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We study static and spherically symmetric black hole (BH) solutions in extended Einstein-Maxwell-
scalar theories which is classified in a subclass of the Uð1Þ gauge-invariant scalar-vector-tensor theories.
The scalar field is coupled to the vector field, which has electric and magnetic charges. We investigate
modifications to the Reissner-Nordström solution focusing on the three types of scalar-vector interactions,
including derivative couplings. We solve the field equations analytically in two asymptotic regions, which
are the vicinity of the BH horizon and spatial infinity, and clarify the condition for the existence of scalar
hair. To understand the behaviors of solutions in intermediate scales, the field equations are integrated
numerically for concrete models with different types of couplings. We find new hairy BH solutions with
scalar hair in the presence of magnetic charge and kinetic coupling. The magnetic charge plays an
important role in distinguishing hairy BH solutions originated from three types of different interactions at a
large coupling limit.
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I. INTRODUCTION

Experimental tests of general relativity (GR) are well
performed in the Solar System [1]. As a result, it is known
that the weak gravitational field can be described by GR in
high precision. On the other hand, the accuracy of GR in
the strong field regime has been not yet clarified well
enough. In recent years, the observations of the nonlinear
regime of gravity have represented a significant develop-
ment. For example, the direct detection of gravitational
waves from compact binary coalescences by LIGO-Virgo-
KAGRA Collaborations [2–13] and the imaging of a black
hole (BH) shadow by the Event Horizon Telescope [14,15]
opened up a new window for exploring physics around
BHs. The action including Maxwell electromagnetic field
besides GR is called Einstein-Maxwell theory. The authors
of Ref. [16] have classified the generalized higher-order
Einstein-Maxwell Lagrangians, which consist of terms
linear in the Riemann tensor and quadratic in derivatives
of the field strength tensor. In the four-dimensional
Einstein-Maxwell system without matter, asymptotically
flat and stationary BH solutions are described by only three
parameters, i.e., mass, electric charge, and angular momen-
tum [17–20]. Hence, the Kerr-Newman BH [21] is the
unique solution in such a system. This statement is known
as the “no-hair theorem.” It is natural to wonder whether
this theorem still holds even in the presence of a new degree
of freedom. If a canonical scalar field minimally coupled to
gravity is introduced to the Einstein-Maxwell system, then
the profile of scalar field settles down to be trivial [22–24],

and the spacetime is still described by the Kerr-Newman
solutions. This fact shows the absence of a “scalar hair” due
to the validity of the no-hair theorem even in the presence
of the canonical scalar field. Constructing BH solutions
with the scalar hair in the context of GR is not a simple
problem (see Ref. [25] for review). However, if a scalar
field couples to the Maxwell field, it can take a nontrivial
profile [26–55]. Such a coupling between scalar and vector
fields arises in several theories, e.g., effective Lagrangians
of axion [56,57] which is a strong candidate of dark matter
and compactified higher-dimensional theories [26–28].
The interactions between scalar and vector fields can be

generalized requiring the equations of motion being up to
second order in terms of derivatives for the absence of
Ostrogradsky instabilities [58,59]. Indeed, the application
of this method to a single scalar degree of freedom
nonminimally coupled to gravity leads the Horndeski
theory, which is the most general scalar-tensor theory with
second-order equations of motion [60–62].1 For the mas-
sive vector degree of freedom, the same approach results
in the generalized Proca theory [64–66]. The Horndeski
and the generalized Proca theories can be unified as the
scalar-vector-tensor (SVT) theories in association with
new interactions between the scalar field and the vector

1Horndeski theories can be further generalized so as to allow
the existence of higher-order derivatives while keeping the
number of propagating degrees of freedom by virtue of degen-
eracy conditions. This class of theories is called degenerate
higher-order scalar-tensor theories [63].
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field [67]. If the vector field satisfies the Uð1Þ gauge
symmetry especially, it reduces to the so-called Uð1Þ
gauge-invariant SVT theories in which the Einstein-
Maxwell-scalar theory is classified as a subclass.
The interactions between scalar field and vector field in

the Uð1Þ gauge-invariant SVT theories are described by
three Lagrangians denoted as L2, L3, and L4. The scalar or
axionic-type couplings to the vector field discussed in
Refs. [27–31,36,39,42,44,47–53] correspond to particular
cases of the L2 interaction.

