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We investigate a gedanken experiment to destroy an extremally charged black hole by dropping a test
particle, provided that there are multiple Uð1Þ gauge fields coupled with each other through higher
derivative interactions. It is known that the Coulomb repulsion prevents a test particle that would break the
extremal condition from falling into an extremal black hole and therefore the black hole cannot be
destroyed. We extend this observation to include higher derivative corrections. Although the extremal
condition is modified by the higher derivative interactions, we find that the repulsive force induced by the
higher derivative couplings is responsible for preventing a test particle that would break the modified
extremal condition to reach the event horizon. Thus, we confirm that the weak cosmic censorship
conjecture holds for extremally charged black holes even in the presence of higher derivative corrections, as
long as the test particle approximation is justified.
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I. INTRODUCTION

The weak cosmic censorship conjecture [1] states that all
of the spacetime singularities formed by the gravitational
collapse must be hidden by event horizons. This conjecture
is supported by many gedanken experiments. In particular,
gedanken experiments trying to destroy a black hole by
dropping a test particle have been actively investigated so
far. The pioneering work along this direction is Ref. [2],
where the motion of the test particle on the extremal Kerr-
Newman spacetime is investigated. There, it was found that
a test particle that would overcharge and/or overspin the
extremal Kerr-Newman black hole is prevented to reach the
event horizon due to the Coulomb repulsion, centrifugal
force, and spin-spin interactions. Thus, such a test particle
cannot destroy the black hole. Following this work, the
analysis is extended to other kinds of black holes [3–11].
See also Refs. [12–18], where the violation of the weak
cosmic censorship by a test particle dropping to a nearly
extremal black hole is discussed. In this paper, we inves-
tigate gedanken experiments along the same direction but
with including the effective field theory corrections to
Einstein gravity with two gauge fields.

If we regard the classical gravitational theory as a low-
energy effective field theory, it is natural to expect the
presence of higher derivative corrections. For example,
starting from the quantum electrodynamics with gravity,
massive heavy charged fields generate the higher derivative
corrections in the low energy effective action below their
mass scale [19]. Implications of such correction terms in
the low-energy effective theory are key bypaths to reveal
the nature of the high-energy physics. With the presence of
higher derivative corrections, the extremal condition of
black holes is modified (see, e.g., [20–23]), because the
electrovacuum solutions have corrections from the
Reissner-Nordström solution. This modification would
have the information of the high-energy physics.
In this paper, we investigate whether such an extremal

black hole could be overcharged by a test particle. We treat
an extremally charged black hole in the theory of Einstein
gravity with two Uð1Þ gauge fields including higher
derivative corrections. We use the test particle approxima-
tion, which is valid if the backreaction to the test particle by
itself is negligible. Hence, this approximation is trustable in
the first order in the charge of the test particle. Within this
approximation, we confirm that any charged test particle
can never destroy an extremal black hole, that is, the weak
cosmic censorship conjecture holds.
If the charges of the black hole and the particle are

associated with different gauge fields, no Coulomb force
acts between them. It implies that the first order in the charge
of the test particle vanishes. However, the higher-order
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contributions are required to be taken into account. The
effects beyond the test particle approximation are important
even in the casewith singleUð1Þ gauge field, as discussed in
Refs. [14,24,25]. In particular, the presence of the repulsive
self-force for a charged particle around the Kerr spacetime is
demonstrated by Ref. [24]. In addition, the Sorce-Wald
formalism [25], which does not rely on the test point particle
approximation, enables us to include such effects system-
atically as the second order increase of the mass of the
resultant black hole. The second-order effects for the
subextremal Kerr-Newman black hole is investigated in
the original paper [25], and it is found that the potential
violation of the weak cosmic censorship discussed in
Refs. [12–18] is prevented by the second-order effects.
Then, the formalism and its higher order extension are
studied in Refs. [26–33]. We note also that the gedanken
experiments to destroy the extremal black hole with higher
derivative corrections with the single gauge field is inves-
tigated in Refs. [31,32] based on the Sorce-Wald formalism
at the first order in a charge. See also Ref. [33] for the higher-
order analysis for the subextremal black hole with higher
derivative corrections. The higher-order contributions in the
particle charges are not addressed in this paper, but similar
results are expected to be obtained.
This paper is organized as follows. In the next section,

we show the dynamics of a test charged particle on the
static, spherically symmetric spacetime and electric fields.
Then, we give the gedanken experiments for the black hole
with minimally coupled gauge fields in Sec. III. In Sec. IV,
we generalize the analysis to the case with higher derivative
corrections. The final section is devoted to the summary
and discussion. We describe the detailed equations in
Appendix A. In Appendix B, we confirm that the results
do not change under the field redefinition. Throughout the
paper, we represents two Uð1Þ gauge fields by Aμ and Bμ.
The field strength, the charge of the particle, and the charge
of the black hole with respect to each gauge fields are
summarized in Table I. We use the unit ℏ ¼ 1; c ¼ 1, and
ϵ0 ¼ 1, where ℏ, c, and ϵ0 are the reduced Planck constant,
the speed of light, and the permittivity of vacuum.

II. MOTION OF TEST PARTICLE
WITH MULTIPLE CHARGES

In this section we summarize the dynamics of a test
charged particle on the static and spherically symmetric
spacetime with two Uð1Þ gauge fields Aμ and Bμ. The
particle that we consider has mass m and charges q and p

with respect to the gauge fields Aμ and Bμ, respectively.
Suppose that the particle is minimally coupled with gravity
and have no derivative coupling with the background fields.
This setup is justified in our analysis where the lowest-
order corrections with higher derivative couplings are taken
into account, since they are removed by the field redefi-
nition.1 The action of the test particle is

Stest½xμ� ¼
Z

dτ
h
−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxÞẋμẋν

q

þ qAμðxÞẋμ þ pBμðxÞẋμ
i
; ð1Þ

where xμðτÞ is the worldline of the test particle and the dot
represents the derivative with respect to τ. This action has
the symmetry under the reparametrization of τ. We fix this
degree of freedom by setting τ to be the proper time, i.e.,
gμνẋμẋν ¼ −1. Then, the equation of motion for the test
particle reads,

muν∇νuμ ¼ qFμ
νuν þ pHμ

νuν; ð2Þ

uμuμ ¼ −1; ð3Þ

where uμ is the four-velocity of the particle, that is, uμ ≔ ẋμ.
Here,Fμν andHμν are the field strength ofAμ andBμ, defined
by Fμν ≔ ∂μAν − ∂νAμ and Hμν ≔ ∂μBν − ∂νBμ.
Let us focus on the static spherically symmetric case, and

denote the static Killing vector by ξμ. Then, we introduce
the static time coordinate t by ξμ∂μ ¼ ∂t. With the static
time t and the areal radius r, the static spherically
symmetric metric can be described as

gμνdxμdxν ¼ −fðrÞdt2 þ hðrÞ
fðrÞ dr

2 þ r2dΩ2; ð4Þ

where dΩ2 ≔ dθ2 þ sin2 θdϕ2 is the metric on the unit two
sphere. In asymptotically flat spacetime, the event horizon
rH is located at the largest positive root of fðrÞ, if it exists.
We focus only on the outside of the black hole, that is, the
region r∈ ðrH;∞Þ, where fðrÞ and hðrÞ are assumed to be
positive. The asymptotic flatness implies fðrÞ → 1 and
hðrÞ → 1 in the limit r → ∞.
Suppose that Uð1Þ electric fields Aμ and Bμ also enjoy

the static, spherically symmetric properties, and then, they
take the following form of vector potentials:

Aμdxμ ¼ −ΦðrÞdt; ð5Þ

Bμdxμ ¼ −ΨðrÞdt: ð6Þ

TABLE I. Summary of the notation.

