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The thermodynamic interpretation of the Stephani Universes is studied in detail. The general expression
of the speed of sound and of the thermodynamic schemes associated with a thermodynamic solution is
obtained. The constraints imposed on the solutions by considering some significant physical properties are
analyzed. We focus on the models where the cosmological observer measures isotropic radiation. We
consider some examples, and a solution that models an ultrarelativistic gas is analyzed in detail.
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I. INTRODUCTION

The perturbation theory of the Friedmann-Lemaître-
Robertson-Walker (FLRW) models seems to provide a
good explanation of the observed degree of inhomogeneity
in the Universe. However, the structure and evolution of
galaxies, clusters, and voids require an analysis outside of
the perturbative regime. They are often modeled by
Newtonian N-body computations. But the nonlinear effects
of the Einstein field equations could be critical in the
structure formation, and a large number of studies have
been devoted to providing exact inhomogeneous models
for studying the formation of structures and for analyzing
the effect of nonlinear inhomogeneities on cosmic micro-
wave background radiation (see [1–3] and references
therein).
A broad review of the inhomogeneous cosmological

solutions, which contain the FLRW models as a limit, can
be found in Krasiński’s book [1]. Among others, two
families of metrics are largely analyzed: the Szekeres-
Szafron solutions [4,5] and the Stephani-Barnes metrics
[6,7]. Krasiński also remarks on the need to analyze if these
inhomogeneous universes model realistic physical fluids.
Since then, considerable progress has been made in this

direction. It is known that a thermodynamic Szekeres-
Szafron solution of class I admits, necessarily, a three-
dimensional group of isometries on two-dimensional
orbits [8] (see also the recent paper [9]). These metrics
are the Lemaître-Tolman models (with pressure) and their

plane and hyperbolic counterparts. Recently [10], we have
analyzed the thermodynamics of the subclass admitting a
flat synchronization, and we have studied in depth the ideal
gas models.
On the other hand, thermodynamic Szekeres-Szafron

solutions of class II without symmetries exist [8]. The
analysis of their thermodynamic properties and the study of
the ideal gas models require distinguishing the singular and
regular models [11,12]. When the spacetime admits spheri-
cal, plane, or hyperbolic symmetry, the solution is a T-model,
whose thermodynamic properties have been analyzed
recently [13,14].
The conformally flat solutions of the Barnes-Stephani

metrics are the Stephani universes, which were obtained by
Stephani [6], and recovered later by Barnes [7] as the
conformally flat class of irrotational and shear-free perfect
fluid spacetimes with nonzero expansion. They can also be
characterized as the spacetimes verifying a weak cosmo-
logical principle without any hypothesis on the energy
tensor [15,16].
Bona and Coll [16] also showed that the necessary and

sufficient condition for a Stephani universe to represent the
evolution of a fluid in local thermal equilibrium is to admit
a three-dimensional isometry group on two-dimensional
orbits. This result was later recovered in [8], and spherically
symmetric Stephani universes that may be interpreted either
as a classical monoatomic ideal gas or as a matter-radiation
mixture were considered in [17].
In [18] we studied the Stephani universes that can be

interpreted as a generic ideal gas in local thermal equilib-
rium, and more recently [19] we have analyzed in depth
the conditions for physical reality of the ideal models
that approach a relativistic Synge gas at low or high
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temperatures. Despite these results, there are a lot of
questions to deal with concerning the physical meaning
of the Stephani universes. In order to understand these open
problems that we analyze in this paper, we summarize below
some notions on the necessary macroscopic conditions for
physical reality and on the spacetimes admitting isotropic
radiation.

A. Macroscopic conditions for physical reality

The evolution of a relativistic perfect fluid is expressed
by an energy tensor in the form T ¼ ðρþ pÞu ⊗ uþ pg,
and fulfilling the divergence-free condition ∇ · T ¼ 0. This
constraint consists of a first-order differential system of
four equations on five hydrodynamic quantities (unit
velocity u, energy density ρ, and pressure p).
Energy conditions are necessary algebraic conditions

for physical reality and, in the perfect fluid case, they
state [20]:

E∶ − ρ < p ≤ ρ: ð1Þ

If the energy tensor describes the (nonisoenergetic,
uðρÞ ¼ uα∂αρ ≠ 0) evolution of a thermodynamic perfect
fluid in local thermal equilibrium, then the hydrodynamic
quantities fu; ρ; pg must fulfill the hydrodynamic sonic
condition [21,22]:

S∶ dχ ∧ dp ∧ dρ ¼ 0; χ ≡ uðpÞ
uðρÞ : ð2Þ

When this condition holds, the indicatrix of the local
thermal equilibrium χ is a function of state, χ ¼ χðρ; pÞ,
which physically represents the square of the speed of sound
in the fluid, χðρ; pÞ≡ c2s . Moreover, a set fn; s;Θg of
thermodynamic quantities (matter density n, specific
entropy s, and temperature Θ) exists (thermodynamic
scheme), which is constrained by the common thermo-
dynamic laws [2,23,24]. Namely, the conservation of matter

∇ · ðnuÞ ¼ uðnÞ þ nθ ¼ 0; ð3Þ

where θ is the expansion of the fluid flow; and the local
thermal equilibrium relation, which can be written as

nΘds ¼ dρ − hdn; h≡ ρþ p
n

; ð4Þ

where h is the relativistic specific enthalpy. Then, the
specific internal energy ϵ is determined by

ρ ¼ nð1þ ϵÞ: ð5Þ

When a divergence-free perfect energy tensor T ≡
fu; ρ; pg fulfills the hydrodynamic sonic condition S we
say that it defines a hydrodynamic flow.

Another basic physical condition imposed on the
thermodynamic schemes fn; s;Θg is the positivity of the
matter density, of the temperature, and of the specific
internal energy,

P∶ Θ > 0; ρ > n > 0: ð6Þ

Finally, a coherent theory of shock waves requires the
relativistic compressibility conditions [25–27]. They
impose some inequalities on the derivatives of the function
of state τ ¼ τðp; sÞ, τ ¼ ĥ=n, ĥ ¼ h=c2 being the dimen-
sionless enthalpy index (note that although we set c ¼ 1 in
the rest of the paper, we write it explicitly here to show that
ĥ is dimensionless). In [19] we have shown that the
compressibility conditions H1, ðτ0pÞs < 0, ðτ00pÞs > 0 only
restrict the hydrodynamic quantities, and that they can be
stated in terms of the function of state c2s ¼ χðρ; pÞ:

H1∶
0 < χ < 1;

ðρþ pÞðχχ0p þ χ0ρÞ þ 2χð1 − χÞ > 0:
ð7Þ

However, the compressibility condition H2, ðτ0sÞp > 0,
imposes constraints on the thermodynamic scheme and it
can be stated as [19]

H2∶ 2nΘ >
1

s0ρ
: ð8Þ

In expressions (7) and (8), and hereinafter, for a function of
state f ¼ fðρ; pÞ we write f0ρ ≡ ð∂ρfÞp and f0p ≡ ð∂pfÞρ.
Note that the energy conditions E, the hydrodynamic

sonic condition S, and the compressibility conditions H1

exclusively involve the hydrodynamic quantities fu; ρ; pg.
They fully determine the hydrodynamic flow of the
thermodynamic fluid in local thermal equilibrium and,
consequently, restrict the admissible gravitational field as a
consequence of the Einstein equations.
Instead, the positivity conditions P and the compress-

ibility condition H2 restrict the thermodynamic schemes
fn; s;Θg associated with a hydrodynamic flow fu; ρ; pg.
Consequently, they do not restrict the gravitational field
and the admissible thermodynamics offer different physical
interpretations for a given hydrodynamic perfect fluid flow.

