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Postadiabatic models of extreme- and intermediate-mass-ratio inspirals will require calculations of
second-order gravitational self-force effects in the spacetime of a spinning, Kerr black hole. We take a
step toward such calculations by implementing the recently formulated Teukolsky puncture scheme with
Green-Hollands-Zimmerman metric reconstruction [Classical Quantum Gravity 39, 015019 (2022)].
This scheme eliminates the critical obstacle of gauge singularities that arise in the standard “no-string”
metric reconstruction. Our first proof-of-principle implementation is limited to the simple case of circular
orbits in Schwarzschild spacetime, but the method also applies to generic orbits on a Kerr back-
ground. We conclude with a discussion of various approaches to the second-order self-force problem
in Kerr.

DOI: 10.1103/PhysRevD.110.044007

I. INTRODUCTION

We are currently standing at the beginning of a golden
era in astronomy. Since their ground-breaking discovery
[1], gravitational waves have opened an entirely new way to
probe a vast range of astrophysical settings. Because these
waves interact very weakly with their surroundings, we will
be able to probe systems at far greater distances than ever
before. Furthermore, we will be able to study systems and
phenomena which emit very little, if any, electromagnetic
waves, such as black holes, dark matter and dark energy.
The upcoming next-generation space-based gravitational-
wave detectors, such as LISA [2,3], promise to open the
way to study uncharted territories. Specifically, one of the
main targets of the LISA mission is the study of extreme-
mass-ratio inspirals (EMRIs) [4,5]. These systems, con-
sisting of the inspiral of a stellar-mass, compact body into a
massive black hole in a galactic core, will serve as unique
probes of black-hole physics and enable tests of general
relativity with unparalleled precision.
Currently, the most viable method of modeling these

systems is with gravitational self-force theory [6,7], an
asymptotic approximation in the limit m ≪ M, where m
and M are the companion’s and black hole’s respective

masses. Moreover, while self-force theory was originally
conceived to model EMRIs, even low-order self-force
calculations and waveforms have been found to be highly
accurate for all mass ratios m=M ≲ 10−1 [8,9]. At zeroth
order in the mass ratio, the compact body, modeled as a test
particle, follows a geodesic around the massive black hole.
At first order, radiation-reaction effects come into play,
inducing a metric perturbation which exerts a so-called
self-force on the particle, accelerating it away from its
background geodesic trajectory. Current state-of-the-art
calculations at linear order allow for generic orbits (i.e.,
inclined and eccentric) around Kerr black holes [10,11].
A detailed scaling argument [7,12] and parameter-estima-
tion studies [13] show that to achieve the necessary phase
accuracy for LISA data analysis, self-force models need to
include the second-order dissipative effects as well. On the
long timescale of the inspiral, t ∝ M2=m, these second-
order dissipative effects accumulate to have an impact on
the phase evolution comparable to first-order conservative
effects: both contribute Oððm=MÞ0Þ to the waveform phase
[7,12,14]. An overarching goal of the EMRI modeling
community is to compute all such necessary first-
and second-order effects to produce complete waveform
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models with so-called first-post-adiabatic (1PA) accuracy
[3,15–17], in which phase errors are Oðm=MÞ.1
Intuitively, one can expect the modeling of second-order

effects to be substantially more difficult than first-order
ones, as the former now include nonlinear information.
This intuition turns out to be correct: while the foundations
of second-order self-force theory are well understood
[20–22], and concrete calculations have been performed
for the relatively simple case of quasicircular orbits in
Schwarzschild spacetime [8,23,24], there have not yet been
any second-order self-force calculations in the astrophysi-
cally realistic case of orbits around a Kerr black hole. This
is now one of the central challenges in EMRI modeling.
What are the main differences in second-order calcu-

lations in Kerr spacetime as opposed to linear-order ones?
To answer this, it is important to remind the reader of the
traditional first-order framework.
At linear order in perturbation theory, one solves the

linearized Einstein equation for the (first-order) metric
perturbation hab, sourced by a point-particle stress-energy
tensor Tab that models the inspiraling object:

EabðhÞ ¼ Tab: ð1Þ

This is a system of ten coupled linear partial differential
equations. In a Schwarzschild background, the equations
can be fully separated using a basis of tensor spherical
harmonics. A major obstacle in Kerr spacetime is that the
equations are not separable using any known basis of
functions. While progress has been made to solve the
system directly (see Ref. [25] and references therein),
historically the focus has instead been on solving a single,
fully separable scalar equation, the Teukolsky equation, for
either of the two gauge-invariant perturbed Weyl scalars ψ0

or ψ4.
In vacuum regions, each of the Weyl scalars contains

almost all the information about the linear metric pertur-
bation hab [26]. In fact, there is a well-developed procedure
that reconstructs hab in a radiation gauge from ψ0 (or ψ4).
This metric reconstruction procedure, first developed by
Chrzanowski, Cohen and Kegeles, is dubbed the CCK
procedure [27,28]. One of its drawbacks is that it is only
applicable in vacuum regions [29,30]. Nonetheless, it can
still be applied to self-force calculations, by carrying it out
separately in the two vacuum regions inside and outside the
particle’s orbit. The metric reconstructed in this fashion is
then in a no-string radiation gauge [31–34]. Perhaps
surprisingly, this method is still useful in the case of

eccentric orbits, where the particle now evolves inside a
libration region rmin < r < rmax, meaning that (in the
frequency domain) the entire libration region is nonvac-
uum. In this case, the CCK procedure is still applicable in
the vacuum regions r < rmin and r > rmax and the method
of extended homogeneous solutions [35,36] allows one to
extend the solutions obtained in the vacuum regions into
the libration region. This is the only method that has been
used to compute the first-order self-force on fully generic,
inclined and eccentric bound orbits in Kerr space-
time [10,11].
One is, however, faced with two major roadblocks when

attempting to apply the above methods at second order.
First, the no-string metric reconstruction at first order is
highly singular on the time-dependent sphere that intersects
the particle at each instant, containing both jump disconti-
nuities and Dirac-delta singularities there [33,37]. While
these do not pose a problem at linear order, the second-
order source term is constructed from quadratic combina-
tions of the first-order metric perturbation (and its first and
second derivatives). In the no-string radiation gauge it
would therefore contain ill-defined products of distribu-
tions. Secondly, this source term at second order is not
confined to a compact spatial domain, meaning neither the
CCK reconstruction nor the method of extended homo-
geneous solutions is applicable.
Recently, two avenues have emerged to get around these

problems. Both methods are based on new reconstruction
procedures. Building on earlier work in Refs. [38,39], it
was shown that the metric perturbation in Lorenz gauge can
be reconstructed from solutions to a set of separable
Teukolsky equations [40,41]. The Lorenz-gauge metric
perturbation has a well-behaved singularity structure con-
fined to the particle’s location. This reconstruction pro-
cedure has been applied to homogeneous perturbations [40]
and to the inhomogeneous perturbation of a point mass on a
circular orbit in Kerr spacetime [41]. Recent work has
extended the approach to work with generic, extended
sources [42,43]. The method requires the solution to up to
six2 Teukolsky equations: two spin-2, two spin-1, and two
spin-0—as opposed to just one spin-2 Teukolsky equation
in the standard CCK approach—and the solution of one of
the spin-0 equations acts as a noncompact source for the
other spin-0 equation (equivalently, the two spin-0 equa-
tions can be treated as a coupled system with a compact
source).
Another reconstruction procedure, which we adopt here,

was introduced by Green, Hollands, and Zimmerman
(GHZ) [44], who showed that sourced metric perturbations
can be obtained by supplementing the CCK procedure with
the addition of a corrector tensor, xab, which is obtained by

1The “nPA” counting stems from multiscale (or post-
adiabatic) expansions of the field equations [7,12,14,18], which
are now the almost-universal basis for self-force waveform
models because they inherently maintain phase accuracy on
the long timescale of an inspiral while enabling rapid waveform
generation [19]. However, the full multiscale framework will not
be needed for the calculations in the present paper.

2Strictly speaking, the Teukolsky-Starobinsky identities mean
we only need one spin-2 and one spin-1 equation, but they are
complex so we still have 6 degrees of freedom.
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solving a sequence of three ordinary differential equations
(ODEs), one of which is complex. In Ref. [45] (hereafter
Paper I), based on this new procedure, one of the authors of
this paper formulated a puncture scheme that avoids the
pathological singularities of the no-string radiation gauge.
The basic idea is to split the retarded field into two parts: a
puncture field, hPab, which encodes the point-particle
singularity; and a residual field, hRab ≔ hab − hPab, which
is more regular. As in any puncture scheme [46], hPab is
calculated analytically, and hRab becomes the numerical
variable. In the GHZ puncture scheme developed in Paper I,
the puncture is put in the Lorenz gauge (or an even more
regular gauge [47,48]), thereby keeping the singularity in a
desirable, nonpathological form. The residual field is then
calculated using GHZ reconstruction. The ultimate differ-
ence between this approach and the one in Ref. [41] is
simply a gauge choice: the procedure in Ref. [41] puts the
entirety of the metric perturbation in the Lorenz gauge,
whereas the procedure in Paper I only puts the singular
piece of the metric perturbation in the Lorenz gauge, while
putting the regular piece in a radiation gauge. We discuss
the relative merits of the two methods in the conclu-
sion, Sec. X.
Regardless of whether Lorenz-gauge or GHZ recon-

struction is used, there are several advantages to using a
puncture scheme. Most prominently, since it makes hRab the
numerical variable, it allows one to work with smoother
fields, which translates into more rapid convergence of
numerical approximations (including mode sums, discre-
tizations onto a grid, and inverse Fourier transforms). In
addition, the self-force exerted on the particle can be
calculated directly from hRab. At linear order, puncture
schemes bring increased computational cost as the residual

field has an extended effective source, even in the case of
circular orbits. However, at second order this is immaterial
because the physical source extends over the entire space-
time anyway. Moreover, puncture schemes are currently the
only viable approach to second-order self-force theory
[6,7]. We discuss the utility of the GHZ puncture scheme
at second order in further detail in Sec. X.
In this work, we implement the GHZ puncture scheme

for the first time in a realistic scenario: a point mass in
circular orbit around a Schwarzschild black hole. (Paper I
had previously demonstrated the scheme in the simpler case
of a static particle in flat spacetime.) In Sec. II, we give an
overview of the scheme and of our main results. In
Secs. IV–VIII, we compute, step by step, the different
ingredients necessary to obtain the complete metric per-
turbation. In Sec. IX, as a consistency check, we show we
obtain the correct value of the Detweiler redshift using the
new GHZ puncture scheme. In that section we also discuss
the regularity of the reconstructed GHZ metric. Some
review and technical material is relegated to appendices.
We adopt geometric units with G ¼ c ¼ 1. All plots of

numerical results are in units with M ¼ 1. Unlike Paper I,
we use a mostly positive, ð−þþþÞ signature.

II. OVERVIEW

In this section, we review the GHZ puncture scheme,
summarize the main features of our implementation, and
preview our results. Readers who are uninterested in the
more technical details of our calculations can skip directly
to Sec. IX after reading this section.
Figures 1–4 provide a visualization of the puncture

scheme and how it contrasts with a standard no-string
reconstruction and completion procedure. These figures,

FIG. 1. Summary of the no-string CCK reconstruction and completion procedure. The total solution in each region is given by the sum
of the boxed quantities.
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along with Table I, can be used as aids to the text throughout
this section. We note that the text in this section refers to the
generic scenario of a boundorbitwith time-dependent radius
rp, but the figures specialize to the specific case of a circular
orbit with rp ¼ r0 ¼ constant, which we specialize to in
subsequent sections. Similarly, the text does not necessarily
specialize to mode-decomposed fields, but Table I refers to
the (spin-weighted) spherical-harmonic modes that we use
in later sections.

A. Punctures and residual fields

We consider an asymptotic expansion of the metric of the
form gab ¼ gab þ ϵhab þOðϵ2Þ, where gab is the back-
ground Schwarzschild metric of mass M, and ϵ ¼ m=M is
the mass ratio of the binary. The linear perturbation hab
satisfies the linearized Einstein equation, Eq. (1). The
stress-energy tensor Tab ¼ ϵTab þOðϵ2Þ describes a point
mass and is given by

Tab ¼ 8πM
Z

uaubδ4ðx; xpðτÞÞdτ; ð2Þ

where the factor ofM appears because we have factored out
ϵ; τ is the particle’s proper time as defined in the back-
ground metric gab; xpðτÞ is its worldline, which will be
approximated as a geodesic3 in gab; ua ¼ gabdxbp=dτ is the
particle’s 4-velocity; and δ4 is the covariant delta function
in gab. For convenience, we incorporate the Einstein
equation’s usual factor of 8π into Tab.
A core feature of self-force theory is the split of the

physical, retarded field hretab into two distinct pieces, called
the Detweiler-Whiting singular (hsab) and regular (hrab)
fields, hretab ¼ hsab þ hrab. The singular field is a particular

solution of Eq. (1). It contains only local information about
the field created by the particle’s mass and is singular at the
particle’s position. The regular field is instead a (smooth)
homogeneous solution of (1), which contains information
about global boundary conditions. In general, this split is
not unique since one can always add a homogeneous
solution to the definition of hsab. However, a judicious split
makes it possible to express the self-force only in terms of
the regular field [49–51]. Specifically, we can choose the
split such that the motion of the particle is a geodesic in the
effective metric g̃ab ≔ gab þ ϵhrab þOðϵ2Þ.
In most situations, it is not possible to calculate the exact

singular field hsab and corresponding exact regular field h
r
ab.

Instead, one considers a local expansion for hsab, written as
a series in powers of distance to the particle. For example,
in Fermi normal coordinates centered on the particle, hsab
behaves at leading order like a Coulomb field,

hsab ¼
2M
s

δab þOðsÞ; ð3Þ

where s denotes the proper (orthogonal) distance from the
particle’s worldline and δab is the Kronecker delta. (Like in
the leading-order stress-energy tensor, a factor ofM appears
because we have factored out ϵ.) This local expansion, or an
analogous one in any convenient coordinates, is truncated at
some finite order, resulting in an approximate solution to
Eq. (1), valid only in the vicinity of the particle, called the
puncture field, hPab. We refer the reader to Refs. [52,53] for
how to construct the puncture in practice.
The difference between the retarded and puncture field,

hRab ≔ hretab − hPab, is called the residual field. Since hPab is
only an approximate solution to (1), the residual field is
only approximately a homogeneous solution, satisfying the
equation

EabðhRÞ ¼ Tab − EabðhPÞ: ð4Þ

If the puncture were precisely equal to hsab, then the right-
hand side would vanish identically, and the residual field
would coincide with the regular field. If hPab is an nth-order
puncture, in the sense that it includes terms up to order sn

(inclusive), then EabðhPÞ ∼ ∂
2hPab is a Cn−2 field at s ¼ 0

and smooth everywhere else.4 hRab is then Cn at s ¼ 0, and
hRab ¼ hrab þOðsnþ1Þ. At the level of individual lm modes
in a spherical-harmonic expansion, which will be our focus
here, the degree of regularity is generally increased by two
due to the integration over the sphere, leading to residual
field modes hR;lm

ab that are Cnþ2 functions of r at the
particle’s orbital radius rp.

FIG. 2. Representative modes of the quantities computed in
traditional no-string CCK reconstruction and completion.

3In a complete treatment, xp here would instead be the leading-
order (nongeodesic) term in a multiscale expansion of the orbital
motion [7,14,18]. However, as discussed in those references, the
distinction does not materially affect the calculations in this
paper.

