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We introduce an algorithm to marginalize the likelihood for a gravitational wave signal from a
quasicircular binary merger over its extrinsic parameters, accounting for the effects of higher harmonics
and spin-induced precession. The algorithm takes as input the matched-filtering time series of individual
waveform harmonics against the data in all operational detectors, and the covariances of the harmonics. The
outputs are the Gaussian likelihood marginalized over extrinsic parameters describing the merger time,
location and orientation, along with samples from the conditional posterior of these parameters. Our
algorithm exploits the waveform’s known analytical dependence on extrinsic parameters to efficiently
marginalize over them using a single waveform evaluation. Our current implementation achieves a 10%
precision on the marginalized likelihood within ≈50 ms on a single CPU core and is publicly available
through the package COGWHEEL. We discuss applications of this tool for (i) gravitational wave searches
involving higher modes or precession, (ii) efficient and robust parameter estimation, and (iii) generation of
sky localization maps in low latency for electromagnetic followup of gravitational-wave alerts. The
inclusion of higher modes can improve the distance measurement, providing an advantage over existing
low-latency localization methods.
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I. INTRODUCTION

Gravitational wave astronomy has undergone tremen-
dous progress over recent years, made possible by the
advent of the advanced LIGO [1] and Virgo [2] detectors. In
order to maximize the scientific impact of these extraor-
dinary data, the community has developed advanced
methods for identifying signals [3–12], which have yielded
over a hundred detections to date [13–22]; for estimating
their source parameters [23–37], which have provided
invaluable insights into the astrophysics of compact
binaries [38]; and for searching for short-lived electromag-
netic counterparts [39–43], that enabled the identification
of the kilonova from the binary neutron star merger
GW170817 [44,45]. One technique that has recurrently
found applications in all these fronts is the ability to
marginalize the signal’s likelihood over a subset of its
parameters. In particular, extrinsic parameters describing

the location of the observer relative to the source are the
most amenable to marginalization, as their effect on the
signal can be modeled analytically [39,46].
In this study, we present an algorithm for marginalizing

the likelihood for a gravitational wave signal from a quasi-
circular binary merger over extrinsic parameters, assuming
Gaussian noise and accounting for higher harmonics and
spin-induced precession. The inputs to the algorithm are a
set of matched-filtering time series of the waveform against
the data (one time series for each harmonic mode, polari-
zation fþ;×g and detector) and the covariances of these
components. The output is the Gaussian likelihood ratio
marginalized over extrinsic parameters,

L̄ðθintÞ ¼
Z

dθextπðθextÞLðθint; θextÞ; ð1Þ
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LðθÞ ¼ pðdjθ; signalÞ
pðdjGaussian noiseÞ ; ð2Þ

where d is the data, θ≡ ðθint; θextÞ are the intrinsic and
extrinsic parameters of the signal, and πðθÞ≡ pðθjsignalÞ
is the prior distribution. Since the analytical dependence on
θext is known, L̄ðθintÞ can be evaluated using a single
waveform query.
We envision at least three applications of this algorithm;

as a piece of the detection statistic in a search incorporating
higher modes or precession, as a tool for efficient and
robust parameter estimation, and as a means of producing
sky localization maps in low latency for electromagnetic
followup of gravitational-wave alerts.
In a search, according to the Neyman-Pearson lemma,

the optimal detection statistic is the likelihood ratio Λ
between the two competing hypotheses; namely, that there
is a signal versus only noise,

ΛðdÞ ¼ pðdjsignalÞ
pðdjnoiseÞ ¼

R
dθpðdjθ; signalÞpðθjsignalÞ

pðdjnoiseÞ : ð3Þ

By Eq. (2),

ΛðdÞ ¼
Z

πðθÞLðθÞdθ ·pðdjGaussian noiseÞ
pðdjnoiseÞ : ð4Þ

In this work we study the marginalization of the likelihood
over extrinsic parameters, under the assumption of Gaussian
noise in order to outline a tractable, well-defined problem.
Later stages in the pipeline undertake the remaining
marginalization over intrinsic parameters and apply a
correction for the fact that, empirically, the noise distribu-
tion pðdjnoiseÞ is not Gaussian [47]. Most search pipelines
have implemented techniques to perform the extrinsic-
parameter marginalization, but they have generally assumed
quadrupolar gravitational radiation and nonprecessing
sources [3,6,17,48,49]. The contribution of this work is
to include higher-order modes and spin-induced precession
in the signal model, while maintaining a low computational
cost compared to other components of the search. Indeed,
this algorithm has been crucial in a recent search including
higher modes [19].
In the context of parameter estimation, in the traditional

likelihood-based paradigm a stochastic sampler is used to
explore the high-dimensional parameter space, by alternat-
ingly proposing evaluation points and computing the
posterior probability density. Marginalizing the likelihood
removes the extrinsic parameters from the problem, sim-
plifying the task for the sampler. In particular, the extrinsic
parameters tend to exhibit multiple modes and nonlinear
degeneracies [34,50]. This approach has been pursued in the
literature [46], but with implementations that either did not
support higher modes and precession [51], or that were

significantly more computationally intensive than the one
we present here [52].
Finally, a byproduct of this algorithm is a set of extrinsic

parameter samples weighted according to their conditional
posterior probability, conditioned on the intrinsic parameters.
If one has estimates of the intrinsic parameters (e.g., from a
search pipeline), this method can be used to measure the
extrinsic parameters within seconds. This mode of operation
is similar to the BAYESTARpipeline [39], except generalized to
include precession and higher-ordermodes. This is important
because higher modes are sensitive to the inclination of the
binary, potentially breaking its degeneracy with the distance
and localizing the source to a smaller volume [53]. Higher
modes may also improve the constraints on the mass ratio of
the merging objects, informing about their nature and
probability of sourcing an electromagnetic counterpart.
The article is organized as follows. Section II provides a

detailed description of the marginalization algorithm.
Section III studies its convergence and computational cost.
Section IV explores the applications to search, parameter
estimation and low-latency source localization. We con-
clude in Sec. V. Appendix A describes various computa-
tional optimizations. Appendix B includes a code snippet
demonstrating how to use our algorithm for parameter
inference with the COGWHEEL software.

II. METHOD

A. Summary of the algorithm
for extrinsic-parameter marginalization

Given the data and a choice of intrinsic parameters θint,
we compute the marginalized likelihood Eq. (1) using a
combination of integration methods; we integrate over
distance by interpolating a precomputed table, over orbital
phase by trapezoid quadrature, and over the remaining
extrinsic parameters using adaptive importance sampling.
We first generate a large number of samples for extrinsic

parameters excluding distance and orbital phase (namely;
sky location, geocenter time of arrival and polarization.)1

We draw these from a proposal distribution (described in
Sec. II D) designed to be easy to compute and sample from,
and to approximately match the posterior conditional on the
intrinsic parameters. For each of these samples, we com-
pute the complex inner products ðdjh0mÞ and ðh0mjh0m0 Þ for a
signal h0 at a fiducial distance and orbital phase, where h0m
is the inertial-framewaveform that is generated by spherical
harmonic modes with azimuthal index m in the coprecess-
ing frame. These quantities transform in simple ways under
a change of orbital phase or distance. We use the trapezoid
quadrature rule to integrate over phase, and a lookup table
to integrate over distance. Finally, we reweight each sample
by the ratio of its posterior (marginalized over phase and
distance) to the proposal probability. This yields two useful

1And inclination, if one restricts to aligned spins.
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products: an estimate of the likelihood marginalized over
all extrinsic parameters, and a set of weighted samples from
the extrinsic parameter posterior. If the proposal distribu-
tion is found to inadequately describe the posterior (diag-
nosed as a low effective sample size) we adaptively tune the
proposal and produce additional samples until we achieve
convergence.

