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We investigate a gedanken experiment to destroy an extremally charged black hole by dropping a test
particle, provided that there are multiple U(1) gauge fields coupled with each other through higher
derivative interactions. It is known that the Coulomb repulsion prevents a test particle that would break the
extremal condition from falling into an extremal black hole and therefore the black hole cannot be
destroyed. We extend this observation to include higher derivative corrections. Although the extremal
condition is modified by the higher derivative interactions, we find that the repulsive force induced by the
higher derivative couplings is responsible for preventing a test particle that would break the modified
extremal condition to reach the event horizon. Thus, we confirm that the weak cosmic censorship
conjecture holds for extremally charged black holes even in the presence of higher derivative corrections, as

long as the test particle approximation is justified.
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I. INTRODUCTION

The weak cosmic censorship conjecture [1] states that all
of the spacetime singularities formed by the gravitational
collapse must be hidden by event horizons. This conjecture
is supported by many gedanken experiments. In particular,
gedanken experiments trying to destroy a black hole by
dropping a test particle have been actively investigated so
far. The pioneering work along this direction is Ref. [2],
where the motion of the test particle on the extremal Kerr-
Newman spacetime is investigated. There, it was found that
a test particle that would overcharge and/or overspin the
extremal Kerr-Newman black hole is prevented to reach the
event horizon due to the Coulomb repulsion, centrifugal
force, and spin-spin interactions. Thus, such a test particle
cannot destroy the black hole. Following this work, the
analysis is extended to other kinds of black holes [3—11].
See also Refs. [12—18], where the violation of the weak
cosmic censorship by a test particle dropping to a nearly
extremal black hole is discussed. In this paper, we inves-
tigate gedanken experiments along the same direction but
with including the effective field theory corrections to
Einstein gravity with two gauge fields.
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If we regard the classical gravitational theory as a low-
energy effective field theory, it is natural to expect the
presence of higher derivative corrections. For example,
starting from the quantum electrodynamics with gravity,
massive heavy charged fields generate the higher derivative
corrections in the low energy effective action below their
mass scale [19]. Implications of such correction terms in
the low-energy effective theory are key bypaths to reveal
the nature of the high-energy physics. With the presence of
higher derivative corrections, the extremal condition of
black holes is modified (see, e.g., [20-23]), because the
electrovacuum solutions have corrections from the
Reissner-Nordstrom solution. This modification would
have the information of the high-energy physics.

In this paper, we investigate whether such an extremal
black hole could be overcharged by a test particle. We treat
an extremally charged black hole in the theory of Einstein
gravity with two U(1) gauge fields including higher
derivative corrections. We use the test particle approxima-
tion, which is valid if the backreaction to the test particle by
itself is negligible. Hence, this approximation is trustable in
the first order in the charge of the test particle. Within this
approximation, we confirm that any charged test particle
can never destroy an extremal black hole, that is, the weak
cosmic censorship conjecture holds.

If the charges of the black hole and the particle are
associated with different gauge fields, no Coulomb force
acts between them. It implies that the first order in the charge
of the test particle vanishes. However, the higher-order
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contributions are required to be taken into account. The
effects beyond the test particle approximation are important
even in the case with single U(1) gauge field, as discussed in
Refs. [14,24,25]. In particular, the presence of the repulsive
self-force for a charged particle around the Kerr spacetime is
demonstrated by Ref. [24]. In addition, the Sorce-Wald
formalism [25], which does not rely on the test point particle
approximation, enables us to include such effects system-
atically as the second order increase of the mass of the
resultant black hole. The second-order effects for the
subextremal Kerr-Newman black hole is investigated in
the original paper [25], and it is found that the potential
violation of the weak cosmic censorship discussed in
Refs. [12-18] is prevented by the second-order effects.
Then, the formalism and its higher order extension are
studied in Refs. [26-33]. We note also that the gedanken
experiments to destroy the extremal black hole with higher
derivative corrections with the single gauge field is inves-
tigated in Refs. [31,32] based on the Sorce-Wald formalism
at the first order in a charge. See also Ref. [33] for the higher-
order analysis for the subextremal black hole with higher
derivative corrections. The higher-order contributions in the
particle charges are not addressed in this paper, but similar
results are expected to be obtained.

This paper is organized as follows. In the next section,
we show the dynamics of a test charged particle on the
static, spherically symmetric spacetime and electric fields.
Then, we give the gedanken experiments for the black hole
with minimally coupled gauge fields in Sec. III. In Sec. IV,
we generalize the analysis to the case with higher derivative
corrections. The final section is devoted to the summary
and discussion. We describe the detailed equations in
Appendix A. In Appendix B, we confirm that the results
do not change under the field redefinition. Throughout the
paper, we represents two U(1) gauge fields by A, and B,,.
The field strength, the charge of the particle, and the charge
of the black hole with respect to each gauge fields are
summarized in Table I. We use the unit # =1,¢ = 1, and
€9 = 1, where 7, ¢, and ¢ are the reduced Planck constant,
the speed of light, and the permittivity of vacuum.

II. MOTION OF TEST PARTICLE
WITH MULTIPLE CHARGES

In this section we summarize the dynamics of a test
charged particle on the static and spherically symmetric
spacetime with two U(1) gauge fields A, and B,. The
particle that we consider has mass m and charges ¢ and p

TABLE I. Summary of the notation.