4What we call an nth-order puncture would often be referred to
as an (nþ 2)nd-order puncture. The “(nþ 2)nd” label corre-
sponds to the total number of orders from 1=s to sn.
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The puncture can be extended away from the particle in
any convenient way. For example, if we strictly define hPab
as a series expansion in coordinate distance from the
particle, we can attenuate it away from the particle using
a window function, W. This window function must be
chosen to ensure that

hPab ≔ hPabW ð5Þ

has the same local expansion as hPab at the particle when
truncated at the same order. In this paper, we takeW to be a
radial box function, such that

hPab ≔ ½Θðr − rminÞ − Θðr − rmaxÞ�hPab; ð6Þ

where ΘðxÞ is the usual Heaviside function. The radii
rmin =max are chosen such that the particle’s orbital radius rp

always lies in the range rmin ≤ rp ≤ rmax. Following
tradition, we refer to the support of the window function
W as the worldtube (though for our choice of box function
it is in fact a shell surrounding the black hole). The
amended residual field

hRab ≔ hretab − hPab ð7Þ

then obeys

EabðhRÞ ¼ Tab − EabðhPÞ≕TR
ab; ð8Þ

which applies over the entire spacetime. TR
ab is dubbed the

effective source.
The residual field hRab has the properties that (1) its value

and the value of its first n derivatives at the particle coincide
with those of the regular field hrab, (2) h

R
ab ¼ hretab outside the

worldtube. In what is commonly referred to as the effective
source approach or puncture scheme [54–56], one solves
Eq. (8) directly for the residual metric perturbation hRab.
This is in contrast to the mode-sum regularization
approach, where one instead solves for the modes of the

FIG. 4. Representative modes of the quantities entering into the
solution (30) in the GHZ puncture scheme with a puncture of
order n ¼ 2. Note that ĥR;22nn − ĥS;22nn Θþ corresponds to ĥ−nn for
r < rmin, and ĥþnn for r > rmax.

TABLE I. Regularity properties of relevant quantities at the
particle’s orbital radius r0 and at the worldtube boundaries
rmin =max. Θ, δ, and δ0 denote Heaviside, Dirac delta, and the
first derivative of Dirac delta functions, respectively. n refers to
the order of the puncture.

r hP;lmab 2ψ
P
lm 2ψ

R
lm −2ΦR

lm xlmab hR;lmab

r0 C0 Θ, δ Cn Cnþ4 Cnþ2 Cnþ2

rmin =max Θ Θ; δ; δ0 Θ; δ; δ0 C1 Θ Θ

FIG. 3. Summary of the GHZ puncture scheme. As in Fig. 1, the total solution in each region is given by the sum of the boxed
quantities. Note that inside the worldtube, ψM

0 ¼ ψR
0 .
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physical metric perturbation hretab and then extracts physical
effects of hRab by subtracting the modes of hPab before
summing over modes [57]. We refer the reader to Ref. [46]
for a more thorough discussion and comparison of these
and other methods.
As stated in the Introduction, the goal of Paper I’s

puncture scheme is to compute the residual field hRab
through GHZ reconstruction, leaving the puncture in the
Lorenz gauge. This means we solve Eq. (8) by reconstruct-
ing part of hRab through the CCK procedure (or more
accurately, a CCK-Ori procedure [29]) and completing it
through the addition of a corrector tensor. In the following
subsections we summarise this procedure, tracking the
regularity of relevant fields encountered at each stage, and
summarizing these regularity properties at the level of
individual lm modes in Table I.

B. Residual Weyl scalar

The first step is to define a residual Weyl scalar ψR
0 ,

constructible from hRab by applying a certain second-order
differential operator T ab

0 :

ψR
0 ≔ T ab

0 hRab ¼ ψ ret
0 − ψP

0 : ð9Þ
The puncture ψP

0 is computed directly from hPab,

ψP
0 ≔ T ab

0 hPab: ð10Þ

Similarly, ψ ret
0 is the Weyl scalar associated with hretab.

ψ ret
0 satisfies the Teukolsky equation with a point-particle

source,

Oψ ret
0 ¼ Sab0 Tab; ð11Þ

whereO and Sab0 are again certain second-order differential
operators. ψR

0 , on the other hand, satisfies the Teukolsky
equation with an effective source,

OψR
0 ¼ Sab0 TR

ab ¼ Sab0 Tab −OψP
0 ; ð12Þ

where we made use of the identity OT ab
0 ¼ Scd0 Ecd

ab [58].
To make the index structure clear, here we have defined
Ecd

abhab ¼ EcdðhÞ. The quantities T ab
0 hab, Sab0 Tab, and O

are given explicitly in Appendix A.
The Teukolsky equations (11) and (12) are both supple-

mented with retarded boundary conditions at the horizon
and null infinity, such that ψR

0 reduces to ψ ret
0 outside the

worldtube. In practice, then, there are two routes to calcu-
lating ψR

0 : (1) solve Eq. (12) for ψR
0 directly, or (2) solve

Eq. (11) for the retarded field first and then compute
ψR
0 ¼ ψ ret

0 − ψP
0 . We detail these two methods in Sec. IV.

Since Tab describes a point-particle source, Sab0 Tab is
made up of terms proportional to δðr − rpðuÞÞ and its first
and second derivatives, where u is a time coordinate (which
will later be taken to be retarded time). The solution to

Eq. (11) is then a piecewise smooth function,

ψ ret
0 ¼ψ−

0ΘðrpðuÞ−rÞþψþ
0 Θðr−rpðuÞÞþψδ

0δðr−rpðuÞÞ;
ð13Þ

where ψ�
0 are homogeneous solutions. Note this expression

is valid at the level of lm modes, which is the context of
most of our calculations in this paper.5 This type of
behavior is displayed in Fig. 2, where we see smooth
vacuum field modes connected by discontinuous jumps at
the particle’s orbital radius.
Since the residual field ψR

0 has an extended source that
fills the worldtube, it has a more complicated structure.
Outside the worldtube, where the puncture vanishes, ψR

0

reduces to the vacuum solutions ψ�
0 . Inside the worldtube,

(at the level of modes) the retarded field’s δ function and
discontinuity are precisely canceled by ψP

0 , leaving a
residual field whose degree of smoothness at the orbital
radius is governed by the order of the puncture, as listed in
Table I. At the worldtube boundaries rmin and rmax, the box
window function in the puncture (6) introduces δ and δ0

functions in ψP
0 and therefore in ψR

0 (both in 4D and at
the mode level). This type of behavior is displayed in
Figs. 3 and 4, where we see smooth vacuum fields outside
the worldtube, finitely differentiable residual fields in the
worldtube interior, and jumps and delta functions at the
junctions between these regions.

C. Residual Hertz potential

From ψR
0 , one can obtain a spin-weight s ¼ −2 object,

called the ingoing radiation gauge (IRG) Hertz potential
ΦR, by solving the radial inversion relation,6

Þ4Φ̄R ¼ 2ψR
0 ; ð14Þ

where Φ̄R ≔ ðΦRÞ⋆ and similarly for other Hertz poten-
tials. Throughout, an upper ⋆ denotes complex conjuga-
tion. The operator Þ is a Geroch-Held-Penrose (GHP)
derivative along outgoing null curves, making Eq. (14) a
fourth-order ODE along those curves. We refer the reader to
Appendix A for a summary of the GHP formalism. In
appropriate retarded coordinates ðu; rÞ and with an appro-
priate choice of Newman-Penrose tetrad, Þ simply reduces
to a radial derivative ∂

∂r.
The Hertz potential also satisfies the adjoint Teukolsky

equation

O†ΦR ¼ ηR; ð15Þ

5The sum of modes, yielding the four-dimensional function,
contains no delta function or Heaviside functions but instead has
a local power-law singularity supported only on the particle’s
worldline. See, e.g., Eq. (170a) in Ref. [59].

6Here we follow the conventions of Paper I. In the conventions
of Ref. [7], for example, the factor of 2 is instead a factor of 4.
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where ‘†’ on an operator denotes the adjoint, and where the
source ηR satisfies a transport equation along outgoing null
geodesics, which will not be needed here. The support
of ηR generically extends from rmin to ∞. However, in
practice, we instead solve vacuum equations outside the
worldtube,

O†Φ� ¼ 0: ð16Þ

In the region connected to null infinity, we impose purely
outgoing boundary conditions at null infinity, correspond-
ing to Φþ, while in the region connected to the black hole
horizon, we impose purely ingoing boundary conditions at
the horizon, corresponding to Φ−. These conditions deter-
mine the homogeneous solutions Φ� in each region, up to
an overall constant. The overall constants are then fixed by
Eq. (14), which becomes Þ4Φ̄� ¼ 2ψ�

0 in these regions.7

Note that, in these regions, the residual Weyl scalar
coincides with the retarded solution, ψR

0 ¼ ψ ret
0 , and the

corresponding Hertz potential will therefore be labeled by
Φret. This notation serves to indicate that Φ� are the Hertz
potentials that are constructed in the traditional no-string
method of obtaining the retarded metric perturbation
sourced by a point particle; we do not mean to suggest
that Φret is the retarded solution to a field equation.
Inside the worldtube, we solve Eq. (14) numerically for

ΦR, subject to boundary/jump conditions at r ¼ rmin,
which are determined from Eq. (14). We label this internal
solution ΦM (with M indicating the “middle” region or
effective “matter” region). Equation (14) also provides
jump conditions at r ¼ rmax; see Sec. V for more details.
Requiring the Hertz potential to satisfy these jump con-
ditions across r ¼ rmax requires one to add an additional
field, ΦS, to Φþ at r > rmax. This additional field, referred
to as the shadow field, satisfies the homogeneous version of
Eq. (14) and the inhomogeneous version of Eq. (15). The
total residual field can then be written in the form

ΦR ¼ Φ−Θ− þΦMΘM þ ðΦþ þΦSÞΘþ: ð18Þ

In the above, we defined Θ− ≔ Θðrmin − rÞ, Θþ ≔
Θðr − rmaxÞ, and ΘM ≔ 1 − Θ− − Θþ. In particular, note
that ΘMðrÞ ¼ 1 inside the worldtube rmin < r < rmax. Our
use of Heaviside functions here does not indicate disconti-
nuity at the worldtube boundaries: since ψR

0 contains Dirac
δ0 terms there and ΦR is four integrals of ψR

0 , the solution
(18) is C1 at rmin and rmax.
Although we included it in Eq. (18),ΦS is never required

(or calculated) in our GHZ puncture scheme. We recall the
reason why below.

D. Residual metric perturbation: Hertz term

Next, from ΦR, one can compute a (0, 2) tensor via the
explicit relation

ĥRab ¼ 2ReððS†0ÞabΦRÞ; ð19Þ

which satisfies the IRG conditions ĥRabla ¼ 0 ¼ gabĥRab,
where la is the principal outgoing null vector, given in
Eq. (A39) in the Kinnersley tetrad.
Splitting the right-hand side of Eq. (19) into the three

domains gives

ĥRab ¼ ĥ−abΘ− þ ĥMabΘM þ ðĥþab þ ĥSabÞΘþ; ð20Þ

where each field is constructed from the corresponding
term in Eq. (18). Note that the second-order differential
operator ðS†0Þab did not introduce Dirac delta distributions
in ĥRab because ΦR is C1 at the worldtube’s boundaries.
However, the two derivatives do introduce jump disconti-
nuities there; see Table I for more details.
Like ΦS, the shadow field ĥSab is never explicitly needed

or calculated. The fields ĥ�ab satisfy the vacuum linearized
Einstein equation Eabðĥ�Þ ¼ 0. If we were to reduce the
worldtube to zero size, effectively removing the term
involving ΘM, and additionally discard the shadow field
ĥSab, then Eq. (20) would reduce to the traditional form of
the no-string CCK metric reconstruction.

E. Residual metric perturbation: Corrector tensor

The reconstructed field ĥRab is not, on its own, a solution
to the linearized Einstein equation (8). Intuitively, this
failure is associated with the fact that if ĥRab is in the IRG,
then EllðĥRÞ ¼ 0 [30]. It follows that, since TR

ll ≠ 0, ĥRab
cannot satisfy (8). The novel step in the GHZ procedure is
to supplement CCK-Ori reconstruction with a corrector
tensor, xRab, defined to satisfy the components of the
Einstein equations that ĥRab cannot,

ðTR
ab − EabðxRÞÞla ¼ 0: ð21Þ

7For Φ−, this procedure yields the same field as one would
obtain by integrating Eq. (14) outward along outgoing null rays
from the past horizon. However, note that for Φþ, this procedure
differs from integrating Eq. (14) inward along radial null rays
from future null infinity, which would yield an alternative field

Φ̄þ
altðu; rÞ ¼ 2

Z
r

∞

Z
r4

∞

Z
r3

∞

Z
r2

∞
ψþ
0 ðu; r1Þdr1dr2dr3dr4: ð17Þ

Such a field would not satisfy O†Φþ ¼ 0; instead, it would have
a noncompact source, O†Φþ

alt ¼ ηR, that extends to future null
infinity. Unfortunately, Paper I does not distinguish between Φþ
and Φþ

alt. The mathematics in Paper I consistently describes Φþ,
but text in Paper I, particularly text above Eq. (39) therein,
incorrectly conflates Φþ with Φþ

alt. Either solution can be used,
but Φþ

alt is acausal, and Φþ is the field that is consistent with the
traditional no-string solution.
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As shown by GHZ, the total field ĥRab þ xRab then satisfies
the full set of equations (8).
Equation (21) is a system of four real independent

equations. The GHZ scheme adopts the following ansatz
for the corrector tensor:

xRab ¼ 2mðam̄bÞxRmm̄ − 2lðam̄bÞxRnm
− 2lðambÞxRnm̄ þ lalbxRnn; ð22Þ

where xRnm̄ ¼ ðxRnmÞ⋆ and we have adopted a Newman-
Penrose null tetrad flα; nα; mα; m̄αg; see, e.g., Eq. (A39) for
the Kinnersley tetrad. The key feature of this ansatz is its
inclusion of a trace component, xRmm̄; the trace term, which
is omitted in CCK-Ori reconstruction, is what allows the
corrector tensor to satisfy (21).
By projecting (21) into the la, na and ma directions, one

obtains a sequence of three ODEs along the integral curves
of la,

−ρ2Þ
�
1

ρ2
ÞxRmm̄

�
¼ TR

ll; ð23Þ

−
1

2
Þ
�
ρ2Þ

�
xRnm
ρ2

��
¼ TR

lm þN xRmm̄; ð24Þ

−ρ2Þ
�
xRnn
ρ

�
¼ TR

ln þ UxRmm̄ þVxRnm þ V̄xRnm̄; ð25Þ

where the spin coefficient ρ is given in Eq. (A12) and the
operators N , U, V and V̄ are given in Eqs. (A35)–(A38).
This hierarchical system of transport equations can be
solved for xRmm̄, x

R
nm and xRnn, in that order.

The transport equations are supplemented with trivial
data at the past horizon, implying that xRab vanishes for all
r < rmin. We then solve the equations within the worldtube
rmin < r < rmax, subject to boundary/jump conditions at
r ¼ rmin; see Sec. VII. For r > rmax, the transport equations
dictate that another shadow field appears, such that the
global solution takes the form

xRab ¼ xMabΘM þ xSabΘþ: ð26Þ

Again observe that no delta functions arise at the worldtube
boundaries despite the presence of δ0 terms in TR

ab; this is
due to a fortuitous cancellation on the right-hand side of
Eq. (25), which we describe below. Also again note that we
will not explicitly need or calculate the shadow field.

