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We explore the idea of restoring the full diffeomorphism (Diff) invariance in theories with only transverse
diffeomorphisms (TDiff) by the introduction of additional fields. In particular, we consider in detail the case
of a TDiff invariant scalar field and how Diff symmetry can be restored preserving locality by introducing an
additional vector field. We reobtain the corresponding dynamics and energy-momentum tensor from the
covariantized action and analyze the potential and kinetic domination regimes. For the former, the theory
describes a cosmological constant–type behavior, while for the latter we show that the theory can describe an
adiabatic perfect fluid whose equation of state and speed of sound is obtained in a straightforward way.
Furthermore, the reformulation with the full symmetry allows us to analyze the gravitational properties of the
theory beyond those particular regimes. In particular, we find the general expression for the effective speed
of sound of the nonadiabatic perfect fluid, which provides us with physically reasonable conditions that
should be satisfied by the coupling functions. Finally, we investigate the particular models leading to an
adiabatic fluid.
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I. INTRODUCTION

Our current best description of gravitational phenomena
is, and has been for over a century, the theory of general
relativity (GR). It is not a theory without weaknesses,
however, and although it performs remarkably well in
numerous tests on Solar System scales, there is reason to
believe that it is not the end of the story. For one, it is not a
theory that serves to describe gravity in its most extreme
regimes, where one expects quantum effects to gain
importance, but it is also possible to find problems even
while remaining classical. Indeed, the various tensions
between theory and observations in cosmology are another
hint at the possibility that the theory breaks down at such
scales. Sparked by considerations of the sort, together with
other theoretical issues such as the cosmological constant
problem, modified theories of gravity have been a central
object of study in this regard (see e.g. [1] for a review).
In particular, it proves worthwhile to reconsider the

fundamental symmetries involved in GR, namely the diffeo-
morphism (Diff) invariance of the theory. This amounts to
the assertion that the physical equations remain invariant
under general coordinate transformations. The study of
situations where such a symmetry is broken can in fact
be traced back to Einstein himself in 1919 with the
introduction of unimodular gravity [2], where the metric

determinant is reduced to be a nondynamical field fixed to
the value g ¼ 1. Unimodular gravity is perhaps the most
well-known example of a theory with broken Diff invari-
ance, the symmetry group in that case being the union of
transverse diffeomorphisms (TDiff) and Weyl rescalings
(together dubbed WTDiff; see e.g. [3] for a review). The
equations of motion of the theory are the trace-free Einstein
equations (see e.g. [4] for a comprehensive introduction), in
which any cosmological constant–type contribution does
not gravitate, thus providing an elegant solution to the
cosmological constant problem.
In more recent years, interest has grown in theories that

present TDiff invariance. Simply put, transverse diffeo-
morphisms are general coordinate transformations in
which the Jacobian determinant is required to be J ¼ 1.
Infinitesimally, if we consider the coordinate transformation
xμ → x̂μ ¼ xμ þ ξμðxÞ generated by a vector field ξμðxÞ,
then what we do is require the condition ∂μξ

μ ¼ 0 (see [5]
for a concise introduction to transverse diffeomorphisms).
The fact that the Jacobian determinant equals unity means
that objects that were tensor densities under Diff become
actual tensors under TDiff. In particular, the metric deter-
minant becomes a TDiff scalar field, and this has interesting
implications. Indeed, on the one hand, the metric determi-
nant becomes a scalar field to which one may endow
dynamics. On the other hand, the invariant volume element
we find in an action integral is no longer fixed by the
symmetry to be dvol ¼ ffiffiffi

g
p

d4x, but can actually take on the
more general form dvol ¼ fðgÞd4x, with fðgÞ being an
arbitrary function of the metric determinant, and this opens
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up an enormous range of possibilities for novel couplings.
Field theories in which the gravitational sector is TDiff
invariant were studied in Refs. [6–10], where cosmological
implications were also discussed. One can also study the
consequences of breaking the symmetries in the matter
sector. TDiff invariant theories with a scalar field were
recently considered in Refs. [5,11–13]. Reference [5] con-
sidered general scalar field TDiff theories in cosmological
contexts, Ref. [12] performed a general study for a scalar
field without assuming any background geometry, and
Ref. [13] provided a unified description for the dark sector
using a particular theory, comparing the results with the
latest cosmological observations and data sets.
Now, it is not an uncommon situation in physics to find

several equivalent descriptions, or reformulations, of the
same theory. Examples include, but are by no means
limited to, the well-known equivalence between the
Palatini and the metric approach to GR, the scalar-tensor
perspective of fðRÞ gravity (see, for example, [1]), or the
correspondence between the field equations of nonlinear
Ricci-based metric-affine theories of gravity coupled to
scalar matter and GR coupled to a different scalar field
Lagrangian [14]. Moreover, ever since the pioneering work
of Stueckelberg [15] (see e.g. [16] for a review), it is well
known how a theory may recover (or reveal) its broken
gauge symmetry via the introduction of additional fields.
With these two ideas in mind, we present in this work an
alternative formalism for the treatment of a TDiff theory for
a scalar field based on previous work done by Henneaux
and Teitelboim [17] within the context of unimodular
gravity (see also Kuchar [18] for an alternative approach).
Following that spirit, in this work we show how a TDiff
invariant field theory may be equivalently described as a
Diff invariant theory with an additional field. We then work
on the particular case of a scalar field theory from both
points of view. This idea of finding an equivalent description
with symmetry restoration has also been applied on the
different gravitational framework of massive gravity [19].
The paper is organized as follows. First of all, in Sec. II

we review the TDiff approach for the scalar field and
summarize the main results for the potential domination and
kinetic domination regimes in Secs. II A and II B. In Sec. III
we show how it is possible to reformulate a TDiff invariant
field theory in a way that recovers Diff invariance via the
introduction of an additional field. Section IV is then
devoted to the reformulation of our scalar field theory in
a covariantized manner. In Sec. IVAwe recover the results
of the TDiff approach in the potential domination regime.
Then, in Sec. IV B, we not only reobtain the results in the
kinetic domination regime, but the use of the covariantized
approach allows us to study the stability of the adiabatic
fluid in a simple way. Moreover, in Sec. IV C we argue how
the use of a particular approach could lead to the study of
different kinetic models considered to be more natural. In
addition, in the covariantized approach we can find the

constraint on the metric when both kinetic and potential
terms are present, and this is discussed in Sec. V. This
constraint allow us to obtain the effective speed of sound of
fluid perturbations, in Sec. VA, which can be used to
impose conditions on the physically allowed coupling
functions. Then, in Sec. V B, we focus our attention on
the particular cases leading to adiabatic models. Section V C
is then devoted to analyzing an open question regarding the
possibility of a constant kinetic coupling function, while in
Sec. V D we consider a particular solution of a family of
TDiff theories that yields the same results as GR, and study
its stability. Finally, in Sec. VI we present the main
conclusions of the work and discuss future work. In
Appendix A we discuss a different way of covariantizing
our theory, and in Appendix B we include some calculations
that are not needed to follow the thread of the main
discussion, but which the reader might find useful.
As a final note, we remark that our conventions in

this work include the usage of units in which ℏ ¼ c ¼ 1,
the metric signature ðþ;−;−;−Þ, and the notation g ¼
jdetðgμνÞj.

II. THE TDIFF APPROACH

The breaking of Diff invariance down to TDiff in the
matter action was recently studied in general backgrounds
in Ref. [12]. This work considers a scalar field coupled to
gravity via arbitrary functions of the metric determinant,
with total action

S ¼ SEH þ Sm; ð1Þ

where

SEH ¼ −
1

16πG

Z
d4x

ffiffiffi
g

p
R; ð2Þ

and

Sm ¼
Z

d4x
�
fkðgÞ
2

gμν∂μψ∂νψ − fvðgÞVðψÞ
�
: ð3Þ

This action is indeed seen to be invariant only under
transverse diffeomorphisms due to the arbitrary functions
of (the absolute value of) the metric determinant fkðgÞ and
fvðgÞ. In this work we assume that fk ≥ 0 in order to avoid
ghost instabilities.
Let us summarize in this section the main results

obtained in Ref. [12] following the TDiff approach. The
equation of motion (EoM) for the scalar field is

∂μðfkðgÞ∂μψÞ þ fvðgÞV 0ðψÞ ¼ 0; ð4Þ

where in general a prime denotes a derivative with respect
to its argument. On the other hand, the EoMs for the
gravitational field are the usual Einstein equations
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Gμν ¼ Rμν −
1

2
Rgμν ¼ 8πGTμν; ð5Þ

where the energy-momentum tensor (EMT) for the scalar
field is found from its definition

Tμν ¼
2ffiffiffi
g

p δSm
δgμν

; ð6Þ

and reads

Tμν ¼
2ffiffiffi
g

p
�
1

2
fkðgÞ∂μψ∂νψ

þ g

�
f0vðgÞVðψÞ −

1

2
f0kðgÞð∂ψÞ2

�
gμν

�
; ð7Þ

where we denote

ð∂ψÞ2 ≡ ∂αψ∂
αψ : ð8Þ

Under the assumption of the field derivative ∂μψ being a
timelike vector, it is possible to rewrite the EMT in perfect
fluid form. Indeed, defining a unit timelike vector field uμ

through

uμ ¼ ∂
μψffiffiffiffiffiffiffiffiffiffiffiffi
ð∂ψÞ2

p ≡
∂
μψ

N
; ð9Þ

where we denote the normalization as

N ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂ψÞ2

q
; ð10Þ

together with an energy density

ρ ¼ 2ffiffiffi
g

p
�
1

2
fkð∂ψÞ2 þ g

�
f0vV −

1

2
f0kð∂ψÞ2

��
ð11Þ

and a pressure

p ¼ −
2gffiffiffi
g

p
�
f0vV −

1

2
f0kð∂ψÞ2

�
; ð12Þ

one can rewrite the EMT (7) as

Tμν ¼ ðρþ pÞuμuν − pgμν: ð13Þ

In this paper we also work with the timelike vector
assumption whenever we wish to reexpress the analysis
as that of a perfect fluid.
One of the main points of study in the TDiff approach is

the conservation of the EMT. Indeed, the conservation of
this quantity is an automatic consequence of the Noether
theorem for a theory with symmetry under diffeomor-
phisms, but it does not follow trivially when we have less

symmetry. Instead, one argues that the conservation of the
EMT on the solutions to the EoMs is a consistency
requirement of the theory, since the Einstein equations (5)
still hold and the Einstein tensor is divergenceless:

∇μGμν ¼ 0 ⇒ ∇μTμν ¼ 0: ð14Þ

Within the TDiff approach, this consistency condition
allows one to obtain a certain (physical) constraint on the
metric.
We now focus on two limiting cases of interest. These are

the potential domination regime and the kinetic domination
regime, which we review in the following.

A. Potential domination in the TDiff approach

Everything is rather simple in the potential regime, which
amounts to ignoring the kinetic contribution in the action.
When we do so, the EoM (4) for ψ becomes fvV 0 ¼ 0,
which (for a nonvanishing coupling function fv) tells us
that the field takes on the constant value ψ ¼ ψ0 which is
the extremum of the potential: VðψÞ ¼ Vðψ0Þ ¼ const. The
EMT (7) simplifies to

Tμν ¼ 2Vf0v
ffiffiffi
g

p
gμν; ð15Þ

and its conservation becomes

2Vgμν∇μðf0v
ffiffiffi
g

p Þ ¼ 2Vgμν∂μðf0v
ffiffiffi
g

p Þ ¼ 0; ð16Þ

where in the first term we pulled (covariantly) constant
terms out of the covariant derivative and in the second we
recognized that the product f0v

ffiffiffi
g

p
is a TDiff scalar so that

we may use a partial derivative. Since the relation (16) must
be met for all metrics, it follows that

∂μðf0v
ffiffiffi
g

p Þ ¼ 1ffiffiffi
g

p
�
1

2
f0v þ gf00v

�
∂μg ¼ 0: ð17Þ

The above relation is satisfied whenever the coupling
function takes the form

fvðgÞ ¼ A
ffiffiffi
g

p þ B; ð18Þ

with A and B being constants of integration, but if we wish
to leave the coupling function arbitrary (which in principle
we do), then it must be the case that

∂μg ¼ 0 ⇒ g ¼ const. ð19Þ

This is the constraint on the metric that we obtain in the
potential domination regime: the determinant must be
constant. It is interesting to note that, as the determinant
is a constant quantity, any given function of the determi-
nant will also assume a constant value, for instance the
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function f0vðgÞ. This is relevant because, looking back at
the EMT (15), it may be written as

Tμν ≡ λgμν; ð20Þ

with

λ ≡ 2Vf0v
ffiffiffi
g

p ¼ const; ð21Þ

and we have the behavior of a cosmological constant.