Gauge
field

Field
strength

Electrostatic
potential

Particle
charge

Black hole
charge

Aμ Fμν Φ q Q
Bμ Hμν Ψ p P

1The direct analysis with keeping the lowest-order corrections
is shown in Appendix B 2.
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Here,Φ andΨ are the electrostatic potentials for Aμ and Bμ,
respectively. Note that they are manifestly static, that is,
ð£ξAÞμ ¼ 0 and ð£ξBÞμ ¼ 0. We also assume that the
electrostatic potentials vanish at asymptotic infinity, i.e.,
ΦðrÞ → 0 and ΨðrÞ → 0 in the limit r → ∞. The corre-
sponding field strengths are

1

2
Fμνdxμ ∧ dxν ¼ Φ0ðrÞdt ∧ dr; ð7Þ

1

2
Hμνdxμ ∧ dxν ¼ Ψ0ðrÞdt ∧ dr; ð8Þ

where the prime represents the derivative with respect to r.
Due to the static symmetry, the energy of the charged

particle defined by

E ≔ ð−mgμνuν − qAμ − pBμÞξμ; ð9Þ
is conserved along theworldline, which implies uμ∇μE ¼ 0.
Let us investigate a test particle moving along the radial

direction, starting from the asymptotic infinity, that is,
rðτÞ → ∞ at the infinite past τ → −∞. We denote the four-
velocity uμ by

uμ∂μ ¼ ṫðτÞ∂t þ ṙðτÞ∂r; ð10Þ
with ṫ > 0 and ṙ < 0. Then, the proper time condition and
the conserved energy can be written as

−1 ¼ −fðrÞṫ2 þ hðrÞ
fðrÞ ṙ

2; ð11Þ

E ¼ mfðrÞṫþ qΦðrÞ þ pΨðrÞ: ð12Þ

By eliminating ṫ from the above equations we obtain,

E ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ hṙ2

q
þ qΦþ pΨ: ð13Þ

Due to the energy conservation, the value of E can be fixed
in the asymptotic region as

lim
r→∞

E ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ṙ2

p
; ð14Þ

and hence we focus on the case E ≥ m. By solving Eq. (13)
for ṙ2 we obtain,

ṙ2 ¼ 1

m2hðrÞ ððqΦþ pΨ − EÞ2 −m2fðrÞÞ;

¼ 1

m2hðrÞ ðE − VþðrÞÞðE − V−ðrÞÞ; ð15Þ

where V� are defined by

V�ðrÞ ≔ qΦðrÞ þ pΨðrÞ �m
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
: ð16Þ

From Eqs. (13) and (16), we find that the positivity of ṙ2

requires

E ≥ VþðrÞ: ð17Þ
This inequality indicates the allowed region of motion for
any given energy E ≥ m. Thus, VþðrÞ can be regarded as
the effective potential of this system. In particular, we
obtain a necessary condition for the particle to reach the
event horizon rH, which we call the falling condition, by

E ≥ VþðrHÞ ¼ qΦðrHÞ þ pΨðrHÞ; ð18Þ

where VþðrHÞ can be understood as the r → rH limit of
VðrÞ and so on. This can be regarded as the condition
among E, p, and q for the test particle falling into the black
hole. In the following section, we will compare this
condition with the extremal condition of the total system.

III. BLACK HOLE WITH TWO MINIMALLY
COUPLED GAUGE FIELDS

In this section, we investigate the gedanken experiments
to destroy a black hole in the theory of Einstein gravity with
two minimally coupled Uð1Þ gauge fields without higher
derivative interactions between the gauge fields.

A. Static spherically symmetric solution

We consider the Einstein–Hilbert action with two min-
imally coupled Uð1Þ gauge fields,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

4
FμνFμν −

1

4
HμνHμν

�
: ð19Þ

In general, there exists a mixing of the kinetic terms for Aμ

and Bμ, see e.g. Ref. [34], which can be diagonalized by the
redefinition of Aμ and Bμ. We assume that our gauge fields
Aμ and Bμ are such diagonalized ones after the field
redefinition.2

The Einstein equation is

Rμν −
1

2
gμνR ¼ 8πGTμν; ð20Þ

where Tμν is given by

Tμν ¼ FμρFν
ρ −

1

4
gμνFρσFρσ

þHμρHν
ρ −

1

4
gμνHρσHρσ: ð21Þ

2It is pointed out in Ref. [34] that in theories with two Uð1Þ
gauge fields, their charges can be irrational numbers after the
renormalization. We do not get into this issue, since it is irrelevant
to our discussion.
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The Maxwell equations for each gauge field are

∇νFνμ ¼ 0; ð22Þ

∇νHνμ ¼ 0: ð23Þ

By solving the above equations with the static, spherically
symmetric ansatz (4)–(6), we obtain the Reissner-
Nordström solution as usual,

fðrÞ ¼ 1 −
2GM
r

þ GðQ2 þ P2Þ
4πr2

; ð24Þ

hðrÞ ¼ 1; ð25Þ

ΦðrÞ ¼ Q
4πr

; ð26Þ

ΨðrÞ ¼ P
4πr

: ð27Þ

The roots of fðrÞ ¼ 0 are

r ¼ G

�
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

Q2 þ P2

4πG

r �
: ð28Þ

Then, in terms of the extremal mass M̄extðQ;PÞ defined by3

M̄extðQ;PÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

4πG

r
; ð29Þ

the condition for the event horizon to exist, or in other
words, the subextremal condition, can be written as

M ≥ M̄extðQ;PÞ: ð30Þ

The equality holds for the extremal black hole. The areal
radius of the event horizon of the extremal black hole
becomes

r̄H ¼ GM̄extðQ;PÞ: ð31Þ

On the other hand, the condition for the absence of the
event horizon, say, the super-extremal condition, can be
written as

M < M̄extðQ;PÞ: ð32Þ

B. Gedanken experiments to destroy an extremal
black hole: Single minimally coupled gauge field

Let us first review the Gedanken experiments to destroy
an extremally charged black hole with a single gauge field,
which is the case with P ¼ 0 and p ¼ 0 in our analysis.
This corresponds to the nonrotating version of the analysis
on the Kerr-Newman spacetime in Ref. [2].
Let us start with the extremal black hole with P ¼ 0 as a

background spacetime

ðM;Q;PÞ ¼ ðM̄extðQ; 0Þ; Q; 0Þ; ð33Þ

and introduce a charged test particle with p ¼ 0

ðE; q; pÞ ¼ ðE; q; 0Þ; ð34Þ

where M̄extðQ; 0Þ is simplified as

M̄extðQ; 0Þ ¼ jQjffiffiffiffiffiffiffiffiffi
4πG

p : ð35Þ

In the test particle approximation, E ≪ M and jqj ≪ jQj
are assumed. The event horizon of the background space-
time is located at r̄H ¼ GM̄extðQ; 0Þ.
Let us confirm the subextremal condition for the total

system first. The total energy M̂ and charges Q̂; P̂ in this
system are

ðM̂; Q̂; P̂Þ ¼ ðM̄extðQ; 0Þ þ E;Qþ q; 0Þ: ð36Þ

Suppose that this system is settled in a static spacetime and
no energy escapes to infinity. The uniqueness theorem states
that if the resultant spacetime is a black hole solution, on the
one hand, it must be the Reissner-Nordström spacetimewith
ðM̂; Q̂; P̂Þ, which satisfies the subextremal condition.On the
other hand, if the super-extremal condition