B. Waveform decomposition

In this section we write the explicit dependence of the
likelihood on extrinsic parameters. We find it convenient to
express the model in terms of products of various tensors,
each depending on a reduced set of parameters. Throughout,
we will use the subindex d to label detectors, p for
polarizations fþ;×g, and ðl; mÞ for coprecessing frame
harmonic modes. Wewill use the inner product between two
time series defined as [54]

hxjyi ¼ 4ℜ
Z

∞

0

df
x̃ðfÞỹ�ðfÞ

SðfÞ ; ð5Þ

where S is the one-sided noise power spectrum, and a
summation over detectors is assumed.
We start with the standard Gaussian likelihood ratio L

(we henceforth refer to L simply as the likelihood),

lnLðθÞ ¼ hdjhðθÞi − 1

2
hhðθÞjhðθÞi: ð6Þ

Here, d is the strain data and h the model waveform.
Extrinsic parameters modify the waveform in a well-
understood way,2

h̃dðf; θint;ψ ; n̂; t⊕;ϕref ; DÞ

¼
Xlmax

m¼1

X
p∈ fþ;×g

h̃mpðf; θintÞ
Fdpðn̂;ψÞe−i2πftdðt⊕;n̂Þeimϕref

D
;

ð7Þ

where we have grouped the harmonics by m,

h̃mpðf;θintÞ≔
X
l

h̃lmpðf;θint;D¼ 1;ϕref ¼ 0Þ: ð8Þ

Here, the indices l; m denote spherical-harmonic modes in
the co-precessing frame, but the harmonic h̃lmp is the
inertial-frame waveform generated by the “twisting up”
procedure operating on this coprecessing harmonic [58]. In
particular, the h̃lmp has different spherical harmonic con-
tent in the inertial frame.

Reading Eq. (7) from the left, the right-hand side is
interpreted as follows. The source emits polarized waves
hmp, to which the detector has an antenna response
Fdpðn̂;ψÞ that depends on the geometrical configuration.
The signal arrives at each detector at time

tdðt⊕; n̂Þ ¼ t⊕ − rd · n̂=c; ð9Þ

which is the overall time of arrival at geocenter t⊕ plus a
time-of-travel correction that depends on the location rd of
the detector projected onto the line of sight n̂. Each
coprecessing harmonic h̃lm transforms according to
eimϕref under a rotation in the plane of the binary.3

Lastly, the waveform amplitude decays in inverse propor-
tion to the luminosity distance to the source, D.
For precessing signals, the inclination of the orbit is

frequency-dependent, and therefore we will treat it as an
intrinsic (nonmarginalized) parameter. For nonprecessing
(aligned-spin) systems, the inclination can be treated
analytically by replacing eimϕref by the spin-weighted
harmonic −2Ylmðι;ϕrefÞ in Eq. (7) [59].
Using Eq. (7), we can rewrite Eq. (6) in terms of factors

that depend separately on the intrinsic or the extrinsic
parameters,

hdjhi¼ 1

D
ℜ

�X
m

e−imϕref

X
d;p

Fdpðn̂;ψÞzmpdðtdðt⊕; n̂Þ;θintÞ
�
;

ð10Þ

where the time series

zmpdðt; θintÞ ≔ 4

Z
∞

0

df
d̃dðfÞh̃�mpðf; θintÞ

SdðfÞ
ei2πft ð11Þ

is the complex matched-filter output [60] of the waveform’s
mode m and polarization p in the dth detector. In practice
only a short interval of time around the peak is needed.
Similarly,

hhjhi ¼ 1

D2

X
m;m0

eiðm0−mÞϕref

×
X
d;p;p0

cmm0pp0dðθintÞFdpðn̂;ψÞFdp0 ðn̂;ψÞ ð12Þ

with

cmm0pp0dðθintÞ ¼ 4

Z
∞

0

df
h̃mpðf; θintÞh̃�m0p0 ðf; θintÞ

SdðfÞ
: ð13Þ

2We follow the default LALSimulation convention and use labels
m > 0, understanding that them and −m coprecessing harmonics
are summed together using h̃lmðfÞ ¼ ð−1Þlh̃l;−mð−fÞ, with
f > 0 [55–57].

3When we vary the orbital phase ϕref we hold the black hole
spins fixed with respect to the orbital angular momentum and the
direction of propagation (not with respect to the orbital separation
vector) [34].
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Substituting Eqs. (10) and (12) into (6), we have decom-
posed the likelihood into factors that depend either on
extrinsic or intrinsic parameters. The matched-filter time
series zmpdðt; θintÞ and covariances cmm0pp0dðθintÞ encapsu-
late all the dependence on intrinsic parameters and will be
the inputs to our computation.

C. Phase and distance integration

The distance, orbital phase and polarization are simpler to
marginalize than other extrinsic parameters, because they do
not affect the times of arrival, and hence their effect on the
waveform is independent of frequency. This makes it
inexpensive to vary these parameters, as the data can first
be compressed to a few numbers with the frequency axis
collapsed. Here we marginalize the distance and orbital
phase explicitly, and in Sec. II D we integrate the remaining
extrinsic parameters using importance sampling. Since the
orbital phase and polarization are largely degenerate [23,34],
it suffices to marginalize only one of the two at high
resolution; we will do the phase.
Holding all other parameters fixed, the distance-

marginalized likelihood L̄D can be expressed in terms of
only two values, namely the inner products hdjh1i and
hh1jh1i for a waveform at unit distance, h1 ≔ hðD ¼ 1Þ,

L̄Dðhdjh1i; hh1jh1iÞ

¼
Z

dD πðDÞ exp
�hdjh1i

D
−
hh1jh1i
2D2

�
: ð14Þ

Following Singer and Price [39], after suitable rescaling
and reparametrization Eq. (14) can be efficiently evaluated
by 2D interpolation of a precomputed lookup table. This is
possible since neither higher modes nor precession modify
the dependence of the waveform on distance.
However, higher modes do change the dependence on

orbital phase, and hence we cannot marginalize the phase
analytically, as usually done for quadrupolar waveforms.
Instead, we use trapezoid quadrature, which performs
adequately since the likelihood is a periodic function of
the orbital phase. To integrate Eq. (14), it suffices to
evaluate hdjh1i and hh1jh1i on a regular grid fϕref;og
covering the orbital phases, where the subindex o runs
through 1;…; Nϕ. For hdjh1i, we compute

hdjh1io ¼ ℜ
X
m

ðdjh1ÞmΦmo; ð15Þ

where

ðdjh1Þm ≔
X
p;d

Fdpðn̂;ψÞzmpdðtdðt⊕; n̂Þ; θintÞ ð16Þ

is obtained by cubic spline interpolation of the time series
zmpd and

Φmo ≔ expðimϕref;oÞ ð17Þ

is precomputed. For hh1jh1i, similarly

hh1jh1io ¼ ℜ
X
m;m0

ðh1jh1Þmm0Φmm0o; ð18Þ

ðh1jh1Þmm0 ≔
X
d;p;p0

cmm0pp0dðθintÞFdpðn̂;ψÞFdp0 ðn̂;ψÞ ð19Þ

Φmm0o ≔ exp½iðm0 −mÞϕref;o�: ð20Þ

Using Eqs. (14), (15), and (18) we obtain the likelihood
marginalized over orbital phase and distance,

L̄ϕDðψ ; n̂; t⊕; θintÞ ≈
1

Nϕ

XNϕ

o¼1

L̄Dðhdjhio; hhjhioÞ: ð21Þ

From these data products, posterior samples of distance and
orbital phase can also be readily generated. Phase samples
can be drawn from the grid according to the weights [the
summands in Eq. (21)] and then distance samples can be
produced from the integrand of Eq. (14) with inverse
transform sampling.