B. Isotropic radiation

The high level of isotropy of the cosmic microwave
background radiation is usually considered as proof that a
good cosmological model must be close to a FLRW
universe. This conception rests on the Ehlers-Geren-
Sachs (EGS) theorem that states [28]: if the cosmological
observer of a dust solution measures isotropic radiation,
then the spacetime is a FLRW model. This result follows
from a previous one by Tauber and Weinberg [29] on the
isotropic solutions of the Liouville equation, which was
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later generalized for the case when an isotropic collision
term exists [30].
The general form of the Einstein equations for space-

times with isotropic radiation measured by an irrotational
observer has been obtained in [31]. This study shows that
the geodesic character of the cosmological observer is a
necessary requirement in generalizing the EGS result. In
fact, Clarkson and Barrett [32] proved that the perfect fluid
solutions with a comoving irrotational observer measuring
isotropic radiation are a subclass of the thermodynamic
Stephani universes, which only have a geodesic flow in the
FLRW limit.
An essential property that generates all the results in the

above references is the following: a unit vector u defines an
observer measuring isotropic radiation if and only if it
fulfills

σ ¼ 0; d

�
a −

1

3
θu

�
¼ 0; ð9Þ

where σ, a, and θ are, respectively, the shear, the
acceleration, and the expansion of u. Conditions (9) state
that u is proportional to a a conformal Killing vector.
Consequently, the spacetime is conformally stationary. On
the other hand, the energy density, the pressure, and the
temperature of the radiation fluid are given by [31]

ρr¼3pr¼aRΘ4
r ; Θr¼Θ0β

−1; dlnβ¼a−
1

3
θu: ð10Þ

C. About this paper

Although many properties on the thermodynamics of
the Stephani universes are known [8,15–19], there are
significant features that are yet to be analyzed. In Sec. II we
obtain the speed of sound, c2s ¼ χðρ; pÞ, for a generic
thermodynamic Stephani universe, and we outline several
approaches to undertake the field equations. We also
determine the corresponding associated thermodynamic
schemes fn; s;Θg.
In order to better understand the physical meaning of the

thermodynamic Stephani universes we must demand com-
plementary significant physical qualities. In Sec. III we
analyze how some of these constraints restrict the models.
First, we impose the ideal sonic condition, χ ¼ χðπÞ ≠ π≡
p=ρ, which leads to the ideal gas Stephani universes. These
models have already been studied [18,19] and here we
summarize some results that we will use later. Second, we
analyze the compatibility of the solutions with a fluid with
nonvanishing thermal conductivity coefficient, and we
show that only the FLRW models are possible. Third,
we study the constraints on the models approaching a
classical ideal gas at low temperatures. And finally, we
determine the restrictions when we demand a good behav-
ior at high temperatures.

Section IV is devoted to studying the perfect fluids with
an irrotational unit velocity measuring isotropic radiation.
Starting from the result by Clarkson and Barrett [32], we
obtain the constraints on the metric line element and we
write it for the spherically symmetric case. We show that
theDabrowski metric [33], which was considered in [32] as
a cosmological model with isotropic radiation, is a solution
that does not fulfill the macroscopic constraint for physical
reality as a fluid in local thermal equilibrium. We also
give some general properties of the ideal gas models with
isotropic radiation.
In Sec. V we study the Stephani universes modeling an

ultrarelativistic gas with the comoving observer measuring
isotropic radiation. They approximate a Synge gas at high
temperatures and fulfill the compressibility conditions. The
so-called singular model is analyzed in detail by obtaining
the spacetime regions where the energy conditions hold,
getting the time evolution and radial profile of the thermo-
dynamic quantities, and studying the generalized Friedmann
equation.
Finally, in Sec. VI we comment on the conceptual and

practical interest of our results and we discuss possible
future work.

II. THERMODYNAMIC STEPHANI UNIVERSES

In [16], Bona and Coll showed that the Stephani
universes that model the evolution of a fluid in local
thermal equilibrium are those admitting a three-
dimensional isometry group on two-dimensional orbits.
They also showed that the metric line element of the
thermodynamic Stephani universes may be written as

ds2 ¼ −α2dt2 þ Ω2ðdx2 þ dy2 þ dz2Þ; ð11aÞ

α≡R∂R lnL; Ω≡ w
2z

L; L≡ RðtÞ
1þ bðtÞw; ð11bÞ

w≡ 2z
1þ ε

4
r2
; r2 ≡ x2 þ y2 þ z2; ð11cÞ

RðtÞ and bðtÞ being two arbitrary functions of time. Its
symmetry group is spherical, plane, or hyperbolical
depending on whether ε is 1, 0, or −1.
Furthermore, the fluid unit velocity is u ¼ ð1=αÞ∂t, and

the energy density, the pressure, the expansion, and the
three-space curvature are given by

ρ ¼ 3

R2
ðṘ2 þ ε − 4b2Þ; p ¼ −ρ −

R
3

ρ0ðRÞ
α

; ð12Þ

θ ¼ 3Ṙ
R

≠ 0; κ ¼ 1

R2
ðε − 4b2Þ; ð13Þ

where, for a function f depending on the coordinate t, a dot
denotes the derivative with respect to t. Also, if g is another
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function of t, we may write f ¼ fðgÞ and f0 ¼ f0ðgÞ. Note
that the metric and the invariant quantities depend on two
arbitrary functions of time fRðtÞ; bðtÞg.
The FLRW limit occurs when one of the following three

equivalent conditions holds: (i) bðtÞ ¼ constant, (ii) the
fluid flow is geodesic (α ¼ 1), (iii) the pressure is homo-
geneous, p ¼ pðtÞ.

A. Speed of sound: Indicatrix function χ ðρ;pÞ
Due to the symmetries of the metric line element (11), all

scalar invariants depend on two functions ðt; wÞ at most.
Then, the hydrodynamic sonic condition S given in (2) is
automatically fulfilled. Now, we study the general expres-
sion of χðρ; pÞ, which collects all the thermodynamic
information that can be expressed using exclusively hydro-
dynamic quantities.
From the second equation in (12), a direct calculation

leads to

π ¼ p
ρ
¼ a

α
− 1; a ¼ aðRÞ≡ −

Rρ0ðRÞ
3ρ

; ð14Þ

χ ≡ uðpÞ
uðρÞ ¼

∂RðρπÞ
∂Rρ

¼ π −
R
3a

∂R

�
a
α

�
; ð15Þ

and, from the definition of α in (11b), it follows

α ¼ αðR;wÞ≡ 1þ ðb − Rb0Þw
1þ bw

: ð16Þ

Then, from these expressions, we obtain

π ¼ πðR;wÞ≡ að1þ bwÞ
1þ ðb − Rb0Þw − 1; ð17Þ

χ ¼ χðπ; RÞ≡ π þ 1

3
þ 1

3
ðπ þ 1Þ½ðπ þ 1ÞA1ðRÞ þ A2ðRÞ�;

ð18Þ

A1ðRÞ≡ −
Rb00

a2b0
; A2ðRÞ≡ Rb00

ab0
−
a0R
a2

−
1

a
: ð19Þ

Thus, ρ being an effective function of R, the functions A1

and A2 can be considered as depending on ρ, and we arrive
at the following proposition:
Proposition 1. The speed of sound, c2s ¼ χðρ; pÞ, of a

thermodynamic Stephani universe (11) is given by:

χðρ;pÞ¼πþ1

3
þ1

3
ðπþ1Þ�ðπþ1ÞA1ðρÞþA2ðρÞ

�
; ð20Þ

where π ¼ p=ρ, and A1ðρÞ and A2ðρÞ are two real
functions.

Every choice of these two functions determines the
indicatrix function, which fixes the hydrodynamic proper-
ties of a specific thermodynamic Stephani universe.