2 In these works, the scalar field
ϕ couples to the vector field through the scalar-type
interaction of the form g1ðϕÞFμνFμν or the axionic-type
interaction of the form g2ðϕÞFμνF̃μν, where Fμν is the
strength tensor of vector field and F̃μν is its dual, g1 and g2
are functions of ϕ. On the other hand, in the range of the
Uð1Þ gauge-invariant SVT theories, one can consider other
types of interactions. We can take account of the field
derivatives ∇αϕ, instead of the field ϕ itself, coupled to the
vector field as∇αϕ∇αϕFμνFμν and∇μϕ∇νϕFμαFνα, where
∇μ is the covariant derivative operator. If we demand the
Uð1Þ gauge field to be static and spherically symmetric at
the time of configuration, however, the latter interaction,
∇μϕ∇νϕFμαFνα, reduces to be in proportion to the former
interaction, ∇αϕ∇αϕFμνFμν. This shows that the two types
of interactions are degenerated on the configuration and
cannot be distinguished. Moreover, we cannot examine the
effect of a scalar product FμνF̃μν at the background since it
identically vanishes.
One way to resolve the aforementioned degeneracy

between ∇αϕ∇αϕFμνFμν and ∇μϕ∇νϕFμαFνα on the static
and spherically symmetric background is to introduce
magnetic charge. Although the existence of magnetic
charge breaks the spherical symmetry of the vector field,
it does not ruin the same symmetry at the level of the
background equations. In this case, it is known that the term
FμνF̃μν survives at the background and realizes the hairy
BH solution with a scalar hair through the axionic-type
interaction of the form g2ðϕÞFμνF̃μν [30,50]. Several
spherically symmetric solutions in the presence of a
magnetic monopole (e.g., Dirac monopole [70]) are also
discussed in Refs. [50,71–79].
In this paper, we study BH solutions in extended

Einstein-Maxwell-scalar theories in the presence of mag-
netic charge on the static and spherically symmetric
spacetime. The existence of magnetic charge enables us
to distinguish the two types of derivative interactions
∇μϕ∇νϕFμαFνα and ∇αϕ∇αϕFμνFμν. We show that the
former interaction can give rise to a new type of hairy BH
solutions. Moreover, we also investigate the possible

modifications to the Reissner-Nordström (RN) solutions
by including the latter type of interactions by extending the
scalar and axionic-type couplings as g1ðϕ; XÞFμνFμν and
g2ðϕ; XÞFμνF̃μν, where X ¼ −∇αϕ∇αϕ=2 is the kinetic
term of scalar field.
This paper is organized as follows. In Sec. II, we present

the Lagrangian describing scalar-vector couplings which
corresponds to the quadratic term L2 in the Uð1Þ gauge-
invariant SVT theories and focus on the three types of
scalar-vector coupling. The vector potential is set to have a
magnetic charge. We derive the field equations on a static
and spherically symmetric background. In Sec. III, we
obtain analytic solutions by expanding the field equations
in the two asymptotic regions, i.e., in the vicinity of the BH
horizon and at spatial infinity. We investigate the condition
for the presence of scalar hair by using these solutions. In
Sec. IV, we apply our results derived in the previous section
to the concrete models and confirm the existence of scalar
hair in the intermediate regions by numerically integrating
the background equations. We then discuss the possible
parameter region to realize the BH solutions as well as the
difference of each BH solution in the large coupling limit.
The deviations from the RN solution, especially, are inves-
tigated, focusing on the effects of derivative couplings.
Section V is devoted to conclusions. We use geometrized
units, where the speed of light and the gravitational constant
are equal to 1.

II. Uð1Þ GAUGE-INVARIANT SVT THEORIES
AND FIELD EQUATIONS

We consider a subclass of the Uð1Þ gauge-invariant SVT
theories described by the action [67]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ f2ðϕ; X; F; F̃; YÞ

�
; ð2:1Þ

where g is a determinant of themetric tensor gμν and the term
proportional to the Ricci scalarR is the Einstein-Hilbert term
with the reduced PlanckmassMpl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
. The function

f2 corresponding to the quadratic LagrangianL2 in theUð1Þ
gauge-invariant SVT theories depends on scalar field ϕ and
following quantities:

X¼−
1

2
∇μϕ∇μϕ; F¼−

1

4
FμνFμν; F̃¼−

1

4
FμνF̃μν;

ð2:2Þ

Fμν ¼ ∇μAν −∇νAμ; F̃μν ¼ 1

2
EμναβFαβ;

Y ¼ ∇μϕ∇νϕFμαFνα; ð2:3Þ

where Aμ is the vector field, ∇μ is the covariant derivative
operator, and Eμναβ is the antisymmetric Levi-Civita tensor
satisfying the normalization EμναβEμναβ ¼ þ4!.