B. Kinetic domination in the TDiff approach

The study of the kinetic domination regime is more
involved. The EoM for the field in this regime becomes
∂μðfk∂μψÞ ¼ 0, and its solution must satisfy

ð∂ψÞ2 ¼ CψðxÞ
� ffiffiffi

g
p
δVfk

�
2

; ð22Þ

where Cψ ðxÞ is a function such that uμ∂μCψðxÞ ¼ 0, and
where we find the cross-sectional volume of the congru-
ence δV, related to the expansion by [20]

∇μuμ ¼ uμ∂μ ln δV: ð23Þ

Regarding EMT conservation, when working with a
perfect fluid it is common to project the conservation
equations ∇μTμν ¼ 0 onto directions longitudinal and
transverse to the velocity of the fluid. For the former
one contracts with uν, and for the latter one acts with the
orthogonal projector hμν ¼ δμν − uμuν, obtaining respec-
tively

ρ̇þ ðρþ pÞ∇μuμ ¼ 0; ð24aÞ

ðρþ pÞu̇μ − ðgμν − uμuνÞ∇νp ¼ 0; ð24bÞ

where we use the dot notation ˙≡ uμ∇μ. In the kinetic
regime, the perfect fluid quantities take on the form

ρ ¼ ð∂ψÞ2ffiffiffi
g

p ðfk − gf0kÞ; ð25aÞ

p ¼ ð∂ψÞ2ffiffiffi
g

p gf0k; ð25bÞ

and the equation of state (EoS) parameter reads

w ¼ p
ρ
¼ gf0k

fk − gf0k
≡

F
1 − F

; ð26Þ

where we define

F ≡
gf0k
fk

: ð27Þ

It is interesting to remark that the EoS parameter (26) is a
function of only the metric determinant, w ¼ wðgÞ.
Studying the longitudinal projection (24a) on the sol-

ution to the EoM (22) yields the following relation:

ð2F − 1Þ g
fk

¼ CgðxÞδV2; ð28Þ

where CgðxÞ is a function that must satisfy

uμ∂μCgðxÞ ¼ 0: ð29Þ

Equation (28) is one of the main results in the TDiff
approach, and indeed shows how the study of EMT
conservation is not a trivial matter but rather imposes a
constraint on the metric.
Probing the transverse projection (24b) for further

information ends up revealing that the two functions
CψðxÞ and CgðxÞ are inversely proportional, i.e.

CψCg ¼ const ≡ cρ: ð30Þ

The reason for naming the constant as cρ is because it is
possible to find the following nice expression for the energy
density in the kinetic regime [12]:

ρ ¼ cρ
ðw − 1Þ ffiffiffi

g
p : ð31Þ

Since the EoS is only a function of the metric determinant,
it follows that both the energy density and the pressure are
functions of only the metric determinant, and this depend-
ence on a single quantity reveals that we are dealing with an
adiabatic fluid. The adiabatic speed of sound is defined
through δp ¼ c2aδρ which, joined with p ¼ wρ, yields

c2a ¼ wþ w0 ρ
ρ0
: ð32Þ

In the TDiff approach, it takes the form [12]

c2a ¼ −
gfkðf0k þ 2gf00kÞ

f2k þ ð2gf0kÞ2 − gfkð5f0k þ 2gf00kÞ
: ð33Þ

In this way we conclude our summary of the general
framework resulting from the consideration of a TDiff
scalar field. For interesting consequences and phenomenol-
ogy of this theory we refer the reader to Refs. [5,12,13].

III. COVARIANTIZED ACTION

In this section we note that one can rewrite an action with
broken Diff invariance in a Diff invariant way via the
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introduction of additional fields, similar in spirit to the
Stueckelberg procedure in gauge theories [15]. In this work
we follow Henneaux and Teitelboim [17] and, in order to
preserve locality, introduce the new field in the form of a
vector. The way to restore the Diff symmetry is not unique,
however, and other references preferred to introduce a
scalar field (see e.g. [21] and references therein). We refer
the reader to Appendix A for a more detailed discussion on
this subject.
Having clarified that point, let us now consider a TDiff

invariant field theory where each of the terms in the action
is of the form

STDiff ½gμν;Ψ� ¼
Z

d4xfðgÞLðgμν;Ψ; ∂μΨÞ; ð34Þ

where L is a Diff scalar. The general case could be written
as the sum of different terms,

STDiff ½gμν;Ψ� ¼
Z

d4x
X
i

fiðgÞLiðgμν;Ψ; ∂μΨÞ; ð35Þ

but in order not to clutter the treatment we consider the
simpler expression (34), which is precisely a general term
in the above summation.
In order to perform the covariantization, we first of all

introduce a Diff scalar density μ̄ which transforms as
ffiffiffi
g

p
under general coordinate transformations. Doing so, the
Diff invariant theory given by

SDiff ½gμν;Ψ; μ̄� ¼
Z

d4x
ffiffiffi
g

p �
μ̄ffiffiffi
g

p fðg=μ̄2Þ
�
Lðgμν;Ψ; ∂μΨÞ

ð36Þ

agrees with the TDiff theory (34) in the coordinate frame in
which μ̄ ¼ 1, which we refer to as the “TDiff frame” for
simplicity. The term in between brackets is a Diff scalar and
an arbitrary function of the combination μ̄=

ffiffiffi
g

p
, which we

write as

Hðμ̄= ffiffiffi
g

p Þ ≡ μ̄ffiffiffi
g

p fðg=μ̄2Þ: ð37Þ

If, for simplicity, we denote the argument by μ̄=
ffiffiffi
g

p ≡ Y,
then we have that

HðYÞ ≡ YfðY−2Þ: ð38Þ

In the TDiff frame μ̄ ¼ 1 (equivalently, Y ¼ 1=
ffiffiffi
g

p
), we

would find

HðYÞjμ̄¼1 ¼
fðgÞffiffiffi

g
p : ð39Þ

The question now is how the newly introduced scalar
density μ̄ is related to the new field (equivalently, how the
combination Y is related to the new field). As we mentioned
there are different possibilities, but we choose a vector field
Tμ as our addition to the theory. A scalar density μ̄ that
transforms as

ffiffiffi
g

p
may be built from a vector field through

the simple combination [5,17]

μ̄ ¼ ∂μð
ffiffiffi
g

p
TμÞ: ð40Þ

In this way, the variable Y turns out to be related to Tμ

through

Y ¼ μ̄ffiffiffi
g

p ¼ ∇μTμ; ð41Þ

and so we see that the newly introduced vector field Tμ

enters the theory via its divergence. It is interesting to
remark that in the general Stueckelberg procedure the idea
is to take the gauge functions and promote them to fields.
Since four-dimensional diffeomorphisms are generated by
four functions, it is natural to introduce a vector field Tμ.
This being said, however, going from TDiff back to Diff
actually only involves removing one condition (recall that
J ¼ 1, or ∂μξμ ¼ 0), and thus it makes sense that the newly
introduced vector field ends up appearing through the
scalar combination Y ¼ ∇μTμ.
Our covariantized action (36) would then take the form

SDiff ½gμν;Ψ; Tμ� ¼
Z

d4x
ffiffiffi
g

p
HðYÞLðgμν;Ψ; ∂μΨÞ; ð42Þ

where we bear in mind that Y ¼ ∇μTμ. We note that in the
case HðYÞ ¼ const the dependence on the new field would
be lost because it would correspond to the original theory
being Diff invariant already [i.e. fðgÞ ∝ ffiffiffi

g
p

]. In any case,
since

SDiff ½gμν;Ψ; Tμ�jμ̄¼1 ¼ STDiff ½gμν;Ψ�; ð43Þ

we see how one may alternatively work within the TDiff
approach or the covariantized approach since they are
equivalent, as it is explicitly shown when choosing the
gauge μ̄ ¼ 1 (equivalently, Y ¼ 1=

ffiffiffi
g

p
) in the Diff invariant

action. Thus, the invariance under full diffeomorphisms has
been restored due to the introduction of a Diff vector
field Tμ.

IV. THE COVARIANTIZED APPROACH

Let us take the Diff invariant action [5]

SDiff ½gμν;ψ ; Tμ� ¼ SEH þ
Z

d4x
ffiffiffi
g

p ½HkðYÞX −HvðYÞV�

ð44Þ
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where, for simplicity, we denote the kinetic term by

X ≡
1

2
gμν∂μψ∂νψ ¼ 1

2
ð∂ψÞ2: ð45Þ

If we set μ̄ ¼ 1 and recognize the functions fkðgÞ and
fvðgÞ, we immediately realize that it has become precisely
the action (1) for a TDiff scalar field. Let us keep working
now in the covariantized approach, and see what we obtain.
Variations of the action (44) with respect to the scalar field
ψ yield the following EoM:

∇ν½HkðYÞgμν∇μψ � þHvðYÞV 0ðψÞ ¼ 0: ð46Þ

Recalling that the covariant divergence of a vector Vα may
be expressed as

∇αVα ¼ 1ffiffiffi
g

p ∂αð
ffiffiffi
g

p
VαÞ; ð47Þ

and using Eq. (39), one can see that in the μ̄ ¼ 1 gauge this
equation reduces to

1ffiffiffi
g

p ∂ν½fkðgÞ∂μψ � þ
fvðgÞffiffiffi

g
p V 0ðψÞ ¼ 0; ð48Þ

which is equivalent to the EoM (4) we found for ψ in the
TDiff approach.
On the other hand, variations of the action (44) with

respect to the vector field that has restored the Diff
invariance, that is Tμ, provide the following EoM:

∂ν½H0
kðYÞX −H0

vðYÞV� ¼ 0: ð49Þ

Hence, there is a conserved quantity as a result of the
derivative dependence of the field Tμ on the action (44).
One could think that these equations are new with respect to
the TDiff formalism. However, it should be noted that in
said formalism one has the equations coming from the
conservation of the EMT that is no longer trivially satisfied
in that framework, which are the Eq. (14). So, as we will
show, these equations must be equivalent.
Finally, variations with respect to the metric tensor gμν

provide the Einstein equations

Gμν ¼ 8πGTμν; ð50Þ

where the total EMT is found using the definition (6) and
takes the form

Tμν ¼ HkðYÞ∂μψ∂νψ − ½HkðYÞX −HvðYÞV�gμν
þ Y½H0

kðYÞX −H0
vðYÞV�gμν ð51Þ

(see Appendix B for the calculation of this quantity). It
should be noted that the conservation of the EMT (51) has

to be trivially satisfied when considering the EoM of the
fields (46) and (49), due to the invariance of the action (44)
under general diffeomorphisms. Indeed, it can be explicitly
checked that this is the case, and we refer the reader to
Appendix B for the calculation.
On the other hand, noting the definition of the HðYÞ

functions in Eq. (38), one can obtain the relation

H0ðYÞ ¼ fðY−2Þ − 2Y−2 df
dðY−2Þ ; ð52Þ

so that

H0ðYÞjμ̄¼1 ¼ fðgÞ − 2gf0ðgÞ: ð53Þ

Taking this result into account, together with Eq. (39), we
can immediately verify that the covariantized EMT (51)
reduces to the TDiff EMT (7) in the μ̄ ¼ 1 frame.
This covariantized formalism has been applied to the

Friedmann-Lemaître-Robertson-Walker model in Ref. [5],
recovering the information provided by the constraint on
the metric in the TDiff case. In the next section we show
that this is possible in general.

A. Potential domination in the covariantized approach

We begin with the potential domination regime.
Neglecting the kinetic parts, the EoM (46) for ψ becomes

HvðYÞV 0ðψÞ ¼ 0; ð54Þ

and this means that either Hv ¼ 0 (which is trivial) or that
the field takes on the constant value ψðxÞ ¼ ψ0 such that
the potential reaches an extremum VðψÞ ¼ Vðψ0Þ ¼ const
(exactly as we concluded in the TDiff approach). On the
other hand, the EoM (49) for Tμ in the potential regime
becomes

∂μ½H0
vðYÞV� ¼ 0 ⇒ ∂μH0

vðYÞ ¼ H00
vðYÞ∂μY ¼ 0; ð55Þ

where we have already used that V ¼ const to pull it out of
the derivative. We now have a couple of options in order for
this equation to be satisfied, namely that H00

vðYÞ ¼ 0 or that
∂μY ¼ 0. The first of these implies

H00
vðYÞ ¼ 0 ⇒ HvðYÞ ¼ BY þ A; ð56Þ

which in the μ̄ ¼ 1 frame, that is Hv → fv=
ffiffiffi
g

p
and

Y → 1=
ffiffiffi
g

p
, reduces to the condition (18) on the coupling

function fv we already found. The second option gives

∂μY ¼ 0 ⇒ Y ¼ const; ð57Þ

which in the μ̄ ¼ 1 frame reduces to g ¼ const, and this is
precisely the condition (19) on the metric determinant we
previously obtained.

