2
2 − KB

KB
þ μ − ν: ð39Þ

Setting the additional fields and their canonical momenta
in (36) and (37) to zero, one recovers the equivalent
constraints in GR.5 Note that to arrive at the action (35)
we have defined the coefficients multiplying ðΠðμÞ;ΠðνÞÞ to
be ðλðμÞ þ NiDiμ; λðνÞ þ NiDiνÞ which we are free to do at
the beginning of the constraint analysis. This leads to the
second line in (36).
The combination

Hpri ¼ NHþ NiHi þ λðμÞΠðμÞ þ λðνÞΠðνÞ ð42Þ

is the primary Hamiltonian density and it is a sum of
constraints on the phase space which is coordinatized by
fqij;Πij; Ai;Πi;φ;Π; μ;ΠðμÞ; ν;ΠðνÞg. These constraints
are obtained by varying (35) with fN;Ni; λðμÞ; λðνÞg and
are given respectively by:

H ≈ 0 ð43aÞ

Hi ≈ 0 ð43bÞ

ΠðμÞ ≈ 0 ð43cÞ

ΠðνÞ ≈ 0; ð43dÞ

where ≈ denotes that an equation “weakly vanishes” which
means that the equation holds on the submanifold of phase
space defined by the constraints but need not hold in regions
of phase space not on the constraint submanifold [88]. This
can occur, for example, if a phase space function f is equal
to a combination of the constraints themselves.
The next step is to check whether these constraints are

preserved by the time evolution generated by Hpri.

V. THE PROPAGATION OF CONSTRAINTS

A. Poisson brackets

For a phase space coordinatized by fields QIðt; x⃗Þ and
PIðt; x⃗Þ (where here indices I; J;… label the different
fields), it is useful to introduce the Poisson bracket defined
for quantities AðQI; PJÞ, BðQI; PJÞ. If τk…l

i…jðxÞ is a general

tensor field andF ½τk…l
i…jðxÞ� a functional of τk…l

i…jðxÞ, then the
functional derivative of F ½τk…l

i…jðxÞ� with respect to τk…l
i…jðxÞ,

in three dimensions, is defined as

δF ½τk…l
i…jðx⃗Þ�

δτc…d
a…bðy⃗Þ

¼ lim
ϵ→0

1

ϵ

n
F ½τk…l

i…jðx⃗Þ

þ ϵδð3Þðy⃗ − x⃗ÞδkSfc…δldgδ
Sfa
i …δbgj �

− F ½τk…l
i…jðx⃗Þ�

o
ð44Þ

with δð3Þðy⃗ − x⃗Þ being the three-dimensional Dirac delta-
function and Sfab::cdg applies the symmetries of the
tensor field τk…l

i…jðxÞ (e.g. if τijkl ¼ τjikl, τijkl ¼ −τijlk then
Sfijklg ¼ ðijÞ½kl�). With this definition, the Poisson
bracket of AðQI; PJÞ and BðQI; PJÞ is defined as

fA;Bg≡X
I

Z
d3x

�
δA
δQI

δB
δPI

−
δA
δPI

δB
δQI

�
: ð45Þ

For time evolution according to any general Hamiltonian
H (corresponding to general Hamiltonian density H )

H ¼
Z

d3xH : ð46Þ

We have Hamilton’s equations for quantities fðQI; PIÞ on
phase space

ḟ ¼ ff;Hg: ð47Þ

In our case, we test the time evolution of the constraints
according to Hpri, that is, letting CI being any of the
constraints in the set fH;Hi;ΠðμÞ;ΠðνÞg, we require that
ĊI ≈ 0 with H → Hpri in (46) and (47).
It is generally more straightforward to evaluate the

Poisson bracket of smeared constraints, i.e., we define,
for some “test” function Nðx⃗Þ,

H½N�≡
Z

d3yNðy⃗ÞH½QIðy⃗Þ; PIðy⃗Þ�: ð48Þ

With the above definition, (42) is rewritten as

Hpri ¼ H½N� þHi½Ni� þ ΠðμÞ½λðμÞ� þ ΠðνÞ½λðνÞ�: ð49Þ

To proceed with the evaluation of Poisson brackets, it is
useful to have at hand the following two results: If H
depends algebraically on QI then δH½N�

δQIðx⃗Þ ¼ Nðx⃗Þ ∂H
∂QI

ðx⃗Þ.
Furthermore, given arbitrary tensor fields σi…j

k…l and τk…l
i…j

then

5That is,

HðGRÞ
i ¼ −2DjΠj

i; ð40Þ

and

HðGRÞ ¼ 8πG̃ffiffiffi
q

p ½2ΠijΠij − Π̂2� þ
ffiffiffi
q

p
16πG̃

ð−Rþ 2ΛÞ: ð41Þ
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δ

δτa1…ar
b1…bs

Z
d3yσd1…ds

c1…crLN⃗τ
c1…cr
d1…ds

¼ −LN⃗σ
d1…ds
c1…cr δ

c1
Sfa1…δcrargδ

Sfb1
d1

…δbsgds
; ð50Þ

where LN⃗ is the Lie derivative according to the vector

field N⃗.
To satisfy (47) there are ten Poisson brackets to be

evaluated among the smeared constraints CI. Out of these,
three are trivial, namely, fΠðμÞ;ΠðμÞg ¼ fΠðνÞ;ΠðνÞg ¼
fΠðμÞ;ΠðνÞg ¼ 0 vanish strongly. Let us now evaluate
the remaining seven.

B. Poisson brackets involving
a diffeomorphism constraint

Starting from (36) it can be shown that

H⃗½N⃗�¼b
Z

d3xðΠijLN⃗qij þ ΠLN⃗ϕþ ΠiLN⃗Ai

þ ΠðμÞLN⃗μþ ΠðνÞLN⃗νÞ ð51Þ

where¼b means equal to up to a boundary term. As in [123],
given a general smeared tensor density τk…l

i…j ½σi…j
k…l�, one

finds n
H⃗½N⃗�; τk…l

i…j ½σi…j
k…l�

o
¼ τk…l

i…j ½LN⃗σ
i…j
k…l�; ð52Þ

and choosing σ → Ni and τ → Hi we find the Poisson
bracket between two diffeomorphism constraints asn

H⃗½N⃗�; H⃗½N⃗0�
o
¼ H⃗½LN⃗N⃗

0�: ð53Þ

Similarly, choosing σ → N and τ → H we find the Poisson
bracket between the diffeomorphism and the Hamiltonian
constraint as n

H⃗½N⃗�;H½N�
o
¼ H½LN⃗N�: ð54Þ

These two Poisson brackets are identical to the ones for
GR, however, the phase space is now enlarged due to the
additional fields Ai, ϕ, μ, and ν.
Lastly, setting σ → λðAÞ and τ → ΠðAÞ (with A denot-

ing either μ or ν) trivially gives fH⃗½N⃗�;ΠðμÞ½λðμÞ�g ¼
ΠðμÞ½LN⃗λ

ðμÞ� and fH⃗½N⃗�;ΠðνÞ½λðνÞ�g ¼ ΠðνÞ½LN⃗λ
ðνÞ� which

vanish weakly.