M̂ − M̄extðQ̂; P̂Þ ¼ E − sgnðQÞ qffiffiffiffiffiffiffiffiffi
4πG

p þOðq2Þ < 0 ð37Þ

is satisfied, the resultant object cannot be a black hole, and
thus, the black hole will be destroyed.
The falling condition is investigated as follows. Suppose

that the particle will be captured by the black hole. Then,
the inequality (18) must be satisfied, that is, the falling
condition (18) reduces to

E ≥ q
Q

4πrH
¼ sgnðQÞ qffiffiffiffiffiffiffiffiffi

4πG
p : ð38Þ

The super-extremal condition (37) and the falling con-
dition (38) cannot be satisfied at the same time. This
leads us to the conclusion that any particle which would
destroy the extremal black hole cannot be captured by the
black hole.

3The bar of M̄extðQ;PÞ indicates that the extremal mass for
given Q and P are evaluated in the minimally coupled theory
(19). We will use similar notation for other quantities as well.
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C. Gedanken experiments to destroy an extremal
black hole: Two minimally coupled gauge fields

Let us move on to the discussion on general cases
including P ≠ 0 and p ≠ 0. The extremal condition is
given by

ðM;Q;PÞ ¼ ðM̄extðQ;PÞ; Q; PÞ: ð39Þ
We introduce a test particle with charge ðq; pÞ, and assume

E ≪ M and jqj; jpj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p
.

The super-extremal condition for the total system is
obtained in the following discussion. The total energy M̂
and charges Q̂ and P̂ of this system are given by

ðM̂; Q̂; P̂Þ ¼ ðM̄extðQÞ þ E;Qþ q; Pþ pÞ: ð40Þ

Assuming jqj; jpj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p
, we can evaluate the

super-extremal condition as

M̂ − M̄extðQ̂; P̂Þ

¼ E −
1ffiffiffiffiffiffiffiffiffi
4πG

p qQþ pPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p þOðp2; pq; q2Þ < 0: ð41Þ

This inequality is rewritten as

E <
1ffiffiffiffiffiffiffiffiffi
4πG

p qQþ pPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p þOðp2; pq; q2Þ: ð42Þ

Then, let us investigate the falling condition (18). It can
be written as

E ≥
qQþ pP
4πr̄H

¼ 1ffiffiffiffiffiffiffiffiffi
4πG

p qQþ pPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

p : ð43Þ

The super-extremal condition (42) and the falling con-
dition (43) cannot be satisfied at the same time, which is the
same result as that in the single gauge field case. Our
purpose of this paper is to verify whether the same structure
holds even if we include the higher derivative corrections.
We investigate it in the next section.
Before closing this section, we would like to mention on

the special parameter choice,

qQþ pP ¼ 0; ð44Þ

which means that the charges of the black hole ðQ;PÞ are
orthogonal to those of the particle ðq; pÞ and no Coulomb
force acts between the black hole and the particle. Without
loss of generality, let us focus on the case with P ¼ 0 and
q ¼ 0. Then, the super-extremal condition starts from the
second order in p2,

M̂ − M̄extðQ̂; P̂Þ ¼ E −
1

2

jQjffiffiffiffiffiffiffiffiffi
4πG

p p2

Q2
þOðp4Þ < 0: ð45Þ

Thus, a naive discussion may lead to the result that the
condition for the event horizon to be destroyed can be
written as

E <
1

2

jQjffiffiffiffiffiffiffiffiffi
4πG

p p2

Q2
: ð46Þ

However, no Coulomb force seems to acts on the particle,
so that the falling condition may reduce to

E ≥ 0; ð47Þ

which is trivially satisfied for E ≥ m. Thus, the conditions
(46) and (47), as well as E ≥ m, can be satisfied at the same
time for a test particle with the energy

m ≤ E <
1

2

jQjffiffiffiffiffiffiffiffiffi
4πG

p p2

Q2
: ð48Þ

However, it is too early to conclude that this is a
counterexample of the cosmic censorship conjecture:
Eq. (45) indicates that the potential violation of the
extremal condition is at most the order p2, whereas the
test particle approximation is valid at the order p1. A careful
analysis beyond the test particle approximation is therefore
required. Indeed, a general formalism treating the effects
beyond the test particle approximation was developed in
Ref. [25] for the subextremal Kerr-Newman black hole with
a single gauge field, showing that those subextremal black
holes cannot be overcharged or overspun. Its generalization
to the extremal black hole will be necessary to make a
conclusion if the cosmic censorship conjecture is satisfied
or not in this setup. We will not address this issue further in
the present paper. Instead, we will see that the weak cosmic
censorship conjecture holds at the level of the test particle
approximation, that is, at the order p1, with the higher
derivative corrections included.

IV. HIGHER DERIVATIVE CORRECTIONS

In this section, we extend the discussion of the gedanken
experiments to the theory with the higher derivative
corrections up to four derivatives. We derive the super-
extremal conditions (Sec. IVA) and the falling conditions
(Sec. IV B) on black holes with two charges with the higher
derivative corrections, and then, show that no overlap exists
between the two.

A. Super-extremal conditions

Based on the spirit of the effective field theory approach,
we treat all the possible higher derivative corrections up to
four derivatives. More explicitly, we consider
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R −

1

4
FμνFμν −

1

4
HμνHμν

þ α1FμνFμνFρσFρσ þ α2Fμ
νFν

ρFρ
σFσ

μ þ α3RFμνFμν þ α4RμνFμρFν
ρ þ α5RμνρσFμνFρσ

þ β1FμνFμνFρσHρσ þ β2Fμ
νFν

ρFρ
σHσ

μ þ β3RFμνHμν þ β4RμνFμρHν
ρ þ β5RμνρσFμνHρσ

þ γ11FμνFμνHρσHρσ þ γ12FμνHμνFρσHρσ þ γ21Fμ
νFν

ρHρ
σHσ

μ þ γ22Fμ
νHν

ρFρ
σHσ

μ

þ γ3RHμνHμν þ γ4RμνHμρHν
ρ þ γ5RμνρσHμνHρσ þ κ1FμνHμνHρσHρσ þ κ2Fμ

νHν
ρHρ

σHσ
μ

þ ζ1HμνHμνHρσHρσ þ ζ2Hμ
νHν

ρHρ
σHσ

μ

�
: ð49Þ

Here, all the coefficients, αi, βi, γi, κi, and ζi, should be
small enough, since the higher derivative terms are cor-
rections to the first line in the right-hand side of Eq. (49).
We regard the orders of αi, βi, γi, κi, and ζi as OðϵÞ in a
small constant ϵ. Moreover, in the action (49), we omit the
terms that are quadratic in the background equations of
motion such as