D. Time, sky location, and polarization integration

We perform the integral in Eq. (1) over the remaining
extrinsic parameters (sky location n̂, time of arrival t⊕, and
polarization angle ψ) using importance sampling [61,62].
We will choose a proposal distribution pðψ ; t⊕; n̂Þ, and
construct it in a way that will allow us to easily generate
samples from it. The marginal likelihood will be estimated
from those samples as

L̄ðθintÞ ≈
1

N

XN
i¼1

πðψ i; ti⊕; n̂
iÞL̄ϕDðψ i; n̂i; ti⊕; θintÞ
pðψ i; ti⊕; n̂

iÞ : ð22Þ

The weighted samples also allow to sample the conditional
posterior pðθextjd; θintÞ, by simply drawing according to the
weights [i.e., the summands in Eq. (22)].
The variance of the estimator in Eq. (22) is highly

sensitive to the choice of proposal: it vanishes when p is
proportional to the integrand [i.e., the conditional posterior
for ðψ ; t⊕; n̂Þ in the numerator of Eq. (22)], on the other
hand, it diverges if p has a tighter support. When this
happens, a small number of samples in the tail of p are
disproportionately upweighted and dominate the sum. Thus,
we will design the proposal to approximately match the
conditional posterior, erring on the side of having heavier
tails. Having reduced the dimensionality of the quasi-
Monte Carlo integral Eq. (31) by explicitly integrating
out the orbital phase and distance (Sec. II C) improves its
efficiency, especially considering that the orbital phase is
very well-measured when other parameters are kept fixed.
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For ψ, we simply use its uniform prior as proposal, based
on the heuristic that it is rarely well constrained due to
degeneracy with the orbital phase ϕref [23,34].
In contrast, n̂ and t⊕ are usually measured very well

compared to the size of their prior, calling for a more
sophisticated proposal. The constraints on these parameters
are largely driven by the measurement of the arrival times at
the individual detectors. Notably, it is possible to estimate
these arrival times separately at each detector, and, fur-
thermore, to precompute their relation to t⊕ and n̂ inde-
pendently of the data. With these insights, we follow [17,51]
and specify our proposal distribution over ðt⊕; n̂Þ with the
help of an auxiliary proposal PðτÞ for the discretized times
of arrival τd at each detector.4

1. Proposal for arrival direction and geocenter time

We choose a timescale Δ sufficiently small to resolve the
autocorrelation length of the whitened template (thus,
structure in the matched-filtering time series), and discre-
tize the time axis at this resolution. We then partition the
ðt⊕; n̂Þ space into exhaustive disjoint regions DðτÞ, where
τ ≡ fτdg defines a discrete time of arrival at each detector,
and DðτÞ is the domain of arrival time and sky location
consistent with those τ. Our criterion for consistency is that
the time of arrival at the first detector, and the time delays
between the first detector and the others, match those of τ to
a precision Δ=2,

DðτÞ ¼
�
t⊕; n̂∶jtd0ðt⊕; n̂Þ − τd0 j <

Δ
2

∧ jδtdðn̂Þ − δτdj <
Δ
2

�
; ð23Þ

with

δtdðn̂Þ ≔ tdðt⊕; n̂Þ − td0ðt⊕; n̂Þ ð24Þ

δτd ≔ τd − τd0 ; ð25Þ

where d0 is the arbitrary first detector. The time delays δt
and δτ have Ndetectors − 1 components each, and δt is
independent of t⊕.
Our strategy is to first draw samples τi from a proposal

PðτÞ (described later), and to each assign a ti⊕; n̂
i ∼

πðt⊕; n̂jτiÞ drawn from the restricted prior, by means of
a precomputed mapping that we construct as follows.
Ahead of time, we draw a large number of samples (106

is our current default) isotropically distributed in the sky, in
terms of Earth-fixed coordinates (latitude and longitude).
For each sample we compute δtðn̂Þ, and based on this we
assign it to the nearest discretized time-delay δτ. The resulting map is shown in Fig. 1 for the example case of a

Hanford-Livingston-Virgo network. Given a δτ, the map-
ping provides a set of consistent sky location samples
[color coded in Fig. 1(a)]. Once a detector time sample τi

(a)

(b)

FIG. 1. Partition of the space of arrival directions n̂ by
discretized time delays between detectors δτ, for the particular
case of a Hanford-Livingston-Virgo network.We use this mapping
to efficiently assign a consistent arrival direction to a proposed set
of discrete arrival times at the detectors, during the importance-
sampling marginalization over n̂. (a) The time delay in each pair of
detectors defines a ring in the sky, perpendicular to the corre-
sponding detector separation vector (black axis). For the 3-detector
network shown here, each subregion is the intersection of two
rings. For a 2-detector network, the subregions would instead be
annular, and for a single detector there would be one region
covering the entire sky [For upcoming detector networks consist-
ing of more than three detectors, the strategy of proposing arrival
times at each detector would result in overconstrained sky
locations. The method can be generalized by using only the most
sensitive three detectors for the proposal (and all the detectors for
reweighting) in that case)]. (b) Prior for discretized time delays
between detectors, proportional to the solid angle of the associated
patch of the sky. One particular δτ is highlighted in red in both
plots. Two sky patches, symmetric about the plane containing the
detectors, share the same delays. The resolution of the map was
lowered for visual clarity; by default we use a 4× higher one of
8192 Hz. For a 2-detector network the prior would be a one-
dimensional array, and for a single detector it would be a scalar
number.

4We use capital letters for discrete distributions, lowercase for
continuous distributions.
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has been proposed, we compute δτi and assign a sky
location sample n̂i from the corresponding entry of the
mapping. We also draw a time of arrival at the first detector
tid0 uniformly within τid0 � Δ=2, and solve Eq. (9) to
obtain ti⊕.
As a useful byproduct, this map allows us to obtain the

physical prior on the time-delays ΠðδτÞ, estimated as the
fraction of samples assigned to each δτ. We show this prior
in Fig. 1(b), it will be necessary later. In particular,
unphysical δτ (say, delays longer than the gravitational
wave travel time between detectors) get no sky location
samples assigned. To keep the variance of this estimate low,
we use a quasirandom Halton sequence to draw the sky
locations, which covers the sky more uniformly than e.g.,
random sampling or a spherical grid.
Note that near the plane containing the detectors,

perpendicular displacements produce only quadratic shifts
in the arrival times. Accordingly, in Fig. 1(a) these cells are
elongated and cover a large solid angle, and have a large
prior ΠðδτÞ in Fig. 1(b). We expect that sources near the
plane of the detectors will have a relatively poor sky
location measurement perpendicular to the plane.
The proposal density that results from the above

process is

pðti⊕; n̂iÞ ¼
X
τ

PðτÞπðti⊕; n̂ijτÞ

¼ PðτiÞπðti⊕; n̂ijτiÞ: ð26Þ

The second line follows because the restricted prior is zero
for detector arrival times that are inconsistent with the
sample: πðti⊕; n̂ijτ ≠ τiÞ ¼ 0. Combining Eqs. (22) and
(26), we obtain

L̄ðθintÞ ≈
1

N

XN
i¼1

πðti⊕; n̂iÞL̄ϕDðψ i; n̂i; ti⊕; θintÞ
PðτiÞπðti⊕; n̂ijτiÞ

: ð27Þ

The prior in the numerator of Eq. (27) is separable and
uniform, πðt⊕Þπðn̂Þ ¼ const. Since there is no natural
domain for the time, we will adopt a dimensionless prior
πðt⊕Þ ¼ 1 and recognize that the marginalized likelihood
has units of time. The restricted prior πðt⊕; n̂jτÞ is propor-
tional to πðt⊕; n̂Þ but integrates to 1 over DðτÞ, hence, their
ratio in Eq. (27) is

πðt⊕; n̂Þ
πðt⊕; n̂jτÞ

≡ ΠðτÞ

¼
Z
DðτÞ

dt⊕dn̂πðt⊕Þπðn̂Þ

¼ Δ · ΠðδτÞ: ð28Þ

In Eq. (28), the t⊕ integral equals Δ, and the n̂ integral
yields ΠðδτÞ, i.e., the fraction of the sky compatible with
the time delays that we introduced in Fig. 1(b).
Substituting Eq. (28) in (27), we arrive at