C. Poisson brackets of two Hamiltonian constraints

Now consider the Poisson bracket of two Hamiltonian
constraints, that is fH½N�;H½N0�g. We let

δH½N�
δQI

¼ NAðQIÞ þAi
ðQIÞDiN

þ
ffiffiffi
q

p
16πG̃

δðQI;qijÞ½qijD⃗2N −DiDjN� ð55Þ

δH½N�
δPI

¼ NBðPIÞ þ Bi
ðPIÞDiN ð56Þ

where QI ¼ fqij; Ai;ϕg, PI ¼ fΠij;Πi;Πg, δðQI;qijÞ ¼ 1 if
QI → qij and zero otherwise, and the exact form of AðQIÞ,
Ai

ðQIÞ, BðPIÞ, and Bi
ðPIÞ is displayed in Appendix B.

Using Eq. (45) directly and making use of (55) and (56),
the cross terms proportional to NN0 vanish due to the
antisymmetry of the Poisson bracket. In addition, from
Appendix B we have that Ak

ðqijÞ ¼ Bi
ðΠjkÞ ¼ Bi

ðΠÞ ¼ 0 while

Ai
ðAjÞ ¼ −Aj

ðAiÞ and Bi
ðΠjÞ ¼ −χδij, so that after some

integrations by parts we find

fH½N�;H½N0�g ¼
Z

d3x

�
χ½DjA

j
ðAkÞ −AðAkÞ�

þ
ffiffiffi
q

p
16πG̃

½qijDkBðΠijÞ − qjkDiBðΠijÞ�
−Ak

ðAiÞ½Diχ þ BðΠiÞ�

− BðΠÞAk
ðϕÞ

�
ðNDkN0 − N0DkNÞ: ð57Þ

Finally, plugging in all the expressions from Appendix B
leads to

fH½N�;H½N0�g ¼
Z

d3x½−2DiΠik þΠD⃗kϕ−AkD⃗ · Π⃗

þΠiDkAi −ΠiDiAk�ðNDkN0 −N0DkNÞ;
ð58Þ

so that after integrations by parts we get

fH½N�;H½N0�g ≈Hi½NDiN0 − N0DiN�: ð59Þ

Once again, this Poisson bracket is identical to the ones for
GR albeit for an enlarged phase space. In this regard, a
comment is in order. When a theory with spacetime diffeo-
morphism symmetry is cast into Hamiltonian form, there
generally appear constraints corresponding respectively to
the generators of spatial diffeomorphisms and time repar-
ametrizations. These constraints will generally weakly obey
the algebra found above, known as the Dirac hypersurface
deformation algebra (or appropriate subalgebras following
partial spacetime gauge fixing) and it can be shown to hold
in other extensions of GR, such as, examples of Horndeski
and beyond-Horndeski theories [94,95].
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D. Secondary constraints

Now consider the Poisson bracket of H½N� with
ΠðμÞ½λðμÞ� and ΠðνÞ½λðνÞ� leading ton

H½N�;ΠðμÞ½λðμÞ�
o
¼
Z

d3xNλðμÞ
∂H
∂μ

ð60Þ

and n
H½N�;ΠðνÞ½λðνÞ�

o
¼
Z

d3xNλðνÞ
∂H
∂ν

; ð61Þ

respectively. Hence, for general N, λðμÞ, and λðνÞ, the
requirement that these Poisson brackets vanish weakly
implies the additional secondary constraints on phase
space,

SðμÞ ≡ ∂H
∂μ

¼
ffiffiffi
q

p
16πG̃

�
Y þ ∂U

∂μ

�
≈ 0 ð62Þ

and

SðνÞ ≡ ∂H
∂ν

¼
ffiffiffi
q

p
16πG̃

�
−Q2 þ ∂U

∂ν

�
≈ 0; ð63Þ

where we remember that Ξ ¼ Ξðμ; νÞ from (32).
Equations (62) and (63) correspond to the Euler-
Lagrange equations for the auxiliary fields μ and ν. In
other words, given a prescribed Uðμ; νÞ one can use (62)
and (63) to determine μðQ;YÞ and νðQ;YÞ, whereQ andY
are to be evaluated in phase space. Using (30) followed
by (17) and (16) to collect terms together, one finds that

Q ¼ 1

Ξ

��
2
2 − KB

KB
þ μ

�
A⃗ · D⃗ϕþ 8πG̃ffiffiffi

q
p χC1

�
ð64Þ

and

Y ¼ jD⃗ϕj2 þ ðA⃗ · D⃗ϕÞ2 þ jA⃗j2
Ξ2

�
8πG̃ffiffiffi

q
p C1 þ C2χA⃗ · D⃗ϕ

�
2

þ 2χ

Ξ

�
8πG̃ffiffiffi

q
p C1 þ C2χA⃗ · D⃗ϕ

�
A⃗ · D⃗ϕ; ð65Þ

respectively. This procedure then reconstructs F ðQ;YÞ
through (15) in terms of phase space variables with the help
of (64) and (65).
Having found the secondary constraints (62) and (63),

the analysis is not necessarily finished. We now define the
secondary Hamiltonian through

Hsec ¼ Hpri þ
Z

d3x½uðμÞSðμÞ þ uðνÞSðνÞ� ð66Þ

where uðμÞ and uðνÞ are Lagrange multipliers enforcing the
secondary constraints SðμÞ and SðνÞ, respectively. We then
check that all constraints (primary and secondary) are
preserved in time by taking their Poisson bracket with
Hsec. Since the Poisson bracket of all constraints with Hpri

is weakly vanishing by default, it is sufficient to consider
the Poisson brackets of SðμÞ and SðνÞ with any constraint in
the set fHi;H;ΠðμÞ;ΠðνÞ;SðμÞ;SðνÞg, implying eleven
brackets in total.
We set the index A ¼ fμ; νg and consider collectively the

vector SðAÞ½uðAÞ�. From Eq. (52) we have:

fSðAÞ½uðAÞ�; H⃗½N⃗�g ¼ −SðAÞ½LN⃗u
ðAÞ�; ð67Þ

which therefore vanish weakly. Hence, H⃗ remains a first
class constraint. The remaining nine brackets do not vanish,
meaning that all other constraints are second class.
Consider first

∂tΠðAÞ½λðAÞ� ≈
X
B

fΠðAÞ½λðAÞ�;SðBÞ½uðBÞ�g ≈ 0: ð68Þ

The involved Poisson brackets are evaluated as

fΠðAÞ½λðAÞ�;SðBÞ½uðBÞ�g ¼ −CAB½λðAÞuðBÞ� ð69Þ

where

CAB ≡ ∂SðBÞ

∂A
¼
0@ ∂SðμÞ

∂μ
∂SðμÞ
∂ν

∂SðνÞ
∂μ

∂SðνÞ
∂ν

1A: ð70Þ

Then (69) gives two homogeneous equations for two
unknowns, the Lagrange multipliers uðμÞ and uðνÞ, and
therefore implies that they must both vanish.

TABLE I. Table of constraints and their Poisson Brackets,
showing whether they vanish strongly, weakly, or not at all. The
classification into primary/secondary and first/second class is
marked. Note also that the combinationHFC defined through (76)
is first class, with λðAÞ being functions of all the phase space
variables as determined through (75), even though some indi-
vidual parts of HFC are second class.