�
Rμν −

1

2
gμνR − 8πGTμν

�
2

; R2;

∇μFμν∇ρFρ
ν;∇μFμν∇ρHρ

ν;∇μHμν∇ρHρ
ν: ð50Þ

The reason is as follows. First, the effective coupling
constants in front of these operators are OðϵÞ. Second,
variation of those terms is proportional to the background
equations, which gives one more factor of OðϵÞ when
evaluated with the full solution. In total their contributions
are Oðϵ2Þ, which are higher orders ignored in our analysis.
Note that the first combination in (50) together with the
second one was used to replace RμνRμν term into some
terms appearing in (49). Similarly, since the Gauss-Bonnet
term, R2 − 4RμνRμν þ RμνρσRμνρσ, does not contribute to
the equations of motion, RμνρσRμνρσ term can be rewritten
as well. See Appendix A 1 for more detail. Also we
emphasize that the deformation of the action by field
redefinitions is not done on the action (49). See
Appendix B for more comments on the field redefinition.
Note that the higher derivative interactions generically

appear in the low-energy effective action. For instance, αi
terms, as well as ζ1, ζ2 and γ3, γ4, γ5, are noting but the
Drummond-Hathrell effective action [19] which arise from
the mediation of heavy massive particles with a single
charge. Similarly, if there exist bicharged heavy massive
particles, βi terms and others are generated as the low-
energy effective interactions.

The equations of motion can be derived as

Rμν −
1

2
Rgμν − 8πGTμν ¼ 8πGδTμν; ð51Þ

∇νFνμ ¼ δJμF; ð52Þ

∇νHνμ ¼ δJμH; ð53Þ

where δTμν; δJ
μ
F, and δJμH represent the contribution from

the higher derivative correction terms and the detailed
expressions are given in Appendix A 2.
We solve a static spherically symmetric solution pertur-

batively by regarding the parameters αi, βi, γi, κi, ζi are the
first order in perturbations, say, OðϵÞ. Let us expand the
dynamical variables as

fðrÞ ¼ f̄ðrÞ þ δfðrÞ; ð54Þ

hðrÞ ¼ h̄ðrÞ þ δhðrÞ; ð55Þ

ΦðrÞ ¼ Φ̄ðrÞ þ δΦðrÞ; ð56Þ

ΨðrÞ ¼ Ψ̄ðrÞ þ δΨðrÞ; ð57Þ

where f̄; h̄; Φ̄, and Ψ̄ are Oðϵ0Þ and δf; δh; δΦ, and δΨ are
regarded as OðϵÞ. In the background, that is, Oðϵ0Þ, the
equations of motion reduce to the usual Einstein-Maxwell
equations, and hence we obtain Reissner-Nordström sol-
ution. Then, in the OðϵÞ equations of motion, we can plug
theOðϵ0Þ solutions in the right hand side of Eqs. (51)–(53),
because they already involve OðϵÞ coefficients such as αi.
By solving OðϵÞ equations of motion, we obtain the
following perturbative solutions:
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fðrÞ ¼ 1 −
2GM
r

þ GðQ2 þ P2Þ
4πr2

−
G
πr4

�
Q2ð−2α3 þ α5Þ þQPð−2β3 þ β5Þ þ P2ð−2γ3 þ γ5Þ

�

þG2M
πr5

�
Q2ð−6α3 − α4 þ α5Þ þQPð−6β3 − β4 þ β5Þ þ P2ð−6γ3 − γ4 þ γ5Þ

�

−
G

80π3r6

�
Q4α̃1 þQ3Pβ̃1 þQ2P2γ̃1 þQP3κ̃1 þ P4ζ̃1

�

þG3M̄extðQ;PÞ2
5πr6

�
Q2ð20α3 þ 4α4 − α5Þ þQPð20β3 þ 4β4 − β5Þ þ P2ð20γ3 þ 4γ4 − γ5Þ

�
þOðϵ2Þ; ð58Þ

hðrÞ ¼ 1þ G
πr4

�
Q2α̃3 þQPβ̃3 þ P2γ̃3

�
þOðϵ2Þ; ð59Þ

ΦðrÞ ¼ Q
4πr

þGMð2Qα5 þ Pβ5Þ
2πr4

−
1

160π3r5

�
4Q3α̃1 þ 3Q2Pβ̃1 þ 2QP2γ̃1 þ P3κ̃1

�

−
1

10πr5

�
G2M̄extðQ;PÞ2

�
2Qðα4 þ 6α5Þ þ Pðβ4 þ 6β5Þ

�
−
GQ
4π

�
Q2α̃3 þQPβ̃3 þ P2γ̃3

��
þOðϵ2Þ; ð60Þ

ΨðrÞ ¼ P
4πr

þGMð2Pγ5 þQβ5Þ
2πr4

−
1

160π3r5

�
Q3β̃1 þ 2Q2Pγ̃1 þ 3QP2κ̃1 þ 4P3ζ̃1

�

−
1

10πr5

�
G2M̄extðQ;PÞ2

�
Qðβ4 þ 6β5Þ þ 2Pðγ4 þ 6γ5Þ

�
−
GP
4π

�
Q2α̃3 þQPβ̃3 þ P2γ̃3

��
þOðϵ2Þ; ð61Þ

where

α̃1 ≔ 2α1 þ α2; ð62Þ

β̃1 ≔ 2β1 þ β2; ð63Þ

γ̃1 ≔ 2γ11 þ γ21 þ 2γ12 þ γ22; ð64Þ

κ̃1 ≔ 2κ1 þ κ2; ð65Þ

ζ̃1 ≔ 2ζ1 þ ζ2; ð66Þ

and

α̃3 ≔ 10α3 þ 3α4 þ 3α5; ð67Þ

β̃3 ≔ 10β3 þ 3β4 þ 3β5; ð68Þ

γ̃3 ≔ 10γ3 þ 3γ4 þ 3γ5; ð69Þ

and M̄extðQ;PÞ is the extremal mass without the higher
derivative corrections defined in Eq. (29). Note that the
solutions correspond to the two gauge fields extension of
the solution obtained in Ref. [20].
Now let us derive the extremal mass, i.e., the minimum

black hole mass, for given charges Q, P. Recall that in the
Einstein-Maxwell theory (19) without higher derivative
corrections, the extremal mass for given charges Q, P was
obtained by solving the two conditions,

fðrHÞ ¼ 0; f0ðrHÞ ¼ 0 ð70Þ

for rH and M. Here the first condition means that r ¼ rH is
a horizon, whereas the second condition is for the two
horizons to degenerate. Since higher derivative corrections
are supposed to be small, those properties of the metric
functions should remain qualitatively the same and in
particular the extremal mass should be determined by
the conditions (70) as long as the derivative expansion
works well. Indeed, one can explicitly confirm this expect-
ation within the perturbative expansion in ϵ.
Our task is then to solve Eq. (70) perturbatively. To do

so, let us expand the horizon radius rH and the extremal
mass MextðQ;PÞ around those of the Einstein-Maxwell
theory without higher derivative corrections,

rH ¼ r̄H þ δrH; ð71Þ

MextðQ;PÞ ¼ M̄extðQ;PÞ þ δMextðQ;PÞ; ð72Þ

where as we defined earlier we have

r̄H ¼ GM̄extðQ;PÞ; M̄extðQ;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ P2