2The existence of hairy BH solutions arising from the
interactions L3 and L4 are discovered in Ref. [68], and the
stability of these solutions against odd-parity perturbations are
studied in Ref. [69].
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We focus on a static and spherically symmetric space-
time with the line element:

ds2 ¼ −fðrÞdt2 þ h−1ðrÞdr2 þ r2dΩ2;

dΩ2 ¼ dθ2 þ sin2θdφ2; ð2:4Þ

where t is the time coordinate, r stands for the radial
coordinate, θ is polar angle, and φ is azimuthal angle. The
two functions f and h depend on only r. We define the
event horizon radius r ¼ rh, where fðrhÞ and hðrhÞ vanish
simultaneously. Furthermore, we assume that fðrÞ and hðrÞ
remain positive outside the horizon (r > rh). According to
the symmetry of background metric, we adopt the follow-
ing field ansatz:

ϕ ¼ ϕðrÞ; Aμ ¼ ðVðrÞ; 0; 0;−P cos θÞ; ð2:5Þ

where ϕ and V are functions of the radial coordinate r and
P corresponds to the monopolar magnetic charge. From
Eqs. (2.4) and (2.5), the scalar quantities X, F, F̃, and Y,
defined in Eqs. (2.2) and (2.3), are evaluated as

X ¼ −
hϕ02

2
; F ¼ hV 02

2f
−

P2

2r4
;

F̃ ¼ PV 0

r2

ffiffiffi
h
f

s
; Y ¼ −

h2ϕ02V 02

f
: ð2:6Þ

In the absence of magnetic charge P, the quantity F̃
identically vanishes and the derivative interaction Y reduces
to Y ¼ 4XF [80,81]. This means that we can omit the
dependence of these quantities in the function f2 in
Eq. (2.1) without loss of generality at the background level.
On the other hand, if the nonzero magnetic charge exists, the
situation changes significantly. The quantity F̃ survives andY
becomes independent of F. So far, the hairy BH solutions
arising from the scalar-type interaction g1ðϕÞFμνFμν and the
axionic-type interaction g2ðϕÞFμνF̃μν have been broadly
studied in Refs. [27,28,30,49–51]. In this paper, we focus
on the effect of derivative interactions on the hairy BH
solutions by taking into account the derivative couplingY as a
key ingredient as well as the X dependence in the scalar and
axionic-type interactions. For this purpose, we consider
extended Einstein-Maxwell-scalar theories described by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ F þ X þ g1ðϕ; XÞF þ g2ðϕ; XÞF̃ þ ḡ3ðϕ; XÞY

�
; ð2:7Þ

which belongs to the subclass of theories given in Eq. (2.1).
Here, g1, g2, and ḡ3 are arbitrary functions of the scalar fieldϕ
and its kinetic term X. In the following sections, we will
search for nontrivial BH solutions such that f, h,ϕ, andV are
regular at the horizon. Assuming that the aboveLagrangian is
also regular at the horizon, g1 and g2 need to be functions that
have zero or positive powers ofX since this quantity vanishes
at the horizon [see Eq. (2.6)]. On the other hand, the situation
is different for g3. As can be seen from Eq. (2.6), the quantity
Y is proportional to X in the form Y ¼ ð2hV 02=fÞX.

This shows that, even for ḡ3 ∝ X−1, the combination ḡ3Y
is regular at the horizon. In order to make this point clear, we
normalize ḡ3 as

ḡ3ðϕ; XÞ ¼
g3ðϕ; XÞ

4X
; ð2:8Þ

without loss of generality. If we demand g3 has zero or
positive power of X, the Lagrangian

ffiffiffiffiffiffi−gp
g3Y=ð4XÞ can be

regular at the horizon.