Primary Secondary

Hi H ΠðμÞ ΠðνÞ SðμÞ SðνÞ

Hi Hi H ΠðμÞ ΠðνÞ SðμÞ SðνÞ
H Hi SðμÞ SðνÞ UðμÞ UðνÞ

ΠðμÞ 0 0 CðμÞðμÞ CðνÞðμÞ

ΠðνÞ 0 CðμÞðνÞ CðνÞðνÞ

SðνÞ EðμÞðμÞ EðμÞðνÞ

SðμÞ EðνÞðνÞ

First class Second class
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Consider now

∂tH½N� ≈
X
B

fH½N�;SðBÞ½uðBÞ�g ≈ 0: ð71Þ

The involved Poisson brackets are evaluated as

UB½ξðBÞ�≡ fH½N�;SðBÞ½ξðBÞ�g ¼
�
H½N�; ∂H½ξðBÞ�

∂B

�
ð72Þ

for arbitrary functions ξðAÞ (not necessarily the Lagrange
multipliers uðAÞ), which then allows us to use the A and B
coefficients defined in (55) and (56) and displayed in
Appendix B. Explicitly, after some integrations by parts
and further computations we find

UA ¼ N

 
−BðΠijÞ

∂AðqijÞ
∂A

þAðAiÞ
∂BðΠiÞ
∂A

− BðΠiÞ
∂AðAiÞ
∂A

þAðϕÞ
∂BðΠÞ
∂A

þDiBðΠÞ
∂Ai

ðϕÞ
∂A

!
: ð73Þ

It is crucial to note that UðAÞ can vanish neither strongly nor
weakly. This can be easily seen by focussing on the

BðΠijÞ
∂AðqijÞ
∂A term, which is the only term containing Πij

and thus cannot be cancelled by other terms. Back
to (72), we set ξðBÞ → uðBÞ ≈ 0 which results in ∂tH½N� ¼
UðμÞ½uðμÞ� þ UðνÞ½uðνÞ� ≈ 0 without requiring any additional
constraints or equations involving the Lagrange multipliers.
Lastly, consider ∂tSðAÞ½ξðAÞ�. Using our definitions

from (69) and (72), we have

∂tSðAÞ½ξðAÞ� ¼ −UA½ξðAÞ� −
X
B

CAB½ξðAÞλðBÞ�

þ
X
B

fSðAÞ½ξðAÞ�;SðBÞ½uðBÞ�g: ð74Þ

Now, the last Poisson bracket depends linearly on uðBÞ (and
its derivative) and the same for ξðAÞ, hence, it vanishes when
uðBÞ ≈ 0. Require then that ∂tSðAÞ½ξðAÞ� ≈ 0 leads to the
linear system of equations

UA þ
X
B

CABλðBÞ ≈ 0: ð75Þ

If the matrix CAB is invertible then the two equations above
determine the Lagrange multipliers λA which then become
functions of all the phase space variables. Then the
Hamiltonian analysis is complete and no further constraints
in phase space are required, with the conclusion that the
theory possesses three first class primary constraints Hi,
three second class primary constraintsH and ΠðAÞ, and two
second class secondary constraints SðAÞ. We list all the

constraints and their Poisson brackets in Table I. On the
other hand, if the matrix has a vanishing determinant, there
exists a left null eigenvector which when applied to the
consistency relation may produce further constraints, called
tertiary constraints. Given the forms of (64) and (65), and
equations of motion (62) and (63) it is to be expected that
CAB is indeed invertible in general situations.

E. Hamiltonian evolution

Having found all the constraints and solved for
the Lagrange multipliers, we may now form the first
class Hamiltonian HFC. We find this as the secondary
Hamiltonian with the Lagrange multiplies subbed-in.
Given that uðAÞ ≈ 0, we have that Hsec ≈Hpri, hence,

HFC ¼
Z

d3x½NHþ NiHi þ λðμÞΠðμÞ þ λðνÞΠðνÞ� ð76Þ

with λðμÞ and λðνÞ being functions of the phase space
variables fqij; Ai;ϕ;Πij;Πi;Π; μ; νg, that is, ΠðμÞ and ΠðνÞ

are absent from λðAÞ. Hamilton’s equations are then found
using (47) with H → HFC. We find

q̇ij ≈ NBðΠijÞ þ 2DðiNjÞ ð77aÞ

Π̇ij ≈ −NAðqijÞ − 2ΠkðjDkNiÞ þDkðNkΠijÞ

þ
ffiffiffi
q

p
16πG̃

ðDiDjN − qijD⃗2NÞ ð77bÞ

Ȧi ≈ NBðΠiÞ − χDiN þ NjDjAi þ AjDiNj ð77cÞ

Π̇i ≈ −NAðAiÞ −Aj
ðAiÞDjN þDkðNkΠiÞ − ΠjDjNi ð77dÞ

ϕ̇ ≈ NBðΠÞ þ NiDiϕ ð77eÞ

Π̇ ≈DiðΠNi − NAi
ðϕÞÞ ð77fÞ

μ̇ ≈ λðμÞ þ NiDiμ ð77gÞ

ν̇ ≈ λðνÞ þ NiDiν ð77hÞ

along with the constraints (43), (62), and (63), and where,
to reiterate, λðAÞ are functions of all the phase space
variables obtained after solving (75).

VI. AN EXAMPLE: SMALL PERTURBATIONS
AROUND MINKOWSKI SPACETIME

The Hamiltonian density is rather complicated in general
so for illustration it is useful to have a look at a simple
example. We consider a background Minkowski spacetime
and the linear evolution of small perturbations to this
background.
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A. Background Minkowski solution

Before discussing the choice of function Uðν; μÞ, let us
first determine what conditions a Minkowski background
imposes on the fields, in the general sense. Note that a
cosmological constant Λ can always be absorbed into the
definition of Uðν; μÞ, hence, we set Λ ¼ 0 without any loss
of generality. We use an overbar to denote the values that
fields take in the background and we fix the background
gauge to

N̄ ¼ 1; N̄i ¼ 0: ð78Þ

Moreover, for Minkowski spacetime we have q̄ij ¼ δij and
then (77a) trivially gives Π̄ij ¼ 0 (and so B̄ðΠijÞ ¼ 0). Now,
the background solution should not violate the isometries
of Minkowski spacetime, including rotational invariance,
hence, all three-dimensional vector fields should vanish:

Āi ¼ Π̄i ¼ Diϕ̄ ¼ 0; ð79Þ

so that (77c) and (77d) are trivially satisfied (and
B̄ðΠiÞ ¼ ĀðAiÞ ¼ Āi

ðAjÞ ¼ 0, while B̄i
ðΠjÞ ¼ −δij). The con-

ditions (79) in turn imply that χ̄ ¼ 1 and ϕ̄ ¼ ϕ̄ðtÞ leading
in addition to Ȳ ¼ 0. Hence, from (32) we find Ξ̄ ¼ ν̄ and
from (38) we get C̄1 ¼ Π̄.
Meanwhile, (79) leads to Āi

ðϕÞ ¼ 0 (and hence ĀðϕÞ ¼ 0)
so that from (73) we find ŪA ¼ 0 and hence (75) leads to
λðAÞ ¼ 0. This last condition then implies through (77g)
and (77h) that μ̄ and ν̄ are functions of x⃗ only. Moreover,
(77f) implies that Π̄ is also a function of x⃗ only.
Now from (77b) we have that ĀðqijÞ ¼ 0 and this

imposes that Ū ¼ ð8πG̃Þ2Π̄2=ν̄. Finally, we have that
B̄ðΠÞ ¼ 8πG̃ Π̄ =ν̄ is time-independent, so that (77e) may
be integrated to get ϕ̄ ¼ Q0t, where Q0 ¼ 8πG̃ Π̄ =ν̄ is a
constant. We thus set

8πG̃ Π̄ ¼ Q0ν̄ ð80Þ

without loss of generality, implying that Π̄ and ν̄ have the
same x⃗ dependence, and that Q0, being a constant, is
independent of ν̄.
Now (64) gives Q̄ ¼ Q0 so that the constraint (63)

gives ∂U=∂ν̄ ¼ Q2
0. Since we also have that ∂U=∂μ̄ ¼ 0

from (63), we find that

Ū ¼ Q2
0ν̄; ð81Þ

which is consistent with our discussion in the previous
paragraph. Note that the above condition is a condition that
U must satisfy in order to have Minkowski solutions but it
does not completely determine the general form of the
function U.

