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Scalarized black holes (BH) have been shown to form dynamically in extended-scalar-tensor theories,
either through spontaneous scalarization—when the BH is unstable against linear perturbations—or
through a nonlinear scalarization. In the latter, linearly stable BHs can ignite scalarization when sufficiently
perturbed. These phenomena are, however, not incompatible and mixed scalarization is also possible. We
explore two aspects of the Einstein-Maxwell-scalar model: solutions containing, simultaneously, linear
(also known as standard) and nonlinear scalarization; and the effects of having one of the coupling
constants with an “opposite sign” to the one leading to scalarization. Both points are addressed by
constructing and examining the mixed scalarization’s domain of existence. An overall dominance of the
spontaneous scalarization over the nonlinear scalarization is observed. Thermodynamically, an entropical
preference for mixed over the standard scalarization (spontaneous or nonlinear) exists. In the presence of
counter scalarization, a quench of the scalarization occurs, mimicking the effect of a scalar particle’s mass/
positive self-interaction term.
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I. INTRODUCTION

With the recent observational data from the LIGO-Virgo
collaboration (e.g., [1,2]) and the direct imaging by the
Event Horizon Telescope [3,4], a heightened interest in
alternative black hole (BH) solutions to the standard general
relativistic (GR) ones has emerged. Of particular interest are
hairy black hole solutions (see [5,6] for a review). More
specifically, we focus on black holes resulting from scala-
rization processes, often referred to as scalarized black holes
(For a review of scalarization, see [7]).
These emerge in scalar-tensor theories, as originally

proposed by Damour and Esposito-Farèse [8] for neutron
stars. Extension of this framework to extended scalar-tensor
(eST) theories include models that allow spontaneous
scalarization of black holes [9–11]. In such models, the
scalar field is nonminimally coupled to the model’s invar-
iants and scalar perturbations of the vacuum black hole
solutions can ignite the growth of scalar hair around the BH.
The resulting scalarized black holes may present significant
deviations compared to standard vacuum general relativity
(GR) solutions, offering deeper insights into the nature of
gravity and particle physics.
A family of eST theories that have undergone

extensive analysis is the Einstein-Maxwell-scalar (EMS)
model [12–27]. In the latter, scalarization is triggered by a

nonminimal coupling between a real scalar field, ϕ,
and the Maxwell invariant, I ¼ FμνFμν (with Fμν ¼
∂μAν − ∂νAμ is the Maxwell tensor), through a coupling
function fðϕÞ

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2∂μϕ∂
μϕ − fðϕÞI �; ð1Þ

and minimally coupled with the Ricci scalar, R, associated
with the metric ansatz gμν. Scalarization is triggered by a
sufficiently large charge-to-mass ratio. Although BHs
within this model are considered of less astrophysical
significance1 compared to those in other eST models such
as the model of Einstein scalar-Gauss-Bonnet (EsGB)
gravity [9–11], their relative computational simplicity has
proven valuable to developing a better insight into the
scalarization phenomenon [29–44].
In particular, the simplicity associated with the

EMS model has allowed the study of several coupling
functions [13,45,46], from which two classes of solutions

1In a dynamical astrophysical environment, the presence
of plasmas around the BH leads to prompt discharge. Alter-
natively, the neutralization can occur through Hawking charge
evaporation [28].

PHYSICAL REVIEW D 110, 044014 (2024)

2470-0010=2024=110(4)=044014(11) 044014-1 © 2024 American Physical Society

https://orcid.org/0000-0002-8700-1051
https://ror.org/01swzsf04
https://ror.org/01swzsf04
https://ror.org/01swzsf04
https://ror.org/01swzsf04
https://ror.org/01swzsf04
https://ror.org/01swzsf04
https://ror.org/003109y17
https://ror.org/003109y17
https://ror.org/03paz5966
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.044014&domain=pdf&date_stamp=2024-08-05
https://doi.org/10.1103/PhysRevD.110.044014
https://doi.org/10.1103/PhysRevD.110.044014
https://doi.org/10.1103/PhysRevD.110.044014
https://doi.org/10.1103/PhysRevD.110.044014


were found2: class I (or dilatonic-type) and class II (also
known as scalarization type). While in the former, ϕ ¼ 0 is
not a solution of the field equation,3 in the latter, the trivial
scalar field ϕ ¼ 0 is a solution and scalarized solutions can
result from perturbations of the vacuum BH solution.4 This
demands that