Variation of the action (2.7) with respect to f, h, ϕ, and V gives the equations of motion:

2M2
plrfh

0 ¼ 2M2
plfð1 − hÞ − r2h½fϕ02 þ ð1þ g1 þ g3ÞV 02� − P2fð1þ g1Þ

r2
; ð2:9Þ

2M2
plrhf

0 ¼ 2M2
plfð1 − hÞ þ r2h½fϕ02 − ð1þ g1 þ g3ÞV 02� − P2fð1þ g1Þ

r2

þ
�
ðr2hðg1;X þ g3;XÞV 0 þ 2P

ffiffiffiffiffiffi
fh

p
g2;XÞV 0 −

P2fg1;X
r2

�
hϕ02; ð2:10Þ

J0ϕ ¼ Pϕ; ð2:11Þ

J0A ¼ 0; ð2:12Þ
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respectively, where

Jϕ ¼ −
�
r2

2

ffiffiffi
h
f

s
ðg1;X þ g3;XÞV 02 þ g2;XPV 0

þ
ffiffiffi
f
h

r �
r2 −

g1;XP2

2r2

��
hϕ0; ð2:13Þ

Pϕ ¼ r2

2

ffiffiffi
h
f

s
ðg1;ϕ þ g3;ϕÞV 02 þ g2;ϕPV 0 −

ffiffiffi
f
h

r
g1;ϕP2

2r2
;

ð2:14Þ

JA ¼ r2

ffiffiffi
h
f

s
ð1þ g1 þ g3ÞV 0 þ g2P: ð2:15Þ

Here, the scalar quantity that follows the comma in subscripts
represents a partial derivative with respect to the quantity,
e.g., gi;ϕ ¼ ∂giðϕ; XÞ=∂ϕ and gi;ϕϕ ¼ ∂

2giðϕ; XÞ=∂ϕ2 (with
i∈ f1; 2; 3g), whereas the prime denotes the derivatives with
respect to r, e.g., ξ0 ¼ dξ=dr (with ξ∈ ff; h; V;ϕg). From
Eq. (2.12), we read JA ¼ const. This conservation of the
current JA appears as a result of the Uð1Þ gauge symmetry.

III. ASYMPTOTIC SOLUTIONS

We derive analytic solutions to the background equa-
tions (2.9)–(2.12) in two asymptotic regions. The metric
components and field variables are required to be regular
around the horizon. At large distances from the origin of the
BH, we demand the solutions to be asymptotically flat.

A. Solutions around the horizon

To derive analytic solutions to the field equations (2.9)–
(2.12) in the vicinity of the BH horizon rh, we expand f, h,
V, and ϕ with respect to r − rh. Requiring the regularity of
these variables as well as the vanishing f and h at the
horizon, they can be expanded in the forms

f ¼
X∞
i¼1

fiðr − rhÞi; h ¼
X∞
i¼1

hiðr − rhÞi;

V ¼ V0 þ
X∞
i¼1

Viðr − rhÞi; ϕ ¼ ϕ0 þ
X∞
i¼1

ϕiðr − rhÞi;

ð3:1Þ

where fi, hi, V0, Vi, ϕ0, and ϕi are constants. Hereafter, the
constant V0 will be omitted by setting V0 ¼ 0 without loss
of generality, since V always appears with a derivative in
the field equations by virtue of the Uð1Þ gauge symmetry.
Similar to the regularity in Eq. (3.1), we assume that the
coupling functions are regular at the horizon. Since the

kinetic term X is expanded around the horizon as
X ¼ −ðh1ϕ2

1=2Þðr − rhÞ þOððr − rhÞ2Þ, the expansion of
coupling giðϕ; XÞ with i ¼ 1, 2, 3 can be expressed as
giðϕ;XÞ ¼ giðϕ0;0Þ þ ½gi;ϕðϕ0;0Þ− gi;Xðϕ0;0Þh1ϕ2

1=2�ðr−
rhÞ þOððr− rhÞ2Þ. We denote giðϕ0; 0Þ, gi;ϕðϕ0; 0Þ, and
gi;Xðϕ0; 0Þ as gi, gi;ϕ, and gi;X, respectively, for simplicity in
the following discussion.
We treat the effect of the couplings as corrections to the

RN metric with a magnetic charge P given by

fRN ¼ hRN ¼
�
1−

rh
r

��
1−μ

rh
r

�
¼ 1−

2M
r

þQ2þP2

2M2
plr

2
;