Gauge Field Electrostatic Particle Black hole
field strength potential charge charge
A/I F V2% D q Q

B, H, b d p P

with respect to the gauge fields A, and B, respectively.
Suppose that the particle is minimally coupled with gravity
and have no derivative coupling with the background fields.
This setup is justified in our analysis where the lowest-
order corrections with higher derivative couplings are taken
into account, since they are removed by the field redefi-
nition." The action of the test particle is

Stestxi] = /dr[—m — G (X)3H X

+aA ¥+ pB0OF]. (1)

where x#(7) is the worldline of the test particle and the dot
represents the derivative with respect to 7. This action has
the symmetry under the reparametrization of 7. We fix this
degree of freedom by setting 7 to be the proper time, i.e.,
g% = —1. Then, the equation of motion for the test
particle reads,

mu*V, ' = qF* u* + pH" u”, (2)

uut = —1, (3)
where u* is the four-velocity of the particle, that is, u* := i*.
Here, F',, and H,,, are the field strength of A, and B,,, defined
by F,, ==9,A,—0d,A, and H,, = 9,B, —9,B,,.

Let us focus on the static spherically symmetric case, and
denote the static Killing vector by &. Then, we introduce
the static time coordinate ¢ by £“d, = d,. With the static
time ¢t and the areal radius r, the static spherically
symmetric metric can be described as

H

Gudxtdx’ = —f(r)df* + @drz + r2dQ2, (4)

f(r)

where dQ? := d6” + sin® 0d¢? is the metric on the unit two
sphere. In asymptotically flat spacetime, the event horizon
ry is located at the largest positive root of f(r), if it exists.
We focus only on the outside of the black hole, that is, the
region r € (ry, ), where f(r) and h(r) are assumed to be
positive. The asymptotic flatness implies f(r) - 1 and
h(r) = 1 in the limit r — co.

Suppose that U(1) electric fields A, and B, also enjoy
the static, spherically symmetric properties, and then, they
take the following form of vector potentials:

A, dx* = —®(r)dt, (5)

B, dx" = =¥(r)dL. (6)

'The direct analysis with keeping the lowest-order corrections
is shown in Appendix B 2.
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Here, @ and ¥ are the electrostatic potentials for A, and B,
respectively. Note that they are manifestly static, that is,
(£:A), =0 and (£;B), =0. We also assume that the
electrostatic potentials vanish at asymptotic infinity, i.e.,
®(r) - 0 and ¥(r) — O in the limit » — oco. The corre-
sponding field strengths are

1
EF””dXﬂ A dx¥ = @' (r)dt A dr, (7)

1
EHﬂydx” A dxt =W (r)dt A dr, (8)

where the prime represents the derivative with respect to r.
Due to the static symmetry, the energy of the charged
particle defined by

E:= (_mg/wub - qA/l - pBﬂ)é”’ (9)

is conserved along the worldline, which implies u*V ,E = 0.

Let us investigate a test particle moving along the radial
direction, starting from the asymptotic infinity, that is,
r(r) — oo at the infinite past 7 — —oco. We denote the four-
velocity u# by

uto, = i(7)0, + i(7)0,, (10)

with # > 0 and 7 < 0. Then, the proper time condition and
the conserved energy can be written as

e O
1= ﬂ)t+ﬂﬂ : (11)
E =mf(r)t + q®(r) + p¥(r). (12)

By eliminating # from the above equations we obtain,

E =m\/f + hi* + q® + pVP. (13)

Due to the energy conservation, the value of £ can be fixed
in the asymptotic region as

ImE =m

r—00

1+ i, (14)

and hence we focus on the case £ > m. By solving Eq. (13)
for i we obtain,

22 1 2 2
r —W(r)((qq>+P‘P—E) —m>f(r)),

1
:W(E—V+(r))(E—V_(r)), (15)

where V. are defined by

Vi(r) = q®(r) + p¥(r) £ m\/f(r). (16)

From Egs. (13) and (16), we find that the positivity of 2
requires

E>V (r). (17)

This inequality indicates the allowed region of motion for
any given energy E > m. Thus, V__(r) can be regarded as
the effective potential of this system. In particular, we
obtain a necessary condition for the particle to reach the
event horizon ry, which we call the falling condition, by

E2V, (ra) =q®(ru) + p¥(ru), (18)

where V_ (ry) can be understood as the r — ry limit of
V(r) and so on. This can be regarded as the condition
among E, p, and ¢ for the test particle falling into the black
hole. In the following section, we will compare this
condition with the extremal condition of the total system.

III. BLACK HOLE WITH TWO MINIMALLY
COUPLED GAUGE FIELDS

In this section, we investigate the gedanken experiments
to destroy a black hole in the theory of Einstein gravity with
two minimally coupled U(1) gauge fields without higher
derivative interactions between the gauge fields.

A. Static spherically symmetric solution

We consider the Einstein—Hilbert action with two min-
imally coupled U(1) gauge fields,

1 1 1
S= | dx/=G|——R—-F, Fw—~H _H*| (19
/ . g{l67tG 4w 4w (19)

In general, there exists a mixing of the kinetic terms for A,
and B, see e.g. Ref. [34], which can be diagonalized by the
redefinition of A, and B,,. We assume that our gauge fields
A, and B, are such diagonalized ones after the field
redefinition.”

The Einstein equation is

1
R, — Eg””R = 87GT,,, (20)

where T, is given by

T

w=F

1
ﬂpFIJ/ - Zg;wF

o Fre

1
+H,HS — ZngpoH”". (21)

’It is pointed out in Ref. [34] that in theories with two U(1)
gauge fields, their charges can be irrational numbers after the
renormalization. We do not get into this issue, since it is irrelevant
to our discussion.
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The Maxwell equations for each gauge field are
V, F* =0, (22)
V, H* = 0. (23)

By solving the above equations with the static, spherically
symmetric ansatz (4)-(6), we obtain the Reissner-
Nordstrom solution as usual,

_2GM N G(Q* + P?)

fly =1 2GR gy
h(r) =1, (25)
o) =2, (26)
W)= 27)

The roots of f(r) =0 are

2 2
rzG(Mi\/MZ—Q4;GP>. (28)

Then, in terms of the extremal mass M. (Q, P) defined by’

_ 2+P2
Mexl(Q’P) = \/ Q4n’G , (29)

the condition for the event horizon to exist, or in other
words, the subextremal condition, can be written as

M > M (Q. P). (30)
The equality holds for the extremal black hole. The areal

radius of the event horizon of the extremal black hole
becomes

Fu = GM (O, P). (31)
On the other hand, the condition for the absence of the

event horizon, say, the super-extremal condition, can be
written as

M < Meu(Q. P). (32)

The bar of M (Q, P) indicates that the extremal mass for
given Q and P are evaluated in the minimally coupled theory
(19). We will use similar notation for other quantities as well.