L̄ðθintÞ ≈
1

N

XN
i¼1

Δ · ΠðδτiÞ
PðτiÞ L̄ϕDðψ i; n̂i; ti⊕; θintÞ: ð29Þ

2. Adaptive multiple importance sampling

As discussed above, the variance of the importance
sampling integral can be large if the proposal is misspe-
cified. The most sensitive component of the proposal is the
auxiliary distribution of discrete detector arrival times PðτÞ,
as it is responsible for the largest reduction in phase space
volume. To make PðτÞ robust to an eventual initial
misestimation, we will allow the option of adapting it as
needed by iteratively proposing distributions PðjÞ, that
attempt to cover any problematic regions where the
previous proposals were too narrow. The total proposal
is a mixture of the form,

PðτÞ ¼
X
j

αjPðjÞðτÞ

¼
X
j

Nj

N

Y
d

PðjÞ
d ðτdÞ; ð30Þ

with
P

τ P
ðjÞ
d ðτÞ ¼ 1. That is, we define a series of adaptive

proposals PðjÞðτÞ, each factorizable over detectors.5 This
property makes drawing samples of τ ∼ PðjÞ a simple task,
as the τd are drawn independently from one-dimensional
distributions. This task can be achieved with the inverse
transform sampling technique, which is efficient and fur-
thermore facilitates the use of quasi-Monte Carlo integra-
tion, as we will explain in Sec. II D 5. Every time we add a
new proposal PðjÞ, we draw Nj samples from it, and
combine them with the previous ones using the so-called
balance heuristic αj ¼ Nj=N, withN ¼ P

j Nj. Altogether,
Eqs. (29) and (30) become

L̄ðθintÞ ≈
XN
i¼1

wi; ð31Þ

wi ¼
Δ · ΠðδτiÞP

jðNj
Q

dP
ðjÞ
d ðτdiÞÞ

L̄ϕDðψ i; n̂i; ti⊕; θintÞ: ð32Þ

The importance sampling weights wi can be used to
estimate the effective number of samples

5Note that the total proposal PðτÞ is not factorizable.
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Neff ≡ ðPiwiÞ2P
iw

2
i

: ð33Þ

We set a threshold Nmin
eff , and iteratively add proposals PðjÞ

until the effective sample size meets this threshold (or a
maximum number of proposals is reached). Every time a
new PðjÞ is added, we draw Nj samples from it, update the
weights of all samples and recompute Neff . In Sec. III we
will confirm that Neff is a good tracer of the precision of the
importance sampling integral.

3. Initial proposal distribution of arrival times at detectors

We choose the initial (j ¼ 0) proposal distribution of
detector arrival times for each detector d based on the
matched-filtering time series and covariances. We adopt the
following functional form:

Pð0Þ
d ðτÞ ¼ ΠdðτÞ exp½βd ln L̂dðτÞ�; ð34Þ

where L̂d is an approximate likelihood, 0 < βd ≤ 1 is a
tempering factor andΠd is a prior. For the likelihood we use

ln L̂dðτÞ ¼
ðPm;pjzmpdðτÞjÞ2
2
P

m;pcmmppd
: ð35Þ

This expression follows from approximating that different
modes and polarizations are orthogonal and have indepen-
dent phases, and then maximizing Eq. (6) over these phases
and the distance.
The tempering factors βd are intended to make the initial

proposal broader, and therefore more robust against miss-
ing the support of the posterior. How to choose them
depends on the application, for example in a search they
may be fixed heuristically (e.g., β ¼ 0.5), or in parameter
estimation they can be tuned at the beginning to maximize
Neff for a reference waveform.
Finally, we use the priors Πd to incorporate information

about the physically allowed time delays between detec-
tors: if the signal is weak in a detector, the arrival time at
that detector might be meaningfully constrained by data in
other detectors. While the true prior on arrival times τd is
correlated among detectors, in order to draw arrival time
samples easily we require that the proposal distributions

PðjÞ
d are uncorrelated [see Eq. (30)]. We circumvent this by

conditioning the proposal in one detector on the other
detectors’ proposal distributions rather than on the indi-
vidual values of the arrival time samples. We achieve this as
follows. Once we have computed the likelihood (35), we
sort the detectors by decreasing maxτ L̂d. In the first
(loudest) detector d ¼ 1, where the likelihood best con-
strains the time of arrival, we use a uniform prior

Π1ðτÞ ¼ const; ð36Þ

as this defines Pð0Þ
1 ðτÞ. For the second detector we condition

the prior on our knowledge of Pð0Þ
1 ,

Π2 ¼ Pð0Þ
1 � Π21; ð37Þ

i.e., we use the proposal for the time of arrival at the first
detector convolved with the prior distribution of time delays
τ21 ¼ τ2 − τ1 to the second detector. This incorporates the
information that there is a maximum allowed time delay. We
compute the prior for the arrival time at the third detector in a

conceptually similar way, where nowΠ3 is informed by Pð0Þ
1

and Pð0Þ
2 . We first estimate the time delay between the first

two detectors by cross-correlating their proposals,

Pðτ21Þ ¼ Pð0Þ
1 ⋆Pð0Þ

2 . We marginalize over this distribution
to obtain Πðτ31jPðτ21ÞÞ ¼

P
τ21

Πðτ21; τ31ÞPðτ21Þ, and
finally arrive at

Π3 ¼ Pð0Þ
1 � Π31j21: ð38Þ

4. Adaptation

After iteration J of the adaptation, we have the set of
samples fτig; i ¼ f1;…;

P
J
j Njg proposed so far, along

with their weights wi.
For the following proposal PðJþ1Þ

d ðτdÞ we aim to match
the proposal to the posterior, perhaps with heavier tails. We
obtain a measurement of the detector arrival time posterior
by kernel density estimation (KDE) on the existing
samples: we construct a histogram of fτidg weighted by
wi and convolve it with a suitably chosen kernel. We use a
heavy-tailed Cauchy kernel Kðδτ;ΣÞ ∝ ðδτ2 þ Σ2Þ−1. We
set the kernel width Σ in each detector using Silverman’s
rule of thumb [63] with a lower bound Δ: Σd ¼
maxfΔ; ð4Neff=3Þ−1=5σdg, where σd is the weighted stan-
dard deviation of the sample of fτidg.
As a new proposal we use a hybrid between this KDE

and the previous proposal,

PðJþ1Þ
d ðτdÞ ¼

1

2

�
KDEðτdÞ þ

XJ
j

PðjÞ
d ðτdÞ

�
: ð39Þ

This increases the stability of the adaptation and handles
satisfactorily the generic situation in which the original
proposal was adequate in some detectors and not others.
This adaptation step is illustrated in the second and third

rows of Fig. 2.

5. Quasi-Monte Carlo

In order to further reduce the variance of the ðψ ; n̂; t⊕Þ
integral estimated in Eq. (31), we jointly draw the samples
of detector arrival times, polarization and subgrid time shift
using quasi-Monte Carlo [61]. By design, the proposal is
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factorizable in all these variables. In each dimension we use
inverse transform sampling, i.e., use the cumulative of the
proposal, u, as coordinate, so that the proposal becomes the
uniform distribution,

uaðxaÞ ≔
Z

xa

−∞
paðx0aÞdx0a;

⇒ ua ∼ Uð0; 1Þ; ð40Þ

where a labels each dimension (arrival time at each
detector, subgrid timeshift, polarization) and pa is the
corresponding proposal. Instead of drawing the fuig
independently, we select them according to a scrambled
Halton sequence. This introduces correlations between the
samples, that decrease the variance of the estimator
Eq. (31) by making the average covariance of the weights
negative. We then invert Eq. (40) to obtain the physical
quantities fψ i; τi; tid0g.