JARAMILLO-GARRIDO, MAROTO, and MARTÍN-MORUNO PHYS. REV. D 110, 044009 (2024)

044009-6



Moreover, the EMT (51) in the potential regime takes the
form

Tμν ¼ VðHv − YH0
vÞgμν ≡ λgμν; ð58Þ

and if we use the above EoM we see that it is of a
cosmological constant–type once again, since

λ ≡ VðHv − YH0
vÞ ¼ const: ð59Þ

Thus, in the potential limit we have recovered our previous
results, as it should be expected.

B. Kinetic domination in the covariantized approach

In the kinetic domination regime we neglect the potential
terms. The EoM (49) for Tμ becomes

∂μ½H0
kðYÞX� ¼

1

2
∂μ½H0

kðYÞð∂ψÞ2� ¼ 0: ð60Þ

It follows from the above that

H0
kðYÞð∂ψÞ2 ¼ const ≡ −cρ; ð61Þ

where we have named the arbitrary constant as −cρ for
future convenience. On the other hand, the EoM (46) for ψ
in the kinetic domination regime becomes

∇μ½HkðYÞ∂μψ � ¼ ∇μ½HkðYÞNuμ� ¼ 0; ð62Þ

where we have recalled the velocity (9). If we expand the
equation and divide through by Hk (which we take to be
nonzero), then we obtain

Nuμ∇μ lnHk þ uμ∇μN þ N∇μuμ ¼ 0: ð63Þ

Recalling Eq. (23) for the relation between the expansion
∇μuμ and the cross-sectional volume δV, and using the fact
that the covariant derivatives may be changed by partial
derivatives when acting on scalar functions, it follows from
the above that

Nuμ∂μðlnHk þ lnN þ ln δVÞ
¼ Nuμ∂μ ln ðHkNδVÞ ¼ 0: ð64Þ

From this expression, we finally conclude that

ð∂ψÞ2 ¼ Cψ ðxÞ
ðHkδVÞ2

; ð65Þ

where CψðxÞ is a function such that uμ∂μCψ ðxÞ ¼ 0. Going
now to the μ̄ ¼ 1 frame and using Eq. (39) for Hkjμ̄¼1, we
immediately recover the expression (22) for the solution to
the EoM in the TDiff approach.

On the other hand, substituting Eq. (65) into (61), it
follows that

−cρ ¼ H0
kð∂ψÞ2 ¼ H0

k

Cψ ðxÞ
ðHkδVÞ2

; ð66Þ

which leads to

−
H0

k

H2
k

¼ cρ
CψðxÞ

δV2: ð67Þ

If we now define the function

CgðxÞ ≡
cρ

Cψ ðxÞ
; ð68Þ

which satisfies uμ∂μCgðxÞ ¼ 0, we may write the above
equation as

−
H0

k

H2
k

¼ CgðxÞδV2: ð69Þ

It is now immediate to see that we recover the constraint
(28) when going to the frame μ̄ ¼ 1, since

−
H0

k

H2
k

				
μ̄¼1

¼ −
fk − 2gf0k

f2k=g
; ð70Þ

and this implies that

ð2F − 1Þ g
fk

¼ CgðxÞδV2; ð71Þ

where we have recalled the definition of the function F in
Eq. (27). It is worth noting that obtaining this result in the
TDiff approach requires a longer calculation [12], while in
the covariantized approach we have found it rather directly.
On another note, in the kinetic domination regime the

EMT (51) takes the form

Tμν ¼ Hk∂μψ∂νψ − ½Hk − YH0
k�Xgμν; ð72Þ

which, under the assumption of the field derivative ∂μψ
being a timelike vector, is seen to be equivalent to that of a
perfect fluid, using the same definition (9) for the velocity,
and with energy density

ρ ¼ −
cρ
2

�
Hk

H0
k
þ Y

�
ð73Þ

and pressure

p ¼ −
cρ
2

�
Hk

H0
k
− Y

�
; ð74Þ
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where we have made use of the solution (61) to simplify
H0

kX ¼ −cρ=2. Note that we have obtained that the energy
density and pressure are functions of only Y, and this
dependence on a single variable means that possible
perturbations of the fluid will be adiabatic.
The EoS parameter now reads

w ¼ p
ρ
¼

Hk
H0

k
− Y

Hk
H0

k
þ Y

; ð75Þ

and, as expected, it is seen to be a function of Y only. Note
also that in the μ̄ ¼ 1 frame we have

wjμ̄¼1 ¼
fk=

ffiffi
g

p
fk−2gf0k

− 1ffiffi
g

p
fk=

ffiffi
g

p
fk−2gf0k

þ 1ffiffi
g

p
¼ gf0k

fk − gf0k
; ð76Þ

which coincides with the expression (26) for the EoS
parameter previously found in the TDiff formalism.
Consider now the following quantity:

w − 1 ¼ −2Y
Hk
H0

k
þ Y

¼ Ycρ
ρ

; ð77Þ

where in the second equality we have recalled the expres-
sion (73) for the energy density. Rearranging, we obtain the
following simple expression for the energy density:

ρ ¼ Ycρ
w − 1

: ð78Þ

After evaluation in the frame μ̄ ¼ 1, i.e. substituting Y →
1=

ffiffiffi
g

p
and recalling from Eq. (76) that the EoS parameter is

recovered, it finally yields the simple expression (31) for the
energy density that was obtained in the TDiff approach.
Finally, the speed of sound of the adiabatic perturbations

follows from the definition (32), which yields

c2a ¼
HkH00

k

HkH00
k − 2ðH0

kÞ2
; ð79Þ

or, finding a common factor,

c2a ¼
1

1 − 2
ðH0

kÞ2
HkH00

k

: ð80Þ

Note that in obtaining this second expression we have
divided by H00

k ; so, it will not be valid, for example, for the
interesting case of TDiff dark matter that will be com-
mented on in the next section. From this equation it is easy

to note that, in order have a stable adiabatic fluid (i.e. a non-
negative c2a), one needs the coupling function to satisfy1

ðH0
kÞ2

HkH00
k
<

1

2
: ð81Þ

Moreover, in order to also avoid the propagation of
superluminal perturbations (i.e. to have c2a ≤ 1), it must
be the case that

H00
k < 0; ð82Þ

where we have taken into account that Hk > 0 (so that the
kinetic term is positive and there are no ghosts in the
theory).
On the other hand, it is possible once again to verify that

Eq. (80), when evaluated in the μ̄ ¼ 1 frame, reduces to the
previously obtained adiabatic speed of sound in Eq. (33).
To this end, we must simply recall Eqs. (39) and (53) for
Hjμ̄¼1 and H0jμ̄¼1, respectively, and also use that

H00ðYÞ ¼ 2Y−3
�

df
dðY−2Þ þ 2Y−2 d2f

d2ðY−2Þ
�
; ð83Þ

which yields

H00ðYÞjμ̄¼1 ¼ 2g3=2½f0ðgÞ þ 2gf00ðgÞ�: ð84Þ

After careful substitution, we finally obtain

c2ajμ̄¼1 ¼ −
gfkðf0k þ 2gf00kÞ

f2k þ ð2gf0kÞ2 − gfkð5f0k þ 2gf00kÞ
; ð85Þ

which indeed recovers the TDiff adiabatic speed of sound
in Eq. (33).
Furthermore, evaluated in the μ̄ ¼ 1 frame the require-

ment for stability (81) is translated to

ðfk − 2gf0kÞ2
gfkðf0k þ 2gf00kÞ

< 1; ð86Þ

while the requirement for subluminal propagation (82)
becomes

f0k þ 2gf00k < 0: ð87Þ

These conditions on the kinetic coupling function fk can
also be seen to follow directly from the TDiff expression for
the adiabatic speed of sound (85), as should be expected. In
order to see precisely how, it comes in handy to rewrite said
expression in a cleaner manner. Inspired by the form of the

1The case in which H00
k ¼ 0 implies c2a ¼ 0, which trivially

satisfies both stability and subluminality requirements. Hence,
what we present here implicitly assumes that H00

k ≠ 0.
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quantities appearing in Eq. (86), it is possible to see how the
denominator of (85) can be written as

f2k þ ð2gf0kÞ2 − gfkð5f0k þ 2gf00kÞ
¼ ðfk − 2gf0kÞ2 − gfkðf0k þ 2gf00kÞ: ð88Þ

Knowing this, it turns out that we can rewrite the TDiff
adiabatic speed of sound (85) in the rather clean form

c2ajμ̄¼1 ¼
1

1 − ðfk−2gf0kÞ2
gfkðf0kþ2gf00kÞ

; ð89Þ

from which, indeed, the same conditions can easily be
seen to follow. Nevertheless, it is worth stressing that
knowing the results in the covariantized approach and
translating them into the TDiff approach is precisely what
helped us in finding an appropriate and simple rewrite for
the TDiff adiabatic speed of sound. Indeed, working
directly from the convoluted expression (85) would have
implied a much greater effort in finding the conditions for
stability and subluminality, and in fact this work was not
done in Ref. [12].
As a general comment before concluding, we remark that

the above conditions on either Hk or fk (which are the
requirements for stable perturbations and subluminal
propagation) serve as a way of selecting classes of possible
coupling functions (and hence particular models) that are
physically meaningful. Of course, there is in principle no
reason to restrict ourselves to only those two requirements,
and one could also consider the study of the energy
conditions (as was done in Ref. [12] in the TDiff frame-
work) as a way of further restricting physically viable
theories.

C. Simple models in the kinetic regime

Regarding some particular models of interest in the
kinetic regime, note that one can obtain a constant EoS
parameter for the fluid considering a power-law kinetic
function. Indeed, taking into account Eq. (75) one has

HkðYÞ ¼ CYβ ⇒ w ¼ 1 − β

1þ β
: ð90Þ

As already discussed in Ref. [12] following the TDiff
approach, in this case we have that the propagation speed of
the adiabatic field perturbations is

c2a ¼
1 − β

1þ β
¼ w; ð91Þ

which has been obtained taking into account Eq. (80). This
is because a power-law kinetic function in the covariantized
approach implies a power-law kinetic coupling in the TDiff
approach but with a different value of the exponent [note

Eq. (38)]. It should be noted that the dark matter model
commented on in Ref. [12] in this framework corresponds
to Hk ¼ CY.
However, the models with a constant EoS parameter are

the only family that will have a similar functional expres-
sion in both approaches. For example, an exponential
kinetic function in the covariantized approach is not
equivalent to an exponential kinetic coupling in the
TDiff approach according to Eq. (38). In this case,
Eq. (75) leads to the EoS parameter

HkðYÞ ¼ CeβY ⇒ w ¼ 1 − βY
1þ βY

; ð92Þ

which could interpolate between the behavior of stiff matter
and that of a cosmological constant. Nevertheless, taking
into account Eq. (80), one obtains

c2a ¼ −1: ð93Þ

So, the particular models with an exponential kinetic
function in the covariantized approach are unstable, whereas
models with an exponential kinetic coupling in the TDiff
approach can have interesting phenomenology [13]. Finally,
thus, it should be emphasized that models that could be
natural to consider in one approach (due to a simple form of
the relevant function) could appear unnatural in the other
approach (in which the relevant function could be more
complicated).