B. Gedanken experiments to destroy an extremal
black hole: Single minimally coupled gauge field

Let us first review the Gedanken experiments to destroy
an extremally charged black hole with a single gauge field,
which is the case with P =0 and p = 0 in our analysis.
This corresponds to the nonrotating version of the analysis
on the Kerr-Newman spacetime in Ref. [2].

Let us start with the extremal black hole with P = 0 as a
background spacetime

(M, Q.P) = (My(Q.0). 0.0), (33)

and introduce a charged test particle with p =0

(E.q.p) = (E.q.0). (34)
where M,(Q,0) is simplified as

2
VarG

In the test particle approximation, E <« M and |¢| < |Q|
are assumed. The event horizon of the background space-
time is located at 7y = GM(Q.0).

Let us confirm the subextremal condition for the total
system first. The total energy M and charges O, P in this
system are

Mext(QvO) = (35)

(M,Q.P) = (M (Q.0) + E.Q +¢.0).  (36)

Suppose that this system is settled in a static spacetime and
no energy escapes to infinity. The uniqueness theorem states
that if the resultant spacetime is a black hole solution, on the
one hand, it must be the Reissner-Nordstrom spacetime with
(M .0, 13), which satisfies the subextremal condition. On the
other hand, if the super-extremal condition

M - Mext(Q7i)) =FE- Sgl’l(Q) \/4%6

is satisfied, the resultant object cannot be a black hole, and
thus, the black hole will be destroyed.

The falling condition is investigated as follows. Suppose
that the particle will be captured by the black hole. Then,
the inequality (18) must be satisfied, that is, the falling
condition (18) reduces to

Q

47TrH

+0(¢?) <0 (37)

q
VarnG’

The super-extremal condition (37) and the falling con-
dition (38) cannot be satisfied at the same time. This
leads us to the conclusion that any particle which would
destroy the extremal black hole cannot be captured by the
black hole.

E>gq sgn(Q) (38)
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C. Gedanken experiments to destroy an extremal
black hole: Two minimally coupled gauge fields

Let us move on to the discussion on general cases
including P #0 and p # 0. The extremal condition is
given by

(Mv Q’P) = (Mext(Q7P)’ QvP) (39)

We introduce a test particle with charge (g, p), and assume

E< M and |q|,|p| </ Q*+ P2

The super-extremal condition for the total system is
obtained in the following discussion. The total energy M
and charges Q and P of this system are given by

’

(M,0.P) = (M (Q) +E.Q+q.P+p). (40)

Assuming |q|, |p| < \/Q>+ P?, we can evaluate the
super-extremal condition as

A —

M_Mext(Q’P)
1 qQ+pP
=E-— +0(p* pg.q°) <0.  (41)

This inequality is rewritten as

1 g0+ pP

E <
V4rG \/Q* + P?

Then, let us investigate the falling condition (18). It can
be written as

+O0(p*. pq.q%). (42

g>22+tpP 1 qQ+pP
= dxry VArG /Q2—|—P2'

The super-extremal condition (42) and the falling con-
dition (43) cannot be satisfied at the same time, which is the
same result as that in the single gauge field case. Our
purpose of this paper is to verify whether the same structure
holds even if we include the higher derivative corrections.
We investigate it in the next section.

Before closing this section, we would like to mention on
the special parameter choice,

(43)

qQ + pP =0, (44)

which means that the charges of the black hole (Q, P) are
orthogonal to those of the particle (g, p) and no Coulomb
force acts between the black hole and the particle. Without
loss of generality, let us focus on the case with P = 0 and
g = 0. Then, the super-extremal condition starts from the
second order in p?,

N a” 1 0] p? 4
- S 0. (45
M Mem(Q,P) E SWNrre Q2 + O(p ) < ( )

Thus, a naive discussion may lead to the result that the
condition for the event horizon to be destroyed can be
written as

1 [0 p*
E<2 GO (46)

However, no Coulomb force seems to acts on the particle,
so that the falling condition may reduce to

E>0, (47)

which is trivially satisfied for £ > m. Thus, the conditions
(46) and (47), as well as E > m, can be satisfied at the same
time for a test particle with the energy

2
m<E 0] p

1
< < = — .
2\/47G Q?

(48)

However, it is too early to conclude that this is a
counterexample of the cosmic censorship conjecture:
Eq. (45) indicates that the potential violation of the
extremal condition is at most the order p2, whereas the
test particle approximation is valid at the order p'. A careful
analysis beyond the test particle approximation is therefore
required. Indeed, a general formalism treating the effects
beyond the test particle approximation was developed in
Ref. [25] for the subextremal Kerr-Newman black hole with
a single gauge field, showing that those subextremal black
holes cannot be overcharged or overspun. Its generalization
to the extremal black hole will be necessary to make a
conclusion if the cosmic censorship conjecture is satisfied
or not in this setup. We will not address this issue further in
the present paper. Instead, we will see that the weak cosmic
censorship conjecture holds at the level of the test particle
approximation, that is, at the order p!, with the higher
derivative corrections included.

IV. HIGHER DERIVATIVE CORRECTIONS

In this section, we extend the discussion of the gedanken
experiments to the theory with the higher derivative
corrections up to four derivatives. We derive the super-
extremal conditions (Sec. IVA) and the falling conditions
(Sec. IV B) on black holes with two charges with the higher
derivative corrections, and then, show that no overlap exists
between the two.