F. Total residual metric perturbation

The total residual metric perturbation is the sum of the
reconstructed piece (20) and the corrector piece (26):

hR
0

ab ¼ ĥ−abΘ− þ ðĥMab þ xMabÞΘM þ ðĥþab þ ĥSab þ xSabÞΘþ:

ð27Þ

Here we have added a prime on the residual field to indicate
that this is not yet in our ultimate choice of gauge.
To put the residual field in its final form, we will perform

a gauge transformation of the shadow field ĥSab þ xSab.
There are three reasons for this. First, it is simply
unnecessary to calculate ĥSab þ xSab. Second, the source
TR
ab has finite differentiability at the particle, and the

transport equations (14) and (23)–(25) cause the shadow
field to inherit this nonsmoothness at all points along
outgoing null geodesics emanating from the particle to
future null infinity; this string singularity is increasingly
softened as the order of the puncture is increased, but it is
still undesirable. Third, the l ¼ 0, 1 modes in the shadow
field are not in an asymptotically flat gauge, which means,
for example, that the orbital frequencies measured at the
particle are not those measured by an inertial observer at
infinity, and “invariant” quantities such as the Detweiler
redshift consequently take incorrect values; for discussions
of this point, see Refs. [6,37], for example.
In fact, since r > rmax is a vacuum region, the CCK

term ĥþab contains almost all of the invariant content
there. This follows from the fact that T ab

0 ĥþab ¼ ψþ
0 , while

the shadow field contributes nothing to the Weyl scalar:
T ab

0 ðĥSab þ xSabÞ ¼ 0. Wald’s theorem [26] therefore
implies that the shadow field can only be composed of a
perturbation ġab toward another Kerr solution plus a gauge
perturbation Lξgab, meaning

ĥSab þ xSab ¼ ġab þ Lξgab ð28Þ

for some ġab and ξa.
We split ξa into an l ¼ 0, 1 piece Ξa that is strictly linear

in time and a piece ξaS that has at most periodic time
dependence. We then subtract a gauge perturbation gen-
erated by

ξa ¼ Ξa þ ξaSΘþ: ð29Þ
In this way, we subtract LΞgab from hab over the
entire range of r, not only in the region r > rmax.
This is necessary because Ξa alone alters frequency values,
and it must be subtracted globally to ensure that the
frequencies throughout spacetime are those measured by
an inertial observer at infinity. The final form of the metric
perturbation in the resulting “shadowless gauge” is hence

hRab ¼ ðĥ−ab − LΞgabÞΘ− þ ðĥMab þ xMab − LΞgabÞΘM

þ ðĥþab þ ġabÞΘþ − 2ξSðarbÞδðr − rmaxÞ; ð30Þ
where rb ≔ ∂br. The vector field Ξa is calculated in
Eq. (137) below. The vector field ξaS, which now appears
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in the Dirac δ term in Eq. (30), is given in Paper I in terms
of TR

ab. In this paper we will not explicitly calculate the δ
term in the residual field, but we return to it in the
Conclusion.
Note that if one were to shrink the worldtube to zero size,

rmin → rmax → r0, the terms involving ΘM would disap-
pear. The field hRab would then be precisely the same as the
retarded field in the standard no-string construction. See
Fig. 1 for a pictorial summary of the CCK reconstruction
and completion, and Fig. 2 for a plot showing the different
quantities involved. Similarly, see Figs. 3 and 4 for a
summary of the corresponding GHZ puncture procedure.
In Table I, we give a summary of the theoretical

expectation of the (ir)regularity of most of the involved
quantities, decomposed into Fourier and harmonic modes
(raised and lower mode indices have the same meaning);
see for example Eqs. (46), (39), (74), and (103). The
coordinates ðt; r; θ;ϕÞ are the usual Schwarzschild coor-
dinates, and u is the outgoing null coordinate, see Eqs. (31)
and (34). Note that the first two equations show a decom-
position into Fourier-t modes, instead of u-modes, but this
does not affect regularity of the modes.
For the most part, the degree of regularity at the particle

can be straightforwardly predicted by, for example, count-
ing the number of derivatives and integrals at each stage of
the calculation. The puncture modes hP;lmab , given in Lorenz
gauge, have a well-known kink at the particle, due to the
presence of terms involving jr − r0j. The second-order
differential operator T ab

0 therefore introduces a jump and
delta function into the modes of ψP

0 (denoted by 2ψ
P
lm,

where the left-subscript “2” refers to its spin weight). The
regularity of the residual field modes 2ψ

R
lm ¼ 2ψ

ret
lm − 2ψ

P
lm

depends on the order of the puncture: the n ¼ −1 term in
hPab removes the δ function in 2ψ

ret
lm, the n ¼ 0 term

removes the jump discontinuity, and so on. For a puncture
of order n ≥ 0, 2ψ

R
lm is therefore Cn. The Hertz potential

modes −2ΦR
lm are obtained by integrating (radially) 2ψ

R
lm

four times, implying it is Cnþ4 at the particle. The
reconstructed field ĥR;lmab , which involves two derivatives
of −2ΦR

lm, is therefore Cnþ2.
The regularity of the corrector tensor is slightly less

straightforward. The effective stress-energy modes TR;lm
ab

are Cn at the particle, analogous to 2ψ
R
lm. The second-order

radial ODEs (23) and (24) then imply that xR;lmmm̄ and xR;lmnm

(and xR;lmnm̄ ) are Cnþ2. But Eq. (25) dictates that xR;lmnn is
obtained via a single integration of the stress-energy tensor.
As a result, one might naively think that the modes of xRnn
would only be Cnþ1 instead of Cnþ2. However, it turns out
that they are one degree more regular than naively expected
due to cancellations on the right-hand side of Eq. (25).
These cancellations, described in Sec. VII, are also the
reason no Dirac δ terms appear at the worldtube boundaries
in Eq. (26). As a consequence, the modes xR;lmab are all at
least Cnþ2 at the particle.

III. CALCULATION OF THE LORENZ-GAUGE
PUNCTURE

The first step in all puncture schemes is the calculation of
the puncture field. Although mode decompositions of
singular fields are a standard ingredient in most self-force
calculations, they typically make use of approximations
which are incompatible with our GHZ-Teukolsky puncture
scheme. A similar issue also affects punctures used in
dealing with the problem of infinite mode coupling when
constructing the source for second-order self-force
calculations [60]. As such, and since the same puncture
was an essential ingredient in producing existing results
from second-order self-force [8,23,24], we defer a full
description of the construction of the puncture to a
forthcoming paper [61] and give here only the essential
details.
Once the puncture is in hand, the bulk of our calculations

in later sections reduce to solving radial differential
equations. We do so numerically, making use of the
Black Hole Perturbation Toolkit (BHPToolkit) [62] and
Mathematica’s built-in function NDSolve.

A. Circular orbits in Schwarzschild spacetime

While our overview in the preceding section remained
general, we will from now on focus our attention on a
particle in a circular orbit around a Schwarzschild black
hole. The background metric gab, in Schwarzschild coor-
dinates ðt; r; θ;φÞ, is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð31Þ

where fðrÞ ≔ 1 − 2M=r. At leading order in the mass ratio,
the particle is a test particle that moves along (timelike)
geodesics of the background metric gab. Given the back-
ground symmetry, we can assumewithout loss of generality
that the motion is in the equatorial plane θ ¼ π=2. Then, for
a circular orbit with trajectory xa ¼ ðt; r0; π=2;φpðtÞÞ the
four-velocity is given by

ua ¼ utð1; 0; 0;ΩφÞ; ð32Þ

where ut≔ ð1−3M=r0Þ−1=2 and Ωφ ≔ dφp=dt ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
.

The point-particle stress-energy tensor (2) reduces to

Tab ¼ 8πM
uaub
r20u

t δðr − r0Þδðθ − π=2Þδðφ − ΩφtÞ: ð33Þ

Given the importance of outgoing null rays in the GHZ
procedure, it is useful to adopt outgoing Eddington-
Finkelstein coordinates, ðu; r; θ;φÞ, defined by u ≔ t − r⋆,
where r⋆ is the usual tortoise coordinate r⋆ ¼ r þ
2M ln ðr=2M − 1Þ. We will refer to Schwarzschild coor-
dinates and Eddington-Finkelstein coordinates as t-slicing
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and u-slicing coordinates, respectively. In u-slicing, the
metric takes the form

ds2 ¼ −fðrÞdu2 − 2drduþ r2ðdθ2 þ sin2 θdφ2Þ: ð34Þ

B. Puncture with exact mode decomposition

The construction of the puncture begins from a 4D,
covariant expression for a Lorenz-gauge puncture derived
from an approximation to the Detweiler-Whiting singular
field [50]. The approximation is obtained as a covariant
expansion in 4D distance from the worldline and is given
explicitly in Eq. (4.7) of Ref. [52]. It includes the leading-
order term given in Eq. (3), but we also keep a further three
orders in the expansion so that the puncture agrees with the
Detweiler-Whiting singular field through order ðdistanceÞ2
from the worldline; in our nomenclature this corresponds to
an order n ¼ 2 puncture.
Following the methods in Ref. [52], this covariant

expression is then converted to a coordinate expression
in terms of a rotated coordinate system such that the particle
is instantaneously at the north pole. The conversion process
involves re-expanding covariant distances in terms of
coordinate distances, again preserving terms in the punc-
ture through order ðdistanceÞ2. We then make the standard
choice Δt ¼ 0, such that the field point and the reference
point on the worldline are at the same Schwarzschild time;
this has the effect of making all time dependence appear
implicitly via the dependence of the puncture on the
coordinate location of the worldline. This yields our final,
exact8 definition for the puncture hPabðt; r; θ;φÞ.
We next follow Ref. [63] and decompose the puncture

onto the Barack-Lousto-Sago (BLS) basis of tensor spheri-
cal harmonics [64,65], which provide an orthogonal basis
for symmetric rank-2 tensors in Schwarzschild spacetime.
We further decompose the time dependence into Fourier

modes, with ω representing the frequency of the mode
(in our case of circular orbits in Schwarzschild spacetime
ω ¼ mΩφ and the Fourier transform is discrete). The result
is a decomposition

hPabðt;r;θ;φÞ¼
X10
i¼1

X
l;m

ail
r
hPilmðrÞYilm

ab ðθ;φÞe−imφpðtÞ ð35Þ

where ail is an l-dependent constant, where the infinite
sum over l starts at l ¼ 0 for i ¼ 1, 2, 3, 6, at l ¼ 1 for
i ¼ 4, 5, 8, 9, and at l ¼ 2 for i ¼ 7, 10, and where the sum
over m is over all integers −l ≤ m ≤ l.

To obtain the puncture mode coefficients hPilmðrÞ, we
must integrate the 4D puncture field against a spherical
harmonic over spheres of constant ðt; rÞ. This is most
efficiently done by considering the modes hPilm0 ðrÞ with
respect to the rotated coordinate system and then applying
an exact rotation at the level of modes [63]:

hPilmðrÞ ¼
X
m0

Dl
mm0hPilm0 ðrÞ ð36Þ

where Dl
mm0 is the Wigner-D matrix for the time-dependent

rotation.
Traditionally, the angular integrals over the sphere are

made analytically tractable by making approximations such
that the mode-decomposed puncture captures the behavior
of the exact puncture only near the worldline. In particular,
the integrals can be approximated by a power series in
Δr ≔ r − r0 [52]. Similarly, the use of a rotated coordinate
system means that the puncture can be approximated by a
small number ofm0 modes [63]. By considering a sufficient
number of powers of Δr and a sufficient number of m0
modes, one can ensure that, when summed over modes and
evaluated on the worldline, the mode decomposed puncture
and its first few derivatives agree with those of the exact
puncture. The number of derivatives is in one-to-one
correspondence with the number of powers of Δr and
the number of m0 modes. Unfortunately, neither of these
approximations are valid when using a puncture to address
the problem of infinite mode coupling in second-order self-
force calculations [60], and they also prove problematic in
our context of a GHZ-Teukolsky puncture scheme. One
reason for this is that the expansion in powers of Δr
necessarily introduces a divergence at large l at all points
away from Δr ¼ 0, implying that the l-mode sum of the
residual field diverges everywhere except at the particle;
see the discussion around Eq. (127) in Ref. [45]. Instead,
we work with an exact mode decomposition of the
puncture, which we next describe, so that we do not need
to be concerned with such issues.
Fortunately, the approach used in approximate mode

decompositions can be adapted to instead produce exact
decompositions. A version of this exact mode decompo-
sition approach is detailed in the context of scalar fields in
Sec. IV B of Ref. [60]. Defining the rotated angular
coordinates ðθ0;φ0Þ in which the particle is instantaneously
at the north pole (θ0 ¼ 0), the approach essentially relies on
Eq. (44) of Ref. [60], which gives a closed form for the
integral over θ0 in the case where the integral is against a
scalar spherical harmonic withm0 ¼ 0. Integrals for m0 ≠ 0
can be reduced to the m0 ¼ 0 form by integrating by parts
m0 times. Similarly, integrals against vector and tensor
harmonics can be reduced to the same form using identities
relating associated Legendre polynomials and their deriv-
atives. This just leaves the integral over φ0. This can also, in
principle, be written in closed form in terms of complete

8Note that the puncture is exact both in terms of the rotated,
time-dependent coordinate system and in terms of the original,
unrotated coordinate system in which the worldline is on an
equatorial orbit; the two are related by an exact, time-dependent
3D rotation.
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elliptic integrals. In practice, however, the complexity of
the expressions meant that we found it more straightfor-
ward to evaluate them as 1D numerical integrals.
In summary, our puncture is constructed using a natural

extension of the hybrid analytical-numerical mode decom-
position scheme developed in Ref. [60]. We also adopt the
following practical choices in our implementation:
(1) We use a second order puncture, accurate through

order ðdistanceÞ2 from the worldline;
(2) We use the angular window function W4

10 from
Ref. [60] to smooth undesirable behavior at the south
pole while preserving four orders in the behavior in
the radial direction and modes up to m0 ¼ 10;

(3) We truncate the sum over rotated modes at m0 ¼ 10,
which we found sufficient to recover the full unrotated
puncture up to approximately machine precision;

(4) We use the NIntegrate function in Mathematica
with up to 32 digits of working precision, so that the
integral is determined to approximately machine
precision.

IV. CALCULATION OF THE RESIDUAL WEYL
SCALAR

The next step in our scheme is to calculate the residual
Weyl scalar ψR

0 . It satisfies Eq. (12), which we reproduce
here for convenience, along with the corresponding equa-
tion for the spin-weight s ¼ −2 Weyl scalar ψR

4 :

OψR
0 ¼ Sab

0 TR
ab; ð37Þ

O0ψR
4 ¼ Sab

4 TR
ab: ð38Þ

The second-order differential operators O;O0, Sab
0 and Sab

4

are explicitly given in Appendix A. In principle, one could
calculate the residual IRG Hertz potential from either ψR

0 or
ψR
4 . Following Paper I, we choose to work with ψ0

exclusively, but we include the equations satisfied by ψ4

because we will encounter them while reconstructing the
Hertz potential.
The Teukolsky equation is fully separable in a basis of

Fourier modes and spin-weighted spheroidal harmonics,
even in Kerr spacetime. In Schwarzschild spacetime the
spheroidal harmonics reduce to spherical ones. The specific
form of the mode ansatz then depends on the choice of
tetrad. Choosing the Kinnersley tetrad, decomposing into
Fourier-t modes, and specializing to circular orbits in
Schwarzschild spacetime, we write the ansatz as

ψ0 ¼
X∞
l¼2

Xl
m¼−l

2ψlm
ðrÞ2Ylmðθ;ϕÞe−imΩφt; ð39Þ

r4ψ4 ¼
X∞
l¼2

Xl
m¼−l

−2ψlm
ðrÞ−2Ylmðθ;ϕÞe−imΩφt; ð40Þ

T0 ≔ Sab
0 Tab ¼ −

1

2r2
X∞
l¼2

Xl
m¼−l

2Tlm
ðrÞ2Ylmðθ;ϕÞe−imΩφt;

ð41Þ

T4 ≔ r4Sab
4 Tab

¼ −
1

2r2
X∞
l¼2

Xl
m¼−l

−2Tlm
ðrÞ−2Ylmðθ;ϕÞe−imΩφt; ð42Þ

where it is understood that the expansions apply for the
retarded, residual, and puncture fields and for the physical
and effective sources. In the above, the left subscripts are
used to keep track of the quantities’ spin weights s ¼ �2.
We remark that, while the choice of t-slicing has tradi-

tionally been used when computing homogeneous solu-
tions of the Teukolsky equation, our final result for the
modes of retarded, puncture and residual fields are all
written in u-slicing. At the level of modes, the transition
from t to u-slicing corresponds to a simple multiplicative
factor: the radial coefficients in expansions of the formP

lm R½u�
lmðrÞsYlme−imΩφu and

P
lm R½t�

lmðrÞsYlme−imΩφt are
related by

R½u�
lmðrÞ ¼ R½t�

lmðrÞe−imΩφr⋆ : ð43Þ

This applies to the mode decompositions of all fields.
The radial coefficients sψlmðrÞ satisfy the radial