B. On the generalized Friedmann equations

When studying these physical properties of the solutions
we can adopt different approaches. On the one hand, we
can give the functions of time RðtÞ and bðtÞ, which
determine a solution, and from (12) and (19), calculate
the functions ρðRÞ, A1ðRÞ, and A2ðRÞ. Then, we can obtain
RðρÞ, and (20) gives the indicatrix function χðρ; pÞ, which
would have to be analyzed to know the thermodynamic
meaning of this specific solution.
On the other hand, we can prescribe the functions A1ðρÞ

and A2ðρÞ so that the indicatrix function χðρ; pÞ has
specific physical properties. This choice defines a differ-
ential system for the metric functions RðtÞ and bðtÞ that
must be solved.
This second standpoint is the one we take when studying

the ideal gas Stephani universes [18]. The ideal gas
equation of state imposes the indicatrix function to be of
the form χ ¼ χðπÞ, π ¼ p=ρ [22]. Then, A1ðρÞ and A2ðρÞ
are, necessarily, constant functions, and the study of
the subsequent equations (19) leads us to distinguish the
regular and singular models, and to obtain five possible
classes of ideal gas Stephani models [18,19] (see
Sec. III A below).
In studying the field equations for a given choice of the

functions AiðρÞ, it could be suitable to consider all the
functions of t as depending on the variable ρ. Then,
Eq. (19) are equivalent to

a1ðρÞR2 − R00ðρÞR − R0ðρÞ½a2ðρÞR − 2R0ðρÞ� ¼ 0; ð21Þ

bðρÞ ¼
Z

½R2ðρÞe−
R

a2ðρÞdρ�dρ; ð22Þ

a1ðρÞ≡ A1ðρÞ
9ρ2

; a2ðρÞ≡ A2ðρÞ þ 3

3ρ
: ð23Þ

Thus, we obtain the second-order differential equation (21)
for RðρÞ. Once solved, expression (22) determines bðρÞ.
Finally, we must solve the generalized Friedmann equation
for ρðtÞ that follows from (12):

ρR2ðρÞ ¼ 3
�
R0ðρÞ2ρ̇2 þ ε − 4bðρÞ2�: ð24Þ

C. Thermodynamic schemes: Entropy,
matter density, and temperature

Each of the solutions considered above can be furnished
with a family of thermodynamic schemes fn; s;Θg which
offer different thermodynamic interpretations of this sol-
ution. In [22] we have shown that the specific entropies s
and the matter densities n associated with T are of the form
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s ¼ sðs̄Þ and n ¼ n̄=Nðs̄Þ, where sðs̄Þ and Nðs̄Þ are
arbitrary real functions of a particular solution s̄ ¼
s̄ðρ; pÞ to the equation uðsÞ ¼ 0, and n̄ ¼ n̄ðρ; pÞ is a
particular solution to Eq. (3). The metric function w given
in (11c) is a function of state that plays an important role in
obtaining these thermodynamic schemes. From expression
(17) we obtain

w¼ πþ1−aðRÞ
ðπþ1Þ½Rb0ðRÞ−bðRÞ�þaðRÞbðRÞ≡wðρ;pÞ: ð25Þ

Note that w ¼ wðρ; pÞ is a function of state whose
dependence on p is explicit, while its dependence on ρ
is partially implicit through the function of time RðρÞ.
Moreover, we have that w fulfills uðwÞ ¼ 0. Consequently,
the specific entropy is an arbitrary real function depending
on w, s ¼ sðwÞ [22].
On the other hand, from the expression (13) of the

expansion it follows that n̄ ¼ L−3 is a particular solution of
the matter conservation equation (3). Then, taking into
account the expression (11c) of L, we obtain the following
proposition:
Proposition 2. The thermodynamic schemes associated

with a thermodynamic Stephani universe (11) are deter-
mined by a specific entropy s and a matter density n of the
form

sðρ; pÞ ¼ sðwÞ; nðρ; pÞ ¼ ð1þ bwÞ3½NðwÞ�−1
R3

; ð26Þ

where sðwÞ and NðwÞ are two arbitrary real functions of the
functionw ¼ wðρ; pÞ given in (25), and bðRÞ and R depend
on ρ through the function R ¼ RðρÞ.
The temperature of the thermodynamic scheme defined

by each pair fs; ng given in the proposition above can be
obtained from the thermodynamic relation (4) as

Θ ¼ −
ρþ p
n2

�
∂n
∂s

�
ρ

¼ −
ρþ p
n2s0ðwÞ

�
∂n
∂w

�
R
: ð27Þ

Then, taking into account expressions (14), (16), and (26),
we obtain the following proposition:
Proposition 3. For a thermodynamic Stephani universe

(11), the temperature Θ of the thermodynamic schemes
given in Proposition 2 takes the expression

Θ¼ðρþpÞR3½N0ðwÞð1þbwÞ−3NðwÞb�
s0ðwÞð1þbwÞ4 ≡Θðρ;pÞ; ð28Þ

where w ¼ wðρ; pÞ is given in (25), and bðRÞ and R depend
on ρ through the function R ¼ RðρÞ.

D. Constraints for physical reality

In studying a specific Stephani universe defined by the
functions fRðtÞ; bðtÞg, we must determine the spacetime

domain (set of values of the coordinates ft; wg) where the
functions fρðtÞ; pðt; wÞg fulfill the energy conditions E
given in (1). And we must impose the compressibility
conditions H1 given in (7) on the indicatrix function (20)
within this domain. This means that the functions AiðρÞ and
their derivatives will be constrained by some inequalities.
On the other hand, the functions fsðwÞ; NðwÞg defining

a thermodynamic scheme will be constrained by the
positivity conditions P given in (6) and the compressibility
condition H2 given in (8).
The study of all these constraints for a generic Stephani

universe results too formal and useless. We delay this study
for specific solutions that can be obtained under the
demand of meaningful physical qualities. In this paper
we study some of them.

III. IMPOSING SOME SIGNIFICANT
PHYSICAL QUALITIES

The general expressions of the hydrodynamic and
thermodynamic quantities obtained above can be useful
when we particularize them in looking for thermodynamic
Stephani universes that model a perfect fluid with specific
physical properties. We analyze in this section some of
these requirements.

A. Ideal gas Stephani universes

A notable physical property that can be required for a
perfect fluid solution is that it represents the evolution of a
generic ideal gas, which is defined by the equation of state
p ¼ k̃nΘ. In [22] we have showed that this fact is
characterized by the ideal sonic condition:

SG∶ χðρ; pÞ ¼ χðπÞ ≠ π; π ≡ p
ρ
: ð29Þ

Moreover, the associated ideal thermodynamic scheme
fn; s;Θg is given by [22]

n ¼ ρ

eðπÞ ; s ¼ k̃ ln
fðπÞ
ρ

; Θ ¼ π

k̃
eðπÞ; ð30aÞ

fðπÞ¼f0exp

�Z
ϕðπÞdπ

	
; ϕðπÞ≡ 1

χðπÞ−π
: ð30bÞ

eðπÞ¼e0exp

�Z
ψðπÞdπ

	
; ψðπÞ≡ π

πþ1
ϕðπÞ: ð30cÞ

For the Stephani universes, the ideal condition (29)
implies AiðρÞ ¼ ci ¼ constant, and the indicatrix function
(20) becomes

χðπÞ ¼ 1

3
c1π2 þ γπ þ δ; ð31aÞ
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γ ≡ 1þ 1

3
ð2c1 þ c2Þ; δ≡ 1

3
ð1þ c1 þ c2Þ: ð31bÞ

The study of the ideal gas Stephani universes was
accomplished in [18]. Depending on the principal constants
ci five classes exist: (C1) c1 ¼ c2 ¼ 0, (C2) c1 ¼ 0, c2 ≠ 0,
(C3) Δ≡ c22 − 4c1 ¼ 0, c1 ≠ 0, (C4) Δ > 0, c1 ≠ 0, and
(C5) Δ < 0. For every class, we determined the associated
ideal thermodynamic scheme (30) by explicitly obtaining
the generating functions fðπÞ and eðπÞ.
On the other hand, the study of equations (19), with