A. Super-extremal conditions

Based on the spirit of the effective field theory approach,
we treat all the possible higher derivative corrections up to
four derivatives. More explicitly, we consider

044008-5
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1 1 1
= 4 /— — R -
S /dx g<16ﬂ'G

4 "

+ 0 F, F*F joF? + ayF YF P F ,°F # + a3RF,,F* + a4R,,F* F*, + asR

3 P = L Hy H

Frpre

HUpo

+ P F W F,H? + B F ' F .V F,°H " + p3RF, H" + B4R, F*"H" , + BsR,, ,, F*" H"®
+ 711F/41/F”UHpo'Hpa + 712F/4DHMVFp6Hp6 + 721F/4DFDPH/J6H0# + 7/22F/4UvaFp6Haﬂ

+ 73RH;11/H”D + 74R/wHMpHyp + }/SR/wpa

+ élHypH'uyH/)o’H/m + é,ZHyDHU/)H/)O—HGM) .

Here, all the coefficients, a;, f;, 7i, k;,» and ;, should be
small enough, since the higher derivative terms are cor-
rections to the first line in the right-hand side of Eq. (49).
We regard the orders of «;, f3;, 7, k;, and {; as O(e) in a
small constant e. Moreover, in the action (49), we omit the
terms that are quadratic in the background equations of
motion such as

1 2
(R,w - Eg’wR - 87rGTW> ,R?,

V, PN, F?, N, FN HP N HPY HP,.(50)

The reason is as follows. First, the effective coupling
constants in front of these operators are O(e). Second,
variation of those terms is proportional to the background
equations, which gives one more factor of O(e) when
evaluated with the full solution. In total their contributions
are O(€?), which are higher orders ignored in our analysis.
Note that the first combination in (50) together with the
second one was used to replace R, R* term into some
terms appearing in (49). Similarly, since the Gauss-Bonnet
term, R* — 4R, R* + R,,,,R*"°, does not contribute to
the equations of motion, R,,,,R*#° term can be rewritten
as well. See Appendix A1 for more detail. Also we
emphasize that the deformation of the action by field
redefinitions is not done on the action (49). See
Appendix B for more comments on the field redefinition.

Note that the higher derivative interactions generically
appear in the low-energy effective action. For instance, «;
terms, as well as , {, and ys, 74, 75, are noting but the
Drummond-Hathrell effective action [19] which arise from
the mediation of heavy massive particles with a single
charge. Similarly, if there exist bicharged heavy massive
particles, f; terms and others are generated as the low-
energy effective interactions.

HM"HP® + &\ F,, H" H,,H" + <, F,*H,’H " H

(49)

The equations of motion can be derived as

1
Ry, =5 Rg,, —81GT,, = 82G6T,,. (51)

V, P =5, (52)

V H" = 5], (53)
where 6T, 8J%, and 6J%; represent the contribution from
the higher derivative correction terms and the detailed
expressions are given in Appendix A 2.

We solve a static spherically symmetric solution pertur-
batively by regarding the parameters a;, j3;, v, k;, {; are the
first order in perturbations, say, O(¢). Let us expand the
dynamical variables as

f(r) = f(r) +6f(r). (54)
h(r) = h(r) + 8h(r), (55)
®(r) = B(r) + 6D(r), (56)
Y(r) = P(r) + 8¥(r), (57)

where f, h, ®, and ¥ are O(e®) and 8f, 5h, 5@, and 5¥ are
regarded as O(e). In the background, that is, O(e°), the
equations of motion reduce to the usual Einstein-Maxwell
equations, and hence we obtain Reissner-Nordstrom sol-
ution. Then, in the O(¢) equations of motion, we can plug
the O(€) solutions in the right hand side of Eqs. (51)—~(53),
because they already involve O(e) coefficients such as ;.
By solving O(e) equations of motion, we obtain the
following perturbative solutions:
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2GM  G(Q*+P?) G
flr)=1- + ( 3 )——4<Q2(—2053+0‘5)+QP(—2,53 +Bs) + P*(=2rs +75))
r 4rr nr
G*M 5
t—5 (Q (=6a3 —ay +as) + QP(=6f3 = fy + Ps) + P*(=6y3 —y4 + 75))
G ~ -
————< Q% + Q°Pp, + O°P°F, + OPk; + P,
8073 r®
G’ M (Q. P)?
4 GG Y (02200, + 4, a5) + QPROBs + 48~ ) + X201, + 474 —19)) + O(E), (59
_ G (2 7 25 2
h(r)—l+ﬂr4 Q°as + QPp5 + P73 ) + O(e?), (59)
Q  GM(2Qas + Pps) 1 < 5 - y
D(r) = = - (43 30%Pp, + 20P? P3)
(r) drr + 2ar? 160731 Q@ +30°Fp) +20P T + PRy
1 . GO ( . —
~ 1575 (G Me(Q. PP (20(as + 6as) + P(By + 65)) = = (0% + OPFy + P13 ) ) + O, (60)
P GM(2Pys+0ps) 1 . _ ] .
P(r) = — - (3 20?P7, + 3QP? 4P3)
(r) 4nr+ 27rr4 ]6077.’3}"5 Q ﬂl + Q 71+ Q Ky + Z:l
_ P - ~ ~
1027 <G2Mext(Qa P)? (Q(ﬁzt +6ps) +2P(ry + 6?’5)) ~ar (Q2a3 + OPp; + P273)) +O(e?), (61)
where flra) =0, f'(ru) =0 (70)
&y =201 + @, (62) for ry and M. Here the first condition means that r = ry is
- a horizon, whereas the second condition is for the two
Pr=2p1 + pa, (63) horizons to degenerate. Since higher derivative corrections
are supposed to be small, those properties of the metric
Vi=2yu+rn+2rn+rn, (64)  functions should remain qualitatively the same and in
particular the extremal mass should be determined by
%) = 2K, + Ky, (65) the conditions (70) as long as the derivative expansion
works well. Indeed, one can explicitly confirm this expect-
g =20+ 6, (66) ation within the perturbative expansion in e.