Teukolsky equation:

s□lmsψlm ≔
�
Δ−s d

dr

�
Δsþ1

d
dr

�
þ K2 − 2isðr −MÞK

Δ

þ 4ismΩφr − sλlm

�
sψlm ¼ sTlm; ð44Þ

where Δ ≔ r2fðrÞ and K ≔ mr2Ωφ. In Schwarzschild
spacetime, the eigenvalues sλlm are given explicitly as

sλlm ¼ lðlþ 1Þ − sðsþ 1Þ: ð45Þ

In the following subsections, we calculate ψR
0 at the level

of its individual modes 2ψ
R
lm. As explained below Eq. (12),

we can find these modes in two different ways: either by
first calculating ψ ret

0 and subtracting ψP
0 or by directly

solving the field equation (37) for ψR
0 . We refer to the first

as the subtraction method and the second as the effective-
source method. In either approach, the key input is the
puncture field modes 2ψ

P
lm. We describe our calculation of

2ψ
P
lm before turning to our implementation of the two

methods.
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A. Puncture field

It is straightforward to compute ψP
0 from hPab using the

definition of the perturbed Weyl scalar in terms of the
metric perturbation, ψP

0 ≔ T ab
0 hPab, given in Eq. (A26). As

described in Sec. III, the puncture is computed using the
BLS tensor spherical harmonics [64,65]. Here we express
the modes of ψP

0 , defined as in Eq. (39), directly in terms of
the BLS modes hPilm.
We start by writing the modes of T ab

0 hPab in terms of the
modes hP;lmab in a spin-weighted harmonic decomposition,

hPab ¼
X∞
l¼jsj

Xl
m¼−l

hP;lmab ðrÞsYlmðθ;φÞe−imΩφt; ð46Þ

where s denotes the spin weight of the given tetrad
component (e.g., s ¼ 0 for hP;lmll , s ¼ −1 for hP;lmlm̄ ,
etc.); see Appendix A. We suppress the spin weight s of
the modes hP;lmab ðt; rÞ for notational simplicity. We then
reexpress the modes hP;lmab in terms of the BLS modes hPilm
using the conversions in Appendix B. (Note the mode
indices l; m have the same meaning whether they are
subscripts or superscripts.) Our result for 2ψ

P
lm is

2ψ
P
lm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp
4r3f2

ðhP1lm þ hP2lmÞ

−
ðf2∂2r − ð∂rfÞ∂t þ 2f∂t∂r þ ∂

2
t ÞðhP7lm − ihP10;lmÞ

4rf2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þðlþ 2Þp

4r2f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ð−∂rf þ f∂r þ ∂tÞ

× ðhP4lm þ hP5lm − iðhP8lm þ hP9lmÞÞ; ð47Þ

where it is understood that ∂t ¼ −imΩφ. The same relation-
ship holds between 2ψ

R
lm and hRilm and between 2ψ

ret
lm

and hretilm.
Now recall that hPab ¼ hPabΘM. The sharp window func-

tion ΘM causes a jump in the puncture hPab at the
worldtube’s edges, which then translates into radial δ
and δ0 distributions for 2ψ

P
lm. Consequently, the Weyl

scalar modes 2ψ
P
lm are schematically of the form

2ψ
P
lm ¼ 2ψ

smooth
lm ðrÞΘMðrÞ þ ψδ;P

0;lmδðr − r0Þ
ð2ψδ;P

lmÞ�δMðrÞ þ ð2ψδ0;P
lmÞ�δ0MðrÞ ð48Þ

for some smooth ψ smooth
lm and constants ψδ;P

0;lm, ð2ψδ;P
lmÞ�, and

ð2ψδ0;P
lmÞ�. In the above, we defined for convenience,

δMðrÞ ≔ Θ0M ¼ δðr − rminÞ − δðr − rmaxÞ; ð49Þ

δ0MðrÞ ≔ Θ00M ¼ δ0ðr − rminÞ − δ0ðr − rmaxÞ: ð50Þ

The � superscripts indicate that these quantities are to be
evaluated at rmin or rmax, depending on which δ function
they are associated with. This form is obtained by making
use of the distributional identities

FðxÞδðx − x0Þ ¼ Fðx0Þδðx − x0Þ; ð51Þ

FðxÞδ0ðx−x0Þ¼Fðx0Þδ0ðx−x0Þ−F0ðx0Þδðx−x0Þ: ð52Þ

Doing so, one finds the coefficients 2ψ
δ;P
lm and 2ψ

δ0;P
lm are

explicitly given by

2ψ
δ;P
lm ¼ −

ðfþ fr∂r þ 2r∂tÞðhP7lm − ihP10;lmÞ
4fr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl− 1Þlðlþ 1Þðlþ 2Þp
þ ðl− 1Þðlþ 2ÞðhP4lm þ hP5lm − iðhP8lm þ hP9lmÞÞ

4fr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl− 1Þlðlþ 1Þðlþ 2Þp ;

ð53Þ

2ψ
δ0;P
lm ¼ −

hP7lm − ihP10;lm
4r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp ; ð54Þ

where ∂t is understood as −imΩφ.
Finally, we use Eq. (43) to convert to u-slicing.

B. Subtraction method

In the subtraction method, we calculate 2ψ
R
lm from 2ψ

ret
lm

using

2ψ
R
lm ¼ 2ψ

ret
lm − 2ψ

P
lm: ð55Þ

In the remainder of this section we write formulas for
generic s rather than specializing to s ¼ 2. This is because,
while the residual and puncture fields are only computed
for s ¼ þ2, solutions to the Teukolsky equation for s ¼ −2
will also play a role when computing the (s ¼ −2) Hertz
potential in later sections.
The retarded field modes are obtained via the method of

variation of parameters. Specifically, we make use of the
Teukolsky package from the BHPToolkit to compute two
linearly independent solutions to the homogeneous radial
Teukolsky equation (44), referred to as the “in” and “up”
solutions. When combined with the Fourier time factor, the
“in” solutions represent purely ingoing waves at the future
horizon. The “up” solutions, combined with the Fourier
factor, instead represent purely outgoing waves at future
null infinity. Their asymptotic behaviors are

sψ
in
lmðrÞ ∼ Δ−se−imΩφr⋆ ; r → 2M; ð56Þ

sψ
up
lmðrÞ ∼ r−ð1þ2sÞeimΩφr⋆ ; r → ∞: ð57Þ

The inhomogeneous retarded solution is then written in
terms of these homogeneous solutions, sψ

in
0 and sψ

up
0 , as
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sψ
ret
lm ¼ sC

in
lmðrÞsψ in

lmðrÞ þ sC
up
lmðrÞsψup

lmðrÞ; ð58Þ

where the weighting coefficients are given by

sC
in
lmðrÞ ¼

Z
∞

r

sψ
up
lmðr0Þ

vWðr0ÞΔðr0Þ sTlmðr0Þdr0; ð59Þ

sC
up
lmðrÞ ¼

Z
r

2M

sψ
in
lmðr0Þ

sWðr0ÞΔðr0Þ sTlmðr0Þdr0; ð60Þ

with

sWðrÞ ≔ sψ
in
lmðrÞ

dsψ
up
lm

dr
− sψ

up
lm

dsψ
in
lmðrÞ
dr

: ð61Þ

Since the retarded field is sourced by a point-particle stress-
energy, sTlm is a linear combination of δðr − r0Þ and its
first and second derivatives. The integrals can therefore be
evaluated explicitly in terms of the homogeneous solutions
(and their derivatives) on the worldline. The integrals are
constants for r > r0 and r < r0, with sC

in
lm ¼ 0 when

r > r0 and sC
up
lm ¼ 0 when r < r0. The modes of the

retarded solution therefore split into two solutions inside
and outside the particle’s orbit:

sψ
ret
lmðrÞ ¼

(
sψ

−
lm ≔ sC

−
lm sψ

in
lmðrÞ; r < r0;

sψ
þ
lm ≔ sC

þ
lm sψ

up
lmðrÞ; r > r0;

ð62Þ

where the constants

sC
−
lm ≔ sC

in
lmðr < r0Þ ¼

Z
∞

2M

sψ
up
lmðr0Þ

sWðr0ÞΔðr0Þ sTlmðr0Þdr0;

ð63Þ

sC
þ
lm ≔ sC

up
lmðr > r0Þ ¼

Z
∞

2M

sψ
in
lmðr0Þ

sWðr0ÞΔðr0Þ sTlmðr0Þdr0

ð64Þ

can be explicitly evaluated in terms of the coefficients of δ,
δ0, and δ00 in sTlm . As before, we modify these expression
by including the appropriate exponential factor to bring the
mode solution from t- to u-slicing using Eq. (43).
In addition to sψ

�
lm, the retarded field modes contain a

term proportional to δðr − r0Þ, as shown in Eq. (13). The
coefficient of the delta function can be obtained straight-
forwardly by evaluating the weighting coefficients sC

in
lmðrÞ

and sC
up
lmðrÞ; the result is necessarily identical to the

coefficient ψδ;P
0 appearing in Eq. (48). Since the delta

functions therefore cancel out in 2ψ
R
lm, we will not need the

explicit value of ψδ;P
0 here.

C. Effective-source method

In the effective-source approach, we directly solve
Eq. (37) for the residual field.
At the level of modes, the equation becomes

2□lm2ψ
R
lm ¼ 2Tlm − 2□lm2ψ

P
lm≕ 2S

eff
lm: ð65Þ

Therefore, solving this alternative field equation with an
effective source, 2S

eff
lm, will yield the residual field without

the need for mode-by-mode subtraction of the puncture
field from the retarded field. Furthermore, the puncture
field, ψP

lm, is defined in such a manner that doing this
cancellation at the level of the field equation will leave
us with a source that does not involve Dirac delta
distributions.
We solve Eq. (65) using a worldtube approach, based on

the similar scheme implemented in [66]. Schematically, the
residual radial Teukolsky function obeys Eq. (65) inside the
worldtube; outside the worldtube the residual is identical to
the retarded field and thus is a solution to the homogeneous
Teukolsky equation. Quantitatively, we adopt the following
ansatz for the residual field,

2ψ
R
lm¼

8>><
>>:

2a
in
lm2ψ

in
lm r<rmin;

2b
up
lm2ψ

up
lmþ 2b

in
lm2ψ

in
lmþ 2ψ

inh
lm rmin<r<rmax;

2a
up
lm2ψ

up
lm r>rmax:

ð66Þ

Here 2ψ
inh
lm is the particular inhomogeneous solution found

from the standard variation of parameters approach, in
analogy with Eq. (58):

2ψ
inh
lm ¼ 2C

in
lmðrÞ2ψ in

lmðrÞ þ 2C
up
lmðrÞ2ψup

lmðrÞ; ð67Þ

with

2C
in
lmðrÞ ¼

Z
rmax

r

2ψ
up
lmðr0Þ2Sefflmðr0Þ
2Wðr0ÞΔðr0Þ dr0; ð68Þ

2C
up
lmðrÞ ¼

Z
r

rmin

2ψ
in
lmðr0Þ2Sefflmðr0Þ
2Wðr0ÞΔðr0Þ dr0: ð69Þ

Here, the unknown coefficients 2a
in=up
lm and 2b

in=up
lm are

constrained by demanding continuity of 2ψ
ret
lm ¼ 2ψ

R
lm þ

2ψ
P
lm and

d
2
ψ ret
lm

dr at the worldtube boundaries, yielding

2a
up
lm ¼ 1

2ψ
up
lmðrmaxÞ

f2ψup
lmðrmaxÞ½2buplm þ 2C

up
lmðrmaxÞ�

þ 2b
in
lm2ψ

in
lmðrmaxÞ þ 2ψ

P
lmðrmaxÞg; ð70Þ
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2a
in
lm ¼ 1

2ψ
in
lmðrminÞ

�
2b

up
lm2ψ

up
lmðrminÞ

þ 2ψ
in
lmðrminÞ½2binlm þ 2C

in
lmðrminÞ� þ 2ψ

P
lmðrminÞ

�
:

ð71Þ

Similarly, the coefficients 2b
in=up
lm are given by

2b
up
lm ¼ W½2ψP

lmðrÞ; 2ψ in
lmðrÞ�

W½2ψ in
lmðrÞ; 2ψup

lmðrÞ�
				
r¼rmin

;

2b
in
lm ¼ W½2ψP

lmðrÞ; 2ψup
lmðrÞ�

W½2ψup
lmðrÞ; 2ψ in

lmðrÞ�
				
r¼rmax

; ð72Þ

whereW½ψ1;ψ2� ≔ ψ1
dψ2

dr − ψ2
dψ1

dr is the usual Wronskian.
We note that since the residual field must reduce to the
retarded field outside the worldtube, the coefficients 2a

up=in
lm

are necessarily found to be equal to the coefficients 2C
�
lm in

the retarded solution (62).
The placement of the worldtube boundaries should have

no effect on our results on the whole, but practically we find
the constraints jr0 − rmin =maxj≲ 3M and rmin > 3M ensure
an optimal level of error.

D. Behavior of the modes of the retarded, puncture and
residual fields

Due to the point-particle source, the modes of the
retarded and puncture fields are discontinuous at r ¼ r0.
See, for example, Fig. 5 for the jump in the l ¼ m ¼ 2
mode. They also contain a radial delta function δðr − r0Þ,
as alluded to earlier. In the residual field modes

2ψ
R
lmðrÞ ≔ 2ψ

ret
lmðrÞ − 2ψ

P
lmðrÞ, the distributional content

and discontinuities cancel out. More precisely, the jumps in

the retarded and puncture field modes across r ¼ r0 are
such that 2ψ

R
lm is Cn there, where n denotes the order of the

puncture.
The sum over the modes of ψ ret

0 does not converge at the
particle, as expected for a divergent quantity. On the other
hand, the sum of modes of ψR

0 converges algebraically at
the particle, as one would expect for a finitely differentiable
function. For the second-order puncture used here, the
terms in the sum fall off asymptotically as l−2 for large l.
This is shown in the top panel of Fig. 6, where we plot the
l-modes

2ψlðr; θÞ ≔
Xl
m¼−l

2ψlmðrÞeimΩφr⋆
2Ylmðθ; 0Þ; ð73Þ

evaluated at the particle’s position r ¼ r0, θ ¼ π=2, for the
retarded and residual field. Note that the exponential factor
arises because 2ψlm is in u-slicing, and we have used

2Ylmðθ;φÞe−imΩφt ¼ 2Ylmðθ; 0Þeimðφ−ΩφtÞ and setφ ¼ Ωφt.
In the bottom panel of Fig. 6, we show a similar plot, but

where the l-modes are evaluated at r ¼ r0 − 2M, away
from the particle. In principle, away from r ¼ r0 fields are
smooth functions on the sphere and we should expect the
mode-sum to converge exponentially. As is clear from the
plot, despite computing the retarded and residual fields up

FIG. 5. The l ¼ m ¼ 2mode of the retarded and residual Weyl
scalars, ψ ret

0 and ψR
0 . The retarded field mode is discontinuous at

the particle’s orbital radius r0. 2ψ
ret
lm also contains a δ function at

r0, although not visible in the plot. The residual field is
continuous at r0 but discontinuous on the worldtube’s edges,
rmin =max, and additionally contains a δ and δ0 there, a conse-
quence of our choice of sharp window function.

FIG. 6. l-mode behavior of ψ ret
0 and ψR

0 at the particle, r ¼
r0 ¼ 10M; θ ¼ π=2 (top, log-log grid), and away from the
particle, r ¼ 8M; θ ¼ π=2 (bottom, semilog grid). Note the much
larger range in l in the bottom panel.
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to l ¼ 90, a clear exponential behavior cannot be observed.
This is in contrast to the clean polynomial behavior at the
particle despite a much smaller range in l shown in the
upper plot. Upon investigating this feature more closely, we
can remark that: (1) this poor behavior worsens the further
away the puncture is evaluated from the particle, with a
particularly poor behavior for r < r0 and for small r0;
(2) the order of the puncture strongly affects this behavior;
for example, when computing the residual field using a
zeroth-order puncture (instead of a second-order one as is
otherwise the case throughout the rest of this work) at
r ¼ r0 − 2M ¼ 8M, the residual field has a zero crossing at
around l ≃ 41, whereas it does not for a second-order
puncture; see again Fig. 6, where the residual field only
crosses through zero around l ≃ 87. This poor behavior
away from the particle is expected to be particularly
significant for second-order calculations.