AiðρÞ ¼ ci, leads to distinguish the singular models,
[a0ðRÞ ¼ 0], compatible with classes (C2), (C3), and
(C4), and regular models [a0ðRÞ ≠ 0], compatible with
the five classes (Cn) [18].
Note that the ideal thermodynamic scheme (30) for a

Stephani idealmodelmust correspond to a specific choice of
the functions sðwÞ and NðwÞ in Proposition 2 where the
schemes associated with a thermodynamic Stephani uni-
verse are given. According to (30), in the ideal thermo-
dynamic schemes, ρ=n and ρ exp½s=k̃� are functions of π.
Checking the compatibility of this with the results of
Proposition 2, and using some expressions in [18] for
aðRÞ and bðRÞ particular to each model, we obtain that
the functions sðwÞ and NðwÞ must fulfill the differential
conditions:

s0ðwÞ ¼ 1

σ0 þ σ1wþ σ2w2
; ð32aÞ

N0ðwÞ
NðwÞ ¼ μ0 þ μ1w

ν0 þ ν1wþ ν2w2
; ð32bÞ

where the constants σ1, μi, and νi depend on the parameters
of the specific Stephani ideal model.
Note that, for an ideal gas, the positivity conditions P

given in (6) imply that the energy conditions E become
(here we shall consider nonshift perfect fluids, ρ ≠ p)

EG∶ 0 < π < 1: ð33Þ

On the other hand, we know [19] that, for the ideal gas
solutions, the compressibility conditions H1 and H2 state that
the indicatrix function χðπÞ in the domain [0, 1] must fulfill

HG
1 ∶

0< χ<1;

ζ≡ð1þπÞðχ−πÞχ0 þ2χð1−χÞ>0;
ð34Þ

HG
2 ∶ ξ≡ ð2π þ 1ÞχðπÞ − π > 0: ð35Þ

In [19] we have analyzed when an ideal gas Stephani model
fulfills the above compressibility conditions andwhen it has a
physically reasonable behavior at low or high temperature.

B. Schemes compatible with thermal conductivity

According to the theory of thermodynamics of irrevers-
ible processes [23,24], the transport coefficients of thermal
conductivity, of shear viscosity, and of bulk viscosity
appear in the constitutive equations linking dissipative
fluxes (anisotropic pressures, bulk viscous pressure, and
energy flux) with the kinematic coefficients of fluid flow
(shear, expansion, and acceleration).
A nonperfect fluid is a fluid with at least a nonzero

transport coefficient. For this fluid, the energetic evolution
is, generically, described by an energy tensor with energy
flux and anisotropic pressures. However, when a nonperfect
fluid admits particular evolutions in which the dissipative
fluxes vanish, these evolutions are well described by a
perfect energy tensor, and are usually called equilibrium
states [24]. Moreover, all the thermodynamic relations of
the perfect fluid hydrodynamics remain valid. Furthermore,
the shear, the expansion, and the acceleration of the fluid
undergo strong restrictions as a consequence of the con-
stitutive equations. For such equilibrium states [24]: (i) If
the shear viscosity coefficient does not vanish, then the
fluid shear vanishes; (ii) if the bulk viscosity coefficient
does not vanish, then the fluid expansion vanishes; (iii) if
the thermal conductivity coefficient does not vanish, then
the fluid acceleration is constrained by the relation

a ¼ −⊥d lnΘ; ð36Þ

where ⊥ denotes the orthogonal projection to the fluid
velocity.
Then, under some kinematic constraints of the fluid flow,

a nonperfect fluid can evolve as a perfect fluid because the
dissipative fluxes can vanish, even if the transport coef-
ficients are nonzero.
For example, the FLRW universes can model a thermo-

dynamic perfect fluid in isentropic evolution. Nevertheless,
they could also model the evolution of a fluid with
nonvanishing thermal conductivity and shear-viscosity
coefficients. Indeed, in this case we have a geodesic and
shear-free flow, and any homogeneous temperature is
compatible with (36).
In [11,12] we have shown that the ideal Szekeres-

Szafron models can be interpreted as inviscid fluids with
a nonvanishing thermal conductivity coefficient. The
thermodynamic Stephani universes studied here have a
shear-free flow and, consequently, are compatible with a
nonvanishing shear-viscosity coefficient. Now, we study if
thermodynamic schemes, which are compatible with a
nonvanishing thermal conductivity coefficient, exist.
A strict Stephani universe has a nonvanishing acceler-

ation a ¼ ⊥d ln α, where α is given in (11b). Then, the
constraint (36) states ∂wðαΘÞ ¼ 0. If we impose this
condition on the temperature (28) we obtain that no
solution exists for a nonconstant bðtÞ. Consequently, we
arrive at the following proposition:
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Proposition 4. A thermodynamic Stephani universe (11)
can model a fluid with nonvanishing shear viscosity. It also
models a fluid with a nonvanishing thermal conductivity
coefficient if and only if it is a FLRW universe.

C. Good behavior at low temperatures: χ ðρ; 0Þ= 0
A classical ideal gas is an ideal gas, p ¼ k̃nΘ, with the

internal energy proportional to the temperature, ϵ ¼ cvΘ.
The indicatrix function of a classical ideal gas is of the
form [34]

χc ¼
γπ

1þ π
¼ γp

ρþ p
; ð37Þ

where γ ≡ 1þ k̃=cv is the adiabatic index.
The expression (31) for the indicatrix function of the

ideal gas Stephani solutions shows that no strict Stephani
universe exists modeling the evolution of a classical ideal
gas. Only the FLRW limit enables a barotropic solution
modeling a classical ideal gas in isentropic evolution
(see [34] for more details).
Anyway, we can analyze the thermodynamic Stephani

models that approach a classical ideal gas in the vicinity of
p ¼ 0, which is the region where the classical ideal gas
equation of state is a good model.
For the indicatrix function (37) of a classical ideal gas,

χcðπÞ ¼ χ̃cðρ; pÞ, we have

χcð0Þ ¼ χ̃cðρ; 0Þ ¼ 0; χ0cð0Þ ¼ γ; ð38Þ

∂pχ̃cðρ; 0Þ ¼
γ

ρ
; ∂ρχ̃cðρ; 0Þ ¼ 0: ð39Þ

And for the indicatrix χðρ; pÞ of a generic thermodynamic
Stephani universe (20) we have

χðρ; 0Þ ¼ 1

3
½1þ A1ðρÞ þ A2ðρÞ�; ð40aÞ

∂pχðρ; 0Þ ¼
1

ρ

�
1þ 1

3
½2A1ðρÞ þ A2ðρÞ�

	
; ð40bÞ

∂ρχðρ; 0Þ ¼
1

3
½A0

1ðρÞ þ A0
2ðρÞ�: ð40cÞ

Consequently, we obtain
(i) A thermodynamic Stephani universe approaches a

classical ideal gas up to zero order at p ¼ 0 if and
only if the functions AiðρÞ are constrained by the
condition

1þ A1ðρÞ þ A2ðρÞ ¼ 0: ð41Þ

(ii) A thermodynamic Stephani universe approaches a
classical ideal gas (with adiabatic index γ) up to first
order at p ¼ 0 if and only if it models a generic ideal

gas [AiðρÞ ¼ ci] with an indicatrix function of the
form

χðπÞ ¼ γπ þ ðγ − 2=3Þπ2: ð42Þ

As already pointed out in [19], if γ > 1 the indicatrix
function (42) fulfills the compressibility conditions HG

1 and
HG

2 in an interval ½0; πM�.