Finally, before discussing function choices, let us con-
nect with the original function F . From (15) we find the
relations

μ ¼ ∂F
∂Y

; ð82Þ

ν ¼ −
∂F
∂Q2

: ð83Þ

Hence, since Ȳ ¼ 0 and Q̄ ¼ Q0 is a constant, this implies
thatF and its derivatives will also be, at best, constants. We
immediately get that both μ̄ and ν̄ are constants and hence,
so is Π̄. Incidentally, (15) returns F̄ ¼ 0.

B. Choice of function

We now turn to the choice of function Uðν; μÞ in order to
pave the way for departures fromMinkowski. Our goal here
is to compare to [73], hence, we restrict ourselves to cases
where the function F ðY;QÞ of (1) takes the form

F ðY;QÞ ¼ ð2 − KBÞλsY − 2K2ðQ −Q0Þ2 ð84Þ

where λs and K2 are constants. The above functional form
is motivated by making sure that at the weak-field quasi-
static limit Newtonian gravity is recovered and that the
large-scale FLRW cosmology admits dust solutions. Exact
Minkowski is recovered when Y ¼ 0 and Q ¼ Q0 in
accordance with the previous subsection.
We then find that

μ ¼ ð2 − KBÞλs ð85Þ

and

ν ¼ 2K2

�
1 −

Q0

Q

�
ð86Þ

which inverts to

Q ¼ Q0

1 − ν
2K2

ð87Þ

so that

U ¼ Q2
0ν

1 − ν
2K2

: ð88Þ

Using the above functional form into the constraint (62)
leads to Y ¼ 0, while constraint (63) returns back (87). The
last relation also leads to

ν̄ ¼ 0; ð89Þ
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and hence,

Π̄ ¼ 0: ð90Þ
C. Hamiltonian density to second order

We perturb the lapse function as

N ¼ 1þ Ψ; ð91Þ

whereΨ is a small perturbation, and let the shift Ni ¼ hi be
a pure perturbation (zero background). Additionally, we
perturb our phase space variables as

qij ¼ δij þ hij ð92Þ

Πij ¼ ϖij ð93Þ

Ai ¼ αi ð94Þ

Πi ¼ ϖi ð95Þ

ϕ ¼ Q0tþ φ ð96Þ

Π ¼ Q0

8πG̃
ν̄þϖ ð97Þ

ν ¼ ν̄þ δν ð98Þ

where hij, αi, φ,ϖij,ϖi,ϖ, and δν are small perturbations,
and we further define h≡ hii. We raise and lower indices
using the background metric δij.
The variable μ is fixed to (85) as it is a constant. We keep

ν̄ in all calculations where the background otherwise
vanishes and take the limit ν̄ → 0 only at the end. We
first calculate the secondary constraints, the first of which
leads to SðμÞ ¼ 0 for the chosen function. To expand the
constraint (63), that is SðνÞ ≈ 0, to first order and determine
δν we need Q and U to first order, however, since the latter

is also needed for the Hamiltonian constraint to second
order, we compute that to get

Q ¼ Q0

�
1 −

1

2
h −

δν

ν̄
þ 8πG̃

ϖ

Q0ν̄

�
; ð99Þ

U ¼ Q2
0

�
ν̄þ δνþ ðδνÞ2

2K2

�
: ð100Þ

Thus, into (63) we find

δν ¼ 1

1þ ν̄
2K2

�
8πG̃

ϖ

Q0

−
1

2
ν̄h

�
: ð101Þ

We now compute the diffeomorphism constraint (36)
which leads to

NiHi ≈
Q0ν̄

8πG̃
hi∇!iφ − 2hi∇!jϖ

j
i: ð102Þ

Finally, we compute the Hamiltonian constraint (37).
Since A⃗ · D⃗ϕ is second order, we need to zeroth order C2 ¼
ð2 − KBÞð2þ KBλsÞ=KB and C1 and Ξ to second order.
These are calculated as

C1 ¼
Q0

8πG̃
ν̄þϖ −

2 − KB

KB
αiϖi ð103Þ

Ξ ¼ ν̄þ δνþ
�
ν̄ −

ð2 − KBÞð2þ KBλsÞ
KB

�
αiα

i ð104Þ

and into (37) we find

NH ¼ Q2
0

8πG̃
ν̄þQ0ϖ þ Q2

0

8πG̃
ν̄Ψþ 8πG̃

�
2ϖijϖij − ϖ̂2 þ 1

2KB
jϖ⃗j2 þ 1

4K2

1

1þ ν̄
2K2

ϖ2

�
−
2 − KB

KB
Q0α

jϖj

−
Q0ν̄

4K2

1

1þ ν̄
2K2

ϖh −
Q2

0ν̄

16πG̃

�
1

8

1 − ν̄
2K2

1þ ν̄
2K2

h2 þ 1

4
hijhij þ jα⃗j2

�
þQ0Ψϖ −

Q0ν̄

8πG̃
α⃗ · ∇!ϕþ Ψ∇!iϖ

i −
2 − KB

KB
ϖ⃗ · ∇!φ

þ 1

16πG̃

�
−
1

4
j∇!hj2 þ 1

2
∇!ih∇!jhij −

1

4
∇!khijð∇!ihkj þ ∇!jhki − ∇!k

hijÞ þ ∇!iΨ∇!jhij − ∇!Ψ · ∇!h

�
þ 1

16πG̃

�
KBjB⃗j2 þ ð2 − KBÞ

2þ λsKB

KB
j∇!φþQ0α⃗j2

�
: ð105Þ

We may now set ν̄ ¼ 0 and combine the two to get the second order Hamiltonian as
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Hð2Þ ¼
Z

d3x

�
8πG̃

�
2ϖijϖij − ϖ̂2 þ 1

2KB
jϖ⃗j2 þ 1

4K2

ϖ2

�
−
2 − KB

KB
ϖ⃗ · ð∇!φþQ0α⃗Þ þ

1

16πG̃

�
−
1

4
j∇!hj2

þ 1

2
∇!ih∇!jhij −

1

4
∇!khijð∇!ihkj þ ∇!jhki − ∇!k

hijÞ þ KBjB⃗j2 þ ð2 − KBÞ
2þ λsKB

KB
j∇!φþQ0α⃗j2

�
þΨ

�
Q0ϖ þ ∇! · ϖ⃗ þ 1

16πG̃
ð∇!2

h − ∇!i∇!jhijÞ
�
− 2hi∇!jϖ

j
i

�
: ð106Þ

Having found the second order Hamiltonian, we com-
pare with the results from [73], which only find the scalar-
mode Hamiltonian. The Lagrangian and corresponding
Hamiltonian in [73] is multiplied by 16πG̃ compared with
what we have in this work, and we should do the same
here for proper comparison. Doing that leads to a rescaling
of canonical momenta by 16πG̃, that is, we define ϖ̃ij≡
16πG̃ϖij; similarly for ϖi and ϖ.
We define the traceless operator Dij ≡ ∇!i∇!j − 1