V. GENERAL MODELS

Up to this point we have focused on the two limiting
regimes and recovered our previously known results,
explicitly confirming the equivalence between the two
approaches. However, the covariantized treatment can go
further; indeed, it yields in a straightforward manner a very
important and previously unknown result, namely, the
general constraint on the metric when both kinetic and
potential terms are present. Let us now discuss this point.
In the TDiff approach of Ref. [12] the analysis is

restricted to the two limiting regimes of kinetic and potential
domination for simplicity, because the study of the con-
servation of the TDiff EMT (7) requires an incredible
amount of effort. In this way, the constraints are obtained
in each of the two regimes, but the general situation with
both kinetic and potential terms is not discussed. However,
in the covariantized approach, the EoMs of the new vector
field (49) are very simple to study, much more so than the
conservation of the TDiff EMT; moreover, as we discussed,
they encode the same information. Solving those EoMs,
then, wewill obtain the metric constraint in the most general
situation.
Now, the solution to the EoM (49) of the new field Tμ

reads, quite simply,
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H0
kX −H0

vV ¼ const: ð94Þ

The value of the constant is in principle “arbitrary”
(speaking more precisely, it is fixed by the initial con-
ditions), but since we should recover the results we already
know from the limiting regimes, we write it as

H0
kX −H0

vV ¼ −
cρ
2
; ð95Þ

so that the kinetic limit is indeed immediately verified (we
remark that the aforementioned “arbitrariness” is not lost; it
simply resides in the constant cρ which is fixed by the
initial conditions2). If we now evaluate the above expres-
sion in the μ̄ ¼ 1 frame, taking into account Eq. (53) for
H0jμ̄¼1, then we obtain the following:

ðfk − 2gf0kÞX − ðfv − 2gf0vÞV ¼ −
cρ
2
: ð96Þ

This novel result is the general expression for the constraint
on the metric whenever we have both a kinetic and a
potential term present, something that was not previously
studied. It is easy to verify that it gives the correct results in
the two limiting regimes. Of course, it is a formal
expression, meaning that one would need to solve the
EoM for the scalar field ψ in order to extract actual
information on the metric constraint. Nevertheless, the
main point we wish to highlight is the great utility of
the covariantized approach, as it has yielded a general and
previously unknown result.
On another note, the simple solution (95) to the EoM for

Tμ also helps in simplifying the covariantized EMT (51), in
particular its last term, so that in the end we may write it as

Tμν ¼ Hk∂μψ∂νψ −
�
HkX −HvV þ cρ

2
Y
�
gμν: ð97Þ

Assuming a timelike derivative ∂μψ , we may again express
it in perfect fluid form using the usual definition (9) for the
velocity and defining the energy density and pressure,
respectively, as

ρ ¼ HkX þHvV −
cρ
2
Y; ð98aÞ

p ¼ HkX −HvV þ cρ
2
Y; ð98bÞ

while the EoS parameter reads

w ¼ HkX −HvV þ Ycρ=2

HkX þHvV − Ycρ=2
: ð99Þ

Let us remark that, as these expressions stand, we cannot in
general ensure the adiabaticity of our perfect fluid (see the
following sections for further comments on this).
Finally, let us briefly discuss the GR limit of our theory,

which essentially means fk ¼ fv ≡ f ¼ ffiffiffi
g

p
in the TDiff

approach or, equivalently, Hk ¼ Hv ≡H ¼ 1 in the cova-
riantized approach. For simplicity, we only discuss it within
the covariantized approach in order to keep it brief, since
they are equivalent. Approaching the GR limit is done by
considering small variations around the GR solution, which
we write as

HðYÞ ¼ 1þ ϵhðYÞ; ð100Þ

where ϵ is a small parameter for power counting and hðYÞ is
an arbitrary function, and then taking the limit ϵ → 0. Now,
Eq. (95) tells us that

ϵðX − VÞh0 ¼ −
cρ
2
; ð101Þ

so that the arbitrary constant is cρ ¼ OðϵÞ. Looking at the
energy density and pressure in (98), this means that when
approaching the GR limit these quantities behave as

ρ ¼ X þ V þOðϵÞ; ð102aÞ

p ¼ X − V þOðϵÞ; ð102bÞ

and the EoS parameter behaves as

w ¼
ϵ→0

X − V
X þ V

: ð103Þ

Thus, we indeed recover for all of these quantities the same
expression that we would have for a canonical scalar field
in GR. In the subsequent sections, we shall also verify the
GR limit at different points.

A. Effective speed of sound

We mentioned previously how we could not in general
ensure the adiabaticity of the fluid. In this section we will
see that the most general situation is precisely a non-
adiabatic fluid. A comment is needed before proceeding,
however: we assume from this point onwards that the
kinetic coupling function Hk is not constant, so that
H0

k ≠ 0. The particular case of a constant coupling function
requires a separate study which the reader may find in the
final subsection.
Having cleared that up, let us now begin by considering

the solutions (95) to the EoM of Tμ. Solving for the kinetic
term and showing every dependence, we obtain

2We can see from Eq. (95) how giving initial conditions for the
fields and their derivatives fixes the constant cρ. Note also that an
initial condition for Y really is, in the TDiff frame, just an initial
condition for g; this makes more sense in the context of Eq. (96).
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X ¼ H0
vðYÞVðψÞ − cρ=2

H0
kðYÞ

¼ XðY;ψÞ: ð104Þ

Explicitly substituting this expression into Eq. (98) we
obtain that the energy density and pressure satisfy

ρ ¼ Hk

H0
k

�
H0

vV −
cρ
2

�
þHvV −

cρ
2
Y ¼ ρðY;ψÞ; ð105aÞ

p ¼ Hk

H0
k

�
H0

vV −
cρ
2

�
−HvV þ cρ

2
Y ¼ pðY;ψÞ; ð105bÞ

i.e. they are functions of two variables and so our fluid is
not adiabatic. Now, as functions of two variables, the
perturbations will be written as

δρ ¼ ∂ρ

∂Y

				
ψ

δY þ ∂ρ

∂ψ

				
Y
δψ ; ð106aÞ

δp ¼ ∂p
∂Y

				
ψ

δY þ ∂p
∂ψ

				
Y
δψ ; ð106bÞ

and we may join these equations to write3

δp ¼ c2sδρþ αδψ ; ð107Þ

where we denote

c2s ≡
∂p=∂Y
∂ρ=∂Y

				
ψ

; ð108aÞ

α ≡ ð−c2sÞ
∂ρ

∂ψ

				
Y
þ ∂p
∂ψ

				
Y
: ð108bÞ

Note that c2s will be the effective speed of sound of
cosmological perturbations. Indeed, in the reference frame
comoving with the fluid (sometimes called the “rest” frame)
we would find δψ ¼ 0 and also δprest ¼ c2sδρrest (see
Refs. [22,23] for a discussion). On another note, in
situations in which α ¼ 0, c2s would play the role of the
adiabatic speed of sound (indeed, recalling that for adiabatic
perturbations δp ¼ c2aδρ, we would have that c2a ¼ c2s).
Having mentioned those physical interpretations, let us

now compute c2s from its definition in Eq. (108a). To this
end, we proceed bit by bit, starting with the numerator.
Differentiating the pressure as expressed in Eq. (98), we get

∂p
∂Y

				
ψ

¼ H0
kX þHk

∂X
∂Y

				
ψ

−H0
vV þ cρ

2

¼ Hk
∂X
∂Y

				
ψ

; ð109Þ

where in the second equality we have used the solutions
(95) to the EoM of the vector field Tμ. Now, differentiating
Eq. (104) it follows that

∂X
∂Y

				
ψ

¼ −
1

ðH0
kÞ2

�
VðH00

kH
0
v −H0

kH
00
vÞ −

cρ
2
H00

k

�
ð110Þ

and so, finally, we have that the numerator of c2s in
Eq. (108a) takes the form

∂p
∂Y

				
ψ

¼ −
Hk

ðH0
kÞ2

�
VðH00

kH
0
v −H0

kH
00
vÞ −

cρ
2
H00

k

�
: ð111Þ

Consider now the denominator of c2s in Eq. (108a).
Differentiating the energy density (98), we obtain

∂ρ

∂Y

				
ψ

¼ H0
kX þHk

∂X
∂Y

				
ψ

þH0
vV −

cρ
2

¼ 2

�
H0

vV −
cρ
2

�
þ ∂p
∂Y

				
ψ

; ð112Þ

where in the second equality we have used the solutions
(95) to rewrite H0

kX, and also recalled the expression (109).
Now that we have both the numerator and the denominator
of (108a), we can compute the quantity c2s to be

c2s ¼
AðY;ψÞ

AðY;ψÞ − BðY;ψÞ ; ð113Þ

where we denote

AðY;ψÞ ≡Hk

�
VðH00

kH
0
v −H0

kH
00
vÞ −

cρ
2
H00

k

�
; ð114aÞ

BðY;ψÞ≡2ðH0
kÞ2

�
H0

vV −
cρ
2

�
¼ 2ðH0

kÞ3XðY;ψÞ: ð114bÞ

[Note that we have used the expression (104) in the final
equality in order to write BðY;ψÞ in a more compact
manner.] We may rewrite the above expression for c2s in a
cleaner form in cases where AðY;ψÞ ≠ 0 by using it as a
common factor, obtaining

c2s ¼
1

1 − BðY;ψÞ
AðY;ψÞ

: ð115Þ

3Strictly speaking, we should take into account the perturba-
tions in the value of the constant cρ. However, since it is a
constant, it will contribute only to the zero mode; as such, it will
not affect the subsequent discussion regarding the propagation of
the perturbations.
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Now, a necessary condition for stability is that c2s ≥ 0,
which in turn implies4 that

BðY;ψÞ
AðY;ψÞ < 1: ð116Þ

Requiring also the avoidance of superluminal perturbations
(c2s ≤ 1), one obtains

BðY;ψÞ
AðY;ψÞ ≤ 0: ð117Þ

These are the general expressions, with which one can
verify that in the kinetic regime we recover the previous
expressions for the stability (81) and subluminal propaga-
tion (82). It is worth noting, however, that in the kinetic
regime the constant cρ cancels out rather early in the
process [as early as in the EoS parameter, cf. (75)] and
completely disappears from the subsequent treatment.
However, when the potential is nonvanishing, it explicitly
enters all of the analysis.
We now discuss the simple case of equal coupling

functions, the GR limit, and finally translate our results
into the TDiff frame.

1. Equal coupling functions, Hk =Hv ≡H

In the case where both coupling functions coincide, the
mentioned expressions simplify significantly. In such a
case, we obtain

c2s ¼
1

1þ 4ðH0Þ3
H

XðY;ψÞ
cρH00

: ð118Þ

So, the stability of the perturbations requires

ðH0Þ3
H

XðY;ψÞ
cρH00 > −

1

4
: ð119Þ

Moreover, in order to avoid superluminalities, taking into
account that H > 0 and X > 0, one also needs

H0

cρH00 > 0: ð120Þ

Once again, these inequalities represent physically reason-
able conditions which should help in selecting physically
allowed coupling functions.

2. GR limit

Let us now consider the GR limit for the quantities
discussed in this section. Approaching this limit, AðY;ψÞ
and BðY;ψÞ behave as

AðY;ψÞ ¼ ð1þ ϵhÞ
�
0 −

cρ
2
ϵh00

�
¼ Oðϵ2Þ; ð121aÞ

BðY;ψÞ ¼ 2ðϵh0Þ2
�
ϵh0V −

cρ
2

�
¼ Oðϵ3Þ; ð121bÞ

where we have recalled that cρ ¼ OðϵÞ. The fraction then
behaves as

BðY;ψÞ
AðY;ψÞ ¼ OðϵÞ; ð122Þ

which vanishes in the limit ϵ → 0. As a result, in the GR
limit we have that c2s → 1, as it should be for a Diff
invariant scalar field with a canonical kinetic term (cf. our
results at the end of theHk ¼ const discussion, and see also
Ref. [23] for more details).