dfðϕÞ
dϕ

����
ϕ¼0

¼ 0: ð2Þ

This condition is naturally implemented, for instance, if
one requires the model to be Z2-invariant under ϕ → −ϕ.
Scalarized solutions can be further divided into two
sub-classes.
A necessary conditions for a tachyonic instability (and

associated linear instability) to arise is

d2fðϕÞ
dϕ2

����
ϕ¼0

≠ 0; ð3Þ

and with the opposite sign of I . Under these conditions the
scalar hair around the BH grows spontaneously from a
perturbed vacuum Reissner-Nordstrom BH (RN BH). In
this case, the scalarized solutions bifurcate from the
vacuum RN BH solutions. These are known as class
II.A or spontaneous/normal scalarization.
A second family of scalarized solutions can also emerge

even if BH are stable against linear perturbations

d2fðϕÞ
dϕ2

����
ϕ¼0

¼ 0: ð4Þ

These are class II.B or nonlinear scalarized solutions and
may occur when the BH is sufficiently perturbed.
These two scalarization types, while distinct, can coexist

simultaneously in what can been termed “mixed scalariza-
tion.” Such scenario has already been investigated in the
context of (EsGB) theories [47,48].
A possible coupling function compatible with both

spontaneous and nonlinear scalarization is

fðϕÞ ¼ e−αϕ
2−βϕ4

; ð5Þ

where α and β are dimensionless coupling constants, with
α < 0 and β < 0. The sign of the coupling parameters ðα; βÞ
was chosen in accordance with the literature. Pure—also

known as nonmixed—spontaneous (nonlinear) scalarization
being recovered when β ¼ 0 (α ¼ 0).
The existence of scalarization is highly dependent on

the sign of the spontaneous/nonlinear function parameters
(α, β). While for pure scalarization the sign of either
parameter is well defined, the presence of an additional
scalarization mechanism, say spontaneous scalarization
(α), allows β to have the “wrong” sign. We call this
counterscalarization.
The objective of this work is twofold: first, to study the

interplay between spontaneous and nonlinear scalarization
in the mixed scalarization scenario; second, to examine the
effects of incorporating a counterscalarization term into the
coupling function.
The paper is organized as follows: Sec. II introduces the

basics of the EMS model, including a description of the
equations of motion, boundary conditions, and relevant
relations. Section III is dedicated to the numerical results.
These include the computation of the domain of existence,
Sec. III B, and both the entropical, Sec. III B, and pertur-
bative, Sec. III C, stabilities. The paper concludes with
some final remarks in Sec. IV.
Throughout this paper, we set 16πG ¼ 1 ¼ c for

convenience. The spacetime signature is chosen to be
ð−;þ;þ;þÞ. We focus exclusively on spherically sym-
metric solutions, which implies that the metric and matter
functions depend solely on the radial coordinate. For
simplicity in notation, once a function is introduced with
its radial dependency, such as XðrÞ, we will subsequently
denote it by X with the understanding that it is a function of
r. Derivatives with respect to the radial coordinate r and
the scalar field ϕ are represented by X0 ≡ dX

dr and X;ϕ ≡ dX
dϕ,

respectively.

II. BLACK HOLES IN THE EMS MODEL

As already stated in the Introduction (Sec. I), in this work
we are going to restrict ourselves to spherically symmetric
EMS models described by action (1). For the line element,
let us consider a standard metric ansatz that is compatible
with spherical symmetry and has two unknown functions

ds2 ¼ −NðrÞe−2δðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ;

with NðrÞ≡ 1 −
2mðrÞ

r
; ð6Þ

where mðrÞ is the Misner-Sharp mass function [52], and
δðrÞ is an unknown metric function. For spherically
symmetric and electrically charged BHs,5 the electrostatic
4-vector potential, AðrÞ ¼ VðrÞdt, and the scalar field is

2The same classification also exists for Scalar-Gauss-Bsnnet
models [47,48].

3For the EMS model, there is an exceptional case: if Q ¼ P,
ϕ ¼ 0 solves this class so that the dyonic, equal charges Reissner-
Nordstrom BH is a solution.

4A similar phenomenon was observed for a vector field instead
of a scalar field [49,50], however, these seem to be prone to ghost
instabilities [51].