V. CALCULATION OF THE RESIDUAL HERTZ
POTENTIAL

Generically, the Hertz potential Φ is a solution to a
fourth-order linear differential equation, sourced by either
ψ0 or ψ4. There are in fact four such equations, which come
in pairs called the angular and radial inversion formulas,
one pair each for the cases sourced by ψ0 and ψ4. The
choice of which formula is used, and whichWeyl scalar one
is working with, determines whether the ensuing recon-
structed metric will be in the IRG or outgoing radiation
gauge (ORG) [7]. In the present case, we will work with the
radial inversion relation, given in Eq. (14), in order to
reconstruct the metric perturbation in the IRG from ψ0.
When solving the radial inversion relation, it is conven-

ient to work with the complex conjugate of the Hertz
potential, Φ̄ ≔ Φ⋆. We can decompose Φ and Φ̄ in spin-
weighted spherical harmonics,

Φ ¼
X∞
l¼2

Xl
m¼−l

−2ΦlmðrÞ−2Ylmðθ;φÞe−imΩφu; ð74Þ

Φ̄ ¼
X∞
l¼2

Xl
m¼−l

2Φ̄lmðrÞ2Ylmðθ;φÞe−imΩφu: ð75Þ

Note Φ̄ has spin weight þ2, motivating the notation

2Φ̄lmðrÞ, but it is not a solution to the s ¼ þ2

Teukolsky equation. These expansions are used for
the residual Hertz potential as well as for the no-string
vacuum potentials outside the worldtube. The well-known
identity

sY
⋆
lm ¼ ð−1Þmþs

−sYl−m ð76Þ

implies that the modes of Φ and Φ̄ are simply related by

2Φ̄lm ¼ ð−1Þmð−2Φl−mÞ⋆: ð77Þ

(Note that the quantity on the left represents a mode of a
complex-conjugated field, while the quantity on the right
represents the complex conjugate of a mode coefficient.)
The inversion relation (14) is then given by

d4

dr4 2Φ̄R
lm ¼ 22ψ

R
lm; ð78Þ

where 2ψ
R
lm is the mode coefficient in u-slicing.

As explained in Sec. II C, we only directly solve Eq. (78)
inside the worldtube. Outside the worldtube, we solve the
vacuum adjoint Teukolsky equation O†Φ� ¼ 0 for the no-
string potentials Φ�. In analogy with 2ψ

�
lm, the modes

−2Φ�
lm are proportional to “in” and “up” vacuum solutions

to the s ¼ −2 radial Teukolsky equation. As reviewed in
Appendix C, the constants of proportionality are deter-
mined by imposing Eq. (78).
For nonstatic modes (in this case, modes where m ≠ 0),

the final expressions (see again Sec. II C), in u-slicing, are
given by

2Φ̄ret
lmðrÞ¼2Aþ

lm 2C
þ
lm−2ψ

up
lmðrÞeimΩφr⋆ ; r>rmax; ð79Þ

2Φ̄ret
lmðrÞ¼2A−

lm 2C
−
lm−2ψ

in
lmðrÞeimΩφr⋆ ; r<rmin; ð80Þ

where 2C
�
lm are the coefficients in Eq. (62), and

Aþ
lm ≔

16ω4

p
; ð81Þ

A−
lm ≔

1

ðwþ 4iMÞðw2 þ 4M2Þw ; ð82Þ

p ≔ −2λ
2
lmð−2λ2lm þ 2Þ2 þ 144ω2M2; ð83Þ

w ≔ 8ωM2: ð84Þ

Here we have corrected transcription errors that appeared in
Eq. (53) of Paper I.
For static modes, they instead read

2Φ̄ret
l0ðrÞ ¼

2M4

ðl − 1Þ4 2C
þ
l0 −2ψ

up
l0ðrÞ; r > rmax;

2Φ̄ret
l0ðrÞ ¼

2M4

ðl − 1Þ4 2C
−
l0 −2ψ

in
l0ðrÞ; r < rmin: ð85Þ

Note that the functional form of the above formulas is
sensitive to the choice of normalization of the basis
functions (although the actual numerical values of 2Φ̄ret

l0 ,
of course, are not); see Appendix C for details. To our
knowledge, Eq. (85) appears here for the first time.
Moving now to solving for the Hertz potential inside the

worldtube, we solve the ODE (78) with the following
boundary conditions on the worldtube boundary r ¼ rmin:
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lim
r→rmin

þ
∂
n
r 2Φ̄R

lm ¼ ∂
n
r 2Φ̄ret

lm þ ½∂nr 2Φ̄R
lm�; ð86Þ

for n ¼ 0, 1, 2, 3. In the above, ½F� ≔ ðlimr→rþmin
FðrÞÞ −

ðlimr→r−min
FðrÞÞ denotes the jump of the quantity FðrÞ

across rmin. In other words, we demand that the jump of
the Hertz potential (and its first three derivatives) across the
worldtube at rmin matches the jump induced by the
puncture.
The jumps ½∂nr 2Φ̄R

lm� can be easily computed in terms of
the coefficients of the delta functions in ψR

0 . Specifically,
recalling the schematic form of ψR

0 in Eq. (48), in a
neighborhood of r ¼ rmin we have

2ψ
R
lm ¼ 2A

o
lmδ

0ðr − rminÞ þ 2B
o
lmδðr − rminÞ; ð87Þ

plus a piecewise smooth function. Note that 2A
o
lm and 2B

o
lm

are constants. By integrating the inversion relation in a
neighborhoodof rmin,we find these δ functions then imply that

½2Φ̄R
lm� ¼ ½Þ2Φ̄R

lm� ¼ 0; ð88Þ

½Þ2
2Φ̄R

lm� ¼ 22A
o
lm; ð89Þ

½Þ3
2Φ̄R

lm� ¼ 22B
o
lm; ð90Þ

as given in [45] (with a change in sign convention).
In Fig. 7, we show the large-l behavior of the modes of

the residual Hertz potential, −2ΦR
lm, at the particle,

r0 ¼ 10M. Here, in analogy with Eq. (73), we define
the l modes as

ΦR
lðr; θÞ ≔

Xl
m¼−l

−2ΦR
lmðrÞeimΩφr⋆−2Ylmðθ; 0Þ ð91Þ

and evaluate at r ¼ r0, θ ¼ π=2. We would naively expect a
power-law behavior that is dependent on the order of the

puncture, but a clear power law cannot be identified
for lmax ¼ 40.
We do not display a corresponding plot for the retarded

field. But we note that, unlike the residual field, the retarded
field exhibits clear power-law convergence at the particle.
More precisely, if the fields Φ� are evaluated at the particle
(as in a traditional no-string solution), then after summing
over the m-modes, the large-l behavior of the Hertz
potential modes are given by −2Φret

l ∼ l−2. This contrasts
with the sum of the l-modes of ψ ret

0 , which diverges at the
particle like l2; as expected, the Hertz potential is four
orders more regular than the Weyl scalar.

VI. RESIDUAL METRIC PERTURBATION:
HERTZ TERM

From the Hertz potential, most of the residual metric
perturbation is reconstructed via Eq. (19). The recon-
structed metric perturbation is in the IRG since
ĥRablb ¼ 0 ¼ gabĥRab. The only nontrivial components are

ĥRmm ¼ ððS†0Þm̄ m̄ΦRÞ⋆; ð92Þ

ĥRnm ¼ ððS†0Þnm̄ΦRÞ⋆; ð93Þ

ĥRnn ¼ ðS†0ÞnnΦR þ ððS†0ÞnnΦRÞ⋆: ð94Þ

Decomposing the LHS and RHS in spherical harmonics
and u-slicing as given in Eqs. (46) and (75), we find the
modes are explicitly given by

ĥlmmm ¼
�
2−2Φ̄0

lmðrÞ
r

− −2Φ̄00
lmðrÞ

�
; ð95Þ

ĥlmnm ¼ −
1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

2

r
× ð−2−2Φ̄lmðrÞ þ r−2Φ̄0

lmðrÞÞ; ð96Þ

ĥlmnn ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp

2r2

×


−2Φ̄lmðrÞ þ ð−1Þm−2Φ̄

⋆
l−mðrÞ

�
; ð97Þ

ĥlmm̄ m̄ ¼ ð−1Þmðĥl−mmm Þ⋆; ð98Þ

ĥlmnm̄ ¼ ð−1Þmþ1ðĥl−mnm Þ⋆: ð99Þ

VII. RESIDUAL METRIC PERTURBATION:
CORRECTOR TENSOR

The generic form of the corrector tensor xRab is given in
Eq. (22). In particular, there are only three nontrivial pieces
(one of which is complex): xRnn, xRnm, and xRmm̄, along with
xRnm̄ ≔ ðxRnmÞ⋆. These three pieces satisfy the hierarchical

FIG. 7. Large-l behavior of the modes of ΦR at the particle,
r ¼ r0 ¼ 10M, rmin ¼ 8M and rmax ¼ 12M.
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system of equations (23)–(25). In the Kinnersley tetrad and
u-slicing coordinates, these equations become radial ODEs
given by

−ð∂2r þ 2r−1∂rÞxRmm̄ ¼ TR
ll; ð100Þ

−
�
1

2
∂
2
r þ r−1∂r − r−2

�
xRnm ¼ TR

lm þN xRmm̄; ð101Þ

ðr−1∂r þ r−2ÞxRnn ¼ TR
ln þ UxRmm̄ þVxnm þ V̄xRnm̄; ð102Þ

where the operators N , U, V and V̄ are given in
Eqs. (A35)–(A38).
As usual, one can decompose xRab and TR

ab into spin-
weighted spherical harmonic and Fourier u-modes,

xRab ¼
X∞
l¼jsj

Xl
m¼−l

xR;lmab ðrÞsYlmðθ;ϕÞe−imΩφu; ð103Þ

TR
ab ¼

X∞
l¼jsj

Xl
m¼−l

TR;lm
ab ðrÞsYlmðθ;ϕÞe−imΩφu; ð104Þ

where s is the spin weight of the tetrad component (s ¼ 0

for xRnn, s ¼ 1 for xRnm, etc.). When applied directly to the
radial modes, the operators N , U, V and V̄ are explicitly
given by

N ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞðlþ sþ 1Þp

2
ffiffiffi
2

p
r

∂

∂r
; ð105Þ

U ¼ 1

2r2

�
−ðl2 þ l − 4imrΩφ − 2Þ þ ð106Þ

ð2imr2Ωφ − 6M þ 4rÞ ∂

∂r
þ rðr − 2MÞ ∂

2

∂r2

�
; ð107Þ

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sþ 1Þðlþ sÞp ð3þ r ∂

∂rÞ
2

ffiffiffi
2

p
r2

; ð108Þ

V̄ ¼ −V: ð109Þ

At the level of the radial modes, the usual property of the
spin-weighted spherical harmonics then implies that
xR;lmnm̄ ¼ ð−1Þmþ1ðxR;l−mnm Þ⋆. Furthermore, one can check
explicitly that xR;l−mab ¼ ð−1ÞlðxR;lmab Þ⋆. Combining both
relations, one finds a simple relationship between the radial
modes of xRnm and xRnm̄, namely

xR;lmnm̄ ¼ ð−1Þlþmþ1xR;lmnm : ð110Þ
From now on in this section, we will suppress mode indices
lm for brevity.

The form of the solution for the corrector tensor is given
in Eq. (26). In that solution, we only require the piece inside
the worldtube, denoted xMab, which we obtain by solving
the ODEs (100)–(102) numerically. Recall that the punc-
ture hPab ¼ hPabΘM. Since the effective stress energy
TR
ab ≔ Tab − EabðhPÞ ∼ ∂

2hP, it follows that TR
ab contains

both δ and δ0 distributions on the worldtube’s boundaries.
This distributional content results in jump conditions on the
corrector tensor across the worldtube. Since we are only
interested in computing the corrector tensor inside the
worldtube, we only need to account for the distributional
content at r ¼ rmin.
Therefore, with the distributional content at r ¼ rmax

ignored, each of the terms appearing on the right-hand side
(rhs) of (100)–(102) are of the schematic form,

TR
ab ¼ ð� � �ÞΘðr − rminÞ þ δT−

abδðr − rminÞ
þ ΔT−

abδ
0ðr − rminÞ; ð111Þ

N xRmm̄ ¼ ð� � �ÞΘðr − rminÞ þ
1

2
ð−x−mm̄δðr − rminÞ; ð112Þ

VxRnm ¼ ð� � �ÞΘðr − rminÞ þ
1

2
ð0−x−nmδðr − rminÞ; ð113Þ

V̄xRnm̄ ¼ ð� � �ÞΘðr − rminÞ þ
1

2
ð−x−nm̄δðr − rminÞ; ð114Þ

UxRmm̄ ¼ ð� � �ÞΘðr − rminÞ þ
f−

2
x0−mm̄δðr − rminÞ

þ
�
imΩφ þ

2f−

rmin

�
x−mm̄δðr − rminÞ

þ f−

2
x−mm̄δ

0ðr − rminÞ; ð115Þ

where a prime on xab denotes a radial derivative and a “−”
superscript on a quantity indicates evaluation of that
quantity at rmin. In the case of discontinuous quantities,
such as the corrector tensor itself, the superscript denotes
the limit from above, as in

x−ab ≔ lim
r→ðrminÞþ

xRab ¼ lim
r→ðrminÞþ

xMab: ð116Þ

In the above, the operators ð and ð0 are to be understood as
the operator acting directly at the level of radial modes, in
which case they simply reduce to a multiplicative factor

ð ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞðlþ sþ 1Þp

ffiffiffi
2

p
r

; ð117Þ

ð0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ sÞðl − sþ 1Þp

ffiffiffi
2

p
r

: ð118Þ
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There are multiple equivalent ways of translating the δ
and δ0 source terms into boundary/jump conditions for the
corrector tensors. One way is to use the explicit integral
solution of the ODE system, given in Eqs. (59)–(61) of
Ref. [45]. Only the distributional content will contribute in
computing xRab (and its first derivative) at rmin.
Alternatively, one can work with the ODE system itself.

Returning to the ODE for xRmm̄, Eq. (100), we require the
corrector tensors to vanish outside the worldtube r < rmin.
The corrector tensor xRab then contains a Heaviside function
at r ¼ rmin. Explicitlywriting it out in Eq. (100) for example,
and using the standard identity FðrÞδ0ðr − rminÞ ¼
F−δ0ðr − rminÞ − ∂rF−δðr − rminÞ, we find the left-hand
side reads,

ð� � �ÞΘðr − rminÞ −
2

r
ðxMmm̄ þ r∂rxMmm̄Þδðr − rminÞ

− xMmm̄δ
0ðr − rminÞ ð119Þ

¼ ð� � �ÞΘðr − rminÞ −
�

2

rmin
x−mm̄ þ x0−mm̄

�
δðr − rminÞ

− x−mm̄δ
0ðr − rminÞ: ð120Þ

Equating the coefficients in front of δðr − rminÞ and δ0ðr −
rminÞ in this expression to the corresponding coefficients in
Eq. (111) gives

x−mm̄ ¼ −ΔT−
ll; ð121Þ

x0−mm̄ ¼ 2

rmin
ΔT−

ll − δT−
ll: ð122Þ

We can then proceed in a similar fashion for the jump
conditions of xRnm and xRnn. The left-hand side of Eq. (101)
reads,

ð� � �ÞΘðr − rminÞ −
�
xMnm
r

þ ∂rxMnm

�
δðr − rminÞ

−
1

2
xMnmδ0ðr − rminÞ ð123Þ

¼ ð� � �ÞΘðr − rminÞ −
�
x−nm
rmin

þ 1

2
x0−nm

�
δðr − rminÞ

−
1

2
x−nmδ0ðr − rminÞ: ð124Þ

The right-hand side is

TR
lm þN xmm̄ ¼ ð� � �ÞΘðr − rminÞ

þ
�
δT−

lm þ 1

2
ð−x−mm̄

�
δðr − rminÞ

þ ΔT−
lmδ

0ðr − rminÞ: ð125Þ

Equating the δ and δ0 on both sides gives

x−nm ¼ −2ΔT−
lm; ð126Þ

x0−nm ¼ −ð−x−mm̄ þ 4

rmin
ΔT−

lm − 2δT−
lm: ð127Þ

Finally, turning our attention to (102), the left-hand side
is simply

ð� � �ÞΘðr − rminÞ þ
x−nn
rmin

δðr − rminÞ: ð128Þ

The right-hand side reads

ð�� �ÞΘðr−rminÞþ
�
δT−

lnþ
�
imΩφþ

2f−

rmin

�
x−mm̄þ

f−

2
x0−mm̄

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þp
2

ffiffiffi
2

p
rmin

ðx−nm−x−nm̄Þ


δðr−rminÞ

þ
�
ΔT−

lnþ
f−

2
x−mm̄

�
δ0ðr−rminÞ: ð129Þ

Equating both sides, one can check that the coefficient in
front of δ0ðr − rminÞ vanishes, ΔT−

ln þ f−

2
x−mm̄ ¼ 0, and we

are left with

x−nn ¼ rmin

�
δT−

ln þ
�
imΩφ þ

2f−

rmin

�
x−mm̄

þ f−

2
x0−mm̄ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
2

ffiffiffi
2

p
rmin

ðx−nm − x−nm̄Þ
�
: ð130Þ

The cancellation of the δ0 term in the last equation was
previously alluded to in Sec. II E. It occurs because x−mm̄ can
be expressed in terms of Tll using Eq. (121). The would-be
δ0 is then given by ΔT−

ln −
f−

2
ΔT−

ll. These two terms cancel
because the δ0 in TR

ll arises from ∂r∂rhPmm̄ while the δ0 in TR
ln

arises from f
2
∂r∂rhPmm̄; these are the only terms in TR

ll and
TR
ln involving two radial derivatives. The same cancellation

is responsible for all components of xR;lmab beingCnþ2 rather
than Cnþ1 at the particle, as also alluded to in Sec. II E.