D. Good behavior at high temperatures: χ ðρ; ρ=3Þ= 1=3
The macroscopic equation of state of a relativistic

nondegenerate monoatomic gas (Synge gas) can be
expressed by means of second kind modified Bessel
functions [24,35], and several simpler analytical
approaches have been proposed [36]. The Taub-Mathews
equation of state [24,37] approximates the Synge gas one at
first order at both low and high temperatures, and its
indicatrix function is given by [36]

χTM ¼ πð5 − 3πÞ
3ð1þ πÞ ¼ pð5ρ − 3pÞ

3ρðρþ pÞ : ð43Þ

At first order in p ¼ 0 the Synge gas coincides with a
classical ideal gas with adiabatic index 5=3. Thus, the
behavior at low temperatures of the Synge gas has been
analyzed in the above subsection. Now, we analyze the
thermodynamic Stephani models that approach a Synge gas
at high temperatures.
The indicatrix function (43), χTMðπÞ ¼ χ̃TMðρ; pÞ,

approximates a Synge gas in the interval ½0; 1=3�. When
the temperature increases and tends to infinity π approaches
1=3 (ρ ¼ 3p) and ρ tends to infinity. We have

χTMð1=3Þ¼ χ̃TMðρ;ρ=3Þ¼1=3; χ0TMð1=3Þ¼1=2; ð44Þ

∂pχ̃TMðρ; ρ=3Þ ¼
1

2ρ
; ∂ρχ̃TMðρ; ρ=3Þ ¼ −

1

6ρ
: ð45Þ

And for the indicatrix, χðρ; pÞ, of a generic thermodynamic
Stephani universe (20) we have

χðρ; ρ=3Þ ¼ 2

3

�
1þ 2

3

�
4

3
A1ðρÞ þ A2ðρÞ

�	
; ð46aÞ

∂pχðρ; ρ=3Þ ¼
1

ρ

�
1þ 1

3

�
8

3
A1ðρÞ þ A2ðρÞ

�	
; ð46bÞ

∂ρχðρ; ρ=3Þ ¼ −
1

3
∂pχðρ; ρ=3Þ þ

4

9

�
4

3
A0
1ðρÞ þ A0

2ðρÞ
�
:

ð46cÞ

Consequently, we obtain
(i) A thermodynamic Stephani universe approaches a

Synge gas up to zero order at ρ ¼ 3p if and only if
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the functions AiðρÞ are constrained by the condition

9þ 16A1ðρÞ þ 12A2ðρÞ ¼ 0: ð47Þ

(ii) A thermodynamic Stephani universe approaches a
Synge gas up to first order at ρ ¼ 3p if and only if it
models a generic ideal gas [AiðρÞ ¼ ci] with an
indicatrix function of the form

χðπÞ ¼ 1

16
½7=3þ 10π − 3π2�: ð48Þ

As already pointed out in [19], the indicatrix function (48)
fulfills the compressibility conditions HG

1 and HG
2 in an

interval ½πm; 1=3�.

IV. UNIVERSES WITH ISOTROPIC RADIATION

It is known [32] that any perfect fluid solution with a
comoving irrotational observer measuring isotropic radia-
tion is a thermodynamic Stephani universe. In order to
determine the subclass with this property we must impose
equations (9) on the cosmological observer. The first
condition, σ ¼ 0, is fulfilled for any Stephani universe,
and now we impose the second one.
From expression (16) of α, and taking into account that

a ¼ ∂wðln αÞdw, θu ¼ −3 α d lnR, a straightforward cal-
culation shows that the second condition in (9) is equivalent
to b00ðRÞ ¼ 0. Moreover, the function β ¼ Rα fulfills
Eq. (10). Consequently, we can :
Proposition 5. The perfect fluid solutions with an

irrotational comoving observer measuring isotropic radia-
tion are the thermodynamic Stephani universes (11), with

bðRÞ ¼ b1 þ b2R; ð49Þ

where bi are arbitrary constants. The (test) radiation
fluid has an energy density, a pressure, and a temperature
given by

ρr¼3pr¼aRΘ4
r ; Θr¼Θ0

�
R0

R

��
1þ b2wR

1þb1w

�
: ð50Þ

Moreover, the indicatrix function takes the expression
given in (18) and (19), with A1ðRÞ ¼ 0.
Note that this isotropic radiation defines a test fluid that is
comoving with the flow of the source of the field equations:
a perfect fluid with energy density and pressure given
in (12).

A. Spherical symmetry

So far, all the results apply for spherical, plane, and
hyperbolic symmetries. From now on, we consider some
specific models that could be developed for any symmetry,
but that we only analyze for the spherically symmetric case.

The metric line element of a Stephani universe with
spherical symmetry can be written as (see the Appendix)

ds2 ¼ −α2dt2 þ Ω2ðdr2 þ r2dΩ̃2Þ; ð51aÞ

Ω≡ RðtÞ
1þ 1

4
kðtÞr2 ; α≡ R∂R lnΩ; ð51bÞ

with RðtÞ and kðtÞ being two arbitrary functions of time and
dΩ̃2 the metric of the unitary sphere. The energy density,
the pressure, the expansion, and the three-space curvature
are given by

ρ ¼ 3

R2
ðṘ2 þ kÞ; p ¼ −ρ −

R
3

∂Rρ

α
; ð52Þ

θ ¼ 3
Ṙ
R
≠ 0; κ ¼ k

R2
: ð53Þ

Note that expressions in Secs. II A, II B, and II C also
apply for this case by changing b → k=4 and ω → r2. Only
in the generalized Friedmann equation (24) the change
must be ε − 4b → k. As a consequence, the condition for
the cosmological observer to measure isotropic radiation in
these coordinates is k00ðRÞ ¼ 0, namely, kðRÞ ¼ k1 þ k2R,
accordingly with the result in [32]. It is worth remarking
that, using the definitions given in the Appendix, it can be
seen that this condition is coherent with (49). Then,
Proposition 5 applies by changing bi → ki=4 and ω → r2.

B. Analysis of the Dabrowski solution

As explained in Sec. II B, a possible approach to study
the physical properties of a solution is to start by prescrib-
ing the functions of time RðtÞ and kðtÞ. Now, we consider
one of the solutions considered by Dabrowski [33] in
studying the general properties of the local isometric
embedding of the Stephani universes (hereinafter, the
Dabrowski solution):

RðtÞ ¼ D2t2 þD1; kðtÞ ¼ −4D2Rþ ð1 −D2
1Þ; ð54Þ

where Di are two real parameters.
For the Dabrowski solution (54) we can obtain ρðtÞ,

pðt; rÞ, and πðt; rÞ from (52), and then study the energy
conditions (33). This study was done by Barrett and
Clarkson in [38], and they concluded that the energy
conditions are fulfilled for a certain range of values of
the parameters Di.
Note that the Dabrowski solution (54) can represent a

universe with a cosmological observer measuring isotropic
radiation. This fact was already pointed out in [38], where
the physical, geometrical, and observational characteristics
of these inhomogeneous models were analyzed in detail.
In the conclusions of [38] the authors claim that

the Dabrowski solutions (54) “admit a thermodynamic
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interpretation” although “there is no equation of state.”
We want to point out and to clarify these assertions. As
explained in Sec. I A, the existence of a formal thermo-
dynamic scheme (subject to equations of state) can be
characterized in terms of the hydrodynamic quantities by
the sonic condition (2). In fact, the Dabrowski solution
fulfills the ideal sonic condition (29). Indeed, if we use (54)
to compute A1ðρÞ, A2ðρÞ, and χðρ; pÞ, we get that A1 ¼ 0,
A2 ¼ −3=2 (it is an ideal gas solution), and (31) becomes

χðρ; pÞ ¼ χðπÞ ¼ ð3π − 1Þ=6: ð55Þ

Consequently, the Dabrowski solution fulfills the ideal gas
equation of state p ¼ k̃nΘ. But, a question arises: do these
models represent the evolution of a realistic perfect fluid?
The indicatrix function (55) only fulfills the causal

compressibility conditions, 0 < χ < 1, in the interval
π ∈ ½1=3; 1�. Moreover, ζðπÞ ¼ − 17

36
þ π − 3

4
π2 and ξðπÞ ¼

− 1
6
− 5

6
π þ π2 are negative in the whole domain [0, 1].