3
∇!2

δij
and expand the perturbations in scalar modes as

hij ¼ −2Φδij þDijη ð107Þ

ϖ̃ij ¼ −
1

6
PΦδ

ij þ 3

2∇!4
DijPη ð108Þ

Ai ¼ ∇!iα ð109Þ

ϖ̃i ¼ −∇!i 1

∇!2
Pα ð110Þ

hi ¼ −∇!iζ ð111Þ

so that fΦ; PΦg, fη; Pηg, fα; Pαg, and fφ; Pφg
form canonical pairs, that is,

R
dtd3x½ḣijϖij þ α̇iϖ

i� ¼

R
dtd3x½Φ̇PΦ þ η̇Pη þ α̇Pα�. Using the above expressions

into (106) we find the scalar-mode Hamiltonian as

Hð2Þ ¼
Z

d3x
�
−

1

24
P2
Φ þ 3

2

				 1

∇!2
Pη

				2 þ 1

4KB

				∇! 1

∇!2
Pα

				2
−
2 − KB

KB
PαðφþQ0αÞ − 2

				∇!�Φþ 1

6
∇!2

η

�				2
þ 1

8K2

P2
φ þ ð2 − KBÞ

2þ λsKB

KB
j∇!ðφþQ0αÞj2

þΨ
�
Q0Pφ − Pα − 4∇!2

�
Φþ 1

6
∇!2

η

��
þ 2ζ

�
1

6
∇!2

PΦ − Pη

��
: ð112Þ

Our comparison is, however, not yet finished because
in [73] one of the variables used is not φ but the
combination χ ≡ φþQ0α. We thus perform a canonical
transformation to new canonical pairs fχ; Pχg and fα̃; Pα̃g
defined through α̃ ¼ α, Pχ ¼ Pφ and Pα̃ ¼ Pα −Q0Pφ,

and switch to Fourier space (where k⃗ denotes the Fourier
wave vector) to get

Hð2Þ ¼
Z

d3k
ð2πÞ3

�
−

1

24
jPΦj2 þ

3

2k4
jPηj2 þ

1

8K2

jPχ j2 þ
1

4k2KB
jQ0Pχ þ Pα̃j2 −

2 − KB

2KB
½χðP�̃

α þQ0P�
χÞ þ c:c:�

− 2k2
				Φ −

1

6
k2η

				2 þ ð2 − KBÞ
2þ λsKB

KB
k2jχj2 þΨC�

Ψ þΨ�CΨ þ ζC�
ζ þ ζ�Cζ

�
ð113Þ

where

CΨ ≡ −
1

2
Pα̃ þ 2k2

�
Φ −

1

6
k2η

�
≈ 0 ð114Þ

Cζ ≡ −
1

6
k2PΦ − Pη ≈ 0 ð115Þ

are two constraints imposed by the Lagrange multipliers Ψ
and ζ, and where for brevity we use the same variable

symbols in Fourier space as in real space. The resulting
Hamiltonian (113) is identical to the one found in [73], up
to some symbol relabeling.

VII. CONCLUSIONS

In this article, we presented the general Hamiltonian
analysis for AeST theory, which extends GR with the
inclusion of a unit-timelike vector field Âμ and scalar field
ϕ in addition to the metric gμν. To simplify the computations
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we further introduced two auxiliary fields μ and ν in order to
avoid inversion of the free function F which is part of the
theory. Our analysis revealed the existence of four first class
constraints and four second class constraints. The first class
constraints consist of the three (primary) constraints Hi
defined in (36) and the first class Hamiltonian HFC defined
in (76), which is the linear combination of the primary
Hamiltonian constraint H defined in (37) (by itself second
class), Hi and also ΠðμÞ and ΠðνÞ. The four second class
constraints are the two canonical momenta ΠðμÞ and ΠðνÞ of
the auxiliary fields μ and ν, see (33) and (34), and the two
secondary constraints SðμÞ and SðνÞ defined through (62)
and (63). The existence of these second class constraints
arises from the presence of the auxiliary fields μ and ν. See
Table I for a summary of these constraints.
As we discussed in Sec. II, the present theory defined

by (1) stems from reducing the more general model of [68]
on the basis of the exact phenomenological requirements
presented in Sec. I, as well as simplicity. It is possible that
the assumption of having FLRWevolution close toΛCDM
may be relaxed, or that MOND can emerge in a way
different than TeVeS theory and such possibilities will
lead to a different action than (1). It is also possible to
extend (1) with higher-derivative terms in the scalar as in
Horndeski [100,101] and more general theories [102,124],
or the vector as in [105] or [107], leading again to a richer
phenomenology. Our formalism can then be used to study
such generalized cases and determine their canonical
structure.
We may use the constraint analysis to count the number

of physical degrees of freedom.We have six variables in the
spatial metric qij, three in Ai, and one for each of ϕ, μ, and
ν; that is, 12 in total. Counting in the canonical momenta
doubles this to 24. We subtract the four second class
constraints and twice the number of first class constraints
which remove the gauge redundant degrees of freedom, that
is, we subtract 12 degrees of freedom because of the
constraints. We finally divide by two to find six physical
degrees of freedom. It is interesting to compare this number
to the result found in the case of SVT theories, specifically
the case of broken gauge-invariance which also propagate
six degrees of freedom [107]. However, as discussed in
Sec. II, there is no obvious overlap of AeST with SVT and
there is no a priori reason why the matching number of
degrees of freedom would represent similar field structure.
We also note that the additional degrees of freedom
propagating may lead to interesting features, such as
additional polarization modes for gravitational waves, or
perhaps new couplings to matter (which are not part of
AeST). These could lead to important observational con-
sequences which could then be used to put constraints on
the theory.
Taking linear perturbations around a Minkowski back-

ground we expanded the Hamiltonian to quadratic order
and recovered the same results found in [73] using different

methods. In the process we showed that the number of
perturbative degrees of freedom found in [73] matches the
number found here using the full nonlinear theory. Our
formalism may be used to compute the quadratic
Hamiltonian of AeST theory on other backgrounds in
order to determine whether those backgrounds are stable
or not. Of particular interest are the case of de Sitter space
and static spherically symmetric configurations which we
leave for a future work.
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APPENDIX A: USEFUL RESULTS

In the ADM formulation the vector field aligned with the
time direction is

tμ ¼ ð1; 0⃗Þ ðA1Þ

while the normal to the hypersurface is decomposed as

nμ ¼ 1

N
ð1;−N⃗Þ; nμ ¼ ð−N; 0⃗Þ; ðA2Þ

and the projector to the hypersurface as

q00 ¼ q0i ¼ 0; qi0 ¼ Ni; qij ¼ δij: ðA3Þ

The metric then has components

g00 ¼ −N2 þ jN⃗j2; g00 ¼ −
1

N2
; ðA4Þ

g0i ¼ Ni; g0i ¼ 1

N2
Ni; ðA5Þ

gij ¼ qij; gij ¼ qij −
NiNj

N2
: ðA6Þ

The Christoffel connection splits into:

Γ0
00 ¼

1

N
½Ṅ þ NiDiN þ NiNjKij� ðA7Þ
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Γ0
0i ¼

1

N
½DiN þ NjKji� ðA8Þ

Γ0
ij ¼

1

N
Kij ðA9Þ

Γi
00 ¼ Ṅi þ NjDjNi þ 2NKijNj þ NDiN

−
Ni

N
½Ṅ þ NkNlKkl þ NjDjN� ðA10Þ

Γi
0j ¼ NKi

j −
1

N
NiNkKkj þDjNi −

Ni

N
DjN ðA11Þ

Γk
ij ¼ γkij −

Nk

N
Kij: ðA12Þ

The components of the extrinsic curvature Kμν can then be
calculated to be:

K00 ¼ NiNjKij ðA13Þ

K0i ¼ Ki0 ¼ NjKij ðA14Þ

Kij ¼ NΓ0
ij ¼

1

2N
ðq̇ij −DiNj −DjNiÞ: ðA15Þ

The spacetime-covariant derivative of Âμ is given by

∇νÂ
μ ¼ ∂νÂ

μ þ Γμ
νσÂσ ðA16Þ

and individual components are

∇0Â
0 ¼ χ̇

N
þ 1

N
AiðDiN þ NjKijÞ ðA17Þ

∇iÂ
0 ¼ Diχ

N
þ 1

N
KikAk ðA18Þ

∇0Â
i ¼ Ȧi þ

�
NKi

j þDjNi −
Ni

N
ðNkKkj þDjNÞ

�
Aj

−
χ̇

N
Ni þ χðKijNj þDiNÞ ðA19Þ

∇iÂ
j ¼ DiAj þ χKj

i −
Nj

N
ðDiχ þ KikAkÞ: ðA20Þ

From the above relations we then construct Jμ as

J0 ¼ χ

N2
½χ̇þAiDiN −NiDiχ� þ

Ai

N
½KijAj þDiχ� ðA21Þ

Ji ¼ χ

N

�
Ȧi þ

�
NKi

j þDjNi −
Ni

N
DjN

�
Aj

−
χ̇

N
Ni þ χDiN − Nj

�
DjAi −

Ni

N
Djχ

��
þ Aj

�
DjAi þ χKi

j −
Ni

N
ðDjχ þ KjkAkÞ

�
: ðA22Þ

APPENDIX B: COEFFICIENTS
FOR THE VARIATIONS OF THE SMEARED

HAMILTONIAN CONSTRAINT

In evaluating the smeared Hamiltonian constraint it is
useful to define the coefficients AðQIÞ, A

i
ðQIÞ, BðPIÞ, and

Bi
ðPIÞ where QI ¼ fqij; Ai;ϕg and PI ¼ fΠij;Πi;Πg.

See (55) and (56). Using (37) and the variables Ξ, C1,
C2 defined through (32), (38), and (39), respectively, the A
coefficients are found to be

AðqijÞ ¼
8πG̃ffiffiffi

q
p

�
4ΠkðiΠk

j − 2Π̂Πij þ 1

2KB
ΠiΠj −

C2
1C2

2Ξ2
AiAj −

1

2

�
Πklð2Πkl − Π̂qklÞ þ

1

2KB
jΠ⃗j2 þ C2

1

2Ξ

�
qij
�

þ 1

2χ

�
2 − KB

KB
Π⃗ · D⃗ϕ −

C1C2

Ξ
A⃗ · D⃗ϕ − D⃗ · Π⃗

�
AiAj −

χC1C2

Ξ

�
C2

Ξ
A⃗ · D⃗ϕAiAj þ AðiDjÞϕ

�
þ

ffiffiffi
q

p
32πG̃

�
−Rþ 2Λ − KBjB⃗j2 þ

�
C2
2χ

2

Ξ
þ 2 − KB þ μ − ν

�
ðA⃗ · D⃗ϕÞ2 þ 2ð2 − KBÞA⃗ × B⃗ · D⃗ϕ

þ
�
2 − KB þ μþ ð2 − KBÞ2

KB
χ2
�
jD⃗ϕj2 þ U

�
qij þ

ffiffiffi
q

p
16πG̃

�
Rij þ KBBiBj −

ð2 − KBÞ2
KB

jD⃗ϕj2AiAj

− 2

�
C2
2χ

2

Ξ
þ 2 − KB þ μ − ν

�
A⃗ · D⃗ϕAðiDjÞϕþ 2ð2 − KBÞBlðAkϵ

lkðiDjÞϕ − ϵlkðiAjÞDkϕÞ

−
C2
2

Ξ2

�
2
2 − KB

KB
þ μ

�
ðA⃗ · D⃗ϕÞ2AiAj −

�
2 − KB þ μþ ð2 − KBÞ2

KB
χ2
�
DiϕDjϕ

�
; ðB1Þ
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AðAiÞ ¼
8πG̃ffiffiffi

q
p C1

Ξ

�
C1C2

Ξ
Ai −

2 − KB

KB
Πi

�
−
1

χ

�
2 − KB

KB
Π⃗ · D⃗ϕ −

C1C2

Ξ
A⃗ · D⃗ϕ −DjΠj

�
Ai

−
χC2

Ξ

�
2 − KB

KB
A⃗ · D⃗ϕΠi − C1

�
Diϕþ 2C2

Ξ
A⃗ · D⃗ϕAi

��
þ

ffiffiffi
q

p
8πG̃

�
ϵijk½KBDjBk þ ð2 − KBÞBjDkϕ� þ

�
C2
2χ

2

Ξ
þ 2 − KB þ μ − ν

�
A⃗ · D⃗ϕDiϕ

þ C2
2

Ξ2

�
2
2 − KB

KB
þ μ

�
ðA⃗ · D⃗ϕÞ2Ai þ ð2 − KBÞ2

KB
jD⃗ϕj2Ai þ ð2 − KBÞDjðAjDiϕ − AiDjϕÞ

�
; ðB2Þ

Ai
ðAjÞ ¼

ffiffiffi
q

p
8πG̃

½−KBϵ
ijkBk þ ð2 − KBÞðA⃗iD⃗jϕ − A⃗jD⃗iϕÞ�; ðB3Þ

Ai
ðϕÞ ¼

2 − KB

KB
χΠi −

χ

Ξ
C1C2Ai −

ffiffiffi
q

p
8πG̃

�
ð2 − KBÞϵijkA⃗jB⃗k þ

�
χ2

Ξ
C2
2 þ 2 − KB þ μ − ν

�
ðA⃗ · D⃗ϕÞAi

þ
�
2 − KB þ μþ ð2 − KBÞ2

KB
χ2
�
Diϕ

�
; ðB4Þ

and

Ai
ðqjkÞ ¼ 0; ðB5Þ

AðϕÞ ¼ DiAi
ðϕÞ: ðB6Þ

The B-coefficients are

BðΠijÞ ¼
16πG̃ffiffiffi

q
p ð2Πij − Π̂qijÞ; ðB7Þ

Bi
ðΠjkÞ ¼ 0; ðB8Þ

BðΠiÞ ¼ −Diχ − χ
2 − KB

KB

�
Diϕþ 1

Ξ
C2A⃗ · D⃗ϕAi

�
þ 8πG̃
KB

ffiffiffi
q

p
�
Πi −

2 − KB

Ξ
C1Ai

�
; ðB9Þ

Bi
ðΠjÞ ¼ −χδij; ðB10Þ

BðΠÞ ¼
1

Ξ

�
8πG̃ffiffiffi

q
p C1 þ χC2A⃗ · D⃗ϕ

�
; ðB11Þ

Bi
ðΠÞ ¼ 0: ðB12Þ

[1] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[2] B. Abbott et al. (Virgo and LIGO Scientific Collabora-

tions), Phys. Rev. Lett. 119, 161101 (2017).
[3] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[4] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr., Astrophys.