VIII. GAUGE CORRECTION AND COMPLETION
OF THE METRIC PERTURBATION

There are two final ingredients in the metric perturbation
(30): the perturbation ġab toward another Kerr solution,
which appears for r > rmax, and the gauge perturbation
−LΞgab, which appears for r < rmax.
In the traditional no-string reconstruction procedure, ġab

appears instead for all r > r0, and −LΞgab appears for all
r < r0. Finding these two contributions was referred to as
the completion problem [11,34,67], referencing the fact that
the CCK reconstructed metric perturbation was incomplete.
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In the Schwarzschild case, the CCK reconstructed
(retarded) metric only corresponds to the l > 1 tensor
spherical-harmonic modes of the solution to the linearized
Einstein equations with point-particle source, and the
completion problem reduced to solving the l ¼ 0 and
l ¼ 1 pieces of the Einstein equations.
Our main conclusion in this section is that ġab and the

gauge vector Ξa in the GHZ puncture scheme are identical
to their values in the traditional no-string retarded-field
solution. This should be intuitively reasonable because we
expect our solution outside the worldtube to be identical to
the traditional no-string solution.
We begin with the perturbation ġab. As shown in Paper I

(extending Ref. [11]), ġab can be written simply in terms of
the total mass and angular momentum contained within
(and on the boundaries of) the worldtube. The nontrivial
components are

ġnn ¼
2

r
Ṁ; ð131Þ

ġnm ¼ −i
ffiffiffi
2

p

r2
J̇ sin θ; ð132Þ

with9

Ṁ ¼ 1

8π

Z
Σt

TR
abt

adΣb; ð133Þ

J̇ ¼ −
1

8π

Z
Σt

TR
abφ

adΣb; ð134Þ

where Σt is a hypersurface of constant t, dΣb ¼
f−1tbr2 sin θdrdθdφ is the future-directed surface element
on the hypersurface, and ta and φa are the timelike and
axial Killing vectors.
In the case of a point-particle source Tab (rather than the

extended, effective source TR
ab), the integrals evaluate to the

specific orbital energy E0 and angular momentum L0,

Ṁ ¼ E0 ≔ −gabuatb ¼
1 − 2M

r0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r0

q ; ð135Þ

J̇ ¼ L0 ≔ gabuaφb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mr0
1 − 3M

r0

s
: ð136Þ

As argued in Paper I, these values also remain unchanged in
our puncture scheme because the puncture’s contribution to

TR
ab contributes nothing to the integrals (133) and (134).

The puncture’s contribution vanishes because Stokes’
theorem can be used to express

R
Σt
EabðhPÞtadΣb as an

integral over the 2D boundary of Σt; since hPab vanishes
outside the worldtube, the boundary integral likewise
vanishes.
We now turn to the gauge perturbation −LΞgab, which is

generated by the linear-in-time vector Ξa. Traditionally, in a
no-string reconstruction, this perturbation can be under-
stood to enforce continuity conditions on the stationary
axially symmetric piece of the metric perturbation, thereby
ensuring that the coordinate frequency Ωφ has the same
meaning inside and outside the orbit.
This is crucial for obtaining the correct values of quasi-

invariant quantities such as the Detweiler redshift [69]. As
shown in Paper I, it also serves to prevent Dirac delta
distributions whose coefficient grows linearly with time.
Following Paper I, we write Ξa as10

Ξa ¼ −uðαta þ βφaÞ; ð137Þ

where α and β are constants given by the ðl; mÞ ¼ ð0; 0Þ
and ðl; mÞ ¼ ð1; 0Þmodes of the Held quantities ao and co,

α ¼ hao00iffiffiffiffiffiffi
4π

p ; ð138Þ

β ¼ −i
ffiffiffiffiffiffi
3

4π

r
hco10i; ð139Þ

where

hFi ≔ lim
T→∞

1

2T

Z
T

−T
Fdu ð140Þ

is an infinite time average; in our case, this average simply
eliminates m ≠ 0 modes. In the above, the Held scalars ao

and co are given by the following integrals:

ao ¼ −
1

2

Z
ρþmax

ρ−min

dρ2

Z
ρ2

ρ−min

dρ1
TR
ll

ρ41
þ ρmax

2

Z
ρþmax

ρ−min

dρ1
TR
ll

ρ41
;

ð141Þ

bo ¼ −
1

2

Z
ρþmax

ρ−min

dρ1
TR
ll

ρ41
; ð142Þ

co ¼ 1

3

�
ρmaxðþbo þ 2

Z
ρþmax

ρ−min

dρ
ρ2

ðTR
lm þN xRmm̄Þ

�
; ð143Þ

where ρ ¼ −1=r. The superscript � over ρmin and ρmax
indicate that the support of the δ functions are included in

9Here we correct the expressions in Paper I by a factor
−1=ð8πÞ. The minus sign arises because we use a future-directed
surface element; the common convention [68], deriving the
surface element from the restriction of the 4D Levi-Civita tensor,
instead has a future-directed unit normal and a past-directed
surface element.

10Our expression differs from Paper I by an overall sign to
account for the change in metric signature.
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the integration domain; so the integrals run from ρ−min ¼
ρmin − 0þ to ρþmax ¼ ρmax þ 0−. ðþ is simply equal, at the
level of modes, to Eq. (117) evaluated at rmax. We refer to
Paper I for the derivation of these results in a mostly
negative signature.
One observes that these integrals are very similar to the

integral form of the corrector tensors; see Eq. (59-61) in
Paper I for these expressions in a mostly negative signature.
For example, the first integral in the expression of ao

precisely equals that of −xRmm̄. The only notable difference
is that the integrals for the scalars ao, bo and co include the
distributional contribution at rmax, whereas the integrals for
the corrector tensor do not (while they do contain the
distributional contributions at rmin via its boundary con-
ditions). Therefore, the first integral in the expression of ao

is simply the quantity −xRmm̄ evaluated at the worldtube
boundary r ¼ rmax, plus the distributional contribution at
rmax. In other words, we can write

Z
ρþmax

ρ−min

dρ2

Z
ρ2

ρ−min

dρ1
TR
ll

ρ41
¼

Z
ρ−max

ρ−min

dρ2

Z
ρ2

ρ−min

dρ1
TR
ll

ρ41

þ
Z

ρþmax

ρ−min

dρ2

Z
ρ2

ρ−min

dρ1
TR
ll

ρ41
; ð144Þ

¼ −xmm̄ðrmaxÞ

þ
Z

ρþmax

ρ−max

dρ2

Z
ρ2

ρ−min

dρ1
TR
ll

ρ41
ð145Þ

and similarly for bo and co.
The remaining integrals from ρ−max to ρþmax can be easily

evaluated exactly since only the δ and δ0 terms in TR
ll at

r ¼ rmax will contribute [which were ignored in Eq. (111)].
Denoting δTþ

ab and ΔTþ
ab as the coefficients of δðr − rmaxÞ

and δ0ðr − rmaxÞ of TR
ab respectively, and a þ superscript

indicates evaluation at r ¼ rmax, the final expressions for
the Held scalars ao, bo and co are

ao ¼ −
1

2

�
−xMmm̄ðrmaxÞ þ a1

�
þ ρmax

2

�
−r2max∂rxMmm̄ðrmaxÞ þ a2

�
; ð146Þ

bo ¼ −
1

2
½−r2max∂rxMmm̄ðrmaxÞ þ a2�; ð147Þ

co ¼ −
1

3rmax
ðþbo þ 1

3

�
−∂rxMnmðrmaxÞ

−
2

rmax
xMnmðrmaxÞ þ 2c1

�
: ð148Þ

where

a1 ≔ ΔTþ
ll ; ð149Þ

a2 ≔ rmaxðrmaxδT
þ
ll − 2ΔTþ

ll Þ; ð150Þ

c1 ≔ δTþ
lm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

xMmm̄ðrmaxÞ
2

ffiffiffi
2

p : ð151Þ

We find by inspection that hbo10i ¼ 0 because the
corresponding lm mode of the stress energy vanishes.
Furthermore, the constants α and β are independent of the
worldtube size. In particular, we find numerically that their
values are the same as those computed from a point-particle
stress-energy [37],

α ¼ −
1

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r0

q ; β ¼ −
2Ωφ

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M

r0

q : ð152Þ

IX. ANALYSIS OF THE RESIDUAL FIELD:
DETWEILERREDSHIFT AND SOFTENED STRING

A strong consistency check of the GHZ procedure is to
recover the known value of the Detweiler redshift. In the
first subsection below, we will first calculate the redshift
via the CCK reconstruction, before moving to the results
using the GHZ infrastructure in the next subsection. In the
following, for a tensor Fab, we will define Fuu ≔ uaubFab
as the contraction with the 4-velocity ua, with the under-
standing that this quantity is to be evaluated in the limit to
the particle. In particular, we will identify the redshift with
the quantity huu.

A. Traditional method: Mode-sum regularization in the
no-string gauge

Perhaps the most straightforward way to compute the
redshift at the particle is the following:
(1) First, compute the retarded no-string reconstructed

metric perturbation, ĥretab ¼ 2ReððS†0ÞabΦretÞ.
(2) Subtract the puncture from the retarded field,

ĥretab − hPab. Note that, while ĥretab is in the (ingoing)
radiation gauge, the puncture is in Lorenz gauge.

(3) Complete the metric reconstruction by adding the
l ¼ 0, 1 modes. These correspond to þġab to the
right of the particle, r > r0, and −LΞgab to the left of
the particle r < r0; see again Fig. 1.

hR;Nab ¼ ĥretab−hPab−LΞgabΘðr0−rÞþ ġabΘðr−r0Þ:
ð153Þ

Here the N indicates that this residual field is in the
traditional no-string radiation gauge [33]. It is there-
fore related to ours by a gauge transformation [37].

(4) Contract this quantity with the four-velocity and
evaluate at the particle.
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Note that, since the retarded Hertz potential has been
computed separately to the left and right of the particle
following the no-string gauge prescription, it is not con-
tinuous across the particle, and thus neither is the resulting
reconstructed metric, ĥretab. Making it continuous across the
particle would require the introduction of the shadow
field ΦS.
We have two different formulas for the redshift, depend-

ing on whether one wishes to take the limit to the particle
from “the left” or “the right”:

hRuu ¼
X∞
l¼0

ðĥret;luu − hP;luu Þ − LΞguu; r → r−0 ; ð154Þ

hRuu ¼
X∞
l¼0

ðĥret;luu − hP;luu Þ þ ġuu; r → rþ0 : ð155Þ

We refer to the redshift calculated in this manner as hCCKuu .
In these expressions, the sum is defined in analogy with
Eq. (73):

X∞
l¼0

ðĥret;luu − hP;luu Þ ¼
X∞
l¼jsj

Xl
m¼−l

ðĥret;lmab − hP;lmab Þuaub

× eimΩφr⋆
sYlmðπ=2; 0Þ; ð156Þ

where s is the spin weight of each tetrad component hab
(s ¼ 0 for hnn, s ¼ 1 for hnm, etc.). Since ĥretab is obtained
from a CCK metric reconstruction procedure, its l ¼ 0 and
1 modes vanish, while the Lorenz-gauge hP;lmab includes
these low modes. Since the redshift is a gauge-invariant

quantity, it turns out that both formulas are equivalent. In
fact, one can check analytically that LΞguu ¼ −ġuu.
In practice, the l-modes of the reconstructed metric are

computed to some finite l ¼ lmax. Since the l-mode
contributions to the redshift scale according to some power
law, the contributions beyond l > lmax can be approx-
imately accounted for by fitting for this power-law tail.
To benchmark our results, we checked that our calcu-

lation of hCCKuu agrees with the known values [70] within a
relative error ∼10−8.

B. GHZ puncture scheme results and comparison

In the GHZ puncture scheme, the final residual field is
given by Eq. (30). In particular, only three quantities enter
the calculation of the redshift:

hRuu ¼ uaubðĥMab þ xMab − LΞgabÞjr¼r0 : ð157Þ

We refer to the redshift calculated in this manner as hGHZuu .
We again use a power-law tail fit to account for the

contribution of large-l modes. Concretely, we numerically
compute contributions up to lmax ¼ 40 and use a power-
law fit for the contributions with l > lmax.
In Fig. 8, we plot the individual l-modes of both hCCKuu

and hGHZuu for r0=M ¼ 10 and worldtube size rmin ¼ 8M,
rmax ¼ 12M. We find good agreement for both methods
mode by mode. Table II compares hGHZuu to hCCKuu for a range
of r0=M, again showing good agreement. The listed values
include a power-law tail fit in all instances; typically, this
improves the relative error by a factor ∼10−2.
Finally, we also verified that, within numerical errors,

hGHZuu does not depend on the worldtube size, although its
individual contributions ĥMuu and xMab do.