4πG

r
: ð73Þ

To solve the first condition of Eq. (70), it is convenient to
expand fðrÞ as
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fðr̄H þ δrÞ ¼ −
2δMextðQ;PÞ
M̄extðQ;PÞ −

G
80π3r̄6H

�
Q4αþQ3Pβ

þQ2P2γ þQP3κ þ P4ζ

�

þOðϵ2; ϵδrH; δr2HÞ; ð74Þ

where the coefficients are defined by

α ≔ α̃1 þ 4πGðα4 þ α5Þ; ð75Þ

β ≔ β̃1 þ 4πGðβ4 þ β5Þ; ð76Þ

γ ≔ γ̃1 þ 4πGðα4 þ γ4 þ α5 þ γ5Þ; ð77Þ

κ ≔ κ̃1 þ 4πGðβ4 þ β5Þ; ð78Þ

ζ ≔ ζ̃1 þ 4πGðγ4 þ γ5Þ: ð79Þ

Note thatOðδrHÞ terms do not appear in the right-hand side
because of the extremal condition defining r̄H terms. The
correction to the extremal mass then reads,

δMextðQ;PÞ
M̄extðQ;PÞ ¼ −

2

5

G
ð4πÞ3r̄6H

�
Q4αþQ3Pβ þQ2P2γ

þQP3κ þ P4ζ

�
þOðϵ2Þ: ð80Þ

Substituting this into the second condition f0ðrHÞ ¼ 0 of
Eq. (70) gives the shift δrH of the horizon position of the
extremal black hole as

δrH
r̄H

¼ −
2G

ð4πÞ3r̄6H
�
Q4α̃1 þQ3Pβ̃1 þQ2P2γ̃1

þQP3κ̃1 þ P4ζ̃1
�
þ G
πr̄4H

�
Q2α3 þQPβ3 þ P2γ3

�

þOðϵ2Þ: ð81Þ
Here δrH is OðϵÞ as expected. Note that the areal radius of
the event horizon of the extremal black hole is not invariant
under the field redefinition. The reason is explained in
Appendix B 1.

B. Falling conditions

Let us compare the super-extremal conditions with the
falling conditions. Our system is composed of an extremal
black hole M ¼ MextðQ;PÞ and a test charged particle
with the energy E and charges ðq; pÞ. The total mass and
charges are

ðM̂; Q̂; P̂Þ ¼ ðMextðQ;PÞ þ E;Qþ q; Pþ pÞ: ð82Þ
Let us expand the super-extremal condition for ðM̂; Q̂; P̂Þ
up to linear order in q and p. The super-extremal condition
M̂ < MextðQ̂; P̂Þ can be expressed as

E < ECðQ;P; q; pÞ þOðϵ2q; ϵ2p; q2; qp; p2Þ; ð83Þ
with

ECðQ;P;q;pÞ≔ 1

4πGM̄extðQ;PÞ
�
qQþpP

þ 2G
5ð4πÞ3r6H

�
q
�
Q3ðQ2 − 4P2ÞαþQ2Pð2Q2 − 3P2ÞβþQP2ð3Q2 − 2P2ÞγþP3ð4Q2 −P2Þκþ 5QP4ζ

�

þp
�
5Q4PαþQ3ð−Q2 þ 4P2ÞβþQ2Pð−2Q2 þ 3P2ÞγþQP2ð−3Q2þ 2P2ÞκþP3ð−4Q2þP2Þζ

���
:

ð84Þ

Note that the expansion in Eq. (83) with respect to q and
p should starts from the linear order, since the right-hand
side shows the deviation from the extremal condition.
Therefore, terms in the order of ϵ2q0 or ϵ2p0 never appear
in Eq. (83). Moreover, the charges of test particle q and p
are small such that q; p ≪ ϵ is satisfied. This justifies the
approximation in the right hand side of Eq. (83).
Next, let us derive the falling condition. The general

expression has already been shown in Eq. (18). Substituting
the electrostatic potentials shown in Eqs. (60) and (61) into
(18), we finally have

E ≥ qΦðrHÞ þ pΨðrHÞ ¼ ECðQ;P; q; pÞ; ð85Þ

where rH is given by Eq. (81). Thus, the super-extremal
condition (83) and the falling condition (85) cannot be
satisfied at the same time at the leading order in q and p.
This is the main conclusion of this paper.
To see the implications more explicitly, let us set P ¼ 0

in the above equations. Then, the super-extremal condition
M̂ < MextðQ̂; P̂Þ can be expressed as
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E <
sgnðQÞffiffiffiffiffiffiffiffiffi
4πG

p
�
qþ 2ðαq − βpÞ

5G2Q2

�

þOðϵ2q; ϵ2p; p2; pq; q2Þ; ð86Þ

while the falling condition can be expressed as

E ≥
sgnðQÞffiffiffiffiffiffiffiffiffi
4πG

p
�
qþ 2ðαq − βpÞ

5G2Q2

�
þOðϵ2q; ϵ2pÞ: ð87Þ

We would like to comment on specific choices of the
particle charges. First, if we set p ¼ 0, our result reduces to
the single gauge field case investigated in Refs. [28,31,33].
Next, let us consider the case with q ¼ 0. Remember the

discussion at the end of Sec. III that, in the minimally
coupled theory, this parameter choice corresponds to the
case where the OðpÞ contribution vanishes and the test
particle approximation is violated. Contrary to the mini-
mally coupled case, even though the condition q ¼ 0
indicates no Coulomb force, there is additional repulsive
forces that are induced through the higher derivative
couplings between two gauge fields. More explicitly, from
the expression (61), we can see that the electrostatic
potential Ψ is induced even when P ¼ 0, through the
coupling βi. This is because even if objects (namely,
particles and/or black holes) have different charges interact
with each other through the mixing derivative couplings.
The condition for the absence of force at the event horizon
can be written as

q ¼ 2β

5G2Q2
pþOðϵ2q; ϵ2pÞ: ð88Þ

For the particle with this charges, both the Coulomb force
and the force induced by the higher derivative corrections
work but exactly cancel at the event horizon. Then,
Oðq2; qp; p2Þ corrections are required to be seriously taken
into account, because the effects beyond the point particle
approximation might be significant. Thus, the situation is
similar to the case of q ¼ 0 in the minimally coupled
theory, although the particle feels Coulomb force at the
infinity.