3. Translation to the TDiff frame

We finally translate our general results to the TDiff frame.
In the μ̄ ¼ 1 frame, the energy density and pressure (98)
translate to

ρjμ̄¼1 ¼
1ffiffiffi
g

p
�
fkX þ fvV −

cρ
2

�
; ð123aÞ

pjμ̄¼1 ¼
1ffiffiffi
g

p
�
fkX − fvV þ cρ

2

�
; ð123bÞ

which recalling the general constraint (96) can be seen to be
equivalent to the previously presented energy density (11)
and pressure (12), respectively. The EoS parameter (99) in
the TDiff frame reads

wjμ̄¼1 ¼
fkX − fvV þ cρ=2

fkX þ fvV − cρ=2
: ð124Þ

Once again we may see that the fluid is nonadiabatic, as the
general metric constraint (96) reveals that

X ¼ ðfv − 2gf0vÞVðψÞ − cρ=2

fk − 2gf0k
¼ Xðg;ψÞ; ð125Þ

and so the energy density and pressure above are functions
of both the metric determinant g and the scalar field ψ .
On the other hand, the expression (113) for c2s evaluated

in the TDiff frame may be written as

4The case AðY;ψÞ ¼ 0 implies c2s ¼ 0, which trivially satisfies
both stability and subluminality for all BðY;ψÞ. For this reason,
the requirements we present here implicitly assume that we are in
the case AðY;ψÞ ≠ 0.
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c2s jμ̄¼1 ¼
aðg;ψÞ

aðg;ψÞ − bðg;ψÞ ; ð126Þ

where we denote

aðg;ψÞ ≡ AðY;ψÞjμ̄¼1 ¼ −cρgfkðf0k þ 2gf00kÞ
þ 2gfkV½ðf0k þ 2gf00kÞðfv − 2gf0vÞ
− ðfk − 2gf0kÞðf0v þ 2gf00vÞ�; ð127aÞ

bðg;ψÞ ≡ BðY;ψÞjμ̄¼1 ¼ 2ðfk − 2gf0kÞ3Xðg;ψÞ: ð127bÞ

Once again, whenever aðg;ψÞ ≠ 0 we may find a common
factor and write

c2s jμ̄¼1 ¼
1

1 − bðg;ψÞ
aðg;ψÞ

: ð128Þ

The requirement of stable perturbations translates to

bðg;ψÞ
aðg;ψÞ < 1; ð129Þ

while in order to also avoid superluminal propagations we
must have

bðg;ψÞ
aðg;ψÞ ≤ 0: ð130Þ

Although these are the general conditions, we can once
more find some simplifications when the coupling func-
tions coincide (fk ¼ fv ≡ f), which allow us to obtain the
following requirements for stability

ðf − 2gf0Þ3
gf

Xðg;ψÞ
cρðf0 þ 2gf00Þ > −

1

2
ð131Þ

and subluminality

f − 2gf0

cρðf0 þ 2gf00Þ > 0; ð132Þ

respectively. In any case, all of the conditions above should
be helpful in deciding whether a particular TDiff model is
physically reasonable. All in all, we have seen that the
covariantized treatment is quite direct, and the subsequent
translation of the results to the TDiff framework is fairly
straightforward.
Thus concludes the most general situation of our non-

adiabatic fluid. In the following section, we will discuss
some particular cases of interest in which the fluid is
adiabatic.

B. Adiabatic models

We described in the previous section how the most
general situation was a nonadiabatic fluid. In this section
we perform a more detailed discussion of adiabatic models.
We begin by recalling Eq. (107) for δp, where we note that
in order to have an adiabatic fluid the second term should
vanish, meaning that the general condition for an adiabatic
fluid is simply α ¼ 0. Now, α is itself a sum of two terms,

α ¼ ð−c2sÞ
∂ρ

∂ψ

				
Y|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ðiÞ

þ ∂p
∂ψ

				
Y|ffl{zffl}

ðiiÞ

¼ 0; ð133Þ

so there are two possibilities: it could happen that the terms
(i) and (ii) vanish separately, or it could happen that they do
not vanish separately but their combination does. In the
following we consider these possibilities in detail, and also
study their implications.

1. Case I

We begin with the case in which the two terms in α
vanish separately. In particular, let us begin by studying the
conditions under which the term ðiiÞ ¼ 0. Differentiating
the pressure as it stands in Eq. (105) we obtain

ðiiÞ ¼ V 0
�
Hk

H0
k
H0

v −Hv

�
¼ 0: ð134Þ

Thus, term (ii) will vanish in situations in which V 0 ¼ 0
(i.e. V ¼ V0 a constant potential) and in situations in which

Hk

H0
k
H0

v −Hv ¼ 0: ð135Þ

There are a couple of options at this point. If H0
v ¼ 0 then

the equation tells us that Hv ¼ 0. If H0
v ≠ 0 then we may

rearrange the above expression as

H0
k

Hk
¼ H0

v

Hv
; ð136Þ

which may be straightforwardly integrated to yield

Hv ¼ CHk; ð137Þ

whereC is a constant of integration. Thus, we conclude that
there are three situations in which term (ii) vanishes:
(1) A constant potential V ¼ V0.
(2) A vanishing potential coupling Hv ¼ 0.
(3) A potential coupling of the form Hv ¼ CHk.

Next we move on to the first term, and study the conditions
under which ðiÞ ¼ 0. Differentiating the energy density as it
stands in Eq. (105) we obtain
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ðiÞ ¼ ð−c2sÞV 0
�
Hk

H0
k
H0

v þHv

�
¼ 0: ð138Þ

The simplest option is similar to the previous case: term
(i) will vanish when the potential V ¼ V0 is constant.
Another possibility is that

Hk

H0
k
H0

v þHv ¼ 0; ð139Þ

which again admits the solution Hv ¼ 0 and also

H0
k

Hk
¼ −

H0
v

Hv
: ð140Þ

Integrating, we would find

Hv ¼
C
Hk

; ð141Þ

where C is a constant of integration. The final possibility is
the vanishing of c2s or, equivalently, the vanishing of
AðY;ψÞ as Eq. (113) reveals. This amounts to

VðH00
kH

0
v −H0

kH
00
vÞ −

cρ
2
H00

k ¼ 0: ð142Þ

If the potential was identically zero, it would be nothing but
a particular case of constant potential, and we already know
that both terms (i) and (ii) would vanish. Thus, it would not
be necessary to keep probing for information regarding the
vanishing of c2s . In the following calculations, we assume
that V ≠ 0, so that we may rearrange to get

H00
kH

0
v −H0

kH
00
v ¼

cρ
2V

H00
k: ð143Þ

At this point, it could happen that H00
k ¼ 0, which on the

one hand implies Hk ¼ aY þ b and on the other

H00
v ¼ 0 ð144Þ

(where we have recalledH0
k ≠ 0), so thatHv ¼ cY þ d. On

the other hand, in cases where H00
k ≠ 0 we could divide

through and obtain the following:

H0
v −

H0
k

H00
k
H00

v ¼
cρ
2V

: ð145Þ

On the one hand, when cρ ¼ 0 we obtain a particular case
of model II. 2. (studied later). On the other hand, when
cρ ≠ 0, we remark that the left-hand side of this equation is
a function of only Y, while the right-hand side is a function
of only ψ. Since we are looking for particular models such
that all solutions are adiabatic, we ask both sides to equal
the same constant K. In particular, this means that we get a
constant potential

V ¼ cρ
2K

¼ V0; ð146Þ

which takes us to the first case and so we do not need to
look for further information. We thus conclude that, in
practice, there are four situations in which term (i) vanishes:
(1) A constant potential V ¼ V0.
(2) A vanishing potential coupling Hv ¼ 0.
(3) A potential coupling of the form Hv ¼ C

Hk
.

(4) Both coupling functions are linear: Hk ¼ aY þ b
and Hv ¼ cY þ d.

Contrasting these four situations for which ðiÞ ¼ 0 with the
three for which ðiiÞ ¼ 0, and bearing in mind that both
terms must vanish separately and simultaneously, reveals
that in practice we can only have three cases in which both
terms (i) and (ii) vanish independently:
(1) A constant potential V ¼ V0.
(2) A vanishing potential coupling Hv ¼ 0.
(3) A linear kinetic coupling functionHk ¼ aY þ b and

at the same time a potential coupling function of the
form Hv ¼ CHk (which will also be linear).

The physical implications of each of these subcases shall be
studied with greater detail later on. For now, let us remark
that the reader may find in Table I a summary of the results
obtained.

TABLE I. Summary of the six (independent) adiabatic TDiff models, where the first five correspond to H0
k ≠ 0

and the last one to H0
k ¼ 0. In the table, three dots “� � �” mean that the quantity in question is arbitrary, and the

integration constants fV0; C; a; b; c; d; kg are unrestricted unless otherwise specified.

Name VðψÞ HkðYÞ HvðYÞ cρ Restrictions

I.1. Shift-symmetric model � � � � � � 0 � � � H0
k ≠ 0

I.2. Constant potential model V0 � � � � � � � � � H0
k ≠ 0

II.1. Unstable model � � � eaYþb d � � � a, d ≠ 0

II.2. Constant EoS model � � � aðHvÞb H0
v ≠ 0 0 a, b ≠ 0

II.3. Constant speed of sound model � � � aðY þ d
cÞb cY þ d � � � a, b, c ≠ 0

III. GR fluid model cρ
2c

k cY þ d ≠ 0 c ≠ 0
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2. Case II

We now consider the case in which the two terms in α do
not vanish separately but their combination does. Now,
since none of the terms in Eq. (133) for α vanishes
individually, we can rearrange said expression to obtain

c2s ¼
∂p=∂ψ
∂ρ=∂ψ

				
Y
: ð147Þ

Differentiating the energy density and pressure in Eq. (105)
and recalling the expression (113) for c2s we find that

AðY;ψÞ
AðY;ψÞ − BðY;ψÞ ¼

Hk
H0

k
H0

v −Hv

Hk
H0

k
H0

v þHv

: ð148Þ

This would be the general relation that establishes the
adiabaticity of the fluid in the case where both terms in α do
not vanish separately but only through their combination.
In cases where H0

v ¼ 0 we would on the one hand have
thatHv ¼ const (different from zero, sinceHv ¼ 0 belongs
to the two terms in α vanishing separately) and on the other
it would follow from the above equation that

c2s ¼ −1: ð149Þ

This would thus be an unstable adiabatic fluid. Despite this
fact, we could carry the analysis further and find

BðY;ψÞ ¼ 2AðY;ψÞ: ð150Þ

Substituting the expressions (114), and using that H0
v ¼ 0,

one obtains

cρðH0
kÞ2 ¼ cρHkH00

k; ð151Þ

which, after canceling a common cρ [nonzero, since in our
H0

v ¼ 0 study it would imply that AðY;ψÞ ¼ 0 and that is
not the case], may be rearranged to find

H0
k

Hk
¼ H00

k

H0
k
: ð152Þ

Integrating twice, this would yield a kinetic coupling
function of the form

Hk ¼ eaYþb; ð153Þ

where a and b are constants of integration.
Consider now the cases where H0

v ≠ 0. This means that
we could find a common factor on the right-hand side of
Eq. (148) and write it as

1

1 − BðY;ψÞ
AðY;ψÞ

¼
Hk
H0

k
− Hv

H0
v

Hk
H0

k
þ Hv

H0
v

; ð154Þ

where we have also simplified the left-hand side recalling
that AðY;ψÞ ≠ 0 (if it vanished we would be in a particular
case of the previous study). We can rearrange this equation
to find

BðY;ψÞ
AðY;ψÞ ¼ 1 −

Hk
H0

k
þ Hv

H0
v

Hk
H0

k
− Hv

H0
v

≡ φðYÞ: ð155Þ

[Note that in the situation under study φðYÞ ≠ 0, because its
vanishing would imply Hv ¼ 0 as follows from the above
definition of φðYÞ, and this is incompatible with H0

v ≠ 0.]
Now, the right-hand side is a function only of Y, while the
left-hand side depends on both Y and ψ . Let us try to better
localize these dependencies and see what we obtain. We
first of all write the equation as

BðY;ψÞ ¼ φðYÞAðY;ψÞ: ð156Þ

Substituting now the expressions for AðY;ψÞ and BðY;ψÞ
from Eq. (114) and rearranging the result to group terms
with V on one side, we obtain

Vf2ðH0
kÞ2H0

v − φðYÞHkðH00
kH

0
v −H0

kH
00
vÞg

¼ cρ
2
½2ðH0

kÞ2 − φðYÞHkH00
k �: ð157Þ

Now, if the term inside curly brackets was nonzero, it
would mean that we could solve for the potential VðψÞ and
it would be a function of only Y. Once again we would ask
for both sides to be constant, but a constant potential is part
of the previous situation and does not belong to the present
study. Hence, it must be the case that the term in between
curly brackets on the left-hand side of the above equation
vanishes, implying in turn that the full right-hand side must
vanish as well. We thus conclude that

2ðH0
kÞ2H0

v − φðYÞHkðH00
kH

0
v −H0

kH
00
vÞ ¼ 0; ð158aÞ

cρ
2
½2ðH0

kÞ2 − φðYÞHkH00
k � ¼ 0: ð158bÞ

Let us focus on the first expression. Dividing by the
nonzero H0

v and rearranging, we find that

2ðH0
kÞ2 − φðYÞHkH00

k ¼ −φðYÞHkH0
k
H00

v

H0
v
: ð159Þ

Substituting this result into the second expression, we
obtain
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−
cρ
2
φðYÞHkH0

k
H00

v

H0
v
¼ 0; ð160Þ

which implies

cρH00
v ¼ 0: ð161Þ

Thus, the two possibilities for the cases where H0
v ≠ 0 are

cρ ¼ 0 and H00
v ¼ 0. The analysis for cρ ¼ 0 deserves

greater care, but regarding H00
v ¼ 0 we can already say

that (since H0
v ≠ 0) we must have Hv ¼ cY þ d where

c ≠ 0 and d are constants of integration.
Let us now pause for a moment and make a list of the

three distinct situations in which the two terms in α do not
vanish identically but their combination does:
(1) Hv ¼ v ≠ 0 and Hk ¼ eaYþb (unstable model).
(2) H0

v ≠ 0 and cρ ¼ 0.
(3) Hv ¼ cY þ d, with c ≠ 0.