FIG. 8. l-mode contributions of the Detweiler redshift at r0 ¼ 10M, computed either using the traditional CCK (blue squares), or the
new GHZ (red crosses) method. Inset: absolute difference between the two methods.
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C. Softened string singularity

In the typical no-string CCK reconstruction, the recon-
structed metric is highly singular at the particle’s orbital
radius, possessing both a jump discontinuity and a delta
function there. Alternatively, in a half-string reconstruction
(as would be obtained by the GHZ scheme without a
puncture [45]), there is a strong singularity emanating
along null rays from the particle to infinity or from the
particle to the horizon.
By using a puncture scheme, we soften this singular

behavior. In particular the residual reconstructed metric
perturbation is Cn at the particle (in four dimensions; Cnþ2

at the level of modes). Nonetheless, there is a residual,
softened string singularity that is confined inside the
worldtube, in the region r0 < r < rmax. Specifically, the
presence of this softened string is due to the fact that
effective stress-energy tensor TR

ab is C
n−2 at the particle, as

is ψR
0 . In the GHZ reconstruction, these functions are

integrated along integral curves of la to obtain the Hertz
potential ΦR and the corrector tensors xRab. As a result, the
singularity at s0 ¼ 0 is propagated along la. In general, the
integration increases the singularity’s dimension by one but
reduces its strength by one as well. Consequently, the
corrector tensors, the Hertz potential, and, by extension, the
reconstructed metric emerge as Ck functions of coordinates
along this string. The value of k is contingent upon the field
under consideration and is determined by the order of the
puncture. Paper I estimated that hRab is at worst Cn−3 but
also observed this is overly pessimistic in known cases. The
strength of the string singularity in the retarded half-string
solution is ∼1=ϱ2 (i.e., C−3), where ϱ is the distance from
the string [33]. If the singularity is weakened by one order
with each additional order of the puncture, we can expect
hRab to be Cn−1 at the string for an nth-order puncture. This
would suggest hRab should be C1 for our n ¼ 2 puncture,
with the local behavior ∼ϱ2 ln ϱ.
We can numerically investigate the degree of regularity

of our reconstructed metric hRab by integrating it over the
2-sphere, S2, with radius r0 < rs < rmax. Specifically, we

consider the L2-norm,

khRabkL2ðrÞ ≔
Z
S2
jhRabj2 sin θdθdϕ

¼
X
l≥jsj

Xl
m¼−l

jhR;lmab ðrÞj2; ð158Þ

where the last equality follows from the orthonormality
of the (spin-weighted) spherical harmonics. Standard
methods [71] show that if hRab has the expected string
singularity ∼ϱ2 ln ϱ, then

Xl
m¼−l

jhR;lmab ðrÞj2 ≤ CðrÞ ð2lþ 1Þ
½lðlþ 1Þ�2 ∼ l−3 ð159Þ

for some l-independent CðrÞ.
In Fig. 9, we show the l-mode contributions of

khRnnkL2ðrsÞ, for rs ≔ ðr0 þ rmaxÞ=2. Other tetrad compo-
nents show qualitatively the same behavior. We find,
surprisingly, an exponential decay with l, instead of a
polynomial behavior as one would have expected. The
appearance of an exponential behavior itself is expected,
since the reconstructed metric contains smooth pieces, but
one would expect these pieces to be subdominant compared
to the Ck pieces which only decay algebraically with l. As
shown in Fig. 9, we do not find any hint of polynomial
behavior up to l ¼ 40, suggesting that the amplitude of the
softened string is rather small. Quantitatively, if our
estimate (159) is correct, our numerical results suggest
CðrsÞ ≲ 0.00023. If this turns out to be a general feature of

TABLE II. Comparison between the redshift hGHZuu as calculated
from our GHZ puncture scheme and as calculated from traditional
no-string CCK reconstruction and completion for different orbital
radii r0=M. In each case, the l-modes of hGHZuu were computed up
to lmax ¼ 40 and the contribution of higher modes was included
using a power-law fit.

r0 hGHZuu hCCKuu jhGHZuu =hCCKuu − 1j
8 −0.2809995ð3Þ −0.2809995ð6Þ ∼1 × 10−7

9 −0.2439048ð6Þ −0.2439048ð4Þ ∼1 × 10−7

10 −0.2160628ð2Þ −0.2160628ð8Þ ∼3 × 10−7

12 −0.1765575ð0Þ −0.1765575ð8Þ ∼5 × 10−7

50 −0.0404192ð5Þ −0.0404192ð9Þ ∼1 × 10−6

FIG. 9. l-mode contributions to the L2 norm of hRnn on the
2-sphere S2 centered at radius rs ¼ ðr0 þ rmaxÞ=2, with r0 ¼
10M and rmax ¼ 12M. Away from the particle, hRnn can be written
as a sum of smooth and Ck pieces (the softened string), which are
expected to converge exponentially and polynomially with l,
respectively. At least up to l ¼ 40, we only observe exponential
behavior, suggesting that the magnitude of the softened string is
small.
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the GHZ reconstruction, the presence of the softened string
may not be an important consideration for accurate second-
order calculations.

X. CONCLUSION

We have presented the first implementation of Paper I’s
GHZ-Teukolsky puncture scheme in an astrophysically
relevant scenario, going beyond Paper I’s simple proof-
of-concept implementation in flat spacetime. Our calcu-
lations, for a particle in circular orbit in Schwarzschild
spacetime, also mark the first concrete use of GHZ
reconstruction for a nontrivial physical system. As a crucial
test of our implementation, we have recovered the known
values of the Detweiler redshift [69,70], for different values
of the orbital radius r0=M, and checked that these values
are independent of the worldtube size.
The ingredient in the GHZ reconstruction that extends

the CCK-Ori reconstruction is the inclusion of a corrector
tensor. This tensor obeys a simple set of semi-decoupled
first- and second-order ODEs that can be solved very
efficiently. The most time-consuming aspect of our imple-
mentation is numerically computing the exact mode
decomposition of the puncture, and to a lesser extent,
computing the solutions to the Teukolsky equation.
The initial aim of Paper I’s scheme was to compute the

first-order metric perturbation in a sufficiently regular
gauge as input for second-order calculations. The residual
first-order metric perturbation we obtain is smooth every-
where, except at the particle and on a string from the
particle to r ¼ rmax, where the regularity of the first-order
metric perturbation depends on the order of the puncture.
This finite differentiability leads to polynomial, rather than
exponential, decay of mode coefficients. However, for the
highest-order punctures in the literature, such as the one we
use here, this effect of the field’s nonsmoothness is mild; at
the string, it is numerically undetectable up to l ¼ 40.
Our particular implementation of the puncture scheme

also gives rise to another type of singularity: jump
discontinuities and delta functions at the worldtube boun-
daries. These occur for two reasons. First, our use of a box
window function in our puncture causes a gauge disconti-
nuity because the retarded field outside the worldtube is in a
radiation gaugewhile the retarded field hRab þ hPab inside the
worldtube is in a mixed gauge (with hRab in an IRG and hPab
in the Lorenz gauge). Second, our use of a discontinuous
gauge transformation to eliminate the “shadow field”
outside the worldtube leads to both discontinuities and
delta functions at r ¼ rmax; see Eq. (30). All of these
features can be eliminated by replacing Heaviside functions
with smooth window functions that smoothly taper the
puncture and the gauge vector to zero.
However, such tapering is likely not needed in the case of

the delta function (and jump) created by the discontinuous
gauge vector (29). Even though the distributions at first
order will formally lead to ill-defined products of

distributions in the quadratic source term at second order,
one can sidestep that problem by directly deriving jump
conditions for the second-order fields across the
worldtube boundaries. In a smooth gauge, there is no jump
in the retarded field across the boundary. Under a gauge
transformation generated by the vector field ξaS, the
second-order metric perturbation changes by an amount

Δhð2Þab ¼ 1
2
L2
ξS
gab − LξSh

ð1Þ
ab [7], where we have added

superscript labels to indicate the perturbative order of

the fields, and where hð1Þab is in the gauge containing the
shadow field. Combining these facts, we find that the jump
caused by the discontinuous gauge vector (29) is simply

½hð2Þab � ¼ Δhð2Þab jrmax
. Note that computing this jump is only

possible because ξaS is known explicitly [45].
Our results therefore demonstrate that the GHZ puncture

scheme is a viable path toward second-order self-force
calculations in Kerr spacetime. In the remainder of this
section, we compare it to several alternatives.

A. Roads to second-order self-force in Kerr

As mentioned in the Introduction, there are now several
possible avenues to second-order self-force calculations in
a Kerr background:
(1) Traditional no-string CCK reconstruction and com-

pletion equipped with suitable regularization.
(2) The GHZ puncture scheme demonstrated here.
(3) A Lorenz-gauge metric reconstruction procedure

following Dolan et al. [40,41].
(4) Directly solving the coupled Lorenz-gauge Einstein

equations in an m-mode decomposition, following
Osburn and Nishimura [25].

All of these are methods of obtaining first-order solutions
that are sufficiently regular to use as input at second order.
There are then also several options for solving the second-
order field equations, whether starting from Teukolsky
equations [72] or directly solving the second-order Einstein
equations.
The no-string option would likely be the simplest, as it

mostly reduces to solving two vacuum Teukolsky equations
(for the Weyl scalar and the Hertz potential). Since the no-
string retarded metric perturbation contains jump disconti-
nuities and delta functions, one would have to appropriately
regularize it if using it within a second-order quadratic
source. As we have pointed out regarding delta functions at
ourworldtube boundary, this is not necessarily an intractable
obstacle. However, little work has been done to this end.
The GHZ puncture scheme is perhaps the second

simplest option, since it only adds a small number of
simple radial ODEs. However, its significant downside,
relative to the alternatives, is that it requires the exact mode
decomposition of the puncture. At least as of this writing,
this means numerically integrating the puncture over
spheres of constant r on a grid of r values within the
worldtube. This procedure contrasts with earlier puncture
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schemes in which the puncture modes are obtained ana-
lytically as an expansion in powers of r − r0. As discussed
in Paper I, such expansions introduce divergences at large l
at all points away from the particle. Since the residual and
puncture fields of the first-order metric perturbation are in
different gauges, their l-mode-sum divergences do not
readily cancel each other in the total, retarded field (as they
would in a Lorenz-gauge puncture scheme). An exact mode
decomposition of the puncture circumvents this by never
introducing spurious large-l divergences in the first place,
but it is substantially more expensive than other steps in the
calculation. Currently, this exact mode decomposition is
also the only missing ingredient for implementing the GHZ
puncture scheme in Kerr; all other tools for such a
calculation are ready at hand.
However, this drawback of the GHZ puncture scheme

might ultimately be immaterial. The only extant method of
computing the second-order quadratic source requires the
exact puncture modes in any case [60]. In that sense, the
exact mode decomposition does not represent an additional
cost for the GHZ puncture scheme.
The Lorenz-gauge reconstruction method of Dolan et al.

is moderately more complicated than the GHZ scheme, in
that it requires solving several additional Teukolsky equa-
tions, one of which has a noncompact source. To date, it has
also been more limited than the GHZ procedure because it
has been restricted to vacuum reconstruction; although it has
been applied to point-particle sources on circular orbits in
Kerr [41], several key steps in the calculation assumed
vacuum away from the particle’s worldline. However, this
restriction is not fundamental, and an extension to generic
sources should soon be available [42,43]. Evenwithout such
an extension, the existing results for the first-order metric
perturbation for circular orbits could serve as an immediate
starting point for second-order calculations in Kerr.
Directly solving the Lorenz-gauge Einstein equations in

an m-mode puncture scheme, as proposed by Osburn and
Nishimura, is numerically the most complicated option but
conceptually the simplest. This approach avoids a full lm
mode decomposition because the Lorenz-gauge Einstein
equations are not separable in such a decomposition.
Instead, one solves coupled two-dimensional elliptic
PDEs in r and θ for the metric perturbation components.
As of this writing, work with this method has nearly
completed the calculation of the first-order Lorenz-gauge
metric perturbation for circular orbits in Kerr [73], com-
plementing the lm-mode results of Dolan et al.
An m-mode scheme is generally more expensive than a

full separation of variables because it involves PDEs
instead of ODEs. However, we note that both the GHZ
and Lorenz-gauge reconstruction schemes might actually
benefit from an m-mode implementation. One recurring
difficulty when working in lm modes is the poor con-
vergence of the l-mode sum close to the particle, which
leads to major challenges when constructing the quadratic

source at second order [60]. While slow convergence might
be partly alleviated using a puncture scheme with a high-
order puncture [74,75], we find that some residual quan-
tities do not exhibit a “clean” power-law convergence, as
shown in Fig. 7. This prevents us from extrapolating higher
mode numbers by fitting, which in turn impacts the final
accuracy of the model. All of these poor convergence
properties might be at least partially bypassed by an
m-mode scheme [75].

B. Further applications

As was also mentioned in the Introduction (and in
Paper I), a Teukolsky puncture scheme could have addi-
tional benefits beyond yielding sufficiently regular fields
for second-order calculations. This is true regardless of
whether one uses GHZ or Lorenz-gauge reconstruction.
One such benefit is more rapid convergence of numerical
approximations. In the case of eccentric orbits, this could
resolve Gibbs phenomena simply by working with
smoother fields. The standard method of overcoming
Gibbs phenomena has been the method of extended
homogeneous solutions, but that method becomes increas-
ingly expensive for more eccentric orbits due to large
cancellations (of more than 30 digits in some cases [76]). A
puncture scheme could be a fruitful alternative.
The emergence of nonvacuum reconstruction methods

also opens up the possibility of obtaining second-order
metric perturbations from solutions to the second-order
Teukolsky equation [44,72]. While it is likely that only
the second-order Weyl scalar is needed for first-post-
adiabatic waveform generation [72], the complete metric
perturbation would be needed to calculate second-order
conservative effects, which enter the waveform at second
postadiabatic order. The GHZ puncture scheme represents a
viable method for that purpose. Although the GHZ
reconstruction was originally derived for bounded sources,
it necessarily yields a particular solution even for unbounded
ones, such as the quadratic source at second order.
In fact, formally, little changes in the GHZ procedure at

second order. The GHZ procedure divides into three steps:
(1) solving the Teukolsky equation for a Weyl scalar,
(2) solving an inversion relation for the Hertz potential and
applying derivatives to obtain a reconstructed metric
perturbation, and (3) completing the metric perturbation
by solving radial ODEs for the corrector tensor. Each of
these steps can be carried out at second order. However, in
practice, the puncture scheme from Paper I relies on having
vacuum regions outside the worldtube, which allows easy
use of ready-at-hand vacuum solutions, easy algebraic
inversion to obtain the Hertz potential, and easy removal
of the shadow field. At second order, onewould instead have
to directly solve inhomogeneous equations over the whole
spacetime at each step. The major challenge then lies in
dealing with the unbounded second-order source. In the
Lorenz gauge, this noncompact source leads to infrared
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divergences, in turn necessitating alternative formulations of
the small-mass-ratio expansion near the horizon and future
null infinity [77]. Such problems could be exacerbated in a
GHZ solution in the IRG, which is not an asymptotically flat
gauge even at first order. However, as recently outlined by
Spiers et al. [72], problems in the infrared might be entirely
bypassed by transforming to a well-behaved Bondi-type
gauge at first order before proceeding to second order. The
resulting asymptotically well-behaved second-order source
would then also enable use of compactified hyperboloidal
slices at second order, substantially alleviating the expense
of solving the inhomogeneous second-order equations with
noncompact sources [78–80].
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APPENDIX A: GHP FORMALISM

In the GHP formalism, each quantity has a well-defined
type fp; qg which expresses how the quantity transforms
under spin and boost transformation. The group of such
transformations is isomorphic to multiplication by a com-
plex number λ, and an object f of type fp; qg transforms
as f → λpλ̄qf. We will use the notation f¼o fp; qg. Only
objects of the same type can be added together, which
provides a useful consistency check on any equations.
Note that the product of an object of type fp1; q1g with
an object of type fp2; q2g produces an object of type
fp1 þ p2; q1 þ q2g.
As part of the GHP formalism, as in the Newman-Penrose

formalism, one adopts a double-null tetrad basis of the form
ðla; na; ma; m̄aÞ. The vectors are normalized such that

lana ¼ −1; mam̄a ¼ 1; ðA1Þ

and all other product combinations are zero. The metric in
this basis therefore reads

gab ¼ −2lðanbÞ þ 2mðam̄bÞ: ðA2Þ

We remark here that the above choice of normalization
corresponds to mostly positive signature for the background
metric gab. The tetrad legs have the following GHP type:

l¼o f1; 1g; n ¼o f−1;−1g; ðA3Þ

m ¼o f1;−1g; m̄ ¼o f−1; 1g: ðA4Þ

All other GHP objects’ type can be deduced by counting the
factors of the tetrad vectors in their definition. In particular,

hll¼o f2;2g; hln¼o f0;0g; hlm¼o f2;0g; hl m̄¼o f0;2g;
ðA5Þ

hnn ¼o f−2;−2g; hnm ¼o f0;−2g; hnm̄ ¼o f−2;0g;
ðA6Þ

hmm¼o f2;−2g; hmm̄¼o f0;0g; hm̄m̄¼o f−2;2g: ðA7Þ

From the tetrad vectors ðla; na; ma; m̄aÞ, one can next
introduce the spin coefficients, defined to be the 12 direc-
tional derivatives of the tetrad vectors. Of these, eight have
a well-defined GHP type, and are given by