III. CONVERGENCE AND PERFORMANCE

In Fig. 3 we study the accuracy of the marginalization
algorithm by comparing multiple estimates to a high
resolution result that serves as ground truth. We find that
for different events, intrinsic parameter values, realization
of importance samples, and number of optimizations, the
effective number of samples remains a good tracer of
the error in the computation. This is important because the
effective number of samples can be computed from
the available importance weights at negligible cost. In
the figure legend we report the maximum-likelihood fit of
a model in which the ln L̄ errors are normally distributed
with a variance that follows a power-law on the effective
number of samples. Notably, very precise estimates of the
marginal likelihood can be obtained as needed by increas-
ing the number of samples.
In Fig. 4 we show the computational cost of the extrinsic-

parameter marginalization using our implementation of the
algorithm. The number of effective samples increases
linearly or faster with the computational effort; the latter
situation is indicative of cases where the proposal adapta-
tion makes an impact. We typically achieve 10% precision
within 50 ms with a sizable variance contingent on the
event and intrinsic parameter values.
In both Figs. 3 and 4, the intrinsic-parameter evaluation

points were chosen at random from the chain of proposals
made by the NAUTILUS sampler [64] in a parameter
estimation run on data with a synthetic signal injected
(see Sec. IV B for additional details), to ensure that they are
representative of real-world applications.

FIG. 3. Convergence test of our marginalization algorithm. We
show the importance sampling error in the marginalized likelihood
L̄ðdjθintÞ versus effective number of samples in the estimator
[Eq. (33)]. Each point represents a single marginalized likelihood
estimate. Different colors correspond to different events d and
intrinsic-parameter values θint. Within each color, points differ in
the number of proposal adaptations performed and the realization
of extrinsic-parameter importance samples (Sec. II D). A single fit
to the errors is found to describe all examples reasonably well.

FIG. 2. To reduce the variance of the importance sampling
marginalization, we use an adaptive proposal distribution for the
detector arrival times. Top: an initial proposal is generated in each
detector from the matched-filtering time series (Sec. II D 3). Sets
of discrete arrival times τ are sampled from these with quasi-
Monte Carlo. Physical parameters are assigned to each set of
detector arrival times (Sec. II D 1). Center: the physical samples
are reweighted according to the ratio of their (coherent) posterior
to the proposal [Eq. (32)], and used to estimate the probability
density in each detector via KDE (Sec. II D 4). Bottom: the
proposal is updated by averaging it with the KDE. Previous
samples are kept, and their weights updated to reflect the change
of the proposal. The process is repeated until the effective number
of samples is satisfactory.
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IV. APPLICATIONS

A. Search for binary mergers

As argued in Sec. I, optimally searching for gravitational
wave events requires ranking candidates by their likelihood
marginalized over the nuisance parameters of the signal
model. The method introduced in Sec. II allows us to
marginalize over the extrinsic parameters accounting for
higher-order modes, enabling searches sensitive to this type
of signals. Indeed, we have used this algorithm in a search
pipeline that incorporates higher modes [19].
In terms of sensitivity, one could compare this method to

a common alternative to marginalization, which is to
maximize the likelihood over nuisance parameters. That
approach is reasonably close to optimal in the case where
there are a few well-measured parameters. However, higher-
order modes introduce nuanced details in the waveform
shape that greatly increase the diversity of waveforms, while
at the same time they are a subdominant perturbation for
most parameter values. The diversity of waveforms incurs a
large trials factor, to the point where the inclusion of higher
modes may in fact degrade the sensitivity of a maximum-
likelihood search [65]. This degradation happens because
the likelihood may be maximized for fine-tuned configu-
rations that are not representative of the generic solutions,
whereas marginalization correctly penalizes such configu-
rations. For example, oftentimes the likelihood is maxi-
mized for a nearly edge-on inclination, but this solution is
penalized when we marginalize over distance, as highly
inclined systems are observable in a smaller volume. From
first principles, with the marginalization statistic the more
accurate model (including higher harmonics) is guaranteed
to have a better sensitivity by the Neyman-Pearson lemma.

In terms of computational cost, the most expensive
inputs to the algorithm are the matched-filtering time series
zmpdðt; θintÞ for each of the harmonic modes. For a search,
these are computed by means of fast Fourier transforms.
This requires constructing the template bank in terms of the
individual harmonics, which turns out to be convenient
since (in line with the above discussion) it leads to banks of
a ∼100 times smaller size compared to banks of fully
specified templates [66]. The covariances cmm0pp0dðθintÞ are
time-independent (except for slow variations due to the
nonstationarity of the noise) and therefore inexpensive. The
efficiency of our marginalization routine enabled us to use
it as component of the ranking score on ∼107 foreground
and background (i.e., with artificial time shifts between
detectors applied [4,8]) triggers in a recent search including
higher-order modes [19], without it becoming a computa-
tional bottleneck.
While the likelihood ratio in this work was derived under

the assumption of Gaussian noise, a later stage in the
pipeline applies a correction for the fact that the empirical
noise distribution is not Gaussian [47].

B. Parameter estimation

In this section we demonstrate the applicability of the
extrinsic parameter marginalization to parameter estima-
tion. We use a general purpose stochastic sampler to
explore the intrinsic-parameter posterior,

pðθintjdÞ ¼ πðθintÞL̄ðθintÞ: ð41Þ

To reconstruct the full distribution, for each intrinsic-
parameter sample, we select extrinsic parameters from the
conditional posterior pðθextjθint; dÞ according to the
weights wi in Eq. (31). The concept and motivation are
the same as in Islam et al. [51]; sampling Eq. (41) is a
lower-dimensional problem than the full posterior pðθjdÞ,
therefore will typically take less model evaluations to
converge robustly. The main difference is that here we
include higher modes and precession. Another parameter
estimation framework that is based on the marginal like-
lihood is RIFT [25,46,52,67,68]. RIFT evaluates the marginal
likelihood in parallel on a grid over intrinsic parameters, and
then constructs a fast interpolator with which it explores the
posterior. Our algorithm instead runs on a single core and
freshly computes the marginal likelihood at every call. This
is rendered possible by the efficiency of our implementa-
tion, which computes a marginalized likelihood in ∼50 ms.
In comparison, RIFT takes tens of seconds on a GPU or
minutes on a CPU [52].
We perform two tests of this method. In Sec. IV B 1 we

compare it to the more standard strategy of running the
sampler on the full parameter space, confirming that we
achieve a consistent result on an individual event at a
reduced computational cost. In Sec. IV B 2 we generate a
large set of synthetic events, and test with P–P plots that the

FIG. 4. Computational cost of the marginalization over ex-
trinsic parameters. We plot the effective number of samples in the
importance sampling estimator as a function of the time spent by
one CPU core. As in Fig. 3, different colors correspond to
different events d and intrinsic-parameter values θint. While the
computational cost depends considerably on the particular event
and parameter values, in most cases Neff ≳ 100 (≲10% uncer-
tainty in L̄) is achieved within 50 ms.
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method recovers the injected parameters consistently across
parameter space.
We perform the parameter estimation runs using the

COGWHEEL code [34,69]. We use the IMRPhenomXODE wave-
form model, which accounts for precession and the
fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þg harmonic modes [70].
The matched-filtering time series zmpdðt; θintÞ and cova-
riances cmm0pp0dðθintÞ are computed using the heterodyne/
relative-binning method [71–73], with the implementation
of [62]. We “fold” the posterior for the inclination θJN as
described in [34] in order to handle its multimodality (the
rest of the parameters identified there as suitable for folding
are extrinsic, so the marginalization obviates folding those).
We use the stochastic sampler NAUTILUS [64] with 1000 live
points. Table I reports the configuration of the marginali-
zation algorithm we used.

1. Comparison to no marginalization

As a first sanity check, we infer the parameters of
GW190814 [74]—an event that displays higher modes—
in two ways: with our extrinsic marginalization method, or
without marginalizing the likelihood and letting the sampler
explore the 15-dimensional parameter space. For the non-
marginalized case, we fold the ðθJN; ϕ̂net;ϕref ;ψÞ parame-
ters in order to improve the inference efficiency and
robustness [34].
In Fig. 5 we see that the two methods are in excellent

agreement on intrinsic and extrinsic parameters, and the
likelihood. The run with marginalization took 1.6 h on one
CPU core, while the run without marginalization required
5.5 h (3.5 times the cost). Other events gave similar results;
using the marginalization was consistently ∼3–5 times
faster.