J. 238, 471 (1980).
[5] M. Persic, P. Salucci, and F. Stel, Mon. Not. R. Astron.

Soc. 281, 27 (1996).
[6] S. McGaugh, F. Lelli, and J. Schombert, Phys. Rev. Lett.

117, 201101 (2016).
[7] F. Lelli, S. S. McGaugh, J. M. Schombert, and M. S.

Pawlowski, Astrophys. J. 836, 152 (2017).
[8] J. D. Simon, Annu. Rev. Astron. Astrophys. 57, 375 (2019).

[9] O. Hahn, C. Porciani, C. M. Carollo, and A. Dekel, Mon.
Not. R. Astron. Soc. 375, 489 (2007).

[10] H. Hoekstra and B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99
(2008).

[11] P. Natarajan, L. L. Williams, M. Bradac, C. Grillo, A.
Ghosh, K. Sharon, and J. Wagner, arXiv:2403.06245.

[12] J. Yoo, J. L. Tinker, D. H. Weinberg, Z. Zheng, N. Katz,
and R. Dave, Astrophys. J. 652, 26 (2006).

[13] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch,
S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J.
648, L109 (2006).

[14] M. R. Blanton et al. (eBOSS Collaboration), Astron. J.
154, 28 (2017).

BATAKI, SKORDIS, and ZLOSNIK PHYS. REV. D 110, 044015 (2024)

044015-16

https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1086/158003
https://doi.org/10.1086/158003
https://doi.org/10.1093/mnras/278.1.27
https://doi.org/10.1093/mnras/278.1.27
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.3847/1538-4357/836/2/152
https://doi.org/10.1146/annurev-astro-091918-104453
https://doi.org/10.1111/j.1365-2966.2006.11318.x
https://doi.org/10.1111/j.1365-2966.2006.11318.x
https://doi.org/10.1146/annurev.nucl.58.110707.171151
https://doi.org/10.1146/annurev.nucl.58.110707.171151
https://arXiv.org/abs/2403.06245
https://doi.org/10.1086/507591
https://doi.org/10.1086/508162
https://doi.org/10.1086/508162
https://doi.org/10.3847/1538-3881/aa7567
https://doi.org/10.3847/1538-3881/aa7567


[15] C. Zhao et al. (eBOSS Collaboration), Mon. Not. R.
Astron. Soc. 511, 5492 (2022).

[16] N. Aghanim et al. (Planck Collaboration), Astron.
Astrophys. 641, A6 (2020); 652, C4(E) (2021).

[17] L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020).
[18] A. Amon and G. Efstathiou, Mon. Not. R. Astron. Soc.

516, 5355 (2022).
[19] Z. Sakr, S. Ilic, and A. Blanchard, Astron. Astrophys. 666,

A34 (2022).
[20] N. J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee,

and S. Sarkar, Astrophys. J. Lett. 937, L31 (2022).
[21] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep.

267, 195 (1996).
[22] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279

(2005).
[23] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[24] A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001

(2021).
[25] J. Aalbers et al. (LZ Collaboration), Phys. Rev. Lett. 131,

041002 (2023).
[26] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett.

131, 041003 (2023).
[27] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.

122, 041102 (2019).
[28] M. Milgrom, Astrophys. J. 270, 365 (1983).
[29] J. Bekenstein and M. Milgrom, Astrophys. J. 286, 7

(1984).
[30] M. Milgrom, Mon. Not. R. Astron. Soc. 403, 886 (2010).
[31] M. Milgrom, Phys. Rev. D 108, 063009 (2023).
[32] R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661

(1977).
[33] S. S. McGaugh, J. M. Schombert, G. D. Bothun, and

W. J. G. de Blok, Astrophys. J. Lett. 533, L99 (2000).
[34] B. Famaey and S. McGaugh, Living Rev. Relativity 15, 10

(2012).
[35] I. Banik and H. Zhao, Symmetry 14, 1331 (2022).
[36] J. D. Bekenstein, Phys. Lett. B 202, 497 (1988).
[37] R. H. Sanders, Astrophys. J. 480, 492 (1997).
[38] J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004); 71,

069901(E) (2005).
[39] I. Navarro and K. Van Acoleyen, J. Cosmol. Astropart.

Phys. 09 (2006) 006.
[40] T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, Phys.

Rev. D 75, 044017 (2007).
[41] R. Sanders, Mon. Not. R. Astron. Soc. 363, 459 (2005).
[42] M. Milgrom, Phys. Rev. D 80, 123536 (2009).
[43] E. Babichev, C. Deffayet, and G. Esposito-Farese, Phys.

Rev. D 84, 061502 (2011).
[44] C. Deffayet, G. Esposito-Farese, and R. P. Woodard, Phys.

Rev. D 84, 124054 (2011).
[45] L. Blanchet and S. Marsat, Phys. Rev. D 84, 044056

(2011).
[46] R. H. Sanders, Phys. Rev. D 84, 084024 (2011).
[47] S. Mendoza, T. Bernal, J. C. Hidalgo, and S. Capozziello,

AIP Conf. Proc. 1458, 483 (2012).
[48] R. P. Woodard, Can. J. Phys. 93, 242 (2015).
[49] J. Khoury, Phys. Rev. D 91, 024022 (2015).
[50] S. Hossenfelder, Phys. Rev. D 95, 124018 (2017).
[51] C. Burrage, E. J. Copeland, C. Käding, and P. Millington,

Phys. Rev. D 99, 043539 (2019).

[52] M. Milgrom, Phys. Rev. D 100, 084039 (2019).
[53] F. D’Ambrosio, M. Garg, and L. Heisenberg, Phys. Lett. B

811, 135970 (2020).
[54] L. Blanchet, L. Heisenberg, and F. Larrouturou, Phys. Rev.

D 107, 124021 (2023).
[55] C. Käding, Astronomy 2, 128 (2023).
[56] L. Blanchet, Classical Quantum Gravity 24, 3529 (2007).
[57] L. Blanchet and A. Le Tiec, Phys. Rev. D 80, 023524

(2009).
[58] L. Blanchet, D. Langlois, A. Le Tiec, and S. Marsat,

J. Cosmol. Astropart. Phys. 02 (2013) 022.
[59] C. Stahl, B. Famaey, G. Thomas, Y. Dubois, and R. Ibata,

Mon. Not. R. Astron. Soc. 517, 498 (2022).
[60] L. Berezhiani and J. Khoury, Phys. Lett. B 753, 639

(2016).
[61] L. Berezhiani and J. Khoury, Phys. Rev. D 92, 103510

(2015).
[62] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. Lett.

116, 041302 (2016).
[63] A. Kamada, M. Kaplinghat, A. B. Pace, and H.-B. Yu,

Phys. Rev. Lett. 119, 111102 (2017).
[64] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys.

J. 462, 563 (1996).
[65] B. Famaey, J. Khoury, and R. Penco, J. Cosmol. Astropart.

Phys. 03 (2018) 038.
[66] M. Tristram et al., Astron. Astrophys. 682, A37 (2024).
[67] V. Savchenko et al., Astrophys. J. 848, L15 (2017).
[68] C. Skordis and T. Złośnik, Phys. Rev. D 100, 104013

(2019).
[69] C. Skordis and T. Zlosnik, Phys. Rev. Lett. 127, 161302

(2021).
[70] R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004).
[71] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and

S. Mukohyama, J. High Energy Phys. 05 (2004) 074.
[72] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, S.

Mukohyama, and T. Wiseman, J. High Energy Phys. 01
(2007) 036.