The first case yields an unstable model, as we have
discussed. Regarding the other two situations, we still do
not know what the form of the kinetic coupling functionHk
is, so let us focus on that now.
The case in which the constant cρ vanishes (while

H0
v ≠ 0) turns out to be quite simple, as many convenient

cancellations take place. Indeed, evaluating AðY;ψÞ and
BðY;ψÞ from Eq. (114) whenever cρ ¼ 0 results in

BðY;ψÞ
AðY;ψÞ ¼ 2

H0
k

Hk

H00
k

H0
k
− H00

v
H0

v

; ð162Þ

and we see that the potential V completely disappears from
the ratio. Referring back to Eq. (155), it follows that

2

H0
k

Hk

H00
k

H0
k
− H00

v
H0

v

¼ ð−2Þ
Hv
H0

v

Hk
H0

k
− Hv

H0
v

: ð163Þ

This equation may be simplified and rearranged carefully
to find

H00
k

H0
k
−
H0

k

Hk
¼ H00

v

H0
v
−
H0

v

Hv
: ð164Þ

Integrating once, it follows that

H0
k

Hk
¼ b

H0
v

Hv
; ð165Þ

where b is an integration constant (nonzero, recall that all
throughout H0

k ≠ 0). Integrating a second time, we finally
conclude that

Hk ¼ aðHvÞb; ð166Þ

where a is another (nonzero) integration constant. In this
way, given any potential coupling functionHv that satisfies
H0

v ≠ 0 and a kinetic coupling function of the above form,
the fluid will be adiabatic.
Now we move on to the other option, i.e. a linear

potential coupling function Hv ¼ cY þ d, with c ≠ 0.
Substituting this form into the expression (159) we find
the following equation for the kinetic coupling function:

2ðH0
kÞ2¼φðYÞHkH00

k ¼ð−2Þ Yþd=c
Hk
H0

k
− ðYþd=cÞHkH00

k; ð167Þ

where in the second equality we have used the definition
(155) for φðYÞ particularized to our case. The above
expression may be simplified and rearranged to find

H0
k

Hk
−
H00

k

H0
k
¼ 1

Y þ d=c
: ð168Þ

Integrating once, it follows that

H0
k

Hk
¼ b

Y þ d=c
; ð169Þ

where b is a (nonzero) integration constant, and integrat-
ing a second time one may finally obtain

Hk ¼ aðY þ d=cÞb; ð170Þ

where a is another (nonzero) integration constant.
Thus, the three possibilities for adiabatic models that we

find in Case II would be:
(1) Hv ¼ d ≠ 0 and Hk ¼ eaYþb (unstable model).
(2) cρ ¼ 0, with H0

v ≠ 0 and Hk ¼ aðHvÞb.
(3) Hv ¼ cY þ d and Hk ¼ aðY þ d=cÞb.

Thus concludes the possible ways in which the models may
be adiabatic. For simplicity and an easy reference, we also
include these results in Table I.
We now move on to the analysis of the physical

implications of each of the six adiabatic subcases we have
found.

3. Subcase I.1.—Shift-symmetric model

We begin by noting that the particular model withHv ¼ 0
is shift symmetric, and its results are fundamentally those
found in the kinetic domination regime (which we already
knew to be adiabatic). If we compute the energy density,
pressure, EoS parameter, and adiabatic speed of sound, we
straightforwardly reobtain the same results as those pre-
sented in Sec. IV B. Since this case has been previously
analyzed in detail, we shall not reproduce it again here.
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4. Subcase I.2.—Constant potential model

Let us continue by considering the case in which we have
both kinetic and potential contributions but the potential is
V ¼ V0 ¼ const. The general EoM (46) for ψ actually
reduces to the kinetic EoM (62), whose solution is known
and is given by (65). Substituting into the solutions (95) for
the EoM of Tμ, we obtain

H0
k

2

CψðxÞ
ðHkδVÞ2

−H0
vV0 ¼ −

cρ
2
; ð171Þ

and going to the μ̄ ¼ 1 frame it follows that

ðfk − 2gf0kÞ
2

gCψ ðxÞ
ðfkδVÞ2

− ðfv − 2gf0vÞV0 ¼ −
cρ
2
: ð172Þ

This expression is the general constraint on the metric
whenever we have a kinetic term and a constant potential.
Now, the energy density and pressure are found from

(105) to be

ρ ¼ Hk

H0
k

�
H0

vV0 −
cρ
2

�
þHvV0 −

cρ
2
Y ¼ ρðYÞ; ð173aÞ

p ¼ Hk

H0
k

�
H0

vV0 −
cρ
2

�
−HvV0 þ

cρ
2
Y ¼ pðYÞ: ð173bÞ

Their dependence on a single variable reveals that we are
dealing with an adiabatic fluid, with EoS parameter

w ¼ cρðHk − YH0
kÞ þ 2V0ðHvH0

k −HkH0
vÞ

cρðHk þ YH0
kÞ − 2V0ðHvH0

k þHkH0
vÞ
: ð174Þ

We may also calculate the speed of sound of the adiabatic
perturbations using the relation (32), which yields

c2a ¼
AðYÞ

AðYÞ − BðYÞ ; ð175Þ

where we denote

AðYÞ ≡ V0HkðH00
kH

0
v −H0

kH
00
vÞ −

cρ
2
HkH00

k; ð176aÞ

BðYÞ ≡ 2ðH0
kÞ2

�
H0

vV0 −
cρ
2

�
: ð176bÞ

Before proceeding any further, let us stress a couple of
points. First, the above expression (175) reduces to the
adiabatic speed of sound (79) in the kinetic regime, as one
would expect. Second, and perhaps more interestingly, let
us remark that we have obtained Eq. (175) for the
adiabatic speed of sound via the relation (32) (valid
precisely for adiabatic perturbations). Nevertheless, in
the case of a constant potential it is immediately seen

that the ψ dependence in the quantities of the previous
section completely disappears: from Eqs. (114) and (176)
we see that AðY;ψÞjV0

¼ AðYÞ and BðY;ψÞjV0
¼ BðYÞ,

while from (115) and (175) we verify that c2s jV0
¼ c2a. So,

consistently, this result could have been obtained by noting
that for a constant potential we would have α¼ 0 in
Eq. (107), as we previously mentioned.
Finally, requiring the stability of the perturbations trans-

lates to BðYÞ=AðYÞ < 1, and if we also wish to have
subluminality then it must be the case that BðYÞ=AðYÞ ≤ 0.
All in all, the case of a constant potential is a simple but

nontrivial example which the TDiff approach was unable to
reach due to the difficulty related with the study of EMT
conservation, but which the covariantized approach allows
to study in a straightforward manner.

5. Subcase I.3.—Constant pressure model

Another case in which the fluid is adiabatic is the one in
which the two couplings are linear and related by

Hk ¼ aY þ b; ð177aÞ

Hv ¼ CHk: ð177bÞ

The energy density and pressure are found from (105) to be

ρ ¼ 2CðaY þ bÞV −
cρ
2

�
2Y þ b

a

�
; ð178aÞ

p ¼ −
cρb

2a
¼ const: ð178bÞ

Looking at the above quantities, a couple of features
immediately jump out. The first one is that the pressure
is constant, and as a result we find that the fluid will have no
pressure perturbations, i.e. δp ¼ 0. If we compute the
speed of sound (113) for this model, it consistently reveals
that c2s ¼ 0 (satisfying both stability and subluminality).
The second feature is that the energy density depends in

general on both Y and ψ , and so one could wonder how the
adiabatic speed of sound could be calculated given that we
have a dependence on two variables here. This is solved by
again remarking that the pressure is constant, so that from
the definition of the adiabatic speed of sound as

c2a ¼
ṗ
ρ̇
¼ uα∂αp

uβ∂βρ
ð179Þ

we consistently find c2a ¼ 0 ¼ c2s , and the two coincide (as
they should for our adiabatic fluid).
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6. Subcase II.1.—Unstable model

Although the model defined by the coupling functions

Hk ¼ eaYþb; ð180aÞ

Hv ¼ d; ð180bÞ

yields unstable perturbations, we nevertheless discuss it for
completeness. The energy density and pressure follow from
(105) and read

ρ ¼ −
cρ
2

�
1

a
þ Y

�
þ Vd; ð181aÞ

p ¼ −
cρ
2

�
1

a
− Y

�
− Vd: ð181bÞ

Once again they depend on a couple of variables, and so the
correct way of finding the adiabatic speed of sound is from
its definition as

c2a ¼
ṗ
ρ̇
¼ −1; ð182Þ

which is an unstable result as we expected, coinciding with
the speed of sound c2s ¼ −1 as obtained from (113).

7. Subcase II.2.—Constant EoS model

The main feature of this subcase is the vanishing of the
constant cρ (which greatly simplifies the treatment) and we
recall that the coupling functions are related by

Hk ¼ aðHvÞb; ð183Þ

such that a; b;H0
v ≠ 0. The energy density and pressure are

found substituting these coupling functions in (105), and
take the form

ρ ¼ 1þ b
b

HvV; ð184aÞ

p ¼ 1 − b
b

HvV; ð184bÞ

and the EoS parameter turns out to be constant:

w ¼ 1 − b
1þ b

: ð185Þ

Finally, the speed of sound (113) reads

c2s ¼
1 − b
1þ b

; ð186Þ

and it indeed coincides with the adiabatic speed of sound
since, for the case of a constant EoS parameter, we have

c2a ¼ w ¼ c2s . The requirement of stability translates to the
possibilities

−1 < b < 0 and 0 < b ≤ 1; ð187Þ

and also requiring subluminality gives

b > 0: ð188Þ

In obtaining the above results we have recalled that we are
in a model in which b ≠ 0 from the start, so we must
remove the possibility b ¼ 0 from them.

8. Subcase II.3.—Constant speed of sound model

Another particular model yielding an adiabatic fluid is
that in which the coupling functions take the forms

Hk ¼ a

�
Y þ d

c

�
b
; ð189aÞ

Hv ¼ cY þ d; ð189bÞ

with all constants different from zero except perhaps d. A
trivial rewriting of the kinetic coupling function as

Hk ¼ acbðcY þ dÞb ¼ acbðHvÞb ð190Þ

reveals that this case is closely related to the previous one,
where nowHv is linear, but with the drawback that now the
constant cρ does not necessarily vanish. If the initial
conditions were chosen such that cρ ¼ 0, however, we
would be in a particular realization of the previous case.
Now, our choice of initial conditions affects the particular
value of our fluid quantities (energy density, pressure, EoS)
at any given time, but it should not affect the perturbations,
and this is what we shall see.
The energy density and pressure for this model are found

from (105) to be

ρ ¼ 1þ b
b

�
−
cρ
2
Y þ Vdþ cYV

�
−
cρd

2bc
; ð191aÞ

p ¼ 1 − b
b

�
−
cρ
2
Y þ Vdþ cYV

�
−
cρd

2bc
; ð191bÞ

and the EoS parameter takes the form

w ¼
ð1 − bÞ

�
− cρ

2
Y þ Vdþ cYV

�
− cρd

2c

ð1þ bÞ
�
− cρ

2
Y þ Vdþ cYV

�
− cρd

2c

: ð192Þ

All of these fluid quantities would reduce to the ones in the
previous case when the initial conditions were chosen such
that cρ ¼ 0. Now, both the energy density and pressure
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depend on two variables, and so in order to find the
adiabatic speed of sound we must resort to the following
definition:

c2a ¼
ṗ
ρ̇
¼ 1 − b

1þ b
: ð193Þ

Calculating the speed of sound from Eq. (113) yields the
same result, so that indeed c2s ¼ c2a. Moreover, we may
immediately see that the adiabatic speed of sound (193) is
identical to that from the previous section, given in (186).
So, indeed, even though our choice of initial conditions
affects the “background physics” of our fluid, it does not
affect its perturbations. Also, since the form of the adiabatic
speed of sound is the same, we already know the require-
ments for stability and subluminality: (187) and (188),
respectively.
As a final note, the reader may recognize that the

particular model given by b ¼ 1 (which means that the
two coupling functions are linear and proportional to each
other) reduces to the constant pressure situation I.3. we
previously studied. Therefore, in a way, the present model
is more general as it encompasses the aforementioned one.
With this last case, we have finally finished the dis-

cussion of the six situations in which the perturbations of
our (generally nonadiabatic) fluid became adiabatic.
Nevertheless, as we anticipated, we are still missing the
analysis of the situations in which the kinetic coupling
function Hk is constant, so that H0

k ¼ 0. For completeness,
this detail shall be studied in the following section.