Therefore, the indicatrix function (55) does not fulfill the
compressibility conditions HG

1 and HG
2 given in (34)

and (35).
Consequently, the Dabrowski solution fulfills the energy

conditions and can be taken into account as a cosmological
model, but it cannot be interpreted as a physically admis-
sible thermodynamic perfect fluid.

C. Isotropic radiation with an ideal gas source

In order to obtain solutions that can be interpreted as an
ideal gas source with the comoving observer measuring
isotropic radiation, instead of prescribing the functions RðtÞ
and kðtÞ, we will impose these physical properties to our
solution and then we will study how they restrict the metric
functions.
Now, all the results in Sec. III A apply with the additional

constraint A1 ¼ c1 ¼ 0 imposed by the isotropic radiation
condition (see Proposition 5).
With the condition c1 ¼ 0, the indicatrix function (31) of

the ideal models becomes

χðπÞ ¼ γπ þ γ −
2

3
; γ ¼ 1þ 1

3
c2: ð56Þ

If 1=3 < γ < 5=3, this indicatrix function verifies
the causal condition, 0 < χ < 1, for π ∈ ½πm; πM�, where
πm ≡ 2

3γ − 1 and πM ≡ 5
3γ − 1. If 2=3 ≤ γ ≤ 5=6, these

conditions are fulfilled in the whole domain π ∈ ½0; 1�.
In order to study the rest of the compressibility con-

ditions, we need to analyze the domains in which ζðπÞ and
ξðπÞ, defined in (34) and (35), are positive. Using (56), we
get ζðπÞ ¼ −γðγ þ 1Þπ2 þ γð3 − 2γÞπ − γðγ − 4Þ − 20

9
and

ξðπÞ ¼ 2γπ2 þ ð3γ − 7
3
Þπ þ γ − 2

3
.

If 16=29 < γ < 10=3, there exists an interval,
π ∈ ½π−; πþ�, in which ζðπÞ is positive; and if

2=3 < γ < 5=6, ζðπÞ is positive in the whole domain
π ∈ ½0; 1�.
If γ > 1=2, there exists an interval π ∈ ½π̄þ; 1� in which

ξðπÞ is positive, and if γ > 2=3, it is also positive in
an interval π ∈ ½0; π̄−�; and if γ > ð13 − 2

ffiffiffiffiffi
30

p Þ=3 ¼
γξ ≈ 0.682, ξðπÞ is positive in the whole domain π ∈ ½0; 1�.
Taking all this analysis into account, we get the follow-

ing proposition:
Proposition 6. The indicatrix function of the ideal gas

models with the comoving observer measuring isotropic
radiation takes the expression (56), and it fulfills all the
compressibility conditions HG

1 and HG
2 in the whole domain

π ∈ ½0; 1� for γξ < γ < 5=6, γξ ¼ ð13 − 2
ffiffiffiffiffi
30

p Þ=3.
In [18] we explained how to integrate Eq. (19) for ideal

gas models. The isotropic radiation condition c1 ¼ 0 is
only compatible with regular models of class (C1) (c2 ¼ 0)
and both singular and regular models of class (C2) (c2 ≠ 0)
(see Sec. III A). Then, a direct application of the results
in [18] leads to the following proposition:
Proposition 7. The generalized Friedmann equation of

the ideal gas models with the comoving observer measuring
isotropic radiation takes the expression

ρðRÞ ¼ 3

R2
ðṘ2 þ k1 þ k2RÞ; ð57Þ

where ρðRÞ depends on three different models:

(i) (C2) singular (γ ≠ 1): ρðRÞ ¼ ρ0ðR0

R Þ
1

1−γ.

(ii) (C2) regular (γ ≠ 1): ρðRÞ ¼ ρ0ð1þ R̃0

R Þ
1

1−γ.

(iii) (C1) regular (γ ¼ 1): ρðRÞ ¼ ρ0 expðR̂0

R Þ.
Now, we could analyze the energy conditions (33) for

these three cases separately, but we will leave that study for
particular cases with extra physical restrictions.

V. ULTRARELATIVISTIC GAS
WITH ISOTROPIC RADIATION

Another possible situation of physical interest is that in
which the source of the gravitational field is an ultra-
relativistic fluid and the cosmological observer measures
isotropic radiation. The conditions for a thermodynamic
Stephani universe to behave as an ultrarelativistic fluid up
to first order are studied in Sec. III D. However, if we also
want it to be compatible with isotropic radiation, we can
only impose the good behavior at high temperatures up to
zero order.
By imposing (47) and the isotropic radiation condition

kðRÞ ¼ k1 þ k2R, we get that A1ðRÞ ¼ c1 ¼ 0 and
A2ðRÞ ¼ c2 ¼ −3=4. Thus, this situation is a particular
case of the one studied in the last subsection (Sec. IV C),
with c2 ¼ −3=4. Now, γ ¼ 3=4∈ ½γξ; 5=6�, and the indica-
trix function fulfills the compressibility conditions as a
consequence of Proposition 6.
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Moreover, we can determine the ideal thermodynamic
scheme fn; s;Θg by using (30). Now, the generating
functions (30b) and (30c) take the expression

fðπÞ ¼ f0
ð1 − 3πÞ4 ; eðπÞ ¼ e0

j1 − 3πjðπ þ 1Þ3 : ð58Þ

If we also take into account Proposition 6 we can:
Proposition 8. The indicatrix function of the models

approximating the Synge gas at high temperatures and with
the comoving observer measuring isotropic radiation is

χðρ; pÞ ¼ χðπÞ ¼ ð9π þ 1Þ=12: ð59Þ

This indicatrix function fulfills all the compressibility
conditions HG

1 and HG
2 on the spacetime domain where

the energy conditions, 0 < π < 1, hold.
The associated ideal thermodynamic scheme fn; s;Θg is

defined by (30a), where the generating functions fðπÞ and
eðπÞ are given in (58).
On the other hand, if we make γ ¼ 3=4, Proposition 7

becomes the following proposition:
Proposition 9. The generalized Friedmann equation of

the models approximating the Synge gas at high temper-
atures and with the comoving observer measuring isotropic
radiation takes the expression (57), where ρðRÞ depends on
two different models:

ðiÞ Singular models : ρðRÞ ¼ ρ0

�
R0

R

�
4

; ð60Þ

ðiiÞRegular models : ρðRÞ ¼ ρ2

�
1þ R̃0

R

�
4

: ð61Þ

Remarks.
(i) The hydrodynamic properties of the thermodynamics

are given by the indicatrix function (59), which takes
the same expression for both the singular and regular
models, and which fulfills the compressibility

conditions in [0, 1]. Nevertheless, this indicatrix
function can only approximate the Synge one,
χSynge, in the interval ½0; 1=3� where this last one is
defined (see the left panel of Fig. 1). Note that this
approximation gets worse the closer we get to π ¼ 0.

(ii) Similarly, the ideal thermodynamic scheme deter-
mined by functions (58) is defined in the interval
[0, 1], but it only approximates the Synge thermo-
dynamic quantities in ½0; 1=3�. The right panel of
Fig. 1 shows the behavior of the temperatures.

(iii) In any case, the indicatrix function (59) could
be furnished with another (nonideal) thermo-
dynamic scheme, determined by a pair of functions
fsðr2Þ; nðr2Þg (see Sec. II C), different from (32),
which can be defined in the interval [0, 1]. In this
case, we could be modeling a physically realistic
fluid but that does not satisfy the ideal gas equation
of state.