[73] C. Skordis and T. Zlosnik, Phys. Rev. D 106, 104041
(2022).

[74] A. E. Gumrukcuoglu, S. Mukohyama, and T. P. Sotiriou,
Phys. Rev. D 94, 064001 (2016).

[75] R. C. Bernardo and C.-Y. Chen, Gen. Relativ. Gravit. 55,
23 (2023).

[76] T. Kashfi and M. Roshan, J. Cosmol. Astropart. Phys. 10
(2022) 029.

[77] T. Mistele, J. Cosmol. Astropart. Phys. 11 (2022) 008.
[78] T. Mistele, S. McGaugh, and S. Hossenfelder, Astron.

Astrophys. 676, A100 (2023).
[79] S. Tian, S. Hou, S. Cao, and Z.-H. Zhu, Phys. Rev. D 107,

044062 (2023).
[80] C. Llinares, arXiv:2302.12032.
[81] P. Verwayen, C. Skordis, and C. Bœhm, Mon. Not. R.

Astron. Soc. 531, 272 (2024).
[82] T. Mistele, arXiv:2305.07742.
[83] L. Blanchet and C. Skordis, arXiv:2404.06584.
[84] P. G. Bergmann, Phys. Rev. 75, 680 (1949).
[85] J. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018

(1951).
[86] P. A. M. Dirac, Can. J. Math. 2, 129 (1950).
[87] P. A. M. Dirac, Proc. R. Soc. A 246, 333 (1958).

AETHER SCALAR-TENSOR THEORY: HAMILTONIAN … PHYS. REV. D 110, 044015 (2024)

044015-17

https://doi.org/10.1093/mnras/stac390
https://doi.org/10.1093/mnras/stac390
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1103/PhysRevD.101.043533
https://doi.org/10.1093/mnras/stac2429
https://doi.org/10.1093/mnras/stac2429
https://doi.org/10.1051/0004-6361/202142115
https://doi.org/10.1051/0004-6361/202142115
https://doi.org/10.3847/2041-8213/ac88c0
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1088/1361-6471/abc534
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1103/PhysRevLett.131.041002
https://doi.org/10.1103/PhysRevLett.131.041003
https://doi.org/10.1103/PhysRevLett.131.041003
https://doi.org/10.1103/PhysRevLett.122.041102
https://doi.org/10.1103/PhysRevLett.122.041102
https://doi.org/10.1086/161130
https://doi.org/10.1086/162570
https://doi.org/10.1086/162570
https://doi.org/10.1111/j.1365-2966.2009.16184.x
https://doi.org/10.1103/PhysRevD.108.063009
https://doi.org/10.1086/312628
https://doi.org/10.12942/lrr-2012-10
https://doi.org/10.12942/lrr-2012-10
https://doi.org/10.3390/sym14071331
https://doi.org/10.1016/0370-2693(88)91851-5
https://doi.org/10.1086/303980
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1103/PhysRevD.71.069901
https://doi.org/10.1103/PhysRevD.71.069901
https://doi.org/10.1088/1475-7516/2006/09/006
https://doi.org/10.1088/1475-7516/2006/09/006
https://doi.org/10.1103/PhysRevD.75.044017
https://doi.org/10.1103/PhysRevD.75.044017
https://doi.org/10.1111/j.1365-2966.2005.09375.x
https://doi.org/10.1103/PhysRevD.80.123536
https://doi.org/10.1103/PhysRevD.84.061502
https://doi.org/10.1103/PhysRevD.84.061502
https://doi.org/10.1103/PhysRevD.84.124054
https://doi.org/10.1103/PhysRevD.84.124054
https://doi.org/10.1103/PhysRevD.84.044056
https://doi.org/10.1103/PhysRevD.84.044056
https://doi.org/10.1103/PhysRevD.84.084024
https://doi.org/10.1063/1.4734465
https://doi.org/10.1139/cjp-2014-0156
https://doi.org/10.1103/PhysRevD.91.024022
https://doi.org/10.1103/PhysRevD.95.124018
https://doi.org/10.1103/PhysRevD.99.043539
https://doi.org/10.1103/PhysRevD.100.084039
https://doi.org/10.1016/j.physletb.2020.135970
https://doi.org/10.1016/j.physletb.2020.135970
https://doi.org/10.1103/PhysRevD.107.124021
https://doi.org/10.1103/PhysRevD.107.124021
https://doi.org/10.3390/astronomy2020009
https://doi.org/10.1088/0264-9381/24/14/001
https://doi.org/10.1103/PhysRevD.80.023524
https://doi.org/10.1103/PhysRevD.80.023524
https://doi.org/10.1088/1475-7516/2013/02/022
https://doi.org/10.1093/mnras/stac2670
https://doi.org/10.1016/j.physletb.2015.12.054
https://doi.org/10.1016/j.physletb.2015.12.054
https://doi.org/10.1103/PhysRevD.92.103510
https://doi.org/10.1103/PhysRevD.92.103510
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.119.111102
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://doi.org/10.1088/1475-7516/2018/03/038
https://doi.org/10.1088/1475-7516/2018/03/038
https://doi.org/10.1051/0004-6361/202348015
https://doi.org/10.3847/2041-8213/aa8f94
https://doi.org/10.1103/PhysRevD.100.104013
https://doi.org/10.1103/PhysRevD.100.104013
https://doi.org/10.1103/PhysRevLett.127.161302
https://doi.org/10.1103/PhysRevLett.127.161302
https://doi.org/10.1103/PhysRevLett.93.011301
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1088/1126-6708/2007/01/036
https://doi.org/10.1088/1126-6708/2007/01/036
https://doi.org/10.1103/PhysRevD.106.104041
https://doi.org/10.1103/PhysRevD.106.104041
https://doi.org/10.1103/PhysRevD.94.064001
https://doi.org/10.1007/s10714-023-03075-x
https://doi.org/10.1007/s10714-023-03075-x
https://doi.org/10.1088/1475-7516/2022/10/029
https://doi.org/10.1088/1475-7516/2022/10/029
https://doi.org/10.1088/1475-7516/2022/11/008
https://doi.org/10.1051/0004-6361/202346025
https://doi.org/10.1051/0004-6361/202346025
https://doi.org/10.1103/PhysRevD.107.044062
https://doi.org/10.1103/PhysRevD.107.044062
https://arXiv.org/abs/2302.12032
https://doi.org/10.1093/mnras/stae1225
https://doi.org/10.1093/mnras/stae1225
https://arXiv.org/abs/2305.07742
https://arXiv.org/abs/2404.06584
https://doi.org/10.1103/PhysRev.75.680
https://doi.org/10.1103/PhysRev.83.1018
https://doi.org/10.1103/PhysRev.83.1018
https://doi.org/10.4153/CJM-1950-012-1
https://doi.org/10.1098/rspa.1958.0142


[88] P. A. M. Dirac, Lectures on Quantum Mechanics (Dover,
Mineola, NY, 2001), Vol. 2.

[89] M. Henneaux and C. Teitelboim, Quantization of Gauge
Systems (Princeton University Press, Princeton, NJ, 1992).

[90] M. Henneaux, Phys. Lett. B 168B, 233 (1986).
[91] E. Buffenoir, M. Henneaux, K. Noui, and P. Roche,

Classical Quantum Gravity 21, 5203 (2004).
[92] N. Deruelle, M. Sasaki, Y. Sendouda, and D. Yamauchi,

Prog. Theor. Phys. 123, 169 (2010).
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