2. Performance on synthetic events

We further assess the performance of the method by
means of probability–probability (P–P) plots, shown in
Fig. 6. That is, we perform a set of injections on Gaussian
noise, with source parameters drawn from a prior distribu-
tion. We obtain posterior samples for each injection using
the same prior, and test the uniformity of the percentiles Pθ

estimated from the posterior samples for various source
parameters θ. The percentiles represent the probability that a

parameter lies below the injected value; in a well-calibrated
inference they should follow a uniform distribution over the
set of injections:

Pθ ≡
Z

θinj

−∞
dθpðθjdÞ ∼ Uð0; 1Þ: ð42Þ

Deviations from uniformity may indicate biases or inaccur-
acies in our method’s performance.
To have more granular information, we partition the

parameter space in three bins by detector-frame chirp mass;
M=M⊙ ∈ ð1; 5Þ, (5, 25) or (25, 125). Within each bin, we
use a mass prior uniform in detector-frame component
masses with a cut in mass ratio q > 1=20, a “volumetric”
spin prior (i.e., isotropic and with πðχÞ ∝ χ2 for either
dimensionless spin magnitude χ), and uniform in luminos-
ity volume up to Dmax ¼ 1.5 Gpc in the low-mass bin and
15 Gpc in the other two. To have a sample of events more
representative of the set of detections, we further impose a
cut hhjhi > 70 on the injections. We do not use this cut
during parameter estimation, but reject samples that do not
satisfy it in postprocessing. We use a Hanford-Livingston-
Virgo network with average sensitivities from the third
observing run. The parameters are specified at a reference
frequency of 50 Hz.

FIG. 5. Application of our method to parameter estimation. In
solid blue, we let the stochastic sampler explore the intrinsic
parameters following the extrinsic-marginalized posterior, and
reconstruct the extrinsic in postprocessing. In dashed orange, we
explore all 15 intrinsic and extrinsic parameters with the sampler.
Both achieve similar results, but the marginalized case was 3.5
times faster.

TABLE I. Configuration of the algorithm used in Sec. IV B.

Parameter Value

Δ Time resolution of the mapping 2−13 s
Nj Number of samples per partial proposal 2048
Nmin

eff Minimum effective number of samples 50
jmax Maximum number of proposal adaptations 16
Nϕ Number of phase quadrature points 128

Time series interval around trigger �70 ms
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We show the results in Fig. 6. 1–2% of the runs failed
(timed out at 24 h or produced posteriors below the hhjhi ¼
70 cut we imposed on the injection prior), we exclude these
from the plot. The fraction of runs that succeeded at the first
attempt is reported in the figure titles. We recover sat-
isfactory P–P plots in all parameters and chirp-mass ranges,
providing evidence that the posteriors are well-calibrated
across the parameter space.
The computational cost of the inferences is summarized

in Table II. The average inference runtimes to produce
∼104 effective posterior samples range from 0.78 h (high-
mass signals) to 2.6 h (low-mass signals) using a single
CPU core. Our algorithm is thus reasonably efficient and
competitive with other state-of-the-art codes. We find that
lower-mass systems take a longer time to run. The reason is
threefold; for these systems each waveform generation
takes longer, so does the likelihood marginalization, and

more likelihood evaluations are needed overall for the
sampler to converge. IMRPhenomXODE is slower for lighter
systems because this approximant solves a differential
equation for the spin dynamics, and these undergo more
precession cycles from a given starting frequency if the
masses are smaller.6 One likely explanation for the mar-
ginalization being less efficient is that low-mass templates
have a shorter autocorrelation length, since these systems
emit up to higher frequencies. This allows to measure the
arrival time at the detectors better, reducing the target
volume of phase space. The reason why the sampler
requires more likelihood evaluations might be related to
the prominence of various degeneracies in different regions
of parameter space.
The average time for each likelihood marginalization

[after the inputs in Eqs. (11) and (13) had been generated]
was in the range 38–60 ms (depending on the mass bracket)
with Nmin

eff ¼ 50; this is in line with the estimation from
Fig. 4. The marginalization amounted to approximately
70% of the overall computational cost; unlike the majority
of parameter estimation codes, the cost of waveform
generation—while not negligible—was not the dominant
bottleneck. This suggests that somewhat more expensive
models could be used without significantly affecting
performance.
In addition to gauging the consistency of our method, the

set of injections and posterior samples we generated could

TABLE II. Timing statistics for the same set of parameter
inference on injections shown in Fig. 6. For each chirp-mass
range, we report the average inference runtime per event on one
CPU core, the average cost τL̄ of each call to the marginalization
routine—which dominates that of the waveform model τXODE—
the number Ncalls of likelihood evaluations performed per event
and the average effective sample size achieved (NAUTILUS
produces weighted posterior samples).

M=M⊙ hRuntimei=h hτL̄i=ms hτXODEi=ms hNcallsi hESSi
(1, 5) 2.6 60 23 9.6 × 104 1.2 × 104

(5, 25) 1.2 45 8.2 6.9 × 104 1.2 × 104

(25, 125) 0.78 38 7.1 5.2 × 104 9.7 × 103

FIG. 6. Probability–probability plots for parameter inference on low-mass, medium-mass and high-mass injections. The empirical
distributions of the percentiles are observed to be uniform (their cumulatives follow a diagonal line), indicating satisfactory performance.
Each line corresponds to a different source parameter (the parameters are defined in [34]). Titles report the fraction of runs that
succeeded on the first attempt; the remainder timed out or failed the hhjhi > 70 cut, see text. Our method achieves excellent recovery of
injection parameters over the wide parameter space that we tested.

6The reason is not simply that the waveforms are longer: this
would not occur with analytic approximants such as others in the
IMRPhenom family, since the evaluation frequencies are indepen-
dent of waveform duration in the relative binning algorithm [72].
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be utilized for other analyses as a realistic mock catalog of
observations [75–78]. With this motivation, we release these
data products [79].

C. Low-latency source localization

Beyond marginalizing the likelihood, the weighted
samples produced by our algorithm can be used to
reconstruct the posterior on extrinsic parameters, including
the source location. The computational speed of our
marginalization algorithm makes it appealing in the search
of short-lived electromagnetic counterparts to gravitational
wave signals. Other algorithms in the literature that can
localize a source in low-latency are restricted to quad-
rupolar waveforms [39,43] or high-mass systems that are
unlikely to emit light [33]. In contrast, our source locali-
zation method works for both high- and low-mass systems
and accounts for higher harmonics.
In this section, we will assume that the spins are aligned

with the orbit, which allows us to treat the inclination ι as an
extrinsic (analytic) parameter and infer its value. We
achieve this by including the inclination along with the
time, sky location and polarization in the importance
sampling (Sec. II D), and including the full spin-weighted
spherical harmonics in the waveform model i.e., replacing
eimϕref by −2Ylmðι;ϕrefÞ in Eq. (7).
In Fig. 7 we demonstrate the application of our

algorithm to low-latency source localization. We generate
a synthetic signal on Gaussian noise in a Hanford-
Livingston-Virgo network with sensitivities typical of
the O3 observing run. We simulate the merger between
a 1.4M⊙ neutron star and a spinning 8M⊙ black hole, with
dimensionless spin 0.5 aligned with the orbit. Such system
could realistically disrupt the neutron star before merger
and produce electromagnetic radiation [80]. We place the
source in a sky location with good interferometer response
at a distance of 100 Mpc, which yields a (recovered)
signal-to-noise ratio of 28.6. We simulate the signal using
the IMRPhenomXHM approximant [81] (the aligned-spin
limit of IMRPhenomXODE).
We retrieve the extrinsic parameter posterior in two

ways: modeling the ðl; jmjÞ ¼ fð2; 2Þ; ð3; 3Þ; ð4; 4Þg har-
monics, or only the (2, 2). The latter case is intended to
represent the current state of the art in low-latency source
localization. At least in this example, we observe that the
two results are approximately similar in terms of the sky
coordinates. However, higher harmonics provide a signifi-
cant help for constraining the source inclination, and
thereby the distance. (A similar phenomenon was reported
in the event GW190412 [53].) This hints at the exciting
possibility of ruling out some candidate galaxies in the
localization region, facilitating the task of identifying a
potential counterpart.