C. Constant kinetic coupling function

After all of our general discussion, we come back to a
question that remains open. Let us consider the case in
which the potential coupling function is a constant, i.e.

Hk ¼ k ¼ const: ð194Þ

What happens in this situation? To begin with, since
H0

k ¼ 0, the solutions (95) for the EoM of Tμ tell us that

H0
vV ¼ cρ

2
: ð195Þ

Possible solutions to this equation are V ¼ 0 and H0
v ¼ 0,

which both imply that cρ ¼ 0. Beyond these trivial cases,
we may divide through by the potential and find

H0
v ¼

cρ
2V

: ð196Þ

Now, it can be checked that the only case leading to an
adiabatic model is the one in which both sides equal the
same constant c. On the one hand, this tells us that the
potential takes on the constant value

V ¼ cρ
2c

; ð197Þ

and on the other that the potential coupling is linear,

Hv ¼ cY þ d; ð198Þ

where d is an integration constant. In summary, then, we in
principle have three situations to study:
(1) V ¼ cρ

2c ≠ 0 and Hv ¼ cY þ d, with c ≠ 0.
(2) V ¼ 0, with H0

v arbitrary.
(3) H0

v ¼ 0ð⇒ Hv ¼ v ¼ constÞ, with V arbitrary.
A couple of comments are due at this point. On the one
hand, the second model gives simply

SDiff ¼ SEH þ
Z

d4x
ffiffiffi
g

p
kX; ð199Þ

and this is nothing but the standard GR case of a shift-
symmetric scalar field. On the other hand, the third model
gives

SDiff ¼ SEH þ
Z

d4x
ffiffiffi
g

p ðkX − vVÞ; ð200Þ

and this is nothing but the standard GR case of a general
scalar field. Thus, since the second and third models are
nothing but GR, we shall not study them in detail here, but
rather we refer the reader to Refs. [22,23]. Instead, we focus
on the first case, which is the one that yields “true” TDiff
results. Its analysis is done in the following subsection, and
the reason for the numbering we have chosen will be
understood once it is finished.

1. Subcase III—GR fluid model

Substituting the particular expressions V ¼ cρ
2c and Hv ¼

cY þ d into Eq. (98), one finds some convenient cancella-
tions which yield

ρ ¼ kX þ cρd

2c
¼ ρðXÞ; ð201aÞ

p ¼ kX −
cρd

2c
¼ pðXÞ; ð201bÞ

and the fluid is thus adiabatic once again. It is interesting to
remark that, recalling the form of the potential, the above
expressions may be rewritten as

ρ ¼ kX þ Vd; ð202aÞ

p ¼ kX − Vd; ð202bÞ

and so the energy density and pressure would fundamentally
be identical to those of a canonical scalar field with constant
potential in GR (modulo superfluous renormalizations
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of ψ). In this manner, even though our theory is not GR, we
would obtain the same phenomenology. In particular, the
EoS parameter reads

w ¼ kX − Vd
kX þ Vd

; ð203Þ

which is the typical form in GR, and interpolates between
w ¼ −1 (potential domination) and w ¼ 1 (kinetic domi-
nation). Moreover, if we compute the adiabatic speed of
sound from (32) we obtain c2a ¼ 1, as is the case in GR.
We have thus studied the situation whenever the kinetic

coupling functionHk is constant, and this completes any of
the questions left open in the previous analysis (which was
carried out assuming H0

k ≠ 0). Since we have obtained an
adiabatic fluid, we have numbered this case as III and we
include it in Table I for ease of reference.

D. Particular Diff solution in TDiff theories

As a final comment, we discuss a family of general
TDiff models that can yield Diff solutions to the theory. A
word of caution: we perform the study in the covariantized
approach, where strictly speaking the theories are (by
construction) Diff invariant already; hence, whenever we
speak of a “TDiff theory” in this context, we fundamen-
tally mean that the coupling functions HðYÞ are not
constant (meaning that the theory when going to the
TDiff frame was not already Diff invariant to start with,
or in other words, that we actually needed to introduce a
new field to restore the symmetry).
Having cleared that up, let us consider the family of

TDiff theories in which the coupling functions have a
common extremum at Y ¼ Y0, i.e.

H0
kðY0Þ ¼ 0 ¼ H0

vðY0Þ: ð204Þ

Now, the solution Y ¼ Y0 ¼ const is a valid (and trivial)
solution to the EoM (49) of the vector field Tμ. Substituting
this solution into the EoM (46) for ψ yields

HkðY0Þ∇μ∇μψ þHvðY0ÞV 0ðψÞ ¼ 0: ð205Þ

In this way, up to superfluous constant factors, the scalar
field ψ follows the usual Diff equation. Moreover, the
EMT (51) on these solutions reads

Tμν ¼HkðY0Þ∂μψ∂νψ − ½HkðY0ÞX −HvðY0ÞV�gμν; ð206Þ

and so we also recover the standard expression for a Diff
theory with a scalar field (up to constant factors).
We stress that we are not setting the coupling functions

HðYÞ to be constant from the start, which indeed amounts to
the assertion that the original theory was Diff invariant
already. Instead, we are working with nonconstant, arbitrary
coupling functions HðYÞ such that they have an extremum

at Y ¼ Y0. These TDiff theories are explicitly not GR, but
what we are seeing is that they admit a particular solution
that reproduces the same results as GR. Thus, in principle,
we would not be able to distinguish GR from a particular
solution of a TDiff theory where the coupling functions
reach an extremum at the same point. A valid and useful
question in order to discern this would be: are these
solutions stable under perturbations? By this we mean
the following: were we to slightly perturb the solutions
(Y ¼ Y0 þ δY, etc.), would the perturbation δY decay so
that we would again reach the Y ¼ Y0 behavior? We shall
address this question in the following.

1. Perturbations

Let us begin by considering the evolution of the
perturbations in general, before particularizing to our
family of theories. The EoM (49) for Tμ may be written as

∂μSðX; Y;ψÞ ¼ 0; ð207Þ

where for simplicity we denote

SðX; Y;ψÞ ≡H0
kðYÞX −H0

vðYÞVðψÞ: ð208Þ

The solutions (95) are the level surfaces

SðX; Y;ψÞ ¼ const ≡ −
cρ
2
; ð209Þ

where the particular constant (the particular “level”) is fixed
through the initial conditions on the fields and their
derivatives. Now, suppose we have found a solution Φ̄ ≡
fX̄; Ȳ; ψ̄g to the theory (which we refer to as our “back-
ground”). Slightly perturbing it and demanding that the
perturbed fields Φ ¼ Φ̄þ δΦ are also a solution to the
theory reveals that, in general, we will change what level
surface our new (perturbed) solution lives on. In particular,
demanding

∂μSðΦÞ ¼ ∂μSðΦ̄þ δΦÞ ¼ 0 ð210Þ

yields the following equation for the perturbations:

H0
kðȲÞδX þ BðX̄; Ȳ; ψ̄ÞδY −H0

vðȲÞV 0ðψ̄Þδψ

¼ const ≡ −
δcρ
2

; ð211Þ

where, for ease of viewing, we defined the background
quantity

BðX̄; Ȳ; ψ̄Þ ≡H00
kðȲÞX̄ −H00

vðȲÞVðψ̄Þ: ð212Þ

In the above equation, the constant δcρ would now be
fixed through the initial conditions on the perturbed fields
Φ ¼ Φ̄þ δΦ and their derivatives.
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Note that this would not be the only equation for the
perturbations; we would also have the equations coming
from perturbing the EoM of the scalar field ψ and the
Einstein equations. Nevertheless, in order to keep it brief, it
will suffice to simply consider this one.

2. Stability of the Diff solution in TDiff theories

Having presented the general case, let us now consider the
family of TDiff theories for which the coupling functions
HðYÞ reach a common extremum at H0

kðY0Þ¼0¼H0
vðY0Þ.

As we saw, the solution Ȳ ¼ Y0 ¼ const is a valid solution
to the EoM of Tμ (it is a trivial one in fact) which yields
a behavior identical to GR. Now, is this particular solution
stable? Let us consider Eq. (211) above, particularized
to these theories. The extremum condition helps to simplify
it to

BðX̄; Y0; ψ̄ÞδY ¼ −
δcρ
2

: ð213Þ

Assuming that the background quantity BðX̄; Y0; ψ̄Þ is
nonzero5 and solving for the perturbation, we find that

δY ¼ −δcρ=2
BðX̄; Y0; ψ̄Þ

: ð214Þ

In the particular situation in which we choose the initial
conditions δYjinitial ¼ 0 (essentially meaning that the per-
turbed solution crosses Y ¼ Y0 at some point, which we take
as the “initial” one), and thus δcρ ¼ 0 and the perturbation
δY would always be zero. Such a theory would thus be
“stable” in the sense that the perturbation decays (it actually
stays zero constantly) and we recover the initial situation of
Y ¼ Y0. Nevertheless, in general, we will be in a situation in
which δcρ ≠ 0, and so if we wish to shed some light on the
stability of our solution we must study the evolution of the
background quantity BðX̄; Y0; ψ̄Þ. Since this is difficult to
tackle in general, let us consider the two limiting regimes of
potential and kinetic domination and see if we can gain some
intuition about what might happen.

Potential domination.—In this case, the background quan-
tity reads B ¼ −H00

vðY0ÞVðψ̄Þ. Now, the EoM for ψ in the
potential regime tells us that the scalar field takes on the
constant value ψ̄ ¼ ψ0 such that the potential reaches an
extremum. As a result,

B ¼ −H00
vðY0ÞVðψ0Þ ¼ const: ð215Þ

Therefore, the perturbation stays constant as well6:

δY ¼ const: ð216Þ
This means that the solution Ȳ ¼ Y0 ¼ const is not stable
in the potential regime, since the perturbation does not
decay but stays frozen.

Kinetic domination.—In this case, the background quantity
reads B ¼ H00

kðY0ÞX̄. Now, from Eq. (65), the EoM for ψ in
the kinetic regime tells us that

2X̄ ¼ Cψ ðxÞ
ðHkðY0ÞδVÞ2

: ð217Þ

As a result, the background quantity behaves as

B ¼ H00
kðY0ÞCψ ðxÞ

2H2
kðY0ÞðδVÞ2

: ð218Þ

Substituting this result back into the expression for the
perturbation, we find that

δY ¼ −δcρH2
kðY0Þ

H00
kðY0ÞCψ ðxÞ

ðδVÞ2 ≡ CYðxÞðδVÞ2; ð219Þ

where we have grouped the term multiplying ðδVÞ2 into
CYðxÞ such that ĊYðxÞ ¼ uμ∂μCYðxÞ ¼ 0 (i.e. the quantity
CY remains constant in the direction parallel to the velocity).
In a cosmological scenario we have δV ¼ a3 and
CY ¼ const, so the perturbation grows as δY ∝ a6. This
rapid growth with the scale factor reveals that the particular
solution Y ¼ Y0 ¼ const is not stable in a cosmological
scenario (at least in models without recollapse). Without
directly going to the cosmological scenario, one can see
from the above equation that the stability of the solution is
related to the background cross-sectional volume diminish-
ing along the scalar field’s direction. We can make this
statement more mathematically precise by taking the dot
derivative,

ðδYÞ• ¼ 2δYðln δVÞ•; ð220Þ

which, recalling Eq. (23), reveals that it is proportional to the
expansion. In this way, we confirm that for a model with a
positive expansion the perturbation will grow (making the
solution unstable), whereas for a model with a negative
expansion it will decay (making the solution stable).
As a final note, let us remark that even though in Subcase

III from the previous section we also obtained a GR
behavior, in that case said behavior is general for any5If it vanished, it would on the one hand imply δcρ ¼ 0

(meaning we do not change level surface), and on the other hand
the equation would turn into a 0 ¼ 0 identity from which no
further information could be extracted. As a result, we would have
to consider the perturbed Einstein equations and the perturbed
equations for the scalar field to extract some information.