(iv) The energy density ρrðR; rÞ, the pressure prðR; rÞ,
and the temperature ΘrðR; rÞ of the (test) radiation
fluid take expressions (50) (with the change
bi → ki=4) for both the singular and the regular
models. Of course, the coordinate function RðtÞ does
depend on the model.

(v) The ideal thermodynamic scheme defined by the
functions (58) depends on three parameters, f0, e0,
and k̃. The first one, f0, fixes the origin of entropy,
and we can consider that the different values
correspond to a sole ideal gas. The second para-
meter, e0, modifies the specific energy in a constant
factor and, consequently, the temperature and the
specific volume 1=n change in the same factor. Be
aware that e0 settles the origin of internal energy. If
we impose ϵ ¼ 0 at zero pressure, we must take
e0 ¼ 1. Finally, the third one, k̃ ¼ kB=m, determines
the mass of the gas particles.

(vi) Singular models depend on four parameters
fk1; k2; ρ0; R0g. The ki determine the function
kðRÞ; R0 is an initial condition for the generalized

FIG. 1. The left panel shows the behavior of the indicatrix function χðπÞ of our model defined in the whole interval [0, 1] (orange solid
line), and the indicatrix function χSyngeðπÞ of the Synge gas defined in the interval ½0; 1=3� (green dashed line). The right panel shows a
similar situation for the associated temperatures.
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Friedmann equation (57), Rðt0Þ ¼ R0; and ρ0 is the
energy density at this initial time, ρ0 ¼ ρðt0Þ.
However, regular models also depend on a fifth
parameter R̃0. The constant ρ2 takes the expres-
sion ρ2 ≡ ρ0ð1þ R̃0=R0Þ−4.

From now on, we focus on the singular models (SM).

A. SM: Spacetime domains and energy conditions

For the singular model the energy density is given in (60)
and the pressure takes the expression

pðR; rÞ ¼ 1

3
ρ0

�
R0

R

�
4
�
1þ k2Rr2

1þ 1
4
k1r2

�
: ð62Þ

Consequently, the hydrodynamic quantity π ¼ p=ρ is

πðR; rÞ ¼ 1

3

�
1þ k2Rr2

1þ 1
4
k1r2

�
: ð63Þ

Note that the full line element of the three-spaces
t ¼ constant vanishes at R ¼ 0, and we have a big bang
singularity, where both energy density and pressure
diverge. However, π takes the value 1=3. On the other
hand, when k1 < 0we have another curvature singularity at
r∞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=k1

p
, where the pressure (and π) diverges.

Then, when k1 ≥ 0 we have a single coordinate domain:

Dþ
0 ¼ fðR; rÞ; R > 0; r ≥ 0g; ð64Þ

and when k1 < 0 we have two coordinate domains:

D−
0 ¼ fðR; rÞ; R > 0; 0 ≤ r < r∞g; ð65aÞ

D−
1 ¼ fðR; rÞ; R > 0; r > r∞g: ð65bÞ

Now, expression (63) enables us to analyze the regions
of the different domains where the energy conditions
(0 < π < 1) hold, and the regions where the model
approximates a Synge gas (0 < π < 1=3). We represent
all these regions in a fr2; Rg diagram (see Fig. 2).
Note that π ¼ 1=3 if r ¼ 0. The spacetime events where

π ¼ 0 or π ¼ 1 are defined, respectively, by the hyperbolas

R ¼ −
1

k2

�
k1
4
þ 1

r2

�
; R ¼ 2

k2

�
k1
4
þ 1

r2

�
: ð66Þ

Each of the domains (64) and (65) contains one of these
hyperbolas that divides it into two regions, and the energy
conditions only meet in the region next to the coordinate
axes (see Fig. 2):

(i) Case k2 < 0: domains Dþ
0 and D−

0 contain a region
R<

0 where the model approximates a Synge gas,
0 < π < 1=3; and a region R̃<

0 where π < 0. And
domain D−

1 contains a region R<
1 where the model

meets the energy conditions but it does not approxi-
mate a Synge gas, 1=3 < π < 1; and a region R̃<

1

where π > 1 (see the left panels of Fig. 2).
(ii) Case k2 > 0: domains Dþ

0 and D−
0 contain a region

R>
0 where the model meets the energy conditions

but it does not approximate a Synge gas,
1=3 < π < 1; and a region R̃>

0 where π > 1.

FIG. 2. The spacetime coordinate domains and their physically realistic regions depending on the values of the parameters ki. Upper
panels: the case k1 ≥ 0 has a single coordinate domain Dþ

0 . Lower panels: the case k1 < 0 has two coordinate domains, D−
0 and D−

1 ,
separated by the straight line r ¼ r∞. The dark blue lines are the hyperbolas π ¼ 0, and the light brown lines are the hyperbolas π ¼ 1.
In the shaded regions the energy conditions hold, and in the dark blue regions the model approximates a Synge gas.
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And domain D−
1 contains a region R>

1 where the
model approximates a Synge gas, 0 < π < 1=3;
and a region R̃>

1 where π < 0 (see the right panels
of Fig. 2).

B. SM: R-dependence and radial profiles

From now on we only consider the regions where the
singular models approach a Synge gas (dark blue regions in
Fig. 2). We have then three cases: (I) R<

0 (k2 < 0) with
k1 ≥ 0, (II) R<

0 (k2 < 0) with k1 < 0, and (III) R>
1 (k2 > 0

and k1 < 0).
In any case, for a suitable fixed value of the radial

coordinate r1, the hyperbola π ¼ 0 contains a point
ðr21; R̂1Þ. In fact, the real function π1ðRÞ≡ πðr21; RÞ
decreases in the interval ½0; R̂1� between 1=3 and zero
[see Fig. 3(a)]. Consequently the pressure p1ðRÞ ¼
pðr21; RÞ is a decreasing function that vanishes at R̂1 [see
Fig. 3(b)].
In the Stephani universes the three-space curvature

depends on time, κ ¼ κðRÞ, and expression (53) implies
that its sign depends on the sign of the function
kðRÞ ¼ k1 þ k2R. When k1k2 ≤ 0, the curvature vanishes
at Rκ ¼ −k1=k2. In case (I), k2 < 0, k1 ≥ 0, the curvature is
a decreasing function and Rκ < R̂1 (region R<

0 ) for r such
that r2 < 4=ð3k1Þ. In case (II), k2 < 0, k1 < 0, the curva-
ture κ is always negative. And in case (III), k2 > 0, k1 < 0,

the curvature is an increasing function and Rκ > R1;
consequently it is negative on the physical region R>

1

[see Fig. 3(c)].
Given a fixed value R1 of the function R, the radial

profiles of the thermodynamic quantities also depend on the
three different considered cases (see Fig. 4). In case (I)
(region R<

0 with k1 ≥ 0), if R1 ≤ −k1=ð4k2Þ, the hydro-
dynamic functions π and χ are decreasing functions which
take values between 1=3 and a non-negative real number
[Fig. 4(a)]. In case (II) (regionR<

0 with k1 < 0), or in case I
with R1 > −k1=ð4k2Þ, π and χ are also decreasing func-
tions which take the value 1=3 at r ¼ 0 and vanish at a
finite r ¼ r̂1 and r ¼ r̄1 [Fig. 4(b)]. Finally, in case (III)
(region R>

1 ), π and χ are increasing functions which are
positive for r > r̂1 and r > r̄1 [Fig. 4(c)].
On the other hand, Fig. 5 shows, also for a fixed R1, the

radial profile of the energy density ρ (constant), pressure p,
and matter density n. Again, the behavior is different for the
three aforementioned cases. Figure 5(a): for r > 0, p is
decreasing and n increasing, both positive. Figure 5(b): for
r < r̂1, p and n have the same behavior, and pðr̂1Þ ¼ 0 and
n ¼ ρ at r ¼ r̂1. Figure 5(c): in this case p is increasing and
n decreasing for r > r̂1.
Figure 6 describes the behavior of both the temperature

Θ of the source ideal gas and the temperature Θr of the test
radiation fluid. For a fixed r1, both temperatures decrease
with R, and Θ can vanish at R̂1 [see Fig. 6(a)]. For a fixed

(a) (b) (c)

FIG. 3. The behavior of the models for a fixed r1. (a) Evolution of the hydrodynamic quantities π and χ. (b) Evolution of the energy
density and pressure. (c) Evolution of the three-space curvature.