Our task is then to solve Eq. (70) perturbatively. To do
and so, let us expand the horizon radius ry and the extremal
mass M. (Q, P) around those of the Einstein-Maxwell

&, = 10as + 3a, + 3as, (67) theory without higher derivative corrections,
Py = 1085 + 3f4 + 3Ps, (68) ri = Ty + 0ry, (71)
73 = 1073 + 3y4 + 3ys, (69)

Mext(Q’P) = Mext(Q’P) +5Mext<Q’P)7 (72)

and M. (Q, P) is the extremal mass without the higher
derivative corrections defined in Eq. (29). Note that the
solutions correspond to the two gauge fields extension of
the solution obtained in Ref. [20].

Now let us derive the extremal mass, i.e., the minimum
black hole mass, for given charges Q, P. Recall that in the
Einstein-Maxwell theory (19) without higher derivative

where as we defined earlier we have

7.H = GMeXt(va)’ 472G

Mext(Qv P) =

(73)

corrections, the extremal mass for given charges Q, P was
obtained by solving the two conditions,

To solve the first condition of Eq. (70), it is convenient to
expand f(r) as

044008-7



I[ZUMI, NOUMI, and YOSHIDA

PHYS. REV. D 110, 044008 (2024)

26M(Q. P)
MCXI(Q’ P)

+ QP + QP + P“c:)

[Py +6r) =

— G (Q4a+Q3Pﬂ

807> 7’%

+ O(€?, €bry, or3y), 74
H

where the coefficients are defined by

a:=a; +4nG(ay + as), (75)
B =Py + 4nG(By + Bs). (76)
yi=71+4nG(ay +ys+ as +vs), (77)
K =& + 4G (B4 + Ps), (78)
(=81 +4nG(rs +s). (79)

Note that O(6ry) terms do not appear in the right-hand side
because of the extremal condition defining 7y terms. The
correction to the extremal mass then reads,

5Mex1(Q, P) . _g G \ . .
Mext(Q,P) 5 (4ﬂ)3’7€1 (Q a+ Q3PS+ Q*Py
+ QP + P4C) + O(2). (80)
|
1
Ec(0.Pia.p) = iy (40 + P
.26
5(4x)3r§

Substituting this into the second condition f'(rg) =0 of
Eq. (70) gives the shift ory of the horizon position of the
extremal black hole as

51’ H 2G

R — 45 3P~ 2P2~
7‘1—[ (471_)37‘% (Q ap + Q ﬁl + Q 71

- G

+ QP& + P4C1) +F (Qz% + OPps +P2}’3>
H

+ O(2). (81)

Here 6ry is O(e) as expected. Note that the areal radius of
the event horizon of the extremal black hole is not invariant
under the field redefinition. The reason is explained in
Appendix B 1.

B. Falling conditions

Let us compare the super-extremal conditions with the
falling conditions. Our system is composed of an extremal
black hole M = M. (Q,P) and a test charged particle
with the energy E and charges (g, p). The total mass and
charges are

(M,0.P) = (Mo (Q.P) +E.Q+q.P+p). (82)

Let us expand the super-extremal condition for (M, O, P)
up to linear order in ¢ and p. The super-extremal condition
M < M (O, P) can be expressed as

E <Ec(Q.P:q.p)+ O(e*q.¢*p.q* . qp. p*),  (83)

with

<q(Q3(Q2 —4P2)a-+ Q2P(20% ~3P1)f+ QP (30~ 2P2)y + P (40> ~ Pk + S0P

+ p(5Q4Pa+ 03 (= Q% + 4P?)f + Q*P(=20% + 3P%)y + QP*(=30% + 2Pk + P} (—40> +P2)(§>>>.

Note that the expansion in Eq. (83) with respect to ¢ and
p should starts from the linear order, since the right-hand
side shows the deviation from the extremal condition.
Therefore, terms in the order of €2¢° or €?p° never appear
in Eq. (83). Moreover, the charges of test particle ¢ and p
are small such that ¢, p < € is satisfied. This justifies the
approximation in the right hand side of Eq. (83).

Next, let us derive the falling condition. The general
expression has already been shown in Eq. (18). Substituting
the electrostatic potentials shown in Egs. (60) and (61) into
(18), we finally have

(84)

E > q®(ry) + p¥(ru) = Ec(Q.P;q.p).  (85)

where ry is given by Eq. (81). Thus, the super-extremal
condition (83) and the falling condition (85) cannot be
satisfied at the same time at the leading order in ¢ and p.
This is the main conclusion of this paper.

To see the implications more explicitly, let us set P = 0
in the above equations. Then, the super-extremal condition

M < M (0, P) can be expressed as
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sgn(Q) 2(aq — pp)
£ ¢—4na< 5602 )
+ O(’q. €*p, p*. pq. 4°), (86)

while the falling condition can be expressed as

sgn(Q) 2(ag - pp)
> 472G (“’+ 5G*Q?

) + O(e*q,e*p).  (87)

We would like to comment on specific choices of the
particle charges. First, if we set p = 0, our result reduces to
the single gauge field case investigated in Refs. [28,31,33].

Next, let us consider the case with ¢ = 0. Remember the
discussion at the end of Sec. III that, in the minimally
coupled theory, this parameter choice corresponds to the
case where the O(p) contribution vanishes and the test
particle approximation is violated. Contrary to the mini-
mally coupled case, even though the condition g =0
indicates no Coulomb force, there is additional repulsive
forces that are induced through the higher derivative
couplings between two gauge fields. More explicitly, from
the expression (61), we can see that the electrostatic
potential ¥ is induced even when P = 0, through the
coupling f;. This is because even if objects (namely,
particles and/or black holes) have different charges interact
with each other through the mixing derivative couplings.
The condition for the absence of force at the event horizon
can be written as

2p

:TZQZP‘f‘O(Gqu,Gzp). (88)

q

For the particle with this charges, both the Coulomb force
and the force induced by the higher derivative corrections
work but exactly cancel at the event horizon. Then,
O(q?. qp. p?) corrections are required to be seriously taken
into account, because the effects beyond the point particle
approximation might be significant. Thus, the situation is
similar to the case of ¢ =0 in the minimally coupled
theory, although the particle feels Coulomb force at the
infinity.