6This is actually a general result for the perturbation δY in the
potential regime, not limited to the particular family of theories
we are studying. This may be seen by evaluating Eq. (211) in the
potential regime.
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solution to the equations of motion. Indeed, in Subcase III
we are actually fixing the coupling functions and hence the
theory, so all solutions of the theory will have that behavior
(we do not have any “particular solution whose stability we
should study”). In the present case, however, we are dealing
with a particular solution of a family of theories, without
actually fixing the coupling functions.

VI. CONCLUSIONS

In this work we explored the idea of restoring the Diff
invariance to a theory in which it was previously broken
down to TDiff. Inspired by the work of Stueckelberg [15]
for gauge fields and the treatment by Henneaux and
Teitelboim [17] for unimodular gravity, we reformulated
a TDiff invariant theory for a scalar field ψ in a way in
which the invariance of the theory under general diffeo-
morphisms is recovered at the expense of introducing an
additional vector field Tμ. We highlighted that the two
approaches are indeed equivalent ways of dealing with the
same problem. In the TDiff approach, the main tool was
the study of the EMT conservation. Indeed, due to the lack
of Diff invariance, it was not an automatic consequence of
the symmetry, but rather a consistency condition which
should be satisfied by the solutions of the theory. On the
other hand, in the covariantized approach the symmetry is
restored and the EMT is once again trivially conserved. In
this case, then, the additional information is provided by
the EoM of the newly incorporated vector field Tμ.
We have not only shown the equivalence of the two

approaches at the level of general actions, but we have also
recovered the results in the potential and kinetic regimes.
Furthermore, in the kinetic regime the covariantized treat-
ment has shed light on the conditions to be satisfied by the
coupling function to obtain stable adiabatic fluids. We have
also discussed how simple models in the kinetic regime can
be found following both approaches. Apart from models
leading to a constant EoS parameter, which appear as a
power law for the coupling function of the corresponding
approach, a natural model in one approach will not
necessarily be simple in the other.
On the other hand, we have shown that the covariantized

treatment also yields a novel and important result which
was too difficult to obtain in the TDiff approach, namely,
the general constraint on the metric whenever both kinetic
and potential terms are present. The study of this general
result reveals that we may describe our matter content as a
nonadiabatic perfect fluid. We calculated the effective
speed of sound of this fluid and found conditions on the
allowed coupling functions in order to have physically
viable models. Then, we easily translated all of these new
results to the TDiff framework as well. Now, although the
most general situation is nonadiabatic, we can find some
particular subcases that give adiabatic perturbations. We
found a total of six adiabatic models and performed a
detailed analysis of their physical implications. One of

them was already known (in particular, the shift-symmetric
model was known to be adiabatic), but we were able to find
and study the other models thanks to the simplified treat-
ment provided by the covariantized approach. Finally, we
also discussed a particular solution to a family of TDiff
theories that yields the same results as GR. Moreover, we
studied the stability of this solution, finding that it is
unstable in the potential regime, while in the kinetic regime
the stability depends on the expansion.
Overall, we conclude that the covariantized treatment

carried out in this work is a useful tool for several reasons.
From the fundamental point of view, the restoration of a
symmetry via the introduction of additional quantities can
be useful in discerning which are the truly dynamical
components of a theory. This shall all be further pursued in
future work. From the more practical point of view, the
covariantized approach has proven to be faster for par-
ticular calculations and, most importantly, it has also
revealed a previously unknown result of general character
(the implications of which have been thoroughly studied).
Nevertheless, we have seen how the more natural models
in one approach are not necessarily those that one would
consider in the other approach in the first place. So, one
could be missing interesting phenomenology by focusing
on only one of the approaches. Moreover, it is intriguing to
consider what other problems and analyses, perhaps
difficult in one approach, the other approach might help
simplify. In addition, having two separate yet equivalent
ways of tackling the same problem provides one with a
consistency check of sorts, in the sense that a result
obtained via one approach may be compared with that
obtained through the other. For all of these reasons, we
think that combining both approaches will allow us to
better understand different aspects of the theory.
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APPENDIX A: DIFFERENT
COVARIANTIZATIONS

As we mention in Sec. III, the way of restoring the Diff
symmetry is not unique. We chose to do so with a vector
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field Tμ following Henneaux and Teitelboim [17] because,
in this way, locality is preserved in the covariantized action,
but we could very well follow the route taken by Blas et al.
in Ref. [21], where they directly considered introducing a
new scalar field. There are some differences, however, the
discussion of which has been reserved for the present
appendix.
We begin by noting that we can add an arbitrary constant

C0 to our TDiff Lagrangian without affecting the EoM of
the theory, i.e. we may work equally well with

STDiff ¼ SEH þ
Z

d4x½fkðgÞX − fvðgÞV þ C0�: ðA1Þ

Let us now covariantize this action in the way we present in
Sec. III. We obtain the following expression:

SDiff ¼ SEHþ
Z

d4x
ffiffiffi
g

p ½HkðYÞX−HvðYÞVþC0Y�; ðA2Þ

where we still have not specified how the scalar density μ̄
(equivalently, the combination Y ¼ μ̄=

ffiffiffi
g

p
) is related to the

new field. Let us now do precisely that: we shall introduce a
new scalar field σ to the theory, and a simple scalar density
which we may construct with it is

μ̄ ¼ σ
ffiffiffi
g

p
; ðA3Þ

which transforms as wanted. As a result of this choice, we
have

Y ¼ σ; ðA4Þ

and so our Diff action becomes

SDiff ¼ SEH þ
Z

d4x
ffiffiffi
g

p ½HkðσÞX −HvðσÞV þC0σ�; ðA5Þ

which is a theory for gμν and two scalar fields (ψ and σ). If
we now take variations with respect to the new scalar field σ
we find that its EoM is

H0
kðσÞX −H0

vðσÞV þ C0 ¼ 0; ðA6Þ

which is practically identical in form to the integrated
EoM (95) for Tμ.
Despite their formal similarities, there are a couple of

subtle differences which we wish to stress at this point. The
first is that, even though we started by including a super-
fluous constant in the TDiff action (where it had no effect on
the EoM of the theory), in the covariantized approach this
arbitrary constant is no longer superfluous as it explicitly
enters the EoM of the theory, as shown by Eq. (A6). As
explained in Ref. [21], there is no longer a one-to-one
correspondence between the EoM in the TDiff approach and

those in the covariantized approach: those obtained from the
TDiff action (A1) correspond to a whole family of the ones
obtained from the covariantized action (A2). The constant
C0 represents a global degree of freedom which appears
explicitly in the action, not fixed in any way by the fields in
the theory (recall that, when we included a vector Tμ, the
constant cρ could be fixed with the initial conditions on the
fields and their derivatives). The nonlocality in the cova-
riantized action implied by this new global degree of
freedom is what we were trying to avoid when we
introduced a vector field. Beyond this fact, the second
difference we wish to highlight is that the EoM (A6) for σ is
not really dynamical [as opposed to (95), where derivatives
of Tμ appear]. As a result, the newly included scalar field σ
would be a spectator field.
Finally, we stress that although the first difference (i.e.

having a new global degree of freedom) is a general feature
of covariantizing with a scalar field, the second difference
(i.e. σ being a nondynamical, spectator field) is a result of
our particular field theory. Indeed, recall that we are not
breaking the symmetry in the gravitational sector but only
in the matter sector, where the determinant appears in the
volume element. If we, for instance, decided to break the
symmetry in the gravitational sector by including a kinetic
term of the form ∂

μg∂μg then, after covariantizing, the scalar
field σ would have dynamics. All of these points were
studied in greater detail in Ref. [21].

APPENDIX B: COVARIANTIZED EMT

We include in this appendix a couple of calculations
regarding the covariantized EMT, which are not needed to
follow the main thread of the discussion, but which could
come in handy in order to clear up some of the compu-
tations. The first one has to do with explicitly obtaining the
expression (51) for the covariantized EMT, and the second
one with its (trivial) conservation.
Let us begin by obtaining it. As we know from the

definition (6), we must find the functional derivative of the
matter action

Sm ¼
Z

d4x
ffiffiffi
g

p ½HkðYÞX −HvðYÞVðψÞ� ðB1Þ

with respect to the metric. To this end, we find the variation
δSm with respect to the metric, which reads

δSm ¼
Z

d4xfðHkX −HvVÞδ
ffiffiffi
g

p þ ffiffiffi
g

p
XδHk

þ ffiffiffi
g

p
HkδX −

ffiffiffi
g

p
VδHv −

ffiffiffi
g

p
HvδVg: ðB2Þ

The needed variations with respect to the metric are the
following:

δV ¼ 0; ðB3aÞ
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δX ¼ 1

2
∂μψ∂νψδgμν; ðB3bÞ

δ
ffiffiffi
g

p ¼ −
1

2

ffiffiffi
g

p
gμνδgμν; ðB3cÞ

δH ¼ H0
�
1

2
Ygμνδgμν þ

1ffiffiffi
g

p ∂αðTαδ
ffiffiffi
g

p Þ
�
: ðB3dÞ

The usage of the first three is simple enough, but the fourth
one deserves a bit more care. After substituting these
expressions into the variation (B2) of the matter action,
the integrand will have a term of the form

ffiffiffi
g

p
XδHk ¼

ffiffiffi
g

p
XH0

k
1

2
Ygμνδgμν − Tαδ

ffiffiffi
g

p
∂αðH0

kXÞ
þ ∂αðTαH0

kXδ
ffiffiffi
g

p Þ ðB4Þ

and a term of the form

ffiffiffi
g

p
VδHv ¼

ffiffiffi
g

p
VH0

v
1

2
Ygμνδgμν − Tαδ

ffiffiffi
g

p
∂αðH0

vVÞ
þ ∂αðTαH0

vVδ
ffiffiffi
g

p Þ: ðB5Þ

A couple of steps are now needed for simplification. The
first step is to, as usual, discard the boundary terms appearing
in the last lines of the above two expressions, i.e. the
ones arising from ∂αðTαH0

kXδ
ffiffiffi
g

p Þ and ∂αðTαH0
vVδ

ffiffiffi
g

p Þ.
The second step is to recognize that after performing
the combination

ffiffiffi
g

p
XδHk −

ffiffiffi
g

p
VδHv we obtain (among

others) a term of the form

Tαδ
ffiffiffi
g

p
∂αðH0

vV −H0
kXÞ ¼ 0; ðB6Þ

which vanishes by virtue of the EoM (49) for the vector field
Tμ. Carefully substituting and taking everything into
account, we finally obtain

Tμν ¼ HkðYÞ∂μψ∂νψ − ½HkðYÞX −HvðYÞV�gμν
þ Y½H0

kðYÞX −H0
vðYÞV�gμν; ðB7Þ

which is precisely the covariantized EMT (51).
The second comment we wish to make is regarding the

conservation of this EMT, which should be trivial given that
the theory has Diff symmetry, and it can be explicitly
checked that this is so. Proceeding piece by piece, we have
that

∇μðHk∇μψ∇νψÞ ¼ ∇νψ∇μðHk∇μψÞ
þHk∇μψð∇μ∇νψÞ; ðB8aÞ

∇μ½ðHkX −HvVÞgμν� ¼ Hk∇μψð∇μ∇νψÞ
þ∇νYðH0

kX −H0
vVÞ

−HvV 0∇νψ ; ðB8bÞ

∇μ½YðH0
kX −H0

vVÞgμν� ¼ ∇νYðH0
kX −H0

vVÞ
þY∇νðH0

kX −H0
vVÞ: ðB8cÞ

Joining all the pieces together we can see some very
convenient cancellations, and also that

0 ¼ ∇μTμν ¼ ∇νψ ½∇μðHk∇μψÞ þHvV 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 byψ EoM ð46Þ

þ Y∇νðH0
kX −H0

vVÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 byTμ EoM ð49Þ

¼ 0; ðB9Þ

i.e. we indeed obtain that the conservation of the EMT is
trivially satisfied on the solutions to the EoM of the theory,
as we expected.
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