V. SUMMARY AND DISCUSSION

In this paper, we investigate gedanken experiments to
destroy the extremal black hole by dropping a test charged
particle. In particular, we focus on a theory with two Uð1Þ
gauge fields with higher derivative corrections. The black
hole we consider is a spherically symmetric, static extremal
one with charges ðQ;PÞwith respect to two gauge fields. In
the case with minimally coupled gauge fields, the black
hole solution is described by Reissner-Nordström solution.
The super-extremal condition for the total energy and total
charges of the system is given by Eq. (42) and the falling
condition, which shows that the particle can arrive at the

event horizon, is given by Eq. (43). Since these two
conditions does not hold at the same time, extremal black
holes cannot be destroyed by a test particle. We extend this
analysis in the presence of the higher derivative corrections.
Our action is given by Eq. (49). The black hole solution is
derived perturbatively in Eqs. (58)–(61). The super-
extremal condition and the falling condition are obtained
in Eqs. (83) and (85) respectively. As is the case of
minimally coupled gauge fields, these conditions are not
satisfied at the same time. Hence, we confirm that the
extremal black hole with two gauge fields cannot be
destroyed by a test particle even when the higher derivative
corrections are included.
Due to the validity of the test particle approximation, our

result holds only up to the linear order in q and p. For a
specific choice of the charges, Eq. (44) for the minimally
coupled case and Eq. (88) for the case with the higher
derivative corrections with P ¼ 0, linear order contribu-
tions disappear both in the super-extremal condition and the
falling condition. In such a case, the Oðp2; pq; q2Þ effects
become dominant and the analysis beyond the point
particle approximation similarly to the one in Ref. [25]
is again required, which is left for future work.
Although the second order analysis in Ref. [25] is

applicable to subextremal black holes only and it does
not directly apply to extremal black holes, it is instructive to
see what kind of effects may be expected from a naive
extremal limit of the result there. Here let us focus on the
minimally coupled case for simplicity. Assuming that the
nonelectromagnetic stress-energy tensor satisfies the null
energy condition, Ref. [25] derived a lower bound on the
second-order correction to the total energy of the system,
which captures the self-force and finite size effects for
example. By extending the result there to the minimally
coupled two gauge fields case naively, for a charged
particle with q ¼ 0, p ≠ 0 thrown into a near-extremal
black hole with Q ≠ 0, P ¼ 0, the lower bound reads

M̂ ≥ M̄extðQ; 0Þ þ 1

2

jQjffiffiffiffiffiffiffiffiffi
4πG

p p2

Q2
þOðεÞ; ð89Þ

where ε is a small parameter quantifying deviation from the
extremality of the original near-extremal black hole. Here
we assumed that the first order increase of the total energy
is negligible. Note that the second term on the right-hand
side is the lower bound on the second-order correction to
the total energy. On the other hand, the super-extremal
condition on the total system up to Oðp2Þ is

M̂− M̄extðQ;pÞ¼ M̂−M̄extðQ;0Þ−1

2

jQjffiffiffiffiffiffiffiffiffi
4πG

p p2

Q2
< 0: ð90Þ

Interestingly, the second-order corrections in Eqs. (89) and
(90) precisely match with each other, so that the two
bounds cannot be satisfied simultaneously. In other words,
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the window (48) for destroying the black hole may be
closed by carefully taking into account the second-order
correction to the total energy. Again, we emphasize that the
bound (89) does not apply directly to the extremal black
hole (ε ¼ 0) and so it is not clear yet if the cosmic
censorship conjecture is satisfied for the extremal case,
but our observation motivates us to generalize the analysis
in Ref. [25] to the extremal black hole. We leave this
interesting problem to the future work.
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APPENDIX A: DETAILED EXPRESSION FOR
THE HIIGHER DERIVATIVE CORRECTIONS

1. How to rewrite the curvature square terms

We investigate a theory with the higher derivative
interactions (49), where the curvature square terms do
not show up in the action. This is justified, as we have
explained below Eq. (49), by the fact that all curvature
square terms are rewritten by the other terms. In this
appendix, we explicitly show how to rewrite the curvature
square terms with the other higher derivative terms.
The quadratic curvature terms,

R2; RμνRμν; RμνρσRμνρσ; ðA1Þ

are expressed by linear combinations of

R2; GμνGμν; GB≔R2−4RμνRμνþRμνρσRμνρσ: ðA2Þ

We investigate quadratic curvature terms (A2), instead of
(A1). Suppose that an action includes these quadratic
curvature terms (A2)

λ1R2 þ λ2GμνGμν þ λ3GB: ðA3Þ

This term can be expressed as

λ1R2 þ λ2GμνGμν þ λ3GB

¼ λ1R2 þ λ2ðGμν − 8πGTμνÞðGμν − 8πGTμνÞ
þ λ3GBþ 16πGλ2GμνTμν − ð8πGÞ2λ2TμνTμν; ðA4Þ

where Tμν is the energy momentum tensor without the
higher derivative contributions, defined in Eq. (21). Since
the Gauss-Bonnet combination GB is topological invariant,
it does not affect the dynamics and thus we can just ignore
it. Meanwhile, because R and Gμν − 8πGTμν vanish at the
order in ϵ0, i.e., without the higher derivative contributions,
they areOðϵ1Þ quantities. The variations of squares of them
gives linear terms of them, that is, they areOðϵ1Þ quantities.
Suppose the coefficients of quadratic curvature terms λi is
OðϵÞ, and then the first two terms in the right-hand side of
Eq. (A4) gives Oðϵ2Þ contributions in equations of motion,
which we ignore in our analysis. As a result, the quadratic
curvature (A3) is written in the last two terms in the right-
hand side of Eq. (A4). The explicit form of each term is

16πGλ2GμνTμν

¼ 4πGλ2ð−RFμνFμν þ 4RμνFμρFν
ρ

− RHμνHμν þ 4RμνHμρHν
ρÞ; ðA5Þ

− ð8πGÞ2λ2TμνTμν

¼ 16π2G2λ2ðFμνFμνFρσFρσ − 4Fμ
νFν

ρFρ
σFσ

μ

þ 2FμνFμνHρσHρσ − 8Fμ
νFν

ρHρ
σHσ

μ

þHμνHμνHρσHρσ − 4Hμ
νHν

ρHρ
σHσ

μÞ: ðA6Þ
More concretely, if one starts with the action with (A3)
terms, such effect can be included by replacing the
parameters in Eq. (49) as follows:

α1 → α1 þ 16π2G2λ2; ðA7Þ

α2 → α2 − 64π2G2λ2; ðA8Þ

α3 → α3 − 4πGλ2; ðA9Þ

α4 → α4 þ 16πGλ2; ðA10Þ

γ11 → γ11 þ 32π2G2λ2; ðA11Þ

γ21 → γ21 − 128π2G2λ2; ðA12Þ

γ3 → γ3 − 4πGλ2; ðA13Þ

γ4 → γ4 þ 16πGλ2; ðA14Þ

ζ1 → ζ1 þ 16π2G2λ2; ðA15Þ
ζ2 → ζ2 − 64π2G2λ2: ðA16Þ
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2. Source terms in the equations of motion

In this section, we represent the detailed expressions for δTμν; δJ
μ
F, and δJμH appearing in the right hand side of

Eqs. (51)–(53). The expressions are as follows:

δTμν ¼ α1T 1;μν½F;F; F; F� þ α2T 2;μν½F;F; F; F� þ β1T 1;μν½F;F; F;H� þ β2T 2;μν½F;F; F;H�
þ γ11T 1;μν½F;F;H;H� þ γ12T 1;μν½F;H; F;H� þ γ21T 2;μν½F;F;H;H� þ γ22T 2;μν½F;H; F;H�
þ κ1T 1;μν½F;H;H;H� þ κ2T 2;μν½F;H;H;H� þ ζ1T 1;μν½H;H;H;H� þ ζ2T 2;μν½H;H;H;H�
þ α3T 3;μν½F;F� þ α4T 4;μν½F;F� þ α5T 5;μν½F;F� þ β3T 3;μν½F;H� þ β4T 4;μν½F;H� þ β5T 5;μν½F;H�
þ γ3T 3;μν½H;H� þ γ4T 4;μν½H;H� þ γ5T 5;μν½H;H�; ðA17Þ

δJμF ¼ ∇ν

�
8α1J

μν
1 ½F;F; F� þ 8α2J

μν
2 ½F;F; F� þ β1ð2J μν

1 ½F;F;H� þ 4J μν
1 ½F;H; F�Þ

þ β2ð4J μν
2 ½F;F;H� þ 2J μν

2 ½F;H; F�Þ þ 4γ11J
μν
1 ½H;H; F� þ 4γ12J

μν
1 ½F;H;H�

þ 4γ21J
μν
2 ½F;H;H� þ 4γ22J

μν
2 ½H;F;H� þ 2κ1J

μν
1 ½H;H;H� þ 2κ2J

μν
2 ½H;H;H�

þ 4α3RFνμ þ 4α4R½νj
ρFρjμ� þ 4α5RνμρσFρσ þ 2β3RHνμ þ 2β4R½νj

ρHρjν� þ 2β5RνμρσHρσ

�
; ðA18Þ

δJμH ¼ ∇ν

�
8ζ1J

μν
1 ½H;H;H� þ 8ζ2J

μν
2 ½H;H;H� þ κ1ð2J μν

1 ½H;H; F� þ 4J μν
1 ½H;F;H�Þ

þ κ2ð4J μν
2 ½H;H; F� þ 2J μν

2 ½H;F;H�Þ þ 4γ11J
μν
1 ½F;F;H� þ 4γ12J

μν
1 ½H;F; F�

þ 4γ21J
μν
2 ½H;F; F� þ 4γ22J

μν
2 ½F;H; F� þ 2β1J

μν
1 ½F;F; F� þ 2β2J

μν
2 ½F;F; F�

þ 4γ3RHνμ þ 4γ4R½νj
ρGρjμ� þ 4γ5RνμρσGρσ þ 2β3RFνμ þ 2β4R½νj

ρFρjν� þ 2β5RνμρσFρσ

�
; ðA19Þ

where T i;μν½A;B;C;D�, T i;μν½A;B� and J μν
i ½A;B;C� are

functionals of antisymmetric tensors Aμν, Bμν, Cμν, Dμν

defined as

T 1;μν½A;B;C;D� ¼ gμνAαβBβαCγλDλγ − 4AðμjαBαjνÞCβγDγβ

− 4CðμjαDαjνÞAβγBγβ; ðA20Þ

T 2;μν½A;B;C;D� ¼ gμνAαβBβγCγλDλα − 2AðμjαBαβCβγDγ
νÞ

− 2BðμjαCαβDβγAγ
νÞ − 2CðμjαDαβAβγBγ

νÞ

− 2DðμjαAαβBβγCγ
νÞ; ðA21Þ

T 3;μν½A;B� ¼−RAαβBβαgμνþ2AαβBβαRμνþ4RAðμjβBβ jνÞ

−2∇μ∇νðAαβBβαÞþ2gμν□ðAαβBβαÞ; ðA22Þ

T 4;μν½A;B� ¼−RρσAραBα
σgμνþ2RðμρAνÞαBα

ρ

þ2RðμρBνÞαAα
ρ−2RρσAρðμBσ

νÞ

þ□ðAðμjαBαjνÞÞþ∇ρ∇σðAραBα
σÞgμν

−∇ρ∇ðμðAνÞαBαρÞ−∇ρ∇ðμðBνÞαAαρÞ; ðA23Þ

T 5;μν½A; B� ¼ RρσλτAρσBλτgμν

− 3RðμρστAνÞρBστ − 3RðμρστBνÞρAστ

− 2∇ρ∇σðAðμρBνÞσ þ BðμρAνÞσÞ; ðA24Þ

J μν
1 ½A;B;C� ¼ AαβBβαCμν; ðA25Þ

J μν
2 ½A;B;C� ¼ A½μj

αBαβCβ
jν�: ðA26Þ

APPENDIX B: FIELD REDEFINITION

Field redefinition changes the description of the theory,
for instance, changes the coupling constants, but the
physical phenomenon remains the same. Although the
theory we consider can be rewritten in a different descrip-
tion by a field redefinition, in this appendix we explicitly
confirm that the obtained results are the same. This is
obvious, but it becomes a cross-check of the validity of our
analysis, and may bring a new perspective on the analysis
of theories with the higher derivative terms.
Let us investigate the perturbative redefinition of the

metric field gμν to ĝμν through,

gμν ¼ ĝμν þ δgμν; ðB1Þ

with δgμν defined by
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δgμν ¼ ϵ1Rμνþ ϵ2gμνRþ8πGϵ3FμρFν
ρþ8πGϵ4gμνFρσFρσ

þ8πGϵ5FμρPν
ρþ8πGϵ6gμνFρσPρσþ8πGϵ7PμρPν

ρ

þ8πGϵ8gμνPρσPρσ; ðB2Þ

where the coefficients are regarded as OðϵÞ. One can
replace the metric gμν in Eq. (B2) with ĝμν because the
difference is higher order in ϵ. Let us investigate the

influence of the field redefinition (B1) in the black hole
solutions and the falling conditions.

1. Black hole solutions

Through this transformation, the action (49), expressing
the dependence of the metric and the parameters as
S½gμν; αi�, is modified to

S½gμν; αi� ¼ S½ĝμν; αi� −
Z

d4x
ffiffiffiffiffiffi−gp

16πG

�
Rμν −

1

2
gμνR − 8πGTμν

�
δgμν þOðϵ2Þ

¼ S½ĝμν; α̂i� þ
Z

d4x
ffiffiffiffiffiffi−gp

16πG

�
−ϵ1

�
Rμν −

1

2
Rgμν − 8πGTμν

�
2

þ
�
ϵ1
2
þ ϵ2

�
R2

�
þOðϵ2Þ: ðB3Þ

Here the parameters α̂i are defined as follows:

α̂1 ¼ α1 − πGðϵ1 þ ϵ3Þ; ðB4Þ

α̂2 ¼ α2 þ 4πGðϵ1 þ ϵ3Þ; ðB5Þ

α̂3 ¼ α3 þ
1

8
ðϵ1 þ 2ϵ3 þ 4ϵ4Þ; ðB6Þ

α̂4 ¼ α4 −
1

2
ðϵ1 þ ϵ3Þ; ðB7Þ

α̂5 ¼ α5; ðB8Þ

β̂1 ¼ β1 − πGϵ5; ðB9Þ

β̂2 ¼ β2 þ 4πGϵ5; ðB10Þ

β̂3 ¼ β3 þ
1

4
ðϵ5 þ 2ϵ6Þ; ðB11Þ

β̂4 ¼ β4 −
1

2
ϵ5; ðB12Þ

β̂5 ¼ β5; ðB13Þ

γ̂11 ¼ γ11 − πGð2ϵ1 þ ϵ3 þ ϵ7Þ; ðB14Þ

γ̂12 ¼ γ12; ðB15Þ

γ̂21 ¼ γ21 þ 4πGð2ϵ1 þ ϵ3 þ ϵ7Þ; ðB16Þ

γ̂22 ¼ γ22; ðB17Þ

γ̂3 ¼ γ3 þ
1

8
ðϵ1 þ 2ϵ7 þ 4ϵ8Þ; ðB18Þ

γ̂4 ¼ γ4 −
1

2
ðϵ1 þ ϵ7Þ; ðB19Þ

γ̂5 ¼ γ5; ðB20Þ

κ̂1 ¼ κ1 − πGϵ5; ðB21Þ

κ̂2 ¼ κ2 þ 4πGϵ5; ðB22Þ

ζ̂1 ¼ ζ1 − πGðϵ1 þ ϵ7Þ; ðB23Þ

ζ̂2 ¼ ζ2 þ 4πGðϵ1 þ ϵ7Þ: ðB24Þ

The second term in Eq. (B3) is irrelevant for our analysis
because it consists of squares of the background equations
of motion. Thus, the relevant part of the action for ĝμν can
be obtained by replacing the parameters in the original
action (49) with the hatted ones defined above.
The transformations for the coupling constants are

described by the six independent combinations of the
parameters,

ϵ1 þ ϵ3; ϵ3 þ 4ϵ4; ϵ5; ϵ6; ϵ1 þ ϵ7; ϵ7 þ 4ϵ8: ðB25Þ

One can see that the following combinations are invariant
under the field redefinition (B1),

α1 − 2πGα4; ðB26Þ

α2 þ 8πGα4; ðB27Þ

β1 − 2πGβ4; ðB28Þ

β2 þ 8πGβ4; ðB29Þ

γ11 − 2πGðα4 þ γ4Þ; ðB30Þ

γ21 þ 8πGðα4 þ γ4Þ; ðB31Þ

κ1 − 2πGβ4; ðB32Þ
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κ2 þ 8πGβ4; ðB33Þ

ζ1 − 2πGγ4; ðB34Þ

ζ2 þ 8πGγ4; ðB35Þ

as well as α5, β5, γ12, γ22, and γ5. The parameters α, β, γ, κ,
ζ, appearing in the extremal condition (80), are invariant
thus under the field redefinition.
Next let us investigate the position of the horizon. The

horizon is characterized by fðrÞ ¼ 0.4 Through the field
redefinition, f̂ ≔ −ĝtt can be calculated as

f̂ ¼ f − δf ðB36Þ

with

δf ¼ −δgtt

¼ −fðrÞ G
4πr4

�
Q2ðϵ1 þ 2ϵ3 þ 4ϵ4Þ þ 2QPðϵ5 þ 2ϵ6Þ

þ P2ðϵ1 þ 2ϵ7 þ 4ϵ8Þ
�
: ðB37Þ

Although f̂ðrÞ does not coincide with fðrÞ itself, a solution
of fðrÞ ¼ 0 is the solution of f̂ðrÞ ¼ 0, that is, the position
of the horizon is invariant.
We note that it does not imply the invariance of the areal

radius of the horizon. As we can see from Eq. (81), rH is not
invariant under the field redefinition. The reason is as
follows. After the field redefinition, the function forms of
metric change. Due to the spherical symmetry, metric after
the field redefinition is written as

ĝμνdxμdxν ¼ −f̂ðrÞdt2 þ ĥðrÞ
f̂ðrÞ dr

2 þ r̂ðrÞ2dΩ2: ðB38Þ

The invariance of the horizon position means that, in this
coordinate with r, the locus of horizon is the same.
However, r does not coincide with the areal radius r̂ðrÞ
in metric (B38). The areal radius is r̂ðrÞ, which is
calculated as

r̂2 ¼ r2 − ϵ1
GðQ2 þ P2Þ

4πr2
þ ϵ4

GQ2

πr2

þ ϵ6
GQP
πr2

þ ϵ8
GP2

πr2
: ðB39Þ

This gives us

r̂ ¼ r − ϵ1
GðQ2 þ P2Þ

8πr3
þ ϵ4

GQ2

2πr3
þ ϵ6

GQP
2πr3

þ ϵ8
GP2

2πr3
þOðϵ2Þ: ðB40Þ

Thus, r̂H, the areal radius of the horizon for ĝμν, can be
obtained as

r̂H ¼ rH − ϵ1
1

2r̄H
þ ϵ4

GQ2

2πr̄3H
þ ϵ6

GQP
2πr3H

þ ϵ8
GP2

2πr̄3H
þOðϵ2Þ; ðB41Þ

where we have used

rH ¼ r̄H þOðϵÞ: ðB42Þ

This shift of the areal radius of the horizon is consistent
with Eq. (81).

2. Falling conditions

The action (1) gives a theory for a charged particle where
the particle is minimally coupled with gravity. One may
consider a case where the charged particle has the higher-
order derivative coupling

Stest½xμ� ¼
Z

dτ

�
−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
gμνðxÞ þ δgðpÞμν ðxÞ

�
ẋμẋν

r

þ qAμðxÞẋμ þ pBμðxÞẋμ
�
; ðB43Þ

where

δgðpÞμν ¼ μ1Rμν þ μ2gμνRþ 8πGμ3FμρFνρ

þ 8πGμ4gμνFρσFρσ þ 8πGμ5FμρPνρ

þ 8πGμ6gμνFρσPρσ þ 8πGμ7PμρPνρ

þ 8πGμ8gμνPρσPρσ: ðB44Þ

Here, μi’s are OðϵÞ constants. Although this theory is
reduced to that with the action (1) by the field redefinition
(B25) with ϵi ¼ −μi, we can directly show that falling
conditions becomes the same as those obtained in Sec. II.
The analysis is very simple. We have a degree of

freedom for the parameter τ of the worldline xðτÞ.
Instead of gμνẋμẋν ¼ −1, we set the parameter τ by

ðgμν þ δgðpÞμν Þẋμẋν ¼ −1. Then, all the equations become

those in Sec. II with replacing gμν by gμν þ δgðpÞμν . Though
we used the areal radius in Sec. II, the same result holds

4In theories with noncanonical kinetic terms, superluminal
modes can exist. Thus, an event horizon may not be a null
surface. However, in static or stationary case, any horizon is
expected to be a Killing horizon [35–37].
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with any radial coordinate. Thus, we can obtain the result
simply by replacing f and h with the corresponding

components of gμν þ δgðpÞμν . As similar to the discussion

in the previous subsection, the event horizon for gμν þ δgðpÞμν

is still located at r ¼ rH and hence the value of the potential

height at the event horizon, the right hand side of Eq. (18),

is unchanged. In addition, since δgðpÞμν disappears at r → ∞,
the definition of E is also unchanged. Therefore, the falling
conditions with action (B43) become the same as those

with action (1) whose metric is gμν þ δgðpÞμν .
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