V. SUMMARY AND DISCUSSION

In this paper, we investigate gedanken experiments to
destroy the extremal black hole by dropping a test charged
particle. In particular, we focus on a theory with two U(1)
gauge fields with higher derivative corrections. The black
hole we consider is a spherically symmetric, static extremal
one with charges (Q, P) with respect to two gauge fields. In
the case with minimally coupled gauge fields, the black
hole solution is described by Reissner-Nordstrom solution.
The super-extremal condition for the total energy and total
charges of the system is given by Eq. (42) and the falling
condition, which shows that the particle can arrive at the

event horizon, is given by Eq. (43). Since these two
conditions does not hold at the same time, extremal black
holes cannot be destroyed by a test particle. We extend this
analysis in the presence of the higher derivative corrections.
Our action is given by Eq. (49). The black hole solution is
derived perturbatively in Egs. (58)—(61). The super-
extremal condition and the falling condition are obtained
in Egs. (83) and (85) respectively. As is the case of
minimally coupled gauge fields, these conditions are not
satisfied at the same time. Hence, we confirm that the
extremal black hole with two gauge fields cannot be
destroyed by a test particle even when the higher derivative
corrections are included.

Due to the validity of the test particle approximation, our
result holds only up to the linear order in ¢ and p. For a
specific choice of the charges, Eq. (44) for the minimally
coupled case and Eq. (88) for the case with the higher
derivative corrections with P = 0O, linear order contribu-
tions disappear both in the super-extremal condition and the
falling condition. In such a case, the O(p?, pq, %) effects
become dominant and the analysis beyond the point
particle approximation similarly to the one in Ref. [25]
is again required, which is left for future work.

Although the second order analysis in Ref. [25] is
applicable to subextremal black holes only and it does
not directly apply to extremal black holes, it is instructive to
see what kind of effects may be expected from a naive
extremal limit of the result there. Here let us focus on the
minimally coupled case for simplicity. Assuming that the
nonelectromagnetic stress-energy tensor satisfies the null
energy condition, Ref. [25] derived a lower bound on the
second-order correction to the total energy of the system,
which captures the self-force and finite size effects for
example. By extending the result there to the minimally
coupled two gauge fields case naively, for a charged
particle with ¢ =0, p # 0 thrown into a near-extremal
black hole with Q # 0, P = 0, the lower bound reads

(S5}

\/t%% L O%e),  (89)

where ¢ is a small parameter quantifying deviation from the
extremality of the original near-extremal black hole. Here
we assumed that the first order increase of the total energy
is negligible. Note that the second term on the right-hand
side is the lower bound on the second-order correction to
the total energy. On the other hand, the super-extremal
condition on the total system up to O(p?) is

M Z MCXt(Q7O> +

N =

. o 1ol p?
M_Mext(Qﬁp)_M_Mext(Q7O)_§\/ﬁ§<0' (90)

Interestingly, the second-order corrections in Eqs. (89) and
(90) precisely match with each other, so that the two
bounds cannot be satisfied simultaneously. In other words,
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the window (48) for destroying the black hole may be
closed by carefully taking into account the second-order
correction to the total energy. Again, we emphasize that the
bound (89) does not apply directly to the extremal black
hole (¢ =0) and so it is not clear yet if the cosmic
censorship conjecture is satisfied for the extremal case,
but our observation motivates us to generalize the analysis
in Ref. [25] to the extremal black hole. We leave this
interesting problem to the future work.
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APPENDIX A: DETAILED EXPRESSION FOR
THE HIIGHER DERIVATIVE CORRECTIONS

1. How to rewrite the curvature square terms

We investigate a theory with the higher derivative
interactions (49), where the curvature square terms do
not show up in the action. This is justified, as we have
explained below Eq. (49), by the fact that all curvature
square terms are rewritten by the other terms. In this
appendix, we explicitly show how to rewrite the curvature
square terms with the other higher derivative terms.

The quadratic curvature terms,

R?, R, R, Ry e R, (A1)
are expressed by linear combinations of
R, G,G", GB:=R?>—4R,R"+R,,R"". (A2)

We investigate quadratic curvature terms (A2), instead of
(Al). Suppose that an action includes these quadratic
curvature terms (A2)

LR+ 2,G,,G* + 13GB. (A3)

This term can be expressed as

LR+ 2,G,,G* + 23GB
= WR? + (G, — 82GT,,) (G* — 8aGT™)

+ 13GB +162G1,G,, T" — (87G)* T, ",  (A4)
where T, is the energy momentum tensor without the
higher derivative contributions, defined in Eq. (21). Since
the Gauss-Bonnet combination GB is topological invariant,
it does not affect the dynamics and thus we can just ignore
it. Meanwhile, because R and G, — 87GT, vanish at the
order in €°, i.e., without the higher derivative contributions,
they are O(e!) quantities. The variations of squares of them
gives linear terms of them, that is, they are O(e') quantities.
Suppose the coefficients of quadratic curvature terms 4; is
O(e), and then the first two terms in the right-hand side of
Eq. (A4) gives O(€?) contributions in equations of motion,
which we ignore in our analysis. As a result, the quadratic
curvature (A3) is written in the last two terms in the right-
hand side of Eq. (A4). The explicit form of each term is