5While a magnetic charge would also be compatible with
spherical symmetry, it is not considered in this context—see [46]
for magnetically charged BHs in this context.
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solely radial-dependent ϕðt; r; θ;φÞ≡ ϕðrÞ. The absence
of angular dependence allows one to obtain the effective
Lagrangian,

Leff ¼ e−δm0 −
1

2
r2e−δNϕ02 þ 1

2
fðϕÞeδr2V 02: ð7Þ

Variation of the effective Lagrangian with respect to the
metric (m, σ) and matter functions (V;ϕ) yields the field
equations

m0 ¼ r2Nϕ02

2
þ Q2

2r2fðϕÞ ; δ0 þ rϕ02¼ 0; V 0 ¼−
Qe−δ

fðϕÞr2 ;

ϕ00 þ1þN
rN

ϕ0−
Q2

r3NfðϕÞ
�
ϕ0−

f;ϕðϕÞ
2rfðϕÞ

�
¼ 0: ð8Þ

Where the electrostatic potential V is under a first integral,
which was used to simplify the remaining equations. The
constant of integration is interpreted as the electric
charge, Q.
To solve the set of four coupled ordinary differential

equations (8), one must implement the appropriate boun-
dary conditions. At the horizon, r ¼ rH, the field equa-
tions can be approximated by a power series expansion in
r − rH as

m¼ rH
2
þ Q2

2r2Hfðϕ0Þ
ðr− rHÞþ � � � ;

δ¼ δ0 − rH

�
Q2

2rHðQ2 − r2Hfðϕ0ÞÞ
f;ϕðϕ0Þ
fðϕ0Þ

�
2

ðr− rHÞþ � � � ;

ϕ¼ ϕ0þ
Q2f;ϕðϕ0Þ

2rHfðϕ0ÞðQ2− r2Hfðϕ0ÞÞ
ðr− rHÞþ � � � ;

V ¼−
e−δ0Q
r2Hfðϕ0Þ

ðr− rHÞþ � � � ; ð9Þ

in terms of the two essential parameters ϕ0 and δ0, where
the subscript 0 denotes functions evaluated at the horizon
rH. At spatial infinity, asymptotic flatness is ensured by a
power series expansion in 1=r.

mðrÞ ¼M −
Q2 þQ2

s

2r
þ � � � ; δðrÞ≈ Q2

s

2r2
þ � � � ;

ϕðrÞ ¼Qs

r
þMQs

r2
þ � � � ; VðrÞ ¼ ψe þ

Q
r
þ � � � ; ð10Þ

with M representing the ADM mass, Q the BH’s electric
charge, and Qs the scalar “charge,”6 while ψe is the
electrostatic potential at infinity. It is important to note
that the so-called “scalar” hair associated with the EMS

scalarization model is of a secondary nature and does not
add any additional degree of freedom.
Equation (8), together with the boundary conditions

arising from the power series expansion (9) and (10),
constitute a Dirichlet boundary condition problem that
must be numerically integrated (see Sec. III).

A. Identities and physical quantities of interest

Scalarized solutions are physically characterized by the
dimensionless quantities: charge-to-mass ratio, q, reduced
horizon area, aH, and reduced horizon temperature, tH,

q≡ Q
M

; aH ≡ AH

16πM2
¼ r2H

4M2
;

tH ≡ 8πMTH ¼ 2MN0ðrHÞe−δ0 ; ð11Þ

where AH ¼ 4πr2H and TH ¼ N0ðrHÞe−δ0=4π are the area
and temperature of the BH’s horizon, respectively.
Regularity of the solutions is guaranteed by the Ricci
scalar, R, and the Kretschmann scalar, K ≡ RμνδλRμνδλ,

R ¼ N0

r
ð3rδ0 − 4Þ þ 2

r2
f1þ N½r2δ00 − ð1 − rδ0Þ2�g − N00;

K ¼ 4

r4
ð1 − NÞ2 þ 2

r2
½N02 þ ðN0 − 2Nδ0Þ2�

þ ½N00 − 3δ0N0 þ 2Nðδ02 − δ00Þ�2: ð12Þ

The accuracy of the numerically obtained solutions is
guaranteed through the use of the so-called virial identity,
Smarr law, and nonlinear Smarr relation, which, besides
their inherent physical significance, serve as crucial tests
for the numerical accuracy and consistency of the solutions.
The virial identity is obtained through a Derrick-like

scaling argument [53–56] and is given by

Z
∞

rH

dr

�
e−δr2ϕ02

�
1þ 2rH

r

�
m
r
− 1

��	

¼
Z

∞

rH

dr

�
e−δ

�
1 −

2rH
r

�
1

r2
Q2

fðϕÞ
�
; ð13Þ

which is independent of the equations of motion and
displays that scalarization can occur only in the presence
of an electric charge Q ≠ 0 in an EMS model. Since
1þ 2rH

r ðmr − 1Þ > 0, the left-hand side of the equation is
strictly positive and can only be counterbalanced by a
nonzero electric charge in the right-hand side.
For this family of solutions, the Smarr law is found to be

unaffected by the presence of the scalar hair, implying that
the scalar field does not explicitly appear in the Smarr
formula, [13]:

M ¼ 1

2
THAH þ ψeQ: ð14Þ

6The term scalar “charge” is used due to the similar radial
decay to a true electric charge, not because of an associated
conserved Noether current.
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The first law of black hole thermodynamics for EMS black
holes is expressed as

dM ¼ 1

4
THdAH þ ψedQ: ð15Þ

At last, it can be shown that scalarized solutions also obey
the so-called nonlinear Smarr formula [13],

M2 þQ2
s ¼ Q2 þ 1

4
A2
HT

2
H: ð16Þ

B. Coupling function

As previously mentioned, the choice of the coupling
function is crucial in determining whether the RN BH is
susceptible to scalarization, and hence one should be
careful in designing the coupling function. Let us recap
the conditions for scalarization. The first requirement is
that the GR BH solution should also be a solution within
the EMS model. Analysis of the field equations (8) shows
that this can be secured by imposing (2). This condition is
naturally implemented if one requires the model to be Z2–
invariant under the transformation ϕ → −ϕ. The type of
scalarization, on the other hand, is controlled by the second
derivative of fðϕÞ. For this, it is important to recall that the
scalar field is described by the Klein-Gordon equation

□ϕ ¼ I
4
f;ϕ: ð17Þ

Let us now consider a small-ϕ expansion of the coupling
function

fðϕÞ ¼ fð0Þ þ 1

2

d2f
dϕ2

����
ϕ¼0

ϕ2 þ � � � ; ð18Þ

the Klein-Gordon equation (17) linearized for small-ϕ
reads:

ð□ − μ2effÞϕ ¼ 0; where μ2eff ¼ I
d2fðϕÞ
dϕ2

����
ϕ¼0

: ð19Þ

The instability arises if the scalar field’s effective mass
μ2eff < 0 (also known as tachyonic mass), which, in par-
ticular, requires f;ϕϕ to obey (3) and with the opposite sign
of I . This constitutes the set of solutions known as normal/
spontaneous scalarization associated with class II.A, of
which an exemplary function is

fðϕÞ ¼ e−αϕ
2

; ð20Þ

Class II.B on the other hand, occurs when vacuum
solutions are linearly stable and no tachyonic instability
exists, [see Eq. (4)]. This condition is easily satisfied by

considering higher order terms in the expansion of fðϕÞ
such as

fðϕÞ ¼ e−βϕ
4

: ð21Þ

An exemplary function that simultaneously exhibits
tachyonic and nonlinear instabilities is (5), fðϕÞ ¼
e−αϕ

2−βϕ4

. In this function, the presence of a positive linear
term (α > 0) can counteract the usual scalarization process,
as seen in the term e−αϕ

2

when α is positive. Conversely, a
positive nonlinear term (β > 0) in e−βϕ

4

can similarly
introduce opposing effects to scalarization.
It is feasible to have scalarized solutions where these

counteracting terms, both the linear term α > 0 and the
nonlinear term β < 0, coexist and influence the overall
scalarization dynamics. Such scenarios demonstrate the
complex interplay between different scalarization mecha-
nisms and their collective impact on the behavior of
scalarized black holes.
Analysis of (19) reveals that while these counteracting

terms do not directly induce scalarization, they significantly
modify the scalar field’s dynamics: a positive linear term
(α > 0) functions as a mass term for the scalar field, and a
positive quartic term (β > 0) acts as a positive quartic self-
interaction, both being proportional to the BH’s electric
charge due to the nonminimal coupling with the Maxwell
invariant. Investigating their combined effect on scalariza-
tion phenomena is a pivotal aspect of this work.

III. NUMERICAL RESULTS

The set of four coupled ODEs (8), with the proper
boundary conditions (9) and (10), are solved numerically as
a two-point boundary value problem. The chosen routines
automatically impose the proper boundary conditions
through a shooting method on the two unknown parameters
ϕ0 and δ0, with the maximum integration error and
boundary conditions automatically ensured to be less than
10−15.
Physical accuracy of the solutions is further validated

through the virial identity, with a relative error of 10−6, and
the Smarr and nonlinear Smarr relations, each with a
relative error of 10−7.
The resulting numerical solution’s profile, depicted

in Fig. 1 for an exemplary solution characterized by
the parameters ϕ0 ¼ 0.40, q ¼ 0.90, α ¼ −10.0, and
β ¼ −10.0, shows that the scalar field ϕðrÞ is monoton-
ically decreasing with radius. At the horizon, ϕ0 is at its
maximum, diminishing to zero at large radii. All defining
radial functions, such as the metric function and the scalar
field, converge to those of a comparable Reissner-
Nordström (RN) black hole with similar global charges.
Notably, the mass function approaches the ADM mass at
infinity, confirming the consistency of these scalarized
solutions.
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All obtained solutions are regular at and outside the
horizon, rH, with each scalarized black hole solution
uniquely defined by the set of parameters ðrH; α; β; qÞ.