κ ¼ −lμmν∇μlν ¼o f3; 1g; ðA8Þ

κ0 ¼ −nμm̄ν∇μnν ¼o f−3;−1g; ðA9Þ

σ ¼ −mμmν∇μlν ¼o f3;−1g; ðA10Þ

σ0 ¼ −m̄μm̄ν∇μnν ¼o f−3; 1g; ðA11Þ

ρ ¼ −m̄μmν∇μlν ¼o f1; 1g; ðA12Þ

ρ0 ¼ −mμm̄ν∇μnν ¼o f−1;−1g; ðA13Þ

τ ¼ −nμmν∇μlν ¼o f1;−1g; ðA14Þ

τ0 ¼ −lμm̄ν∇μnν ¼o f−1; 1g: ðA15Þ

The remaining four spin coefficients do not have a well-
defined GHP type by themselves, but instead appear in the
definition of four GHP derivative operators. When acting
on an object of GHP type fp; qg, they are given by

Þ ¼ lμ∇μ − pϵ − qϵ̄ ¼o f1; 1g; ðA16Þ

Þ0 ¼ nμ∇μ þ pϵ0 þ qϵ̄0 ¼o f−1;−1g; ðA17Þ

ð ¼ mμ∇μ − pβ þ qβ̄0 ¼o f1;−1g; ðA18Þ

ð0 ¼ m̄μ∇μ þ pβ0 − qβ̄ ¼o f−1; 1g; ðA19Þ

where
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β ¼ 1

2
ðmμm̄ν∇μmν −mμnν∇μlνÞ; ðA20Þ

β0 ¼ 1

2
ðm̄μmν∇μm̄ν − m̄μlν∇μnνÞ; ðA21Þ

ϵ ¼ 1

2
ðlμm̄ν∇μmν − lμnν∇μlνÞ; ðA22Þ

ϵ0 ¼ 1

2
ðnμmν∇μm̄ν − nμlν∇μnνÞ: ðA23Þ

The definition of the (linearized) Weyl scalars ψ0 and ψ4

can be found for example in Eq. (54) of Ref. [7], which uses
a mostly positive convention:

ψ0 ≔ Cabcdlamblcmd ¼ T ab
0 hab; ðA24Þ

ψ4 ≔ Cabcdnam̄bncm̄d ¼ T ab
4 hab; ðA25Þ

where Cabcd is the linearized Weyl tensor. In a mostly
negative sign convention, such as in [45], an additional
minus sign is added to the above definition to ensure that
the resulting Teukolsky equations are independent of
sign convention. The operators T ab

0 and T ab
4 are explicitly

given by

T ab
0 hab ¼ −

1

2

�
ð2hll þ ðÞ − ρÞðÞ − ρÞhmm

−½ðÞ − ρÞðþ ððÞ − 2ρÞ�hlm
�
; ðA26Þ

T ab
4 hab ¼ −

1

2

�
ð02hnn þ ðÞ0 − ρ0ÞðÞ0 − ρ0Þhm̄ m̄

−½ðÞ0 − ρ0Þð0 þ ð0ðÞ0 − 2ρ0Þ�hnm̄
�
: ðA27Þ

The source operators Sab
0 and Sab

4 in the Teukolsky
equations, (37)–(38), are given by

Sab
0 Tab ≔ ð½ðÞ − 2ρÞTlm − ðTll�

þ ðÞ − 5ρÞ½ðTlm − ðÞ − ρÞTmm�; ðA28Þ

Sab
4 Tab ≔ ð0½ðÞ0 − 2ρ0ÞTnm̄ − ð0Tnn�

þ ðÞ0 − 5ρ0Þ½ð0Tnm̄ − ðÞ0 − ρ0ÞTm̄ m̄�: ðA29Þ

Their adjoints are also important as they directly appear
when reconstructing the metric perturbation from the Hertz
potential, (19). The adjoints are

ðS†0Þab ¼ −lalbð2 −mambðÞ − ρÞðÞþ 3ρÞ
þ lðambÞ½Þð − ððÞþ 3ρÞ�; ðA30Þ

ðS†4Þab ¼ −nanbð02 − m̄am̄bðÞ0 − ρ0ÞðÞ0 þ 3ρ0Þ
þ nðam̄bÞ½Þ0ð0 − ð0ðÞ0 þ 3ρ0Þ�: ðA31Þ

The operators on the left-hand sides of the Teukolsky
equation are

O ≔ 2ððÞ − 4ρ − ρ̄ÞðÞ0 − ρ0Þ − ðð0 − 3ψ2Þ; ðA32Þ

O0 ¼ 2ððÞ − 4ρ0 − ρ̄0ÞðÞ0 − ρÞ − ðð0 − 3ψ2Þ; ðA33Þ

where, in the Kinnersley tetrad, ψ2 ¼ Mρ3. We also require
the adjoint of O, which is related to O0 by

O† ¼ ρ−4O0ρ4: ðA34Þ

Finally, the operators appearing as source terms in the
ODEs for the corrector tensor, (23)–(25), are given by

N ¼ 1

2
ðÞ − ρÞð; ðA35Þ

U ¼ 1

2

�
ð0ðþ ðð0 − 2Ψ2 þ ðÞ0 − 2ρ0Þρþ ðÞ − 2ρÞρ0

þρð3Þ0 − 2ρ0Þ þ ρ0ð3Þ − 2ρÞ − 2Þ0Þþ 2ρρ0
�
; ðA36Þ

V ¼ 1

2
ðÞ − 4ρÞð0; ðA37Þ

V̄ ¼ 1

2
ðÞ − 4ρÞð: ðA38Þ

So far, the discussion has been kept general. We now
specialise to the Kinnersley tetrad. In t-slicing coordinates,
the Kinnersley tetrad reads

lα ¼ 1

f
f1; f; 0; 0g; ðA39Þ

nα ¼ 1

2
f1;−f; 0; 0g; ðA40Þ

mα ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ



: ðA41Þ

In u-slicing coordinates, the Kinnersley tetrad reads
instead,

lα ¼ f0; 1; 0; 0g; ðA42Þ

nα ¼
�
1;−

f
2
; 0; 0



; ðA43Þ

mα ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ



: ðA44Þ

The scalar quantities (A8)–(A15) in the Kinnersley tetrad
are
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β ¼ β0 ¼ cot θ

2
ffiffiffi
2

p
r
; ðA45Þ

ϵ ¼ 0; ðA46Þ

ϵ0 ¼ −
M
2r2

; ðA47Þ

κ0 ¼ κ ¼ 0; ðA48Þ

σ0 ¼ σ ¼ 0; ðA49Þ

ρ ¼ −
1

r
; ðA50Þ

ρ0 ¼ −
f
2r

; ðA51Þ

τ0 ¼ τ ¼ 0: ðA52Þ

In t-slicing in the Kinnersley tetrad, the radial GHP
operators are

Þ ¼ 1

f

�
∂

∂t
þ f

∂

∂r

�
; ðA53Þ

Þ0 ¼ 1

2

�
∂

∂t
− f

∂

∂r

�
−
pþ q
2

M
r2

; ðA54Þ

while in u-slicing, they are given by

Þ ¼ ∂

∂r
; ðA55Þ

Þ0 ¼
�
∂

∂u
−
f
2

∂

∂r

�
−
pþ q
2

M
r2

: ðA56Þ

The angular operators in the Kinnersley tetrad are (in
both slicings)

ð ¼ −
1

r −sL†; ðA57Þ

ð0 ¼ −
1

r sL; ðA58Þ

sL ¼ −
1ffiffiffi
2

p
�
∂

∂θ
−

i
sin θ

∂

∂φ
þ s cot θ

�
; ðA59Þ

where s ≔ ðp − qÞ=2 is the spin weight of the quantity that
the operator acts on. The operators −sL† and sL serve to,
respectively, raise and lower the spin-weight of the har-
monics they act on,

−sL†
sYlm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

2

r
sþ1Ylm; ðA60Þ

sLsYlm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

2

r
s−1Ylm: ðA61Þ

APPENDIX B: TETRAD TO BLS BASIS

Below, we give the formulas relating the modes of the
(not trace-reversed) metric perturbation in the Kinnersley
tetrad basis to its BLS quantities hilm, i ¼ 1;…10. See
Table 1, page 29 in Ref. [7] for comparison. With lmmode
indices suppressed, the relations are

hll ¼
h1 þ h2
rf2

; ðB1Þ

hln ¼
h3
2r

; ðB2Þ

hlm ¼ −
h4 þ h5 − iðh8 þ h9Þ
2rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ; ðB3Þ

hlm̄ ¼ h4 þ h5 þ iðh8 þ h9Þ
2rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ; ðB4Þ

hnn ¼
h1 − h2

4r
; ðB5Þ

hnm ¼ −h4 þ h5 þ iðh8 − h9Þ
4r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ; ðB6Þ

hnm̄ ¼ h4 − h5 þ iðh8 − h9Þ
4r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ; ðB7Þ

hmm ¼ h7 − ih10
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp ; ðB8Þ

hmm̄ ¼ h6
2r

; ðB9Þ

hm̄ m̄ ¼ h7 þ ih10
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 1Þlðlþ 1Þðlþ 2Þp : ðB10Þ

APPENDIX C: MODES OF THE NO-STRING
HERTZ POTENTIAL

The modes of the no-string Hertz potentials Φ� are
obtained by solving the vacuum adjoint Teukolsky equation
O†Φ� ¼ 0 in the two regions outside the worldtube
(r < rmin for Φ− and r > rmax for Φþ). We obtain these
as solutions to the spin-weight −2 Teukolsky equation,
using the relationship O†Φ ¼ r4O0ðr−4ΦÞ; cf. Eq. (A34).
That relationship implies −2Φlm (when multiplied by
e−imΩφr⋆ to account for our use of u-slicing) satisfies the
radial Teukolsky equation (44). Recall that ψ ret

0 is a solution
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to the s ¼ 2 Teukolsky equation, which is written as a
linear combination of so-called “in” and “up” basis
functions as in Eq. (62). In analogy with 2ψ

�
lm in

Eq. (62), −2Φ�
lm are proportional to the s ¼ −2 “in” and

“up” basis solutions:

−2Φ
þ
lm ¼ −2a

þ
lm−2ψ

up
lmðrÞeimΩφr⋆ ðC1Þ

−2Φ−
lm ¼ −2a

−
lm−2ψ

in
lmðrÞeimΩφr⋆ ; ðC2Þ

where the exponential accounts for our use of u-slicing.
Following Ori [29], we can determine the coefficients

−2a
�
lm by evaluating the ODE (78) in a neighborhood of the

horizon or null infinity, allowing us to relate −2a
�
lm to the

coefficients 2C
�
lm appearing in Eq. (62). In half of cases,

doing this by directly expanding Eq. (78) requires analyti-
cally computing the basis solutions to fourth or fifth order in
the 1=r or ðr − 2MÞ expansion, essentially because Eq. (78)
is a fourth-order ODE. In these cases, the procedure is
facilitated by using the Teukolsky-Starobinsky identities to
relate the s ¼ �2 basis solutions to each other.
Ori only carried out this procedure for ω ≠ 0, but the

same method can be used in the static case, as detailed in
Ref. [81]. However, there are some typographical errors in
that paper (which we detail at the end of this appendix). We
therefore will derive Eq. (85) for the static modes of the
Hertz potential here.
Let us first start with generic modes (i.e., not necessarily

static). In t-slicing and for the retarded fields, Eq. (78) is
rewritten as

D4
m2Φ̄ret

lmðrÞ ¼ 22ψ
ret
lmðrÞ; ðC3Þ

where

Dm ≔
d
dr

− i
mΩφ

fðrÞ : ðC4Þ

The Hertz potential Φret satisfies the spin s ¼ −2
Teukolsky equation, thus its radial modes −2Φret

lmðrÞ satisfy
the spin s ¼ −2 radial Teukolsky equation. The Teukolsky-
Starobinsky identities [82,83] yield

p2Φ̄ret
lmðrÞ ¼ Δ2ðD⋆

mÞ4Δ2ðDmÞ42Φ̄ret
lmðrÞ; ðC5Þ

where p is given in Eq. (83). Thus, applying the operator
Δ2ðD⋆

mÞ4Δ2 to Eq. (78), we obtain

p2Φ̄ret
lmðrÞ ¼ 2Δ2ðD⋆

mÞ4Δ2
2ψ

ret
lmðrÞ: ðC6Þ

To relate the coefficients −2a
−
lm in −2Φ−

lm to the coef-
ficients 2C

−
lm in 2ψ

−
lm, we can simply substitute the leading

asymptotic near-horizon behavior of the “in” solutions in
Eq. (78). Doing the same for the “up” solutions near
infinity would require four orders in 1=r; we then instead
use Eq. (C6), which requires only the leading terms in the
asymptotic forms of sψ

up
lm to determine the coefficient

−2a
þ
lm. The immediate outcome of these calculations is

shown in Eqs. (79) and (80).
Let us turn to the static case, m ¼ 0. In this case,

obviously, there is no difference between u-slicing and
t-slicing. The radial Teukolsky solutions are easy to find in
closed form:

sψ
in
l0ðrÞ ¼ ðlþ sþ 1Þ−2s

Γð1þ sÞ
Γð1 − sÞ

�
r
2M

− 1

�
−s

× 2F1

�
−l;lþ 1; 1 − s; 1 −

r
2M

�
; if s > 0; ðC7Þ

sψ
in
l0ðrÞ ¼ 2−2s

�
r
2M

− 1

�
−s

× 2F1

�
−l;lþ 1; 1 − s; 1 −

r
2M

�
; if s ≤ 0; ðC8Þ

sψ
up
l0ðrÞ ¼ 2−s−l−1

�
r
2M

− 1

�
−s
�

r
2M

�
−l−1

× 2F1

�
lþ 1;lþ 1 − s; 2lþ 2;

2M
r

�
; ∀ s: ðC9Þ

The specific choices of hypergeometric functions for the solutions are made so that sψ in
l0 is regular at r ¼ 2M and sψ

up
l0 is

regular at r ¼ ∞; herewe have used the normalization choices made in the BHPToolkit. Note that any normalization choices
arewithout loss of generality since the normalizations are taken care of by theWronskian in Eqs. (61)–(64), which is equal to

sWðrÞ ¼ −
M1þ2s2lþjsjþ1Γðlþ 3

2
ÞðjsjÞ!Δ−1−sffiffiffi

π
p ðlþ jsjÞ! ðC10Þ

for the static solutions in Eqs. (C7)–(C9) for any spin s. It is easy to check that

2Δ2ðD0Þ4Δ2
2ψ

in=up
l0 ðrÞ ¼ 2M4p1=2

−2ψ
in=up
l0 ðrÞ ðC11Þ

with p ¼ ððl − 1Þ4Þ2. Since, from Eq. (62),
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2ψ
ret
l0ðrÞ ¼

(
2C

−
l02ψ

in
l0ðrÞ r < rmin;

2C
þ
l02ψ

up
l0ðrÞ r > rmax;

ðC12Þ

it follows from Eq. (C6) and using Eq. (C11) (together with
D⋆

0 ¼ D0) that

2Φ̄ret
l0ðrÞ¼

2M4

ðl−1Þ4 2
Cþ
l0−2ψ

up
l0ðrÞ; r>rmax;

2Φ̄ret
l0ðrÞ¼

2M4

ðl−1Þ4 2
C−
l0−2ψ

in
l0ðrÞ; r<rmin: ðC13Þ

This is Eq. (85).
We finish by detailing some typographical errors in the

static-mode section (Sec. III.B) and the section for the
modes of the Hertz potential (Sec. III.C) of Ref. [81].11

In the following, all equation numbers correspond
to Ref. [81].
(1) In Eq. (54) there is a factor 1=2! missing in front of

ð3 − sÞs−2. Furthermore, the coefficient of the sBlmn
is denoted by “divergent terms” but these terms are
not actually divergent for spin s ¼ −1;−2.

(2) In Eq. (55), the term with sBlmn inside the paren-
thesis should instead read:

…þ ð−1ÞssBlmn

ffiffiffi
π

p ðlþ 3
2
Þs−1

2

22lþ2
þ… ðC14Þ

(3) In Eq. (62), the signs of s in the two Pochhammer
functions in the numerators are wrong; also, the ‘+’
after sBlm should not be there.

(4) The boundary conditions should be reversed on one
side of Eq. (79), so that it reads:

Δs
sR̄�

lmn ¼ −sR
=�
lmn: ðC15Þ

(5) On the left-hand side of Eq. (81), the Δ2 term should
be outside the operator D4

mn.
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