(a) (b) (c)

FIG. 4. The radial profile of the hydrodynamic quantities π and χ depending on the values of the parameters ki for a fixed R1. (a) Case I
with R1 ≤ −k1=ð4k2Þ. (b) Case II and case I with R1 > −k1=ð4k2Þ. (c) Case III.
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R1 the radial profile depends on the model. In Fig. 6(b) we
have plotted the cases (I) with R1 > −k1=ð4k2Þ and (II),
where both temperatures decrease and Θ vanishes at
r ¼ r̂1. And Fig. 6(c) shows case (III), where both temper-
atures increase and Θ is positive for r > r̂1.

C. SM: The generalized Friedmann equation

For the singular models (60), the generalized Friedmann
equation (57) can be written as

Ṙ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k1 − VðRÞ

p
; VðRÞ≡ k2R −

ρ̃0
R2

; ð67Þ

where ρ̃0 ¼ 1
3
ρ0R4

0. Then, we can study the qualitative
behavior of the function RðtÞ by drawing the effective
potential VðRÞ and analyzing the trajectories in the phase
plane fR; Ṙg (see Fig. 7).
Depending on the sign of k2, we have two qualitatively

different effective potentials. Now, we analyze the three
cases (I), (II), and (III) considered in the subsection above.
In case (II) (region R<

0 with k1 < 0), we have k2 < 0
(left panels in Fig. 7). Moreover, −k1 > VM, and the
solution is valid for r < r∞. Then, we obtain an accelerated
expanding model for values of R larger than a critic value
Rc, and for any r1 < r∞ the pressure vanishes at a finite
time t1 [Rðt1ÞÞ ¼ R1].
In case (I) (regionR<

0 with k1 ≥ 0), we have k2 < 0 (left
panels in Fig. 7), and three different models can occur.

If −k1 > VM, we obtain a model similar to that of case (II)
but now valid for any r > 0. If −k1 ¼ VM, we obtain an
asymptotic expanding model with R → Rc; for small values
of r, the pressure never becomes zero, but for large values
of r, the pressure vanishes at R1 < Rc. Finally, if
−k1 < VM, we have closed models, with a maximum value
of R, RM < Rκ; generically, a r̄ exists such that RM < R̂1 if
r < r̄ and RM > R̂1 if r > r̄; r̄ ¼ ∞ for large values of k1.
In case (III) (region R>

1 with k1 < 0), we have k2 > 0
(right panels in Fig. 7), and we also obtain closed models,
but the pressure vanishes before the contracting era,
R̂1 < RM. Moreover, R̂1 < Rκ.

D. SM: Physical interpretation and further prospects

To sum up, the solutions considered in this section model
a spherically symmetric spacetime inhomogeneity caused
by an ultrarelativistic gas with homogeneous energy
density, and inhomogeneous pressure, matter density,
and temperature. This inhomogeneity is compatible with
a decoupled test inhomogeneous radiation fluid, which is
isotropic as measured by the observer comoving with the
matter fluid.
Wide ranges of parameters lead to physically realistic

models. All of them start with a hot ultrarelativistic fluid
that cools down with time, in most cases even becoming
dust. Their radial profiles, however, depend on the con-
sidered model. Most of them are only physically admissible
up to or from a certain value of the radial coordinate, where

(a) (b) (c)

FIG. 5. The radial profile of the energy density ρ, the pressure p, and the matter density n depending on the values of the parameters ki
for a fixed R1. (a) Case I with R1 ≤ −k1=ð4k2Þ. (b) Case II and case I with R1 > −k1=ð4k2Þ. (c) Case III.

(a) (b) (c)

FIG. 6. (a) The R-dependence of the temperatures Θ, of the source ideal gas, and Θr, of the test radiation fluid for a fixed r1. The radial
profile of these temperatures for a fixed R1 are plotted in (b) [case (I) with R1 > −k1=ð4k2Þ and case (II)] and (c) [case (III)].
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the pressure vanishes. In some cases we have a void of hot
matter [cases (I) and (II)], and in other cases the matter
density decreases, and the temperature increases, with r
[case (III)].
Thus, the models are useful to describe local inhomo-

geneities. Nevertheless, in order to be useful globally, they
must be matched with other dust models beyond the
hypersurface p ¼ 0.

VI. DISCUSSION

In this paper we have studied general properties of the
thermodynamic Stephani universes, and we have analyzed
the constraints that some specific physical requirements
impose on the models.
We have focused on the solutions where the observer

comoving with the fluid flow can measure a state of
isotropic radiation. The models that we consider highlight
a long-known fact (see [31,32] and references therein):
an inhomogeneous perfect fluid solution can be compatible
with an observed inhomogeneous and isotropic radiation.
Although our purpose here has not been to look for

cosmological models compatible with the observational
data, our study shows that some of our models, or other
similar ones that could be obtained with an analogous
approach, could model local nonlinear inhomogeneities of
the real Universe.

The results that we have obtained suggest many open
problems whose study goes beyond the scope of this work.
Regarding the specific models studied here, we can quote
the following further work: (i) for the singular models
considered in Sec. V, to match our solutions with a dust
model through the junction surface πðR; rÞ ¼ 0; (ii) to
make an accurate analysis of the parameters of the models
to achieve the more suitable values for physically realistic
models; (iii) to investigate the regular model in detail as we
have done with the singular one.
In the inhomogeneities observed in the real Universe,

matter moves with respect to the cosmological observer
who observes an almost isotropic background radiation. To
study the radial profiles and the evolution of such nonlinear
inhomogeneities we are interested in obtaining solutions
with test isotropic radiation for a cosmological observer
and a perfect fluid source with a noncomoving flow.
A further study to be made consists in analyzing in depth

the flow of the thermodynamic Stephani universes taking
into account the kinematic approaches presented in [39,40].
This studywill enable us to determine other test fluidswhich
are comoving with the Stephani cosmological observer.
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APPENDIX

The metric of the thermodynamic Stephani universes
with spherical symmetry is given by (10–12) with ε ¼ 1. If
we perform the following change of spatial coordinates:

x ¼ x0

H
; y ¼ y0

H
; z ¼ z0 − 1þ 1

2
r02

H
; ðA1Þ

r02 ¼ x02 þ y02 þ z02; H ¼ 1þ z0 þ 1

4
r02; ðA2Þ

and we define

R̄≡ 2R
1 − 2b

; k≡ 4
1þ 2b
1 − 2b

; ðA3Þ

and perform the change of temporal coordinate from t to t0
such that

θðt0Þ ¼ 3
˙̄R
R̄
; ðA4Þ

the metric of the thermodynamic Stephani universes with
spherical symmetry can be written as

ds2 ¼ −ᾱ2dt02 þ Ω̄2ðdx02 þ dy02 þ dz02Þ; ðA5Þ

Ω̄≡ R̄ðtÞ
1þ 1

4
kr02

; ᾱ≡ R̄∂R̄ ln Ω̄: ðA6Þ

With that, the hydrodynamic quantities ρ and p and the
curvature of the spatial synchronizations take the following
expressions:

ρ¼ 3

R̄2
ð ˙̄R2þkÞ; p¼−ρ−

R̄
3

∂R̄ρ

ᾱ
; κðtÞ¼ k

R̄2
: ðA7Þ
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