A. Domain of existence

First, let us outline the domain of existence for the two
classes: Scalarized-connected and scalarized-disconnected.
Class II.A (scalarized-connected): This class, depicted in

Fig. 2 (left panel), illustrates scenarios of spontaneous
scalarization occurring through nonminimal coupling of a
scalar field to matter fields, typically via functions like e−αϕ

2

where β ¼ 0. Such scalarization gives rise to a domain
where scalarized black holes coexist with Reissner-
Nordström (RN) black holes. This domain is framed by
an existence line, comprising RN black holes that enable
scalar field perturbations, and a critical line that marks
singular scalarized black hole configurations. Within this
framework, particularly for q ≤ 1, we observe a coexistence
of scalarized and RN black holes sharing identical global
charges. In these regions, scalarized black holes are

generally entropically favored, hinting at their potential
role as end-states in the evolution of linearly unstable RN
black holes in the EMS model. Notably, along constant α
branches, the domain’s critical line reveals the possibility of
scalarized black holes becoming overcharged as q extends
beyond unity.
Class II.B (scalarized-disconnected): Conversely, illus-

trated in Fig. 2 (right panel), this class covers nonlinear
scalarization, arising even when background solutions are
stable against linear perturbations. It requires significant
nonlinear perturbations for scalar hair development and is
associated with functions like e−βϕ

4

(with α ¼ 0). The
domain of existence for nonlinear scalarization is defined
by different boundaries, emphasizing the influence of
higher-order effects in the scalar field. This class features
a novel two-branch structure of scalarized black holes,
starting from the extremal RN black hole (the “cold”
branch) and extending into an over-extremal regime (the
“hot” branch). This unique structure leads to three different
solutions for the same q in certain regions: two scalarized
(cold and hot) and one standard RN black hole, a character-
istic distinct from class II.A.
Variation of the horizon radius, rH, and coupling

parameters, ðα; βÞ, for a fixed electric charge Q, form
the 3–dimensional domain of existence that characterizes
the EMS model under analysis. To avoid the additional
complexity associated with the 3–dimensional domain of
existence, let us fix one of the coupling parameters (say α)
and vary the other (β)—see Fig. 2.
In Fig. 2 is graphically represented the projection of the

domain of existence of a scalarized BH as a function of α for
three values of β ¼ f−10.0; 0;þ10.0g (left panel); and as a
function of β for four values of α ¼ f−10.0;−1.0; 0;þ1.0g
(right panel). A common feature of both domains of
existence is a region with q ≤ 1—where degeneracy
occurs–and a region with overcharged solutions q > 1.
The former region is limited from below by the bifurcation/
turning line and from above by the extremal line q ¼ 1, and

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Solutions profile (radial functions) for a mixed scalar-
ized black hole solution with parameters ϕ0 ¼ 0.40, q ¼ 0.90
and coupling constants α ¼ −10.0 and β ¼ −10.0.

FIG. 2. Domain of existence of scalarized BHs in EMS models (shaded blue regions) with coupling function fðϕÞ ¼ e−αϕ
2−βϕ4

as a
function of α with β ¼ f−10.0; 0;þ10.0g (left panel); or β for α ¼ f−10.0;−1.0; 0;þ1.0g (right panel). The domain of existence is
bounded from below by the existence/turning line (solid/dot-dashed line) and from above by the critical line (dashed line).
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represents a region of the parameter space where, at least,
two BH configurations with the same q coexist: a bald
RN BH and one or more scalarized BH solution. These
solutions, however, possess different horizon radii (Fig. 3),
temperatures and entropy (see Sec. III B).
The overcharged region goes from the extremal line,

q ¼ 1, and is bounded from above by the critical line,
which is highly coupling parameter’s dependent: qcrit:≡
qcrit:ðα; βÞ. At the critical line, the solution’s horizon radius
tends to zero, rH → 0. In this region, no bald RN BH exist
and no degeneracy between scalarized BHs was observed.
After the critical line, no BH solutions exist.
In addition, Fig. 2 demonstrates a dominance of the

tachyonic instability over the nonlinear scalarization: for
the same value of β and α, the domain of existence is
bounded from below by the bifurcation line and has a qcrit.
comparable to the pure spontaneous scalarization, β ¼ 0.0.
Such is expected since the maximum of the scalar field
amplitude occurs at the horizon (see Fig. 1) and is smaller
than unity maxðϕÞ ¼ ϕ0 < 1, resulting in a decreased
contribution of the higher powers of the scalar field.7