162G, G, T
= 472Gl (—RF , ,F* + 4R, F*F*
- RH, H" + 4RMDH”PH”p), (A5)
- (872G)*\, T, T
= 162G )y(F,,F*F ,,F** — 4F 'F /F °F
+2F, F"H,,H” —8F,*F,/H,°H /'
+H, H"H,H” — 4HM”HUPHP"H,,"). (A6)

More concretely, if one starts with the action with (A3)
terms, such effect can be included by replacing the
parameters in Eq. (49) as follows:

a; — a + 167°G?2,, (A7)
a = a, — 647°G 4, (A8)
az = a3 —4xGh,, (A9)
ay = ay + 162Gh,, (A10)
Y11 = i1+ 327°G? 4y, (A11)
721 = 21 — 1287°G? Ay, (A12)
3 = ¥3 —4nGly, (A13)
Ya = va +162GA,, (A14)
¢ = )+ 1622G2 s, (A15)
£y = & — 6472 G2, (A16)
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2. Source terms in the equations of motion

In this section, we represent the detailed expressions
Eqgs. (51)—(53). The expressions are as follows:

for 6T,,,8J%,

s and 8J% appearing in the right hand side of

oT,, = alTliﬂy[F, F,F,F) +(1272#D[F, F,F,F| —l—ﬂITLW[F, F,F,H| +ﬁ272,ﬂy[F, F,F,H|
+yuT\wlF, F,H H +y 0T [F, H F H) + 72175, [F, F,H H| +yn7 5, [F,H, F, H|
Ty [F H H, H) + T [F H, H H) + G T [H, B, H H) + 6T, [H, H, H, H]
+ 3T 3 [F F| + 4T 4 [F, F) + asT s ) [F, Fl + B3T3, [F, H| + B4T 4, [F, H) + BsT s, [F, H]

+ 737 3 H, H) + 74T 4 [H, H] +ysT s, [H, H],

5T =V, (Salj’f”[F, F.F| +8ayJ"[F.F.F] + p, (2" [F, F, H] + 47"[F,H. F))

+ B(4TY[F.F.H] + 275 [F. H.F]) + 4y, J{'[H. H. F] + 4, J{'[F. H. H]
+4yn Ty [F.H. H] + 4y J% [H. F. H] + 2 J'[H. H. H] + 2,74 [H. H. H]

+ 43 RF¥ + 4o, RV FPW) 4 4as R F 4+ 25, RH* + 2B,RM HPM + 2ﬁ5R”W”’HM) ,

5T =V, (851J’{” [H.H.H| + 87" [H. H. H) + x, 27" |H. H. F| + 47"[H. F, H))

+K2(4jgy[H,H,F] +2jgu[H,F,H]) +4]/1]j}1w[F,F,H] +4}/]2L7114D[H,F,F]
+ 4y TS H, F,F) + 4y T [FH, F) 4+ 26TV [F,F, F] 4+ 25,5 [F, F, F]

+ 4y;RH™ + 4y,RV \GPW + 4ysRWP° G, + 2B RF™ + 28, RM FriYl 4 2ﬁ5RW0FM),

where 7;,,[A.B,C,D|, T,,[A,B] and J"[A,B,C] are
functionals of antisymmetric tensors A,,, B,,, C,, D,
defined as

Tl./,u/ [A, B,C, D] = g,uyA(l/)’BﬂaC DY — 4A(/4|1IB(1|1/) C/}}/D}’ﬂ
—4C (oD% ) Ay, B, (A20)
T,[A,B,C.D| = g,,AyBP'C,,D —2A , B¥#Cp, DT,
= 2B(uaCP Dy A"y = 2C DV Ay, B )
— 2D, AP By, 7, (A21)
T3,0[A, B] = —RA 3B g, +2A,5BP"R,,, + 4RA 3B’ )
-2V, V,(AsB*) +2g,,0(AzB), (A22)
T 40|A, B) = —R,,A"B,7g,, + 2R /A ) B,
+2R(ﬂpBD)aA” 2R/,6A (
+ D(A yIaBah/ ) + vpvzr (ApaBa”)g/w
=V, V(,(A)eB?) =V, V(, (B, A?), (A23)

(A17)
(A18)
(A19)
|
TS,;w [A’ B ] /)HMAIMBM
= 3R A),Bor = 3R,/ B,y A
=2V, V,(A,/B,° + B\ A7), (A24)
TWIAB.C] = AgyBICm, (A25)
JY[A, B, C) = AW B CyW, (A26)

APPENDIX B: FIELD REDEFINITION

Field redefinition changes the description of the theory,
for instance, changes the coupling constants, but the
physical phenomenon remains the same. Although the
theory we consider can be rewritten in a different descrip-
tion by a field redefinition, in this appendix we explicitly
confirm that the obtained results are the same. This is
obvious, but it becomes a cross-check of the validity of our
analysis, and may bring a new perspective on the analysis
of theories with the higher derivative terms.

Let us investigate the perturbative redefinition of the
metric field g,, to g,, through,

9w = g/w + 5gﬂw (Bl)

with &g, defined by
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09 =€1R,, + €29, R+8nGesF, F ./ +8xGeyg,, F oo FP°
+8xGesF P, +8nGesg,, F o P’ +8nGes P, P,0
+87Gegg,, P, P, (B2)

where the coefficients are regarded as O(¢). One can

replace the metric g, in Eq. (B2) with g,, because the

difference is higher order in e. Let us investigate the
|

influence of the field redefinition (B1) in the black hole
solutions and the falling conditions.