Figure 7 was produced with 4000 extrinsic-parameter
samples, which took 12 s to generate in a single CPU core
(after the matched filtering time series and covariances had
been generated those would be provided by a search
pipeline). It would be straightforward to produce multiple

FIG. 7. If intrinsic parameters are available from a search
pipeline, our method can localize the source in low latency
(which is crucial for multimessenger astronomy) while account-
ing for higher harmonics. To illustrate this, we show the
source location recovery for a synthetic neutron-star–black-hole
signal in a Hanford-Livingston-Virgo network in two cases:
using a waveform with higher harmonics (solid blue) or without
(dashed orange). Injected parameters are indicated with a black
cross. In both cases, masses and spins are (unrealistically) set to
their true values. Top: higher modes partially lift the distance–
inclination degeneracy, improving the low-latency distance
measurement relative to current the state of the art, which only
includes the quadrupole. Bottom: the source is constrained to
two disjoint possible arrival directions, the inset zooms in
around the correct one.
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smaller batches of samples in parallel if a speedup is
desired.
An important caveat in this demonstration is that we

treated the intrinsic parameters as known and set them to
the true values; in a real application, one would only have
access to some noisy estimate from the search pipeline,
and would have to marginalize the intrinsic parameters as
well. In particular, intrinsic parameters correlate with
the distance, as the loudness of the source depends on
the masses and spins. This further motivates the inclusion
of intrinsic parameters in a more detailed reconstruction of
the source location. Higher modes could be of further
help in measuring the distance and physical nature of the
source, as they also help constrain the intrinsic parameters
(by breaking the mass-ratio effective-spin degeneracy).
Exploring the consequences of this, as well as the extent
to which the inclusion of higher harmonics is important
in different regions of parameter space, are left to future
work.

V. CONCLUSIONS

We have developed, implemented and tested an efficient
algorithm to marginalize the likelihood function of a
gravitational wave signal over its extrinsic parameters
(and conversely, to sample the posterior conditional on
the intrinsic parameters). The computation assumes
Gaussian noise and a quasicircular (noneccentric) orbit,
and works for signals with precession and/or higher-order
harmonics.
For precessing signals (spins misaligned with the orbit),

we are able to marginalize out six parameters, namely the
orbital phase, distance, coalescence time, polarization
angle, right ascension and declination. For aligned-spin
signals, we can additionally marginalize the inclination
angle. We perform the marginalization over distance via a
lookup table, over the orbital phase with trapezoid quad-
rature, and over the remaining extrinsic parameters using
adaptive importance sampling.
Our Python implementation of this algorithm typically

achieves a ∼10% accuracy in 50 ms on one CPU core. We
make it available through the software COGWHEEL.7

We discussed three applications for this tool: search,
parameter estimation, and low-latency localization.
In a search for gravitational wave signals, this algorithm

is a key piece in the optimal detection statistic, as it
computes the Neyman-Pearson likelihood ratio of the
hypothesis that there is a signal with given intrinsic
parameters versus Gaussian noise. This statistic is computed
from the time series of matched-filtered data with the
individual harmonic modes of the signal (as opposed to

the fully specified waveform), which significantly reduces
the size of the template bank [66]. It combines data from
different detectors coherently, and correctly penalizes fine-
tuned configurations. Our implementation is sufficiently fast
that this statistic can be used to rank the large number of
foreground and background triggers originating from a
search pipeline.
In parameter estimation, by marginalizing the extrinsic

parameters we are able to simplify the task of the stochastic
sampler; it only needs to explore the intrinsic parameter
space, which is lower dimensional and often has a simpler
structure. We have demonstrated this on thousands of
synthetic signals, recovering satisfactory probability–
probability plots across the parameter space. The inference
is completed in a one-to-few-hour timescale on a single
CPU core, using a waveform model that includes spin-
induced precession and higher harmonics.
Finally, we briefly explored the applicability of this

algorithm to low-latency source localization, which would
be useful in the followup of electromagnetic counterparts
to gravitational wave signals. For this application we
exploit the capability of efficiently sampling the extrinsic-
parameter posterior at given intrinsic parameters. We have
shown that accounting for the higher harmonics can make
a difference in the recovered distance to the source (by
partially lifting the degeneracy with the inclination angle),
which suggests the possibility of improving the proba-
bility ranking of candidate host galaxies. Interfacing this
routine with low-latency search pipelines and demonstrat-
ing its performance on synthetic signals are interesting
directions for future work.
Beyond these applications, this algorithm could be

applied to other use cases with relatively straightforward
modifications. For example, the computation of the Bayes
factor for a strong gravitational lensing hypothesis given
multiple candidate images involves a similar integration of
the likelihood over the parameters of the signal [82–85].
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APPENDIX A: MISCELLANEOUS
COMPUTATIONAL TRICKS

In this technical appendix, we outline steps taken to
optimize specific computations, which were omitted from
the main text for brevity.

1. Time series relative binning

During the parameter estimation described in Sec. IV B,
we generate the matched-filtering time series zmpdðt; θintÞ
using heterodyne/relative binning, a method that com-
presses the data to a few hundred weights u by hetero-
dyning with a reference waveform h0. Thereafter,
computing a matched filter requires the waveform evalu-
ated only on a coarse frequency grid ffbg. Normally, a
single reference waveform in each detector (decomposed
by modes) would be used. However, in our application we
need to provide zmpdðt; θintÞ over a range of�70 ms, which
means that the test waveform can differ from any single
reference by hundreds of autocorrelation times.
Following the formulation of [62], we approximate the

matched filtering time series as

zmpdt ≡
Z

df
d̃dðfÞh̃�mpðfÞ

SdðfÞ
ei2πft ðA1Þ

≈
X
b;m

umtdbh̃
�
mpðfbÞ; ðA2Þ

umtdb ¼
1

h̃0�m ðfbÞ
4

Z
df

d̃dðfÞh̃0�mpðfÞ
SdðfÞ

ei2πftsbðfÞ; ðA3Þ

where sbðfÞ are splines that interpolate the Kronecker delta
at the coarse frequency grid,

sbðfb0 Þ ¼ δbb0 : ðA4Þ

The key modification we have made is that we have
included the time axis in the summary data, which can
be interpreted as using multiple reference waveforms, each
with a different time shift. Thus, when generating the time
series we are always using an appropriately shifted refer-
ence, and we avoid applying a large time shift to the low-
resolution waveform. A similar technique had been used in
the precursor work of [51].
We note that it is not necessary to use different reference

waveforms for different polarizations p, as the ratio
h̃mþ=h̃m× is typically a smooth function of frequency.
Previous methods have used the fast Fourier transform

algorithm to generate the matched filtering time series
efficiently [87]. However, that would require waveforms
sampled at evenly spaced frequencies, which conflicts with
the irregular ffbg used in relative binning.

2. Sparse spline representation

One nuisance associated with having included the time
axis in the summary data umtdb in Eq. (A3) is that now the
summary is much larger, to the point that it can require a
nontrivial amount of computation.
To mitigate this, we accelerate the frequency integrals in

Eq. (A3) (which, in reality, are matrix multiplications along
the fine but discrete frequency axis f) by using the B-spline
representation of sbðfÞ. We arrange the splines into a
matrix Sbf ≔ sbðfÞ, and express it as

Sbf ¼
X
b0
Cbb0Bb0f; ðA5Þ

whereCbb0 is a square matrix of coefficients and Bb0f is a set
of B-splines. The crux is that the B matrix is sparse, which
provides a significant speedup. We compute this decom-
position using the SciPy.interpolate.splrep
implementation [88].
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Other formulations of the heterodyne/relative binning
algorithm [24,72,73,89] work with frequency bins, thus,
they do not integrate over the full frequency range and
never encounter this problem in the first place. On the other
hand, our implementation has the advantage that our
approximation of the waveform is smooth over the entire
frequency range.