The lower bound, however, depends on the values of α
and β. If β ≲ α, the scalarization is dominated by the
tachyonic instability and the domain of existence is
bounded from below by the bifurcation line; when
β ≫ α, nonlinear scalarization dominates and the domain
of existence is bounded from below by the turning line (see
Fig. 2). In this case, the tachyonic instability is not strong
enough to sustain a negligible amount of scalar field (see
Fig. 3), and a minimum value of ϕ0 exists. With the

increase of α, the size of the initial ϕ0 jump decreases until
ϕ0 → 0 and the tachyonic instability dominates.
Let us now analyse the individual domains of existence.

Starting with a fixed β ¼ f−10.0; 0.0;þ10.0g and vary
α—see Fig. 2 (left panel). In the majority of the domain of
existence, solutions bifurcate from the RN BH at q ≤ 1—
where scalarized BHs with a negligibly amount of scalar
field can exist—and stops at the critical line, rH → 0. In
between a continuously monotonic increase of the scalar
field amplitude at the horizon and a reduction of the latter
occurs.
As expected, the bifurcation line is insensitive to the

nonlinear term since the bifurcation is only dependent on
the linear terms of f;ϕðϕÞ that enter into the right-hand side
(rhs) of the Klein-Gordon equation (17).
The critical line, on the other hand, is highly dependent

on the coupling parameters. The maximum charge-to-mass
ratio for which the critical solutions exist, qcrit., increases/
decreases with the addition of a negative/positive β term.
While for β < 0, a nonlinear instability that amplifies the
scalarization exists, a positive value has the opposite effect.
The β > 0 decreases the width of the domain of existence
due to a decrease in qcrit., resulting in a quench of the
scalarization similar to the one observed for scalarization
with a positive self-interaction [57].
Observe now the case with fixed α ¼ f−10.0;−1.0;

0.0;þ1.0g and varying β—Fig. 2 (right panel). In this case,
for all the chosen α ≠ −10.0, solutions start at the extremal
line q ¼ 1 for which a minimal, non-negligible, amount of
scalar field exists around the BH, ϕ0 ≠ 0.
By analyzing Fig. 3, we can notice that the BH’s scalar

field’s associated jump high decreases (increases) with the
addition of the α < 0 (α > 0) term.
Following the initial jump in the scalar field amplitude at

the horizon, solutions observe a simultaneous increase of
ϕ0 and rH until a maximum mass, rH is reached—Fig. 3
β ¼ −10 lines. After this point, a second branch with
decreasing rH and increasing ϕ0 exists until the critical
solution is achieved. The latter is known as the hot branch
and is known to be stable for α ¼ 0 [58,59]; the former is
known as the cold branch and is unstable (the denomination
will be clear in the thermodynamics Sec. III B).
As mentioned before, while the effect of a positive α is

similar to scalarization by a massive scalar field, the
positive β mimics a positive self-interacting (attractive)
potential. The present results follow the same pattern as the
one presented for a massive/self-interacting scalar field in
EMS [57,60] and scalar-Gauss-Bonnet models [48,61,62].
In particular, a quench of the scalarization phenomena due
to the decrease in the domain of existence width (see
Fig. 2). However, due to the nonminimal coupling between
the “mass” or “self-interaction” terms to the Maxwell
invariant, the impact of the latter is proportional to the
electric charge Q.

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Scalar field horizon amplitude, ϕ0, as a function of the
charge-to-mass ratio, q, for a mixed scalarized BH for six
different coupling parameters configurations: Orange dashed line
for ð−10.0;−10.0Þ, solid blue line for ð−10.0; 0.0Þ, green dashed
line with spacing for ð−10.0;þ10.0Þ, purple dashed line with
closer spacing for ð−1.0;−10.0Þ, solid red line for ð0.0;−10.0Þ,
and black dashed line for ðþ1.0;−10.0Þ.