1. Black hole solutions

Through this transformation, the action (49), expressing
the dependence of the metric and the parameters as
S[gyw» ;], is modified to

A v _g v 1 v v
S[gﬂw ai] = S[g/wa (X,-] - d4x@ RM — Egﬂ R —8zGT* 5g;w + (9(62)
~ A V ) 1 2 €1
= S[Gu. ;] + d*x e —€1 | Ry — ERgm, - 82GT,, | + > +e |R?| + O(e?). (B3)
Here the parameters &; are defined as follows: PR (B20)
ay = a; —7G(e; + €3), (B4) %, = K, — 7Ges, (B21)
dy) = + 47[G(€] + 63), (BS) )%2 =K + 4]'[G€5, (B22)
. 1 .
az = o3 + g (61 + 2e3 + 464), (B6) (G =¢ - ﬂG(el -+ 67), (B23)
X 1 C) =& +4nG(ey + €7). B24
&y =a, _§<€1 te). (B7) H=0 7G(e 7) ( )
The second term in Eq. (B3) is irrelevant for our analysis
as = as, (B8)  because it consists of squares of the background equations
A of motion. Thus, the relevant part of the action for g, can
P = B — nGes, (B9)  be obtained by replacing the parameters in the original
. action (49) with the hatted ones defined above.
P = Py + 4nGes, (B10) The transformations for the coupling constants are
described by the six independent combinations of the
a 1
Py =P+ 1 (€5 + 2e6), (B11) parameers,
1 €1 +€3,€3 +4€4,€5,€6,€1 +€7,€7 +4€8. (B25)
By =Ps—=es, B12
! 27 (B12) One can see that the following combinations are invariant
N under the field redefinition (B1),
Ps = Ps. (B13)
R ap — 271'Ga4, (B26)
n=rn—nG2e +e3+e), (B14)
R a2 + 871'Ga4, (B27)
712 =712 (B15)
—27Gpy, B28
721 =ra1 +47G(2€; + €3 + €7), (B16) 4 & (B28)
I ﬁz + 875Gﬂ4, (B29)
Y22 =72, (B17)
1 i —27G(ay +74), (B30)
73 =73 +§(€1+2€7+4€8)’ (B18)
v21 + 872G (a4 + 74), (B31)
. 1
r4a=Ya—5 (€1 +€7), (B19) Ky = 27Gpy, (B32)
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K> + 8T[Gﬁ4, (B33)
¢1 — 2nGyy, (B34)
$) + 87Gyy, (B35)

as well as as, fBs, 712, 722, and y5. The parameters a, f3, 7, k,
¢, appearing in the extremal condition (80), are invariant
thus under the field redefinition.

Next let us investigate the position of the horizon. The
horizon is characterized by f(r) = 0.* Through the field

redefinition, f := —g,; can be calculated as
f=r-of (B36)
with
of = =69,
G 2
= —f(r)m (Q (€1 + 2e3 +4ey) + 20P(e5 + 2¢6)
+ P2(e; + 26, + 468)). (B37)

Although £(r) does not coincide with f(r) itself, a solution
of f(r) = 0is the solution of £(r) = 0, that is, the position
of the horizon is invariant.

We note that it does not imply the invariance of the areal
radius of the horizon. As we can see from Eq. (81), ry is not
invariant under the field redefinition. The reason is as
follows. After the field redefinition, the function forms of
metric change. Due to the spherical symmetry, metric after
the field redefinition is written as

Gudxtdx’ = —f(r)d® + ﬁdrz + 7(r)2dQ2.

= (B38)

f(r)
The invariance of the horizon position means that, in this
coordinate with r, the locus of horizon is the same.
However, r does not coincide with the areal radius 7(r)
in metric (B38). The areal radius is #(r), which is
calculated as

G(Q*+P) GO
22
e Ta 4772 te r?
GOP GP?
+ €6 Qz + (:'8—2. (B39)
r r

“In theories with noncanonical kinetic terms, superluminal
modes can exist. Thus, an event horizon may not be a null
surface. However, in static or stationary case, any horizon is
expected to be a Killing horizon [35-37].

This gives us

R G(Q* + P?) GQ? Gor
T AT te 273 * e 273
GP?
+ e — + O(€?). (B40)
2nr

Thus, 7y, the areal radius of the horizon for g,,, can be
obtained as

. 1 n GQ? 4 GQP
Fu=rg—€ —+ €1 ——=+€c—=
H H ! 27y 4 27[7’%{ 6 27[}’%
GP?
+€8—_3+ 0(62), (B41)
2rry
where we have used
ry = g + O(e). (B42)

This shift of the areal radius of the horizon is consistent
with Eq. (81).

2. Falling conditions

The action (1) gives a theory for a charged particle where
the particle is minimally coupled with gravity. One may
consider a case where the charged particle has the higher-
order derivative coupling

] = [ ]y (g (0) + i )

+qA, (x)x* + pB, (x))'c”} , (B43)
where
59;(4111) = ”]R/u/ + ﬂngwR + 87TG/43F;4/7FW
+ 872Gy g F oo F"° + 8nGusk,, P
+ 82Gus g F oo P + 82Gus P, P’
+ 82Gug g, P o P’ (B44)

Here, u;’s are O(e) constants. Although this theory is
reduced to that with the action (1) by the field redefinition
(B25) with €; = —u;, we can directly show that falling
conditions becomes the same as those obtained in Sec. II.

The analysis is very simple. We have a degree of
freedom for the parameter v of the worldline x(7).

Instead of g, *x* = —1, we set the parameter 7 by
(G + 5g,(,,p,))x"x” = —1. Then, all the equations become

those in Sec. II with replacing g,, by g,, + 59,(,'5). Though
we used the areal radius in Sec. II, the same result holds
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with any radial coordinate. Thus, we can obtain the result
simply by replacing f and /4 with the corresponding
)

components of g, + 5g£,’,j . As similar to the discussion

in the previous subsection, the event horizon for 9w + 6g,(f;>

is still located at r = ri and hence the value of the potential

height at the event horizon, the right hand side of Eq. (18),

is unchanged. In addition, since 69,(5) disappears at r — oo,

the definition of E is also unchanged. Therefore, the falling

conditions with action (B43) become the same as those

with action (1) whose metric is g,, + 69,&’2).
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