3. Stalling the reference waveform decay

At the core of the heterodyne/relative binning method is
the observation that the ratio h̃ðfÞ=h̃0ðfÞ between the test
and reference waveforms is a smooth function of frequency.
However, a pathological situation can arise when the
merger frequency of the reference waveform is lower than
that of the test waveform. Then, the ratio diverges at high
frequencies and the computation may become numerically
unstable. We fix this by using a modified reference wave-
form in which the high frequency part (where the last 1% of
the squared signal-to-noise ratio is accumulated) is set to a
nonzero constant, with a smooth cross-fading to prevent
artifacts.

4. Waveform time convention

There is a certain amount of arbitrariness in the con-
vention of what is the “arrival time” of a waveform. The
practical importance of this for parameter estimation is that
the choice of convention can spuriously correlate the time of
arrival and the intrinsic parameters (e.g., see Sec. V, [34]).
Marginalizing over the arrival time, as done in this and other
works, in principle makes this problem moot, since the
sampler does not need to deal with those correlations.
However, we did find some cases—especially for highly

precessing signals—where the time conventions differed so
much that the peak of the matched filtering timeseries
zmpdðt; θintÞ got shifted by more than our �70 ms time
window as the intrinsic parameters were varied during
parameter estimation. This would cause a complete loss of
the signal and bias the inferred parameters. Even in less
extreme scenarios, this shift could produce relative-binning
errors if the reference and test waveforms are shifted
relative to each other.
To fix this, whenever we generate a waveform we apply a

time shift to align it to the relative-binning reference. We
obtain this time shift from a weighted least-squares linear fit
to the unwrapped phase difference ΔΦ between the two
m ¼ 2 waveforms, as follows. We estimate the phase
difference as

ΔΦðfbÞ ≔ unwrap
�
arg

�
h̃2þðfbÞ
h̃02ðfbÞ

��
: ðA6Þ

We take the ratio before the argument to ensure that the
(potentially very large) phase accumulated by the wave-
form largely cancels out with that of the reference,
rendering the unwrap possible. We apply a weighted least
squares linear fit to this phase, with inverse variances

σ−2b ¼
Z

df
jh̃0ðfÞj · jh̃2þðfÞj

SðfÞ sbðfÞ; ðA7Þ

where we have defined an effective power spectral density
through

S−1ðfÞ ¼
X
d

S−1d ðfÞ: ðA8Þ

This procedure maximizes the match between the two
waveforms over time and phase, under the approximation
that h̃2þ is a small (linear) perturbation of h̃02, and using
relative binning to compute the inner product.
We extract the time shift from the slope of the linear fit,

and apply it to all the modes and polarizations of the
waveform. This ensures that the peak in the time series will
occur near that of the reference waveform, and that relative
binning errors are kept to a minimum. The constant part of
the linear fit plays no role in these two problems, so we
discard it. The user is unaffected by this process: in order to
facilitate the reconstruction of the signal, we still report the
parameter samples in the convention of the original
approximant.

5. Memory of previous proposals

During parameter estimation, the likelihood function is
evaluated repeatedly at similar parameter values. Hence, it
is likely that the adapted proposal PðτÞ from one margin-
alized likelihood call (Sec. II D 4) is also suitable for
subsequent calls. With this heuristic, we aim to accelerate
the convergence of the importance sampling integral by

averaging the initial proposal in each detector Pð0Þ
d ðτÞ (as

computed in Sec. II D 3) with a “remembered” proposal
Ppast
d ðτÞ. After each likelihood marginalization call, we

update this remembered proposal according to the last
iteration of the adaptation,

Ppast
d ðτÞ ← Ppast

d ðτÞ þ ϵPðJÞ
d ðτÞ

1þ ϵ
; ðA9Þ

where ϵ is a tunable parameter that controls how fast the
remembered proposal is updated; we use ϵ ¼ 10−2.
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For this procedure to be effective, it is essential that the
time convention preserves the time alignment across wave-
forms, which we achieve with the method of Sec. A 4.

6. Pruning phases with low maximum likelihood

The phase quadrature in Eq. (21) tries out values of the
(very well-measured) orbital phase over its full range. Thus,
by construction most of the evaluation points will corre-
spond to waveforms completely inconsistent with the data.
We can save many useless computations of L̄D by first
computing the (cheaper) quantity,

2max
D

lnL ¼ hdjhi2
hhjhi ; ðA10Þ

and discarding those values of the orbital phase for which
the maxD lnL falls short of the maximum one by a large
amount (we use ΔmaxD lnL > 12).

7. Polarization flip

Before pruning the phases in Appendix A 6, we can
salvage the computation invested in some of the points
with the following trick. The very worst-fitting orbital
phases have a large negative hdjhi, indicating that the
waveform model is in antiphase with the data. In that case,
we can improve the proposal at negligible cost by
applying a shift of π=2 to the polarization angle whenever
hdjhi < 0. This operation changes the sign of the antenna
coefficients [90], and thereby of the strain h. The trans-
formation reads,

0
B@

ψ

hdjhi
hhjhi

1
CA ↦

0
B@

ψ þ π=2

−hdjhi
hhjhi

1
CA: ðA11Þ

This procedure improves Neff to some extent.

8. Foregoing optimization for points with low
marginalized likelihood

Especially during the early phase of parameter estima-
tion, the stochastic sampler explores regions of low
likelihood and gradually climbs towards the maximum.
In those regions, samples are either rejected or heavily
downweighted, to the point that they are irrelevant for all
practical purposes (i.e., the posterior samples and the
Bayesian evidence). While some level of accuracy is
desirable, so that the sampler can climb the likelihood
surface, for samples with sufficiently low likelihood the
target Nmin

eff that we impose on the importance sampling
integral can be overly conservative.

To save computations in this case, within each inference
run we keep track of the maximum recorded value of
ln L̄ðθintÞ up to that point. Whenever the estimated ln L̄ of
the current θint is lower than the historic maximum by a
large value (more than 30) we stop optimizing the
proposal even if Neff is low.

APPENDIX B: EXAMPLE USAGE

In this appendix we provide a short snippet of code that
illustrates how COGWHEEL can be used to estimate the
parameters of event GW150914 using the Algorithm
described in this article.

import matplotlib.pyplot as plt
import pandas as pd
from cogwheel import data
from cogwheel import gw_plotting
from cogwheel import sampling
from cogwheel.posterior import Posterior

# Directory that will contain parameter
# estimation runs:
parentdir = “example”

eventname, mchirp_guess = “GW150914,” 30
approximant = “IMRPhenomXPHM”
prior_class = “CartesianIntrinsicIASPrior”

# Download data from GWOSC
filenames, detector_names, tgps = \

data.download_timeseries(eventname)
event_data = data.EventData.from_timeseries(

filenames, eventname, detector_names,
tgps)

# Setup Posterior and Sampler
post = Posterior.from_event(

event_data, mchirp_guess, approximant,
prior_class)

sampler = sampling.Nautilus(
post, run_kwargs = dict (n_live = 1000))

rundir = sampler.get_rundir (parentdir)
sampler.run(rundir) # Will take a while

# Load and plot the samples:
samples = pd.read_feather(

rundir/sampling.SAMPLES_FILENAME)

gw_plotting.CornerPlot(
samples, params =

sampler.sampled_params,
tail_probability = 1e-4).plot( )

plt.savefig(rundir/f“eventname.pdf,”
bbox_inches = “tight”)
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