7A similar behavior was observed for the scalar-Gauss-Bonnet
model [47].
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B. Thermodynamics

A solution is said to be stable if it is simultaneously
entropically preferable and stable against radial perturba-
tions. The latter will be studied in Sec. III C. In EMS
models, entropy is given by the Bekeinstein-Hawking
formula [63–65] and reduces to the analysis of the reduced
horizon area, aH, observe Fig. 4 (left panel). Analysis of the
horizon area shows that solutions dominated by sponta-
neous scalarization are always entropically preferable when
compared with electrovacuum GR; while nonlinearly domi-
nated solutions have a first branch that is everywhere
entropically unfavorable (also known as cold branch),
and a second branch which contains a set of solutions that
are entropically preferable (also known as hot branch). The
second branch’s entropically nonpreferable region decreases

(increases) with the addition of α < 0 (α > 0). The termi-
nology hot/cold comes from the second branch having a
higher temperature than the first, see Fig. 4 (right panel).

C. Comments on stability

Stability against radial perturbations is studied through a
standard strategy that considers spherically symmetric,
linear perturbations of the equilibrium solutions while
keeping the metric ansatz (6), but allowing the functions
N; δ;ϕ; V time, t, dependent besides r:

ds2 ¼ −Ñðr; tÞe−2δ̃ðr;tÞdt2 þ dr2

Ñðr; tÞ þ r2ðdθ2 þ sin2θdφ2Þ;

A¼ Ṽðr; tÞdt; ϕ¼ ϕ̃ðr; tÞ: ð22Þ

FIG. 4. Reduced area, aH , (left panel) and reduced horizon temperature, tH , (right panel) as a function of the charge-to-mass ratio q for
a mixed scalarized BH with six different coupling parameter’s configurations ðα; βÞ: (dot-dashed purple) mixed scalarization
ð−10.0;−10.0Þ; (dotted green) pure spontaneous scalarization ð−10.0; 0.0Þ; (dotted red) spontaneous scalarization ð−10.0;þ10.0Þ;
(dashed blue) mixed scalarization with ð−1.0;−10.0Þ; (dot-dashed orange) pure nonlinear scalarization ð0.0;−10.0Þ; mixed
scalarization with ðþ1.0;−10.0Þ.

FIG. 5. Effective potential for a set of scalarized RN BH solutions. Left panel: spontaneous scalarized dominated solutions with
α ¼ −10.0 and (dashed red) β ¼ −10.0mixed scalarization, (solid green) β ¼ 0.0 pure spontaneous scalarization, and (dot-dashed blue)
β ¼ þ10.0 counternonlinear. Right panel: nonlinear scalarization dominated solutions with β ¼ −10.0 for both hot (solid) and cold
(dashed) branches with (red) α ¼ −1.0 mixed scalarization, (black) α ¼ 0.0 pure nonlinear scalarization, and (blue) α ¼ þ1.0
counterspontaneous scalarization.
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Each function can be further expanded into the equilibrium
solution (also known as “bare”) that where obtained
previously (Secs. III–III B), plus a perturbation term.
The latter contains the time-dependence through a
Fourier mode with frequency Ω,

Ñðr; tÞ ¼ NðrÞ þ ϵNpðrÞe−iΩt;
δ̃ðr; tÞ ¼ δðrÞ þ ϵδpðrÞe−iΩt;
ϕ̃ðr; tÞ ¼ ϕðrÞ þ ϵϕpðrÞe−iΩt;
Ṽðr; tÞ ¼ VðrÞ þ ϵVpðrÞe−iΩt; ð23Þ

where the subscript p denotes perturbations of the equi-
librium solutions. The linearized field equations around the
background solution yield the metric and VpðrÞ perturba-
tions expressed in terms of the scalar field perturbation,
ϕpðrÞ,

Np ¼ −2rNϕ0ϕp; δp ¼ −2
Z

drrϕ0ϕ0
p;

V 0
p ¼ −V 0

�
δp þ ϕp

f;ϕðϕÞ
fðϕÞ

�
; ð24Þ

This leads to a single perturbation equation for ϕpðrÞwhich
can be written in a Schrödinger-like form by redefining
ΨðrÞ ¼ rϕp and inserting the “tortoise” coordinate x
defined by dx=dr ¼ eδ=N

−
d2Ψ
dx2

þUΩΨ ¼ Ω2Ψ; ð25Þ

with the perturbation potential UΩ defined as

UΩ ≡ e−2δN
r2

�
1−N − 2r2ϕ02 −

Q2

2r2

�
2

fðϕÞ ð1− 2r2ϕ02Þ

−
2f2;ϕðϕÞ
f3ðϕÞ þ 1

f2ðϕÞ ðf;ϕϕðϕÞ þ 4rϕ0f;ϕðϕÞÞ
�	

ð26Þ

The potential UΩ, which is regular across the entire domain
−∞ < x < ∞, diminishes to zero at both the black hole
(BH) event horizon and infinity. A mode is classified as
unstable if Ω2 < 0, which, within the asymptotic boundary
conditions of our framework, indicates a bound state.
However, a standard quantum mechanical result dictates
that Eq. (25) will not exhibit bound states ifUΩ consistently
exceeds its minimal asymptotic value, implying it must be
positive (see, e.g., [66]). Therefore, a uniformly positive
effective potential serves as evidence of mode stability
against spherical perturbations.
To discern the interplay between the parameters α and β

on the effective potential, we analyzed the profile of UΩ for
several scalarized solutions, holding α constant while

varying β—Fig. 5 (left panel)—and vice versa—Fig. 5
(right panel).
The effective potential for radial spherical perturbations

of spontaneously scalarized dominated solutions corre-
sponding to a fixed α ¼ −10.0—Fig. 5 (left panel)—exhibit
an everywhere positive effective potential, UΩ > 0, sug-
gesting the absence of instabilities. Additionally, one
observes an increase (decrease) of the maximum value of
UΩ with the addition of the nonlinear (counternonlinear)
parameter β.
In the case of nonlinearly dominated scalarized solutions

with fixed β ¼ −10.0—Fig. 5 (right panel)—for both the
hot and cold branches, a region where UΩ changes sign
exists. Which, while not indicating instabilities, does not
guarantee stability.
The addition of a tachyonic term, α ¼ −1.0, to the

nonlinearly dominated scalarized solution reduces the ampli-
tude of the negative UΩ region, bringing it closer to the
stable spontaneously lead scalarization, while a counter-
scalarized term α ¼ þ1.0 deepens it.
At last, it is important to note that a nonuniformly

positive potential for the nonlinear scalarized solutions is
not a guarantee of instabilities. To further investigate these
solutions, the application of more intricate methods like the
S-deformation method [67–69] is required. Such is beyond
the scope of this paper (see [58] for a similar study of the
pure nonlinear scalarization, and [57,60] for the impact of
self-interacting/mass term).

IV. CONCLUSIONS

In this work, we have investigated the interplay between
the spontaneous and nonlinear scalarization of charged
black holes within the Einstein-Maxwell-scalar model. The
resulting mixed scalarized solutions possess both properties
of pure nonlinear and spontaneous scalarization.
The interplay between the two types of scalarization

shows a dominance of the spontaneous properties over the
nonlinear ones. In particular, the domain of existence for
comparable coupling parameters possesses the same struc-
ture of the spontaneous scalarization with a slight increase
in the width from the nonlinear scalarization. The influence
of nonlinear scalarization becomes apparent only when its
coupling parameter is significantly larger than that of
spontaneous scalarization.
The tachyonic instability associated with the spontaneous

scalarization in the mixed coupling makes the black hole
more susceptible to scalarization. As a result, it requires a
weaker coupling of the scalar field to the Maxwell invariant
to achieve the same level of scalarization.
The presence of a mixed scalarization also allowed the

study of a “counterscalarization” term, wherein one of the
scalarization parameters has the “wrong” sign and,
instead of supporting/intensifying the scalarizaton, sup-

presses it. From the linearized KG equation, one observes
that these terms possess the properties of a scalar field’s
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mass (for the linear parameter α > 0) or of a positive self-
interaction (for the nonlinear β > 0). The resulting quench
associated with these parameters mimics the effect of a
scalar field’s mass/self-interaction observed in previous
studies [57,60]. However, due to the coupling to the
Maxwell invariant, the effect is not constant.
Thermodynamically, mixed scalarized solutions with

higher negative values of both α and β are favorable.
Solutions dominated by spontaneous scalarization are
entropically preferable over their general relativity counter-
parts, while nonlinear dominated solutions show mixed
thermodynamic behavior, i.e., an entropically favorable and
unfavorable regions.
Perturbative stability analysis against radial perturba-

tions indicated stability for dominant spontaneously sca-
larized black holes. In contrast, for nonlinear dominated
scalarization, such a conclusion is not possible to be made.
Further studies into these must be made.
However, it seems like the addition of the spontaneous

scalarization parameter to the nonlinear scalarization makes
the resulting mixed scalarization tend to a more stable
configuration.

Future research directions include applying the
S-Deformation method for an in-depth analysis of the
radial stability of nonlinearly dominated solutions. A
comprehensive study of quasinormal modes in mixed
scalarized solutions could provide further insights extend-
ing the work of [59,70–72]. Additionally, incorporating
rotation into these mixed scalarization configurations
presents an intriguing avenue for exploration.
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