ð3:2Þ

where rh corresponds to the outer horizon and a dimen-
sionless constant μ characterizes the inner horizon r̃h ¼ μrh
within the range of 0 ≤ μ ≤ 1. From Eq. (3.2), the constant
μ satisfies μ ¼ 2M=rh − 1, so that there is a relation
Q2 þ P2 ¼ 2rhð2M − rhÞM2

pl among horizons and
charges. We substitute Eq. (3.1) into Eqs. (2.9)–(2.12) and
expand them around r ∼ rh. Then, we iteratively solve the
resultant equations order by order in terms of r − rh so as to
derive the coefficients fi, hi, Vi, and ϕi. To clarify the
leading contributions of the couplings to the modification
of the RN solution, the iteration has been continued until
the g1, g2, and g3 appear in all the coefficients fi, hi, Vi,
and ϕi. Assuming that the quantities f1 and h1 are positive
since we are interested in the BH solutions outside the
horizon, the coefficients are given by

f1 ¼ h1 ¼
1 − μ

rh
;

V1 ¼
1

r2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γg1g3 ½2M2

plr
2
hμ − ð1þ g1ÞP2�

q
γg1g3

; ð3:3Þ

ϕ1 ¼ −
rh

1 − μ

�
Φ1;ϕ

Φ1;X − 2r4h

�
; ð3:4Þ

at the linear order, and

f2¼
2μ−1

r2h
þ
�

Φ1;ϕ

8M2
plr

3
h

�
ϕ1; h2¼

2μ−1

r2h
−
�

3Φ1;ϕ

8M2
plr

3
h

�
ϕ1;

ð3:5Þ

V2 ¼ −
V1

rh
þ 1

2r2h

�
V1Φ1;ϕ

4ð1 − μÞM2
pl

−
Φ2;ϕ

γg1g3

�
ϕ1

þ
�ð1 − μÞΦ2;X

4r3hγg1g3

�
ϕ2
1; ð3:6Þ
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ϕ2 ¼
�

3μ − 1

4rhð1 − μÞ
�
ϕ1 þ

�
Φ1;ϕ

8ð1 − μÞM2
plr

2
h

þ ð9μ − 5ÞΦ1;X þ r2h½Φ1;ϕϕ − 2ðμþ 3Þr2h�
4r2hΦ1;ϕ

−
3Φ1;ϕX

8ðΦ1;X − 2r4hÞ
þ Φ2;ϕ

2γg1g3

�
Φ2;ϕ

Φ1;ϕ
−

3Φ2;X

2ðΦ1;X − 2r4hÞ
��

ϕ2
1 þ

�ð1 − μÞðγg1g3Φ1;XX þ 2Φ2
2;XÞ

4rhγg1g3ðΦ1;X − 2r4hÞ
�
ϕ3
1; ð3:7Þ

at the second order, where

Φ1 ¼ ð−r4hV2
1 þ P2Þg1 − 2r2hPV1g2 − r4hV

2
1g3; ð3:8Þ

Φ2 ¼ r2hðg1 þ g3ÞV1 þ Pg2; ð3:9Þ

γg1g3 ¼ 1þ g1 þ g3: ð3:10Þ

The coupling functions g1, g2, and g3 are evaluated on the
horizon with ðϕ; XÞjr¼rh ¼ ðϕ0; 0Þ. We note that the
authors of Ref. [82] have obtained hairy BH solutions
with nonzero ϕ and X at the horizon in the shift symmetric
beyond Horndeski theories. In such theories, by virtue of
the shift symmetry, the vanishing Noether current gives rise
to the solutions with ϕ0 divergent at the horizon while the
kinetic term X remains finite there. In the scope of this
paper, we focus on the theories described by Eq. (2.7) in
which the shift symmetry of scalar field does not hold due
to the existence of ϕ dependence in the coupling functions
g1, g2, and g3. Hence, we focus on the solutions endowed
with scalar field, which is regular at the horizon. As seen in
Eq. (3.5), the couplings give rise to corrections to the metric
components at the order of ðr − rhÞ2. When the coupling
does not depend on the field ϕ itself, the coefficient ϕ1

in Eq. (3.4) identically vanishes which results in the

elimination of ϕ2 given in Eq. (3.7). In such a case, we
can numerically confirm that the scalar field settles down to
be constant ϕ ¼ ϕ0 in all the region outside the horizon
which implies the absence of scalar hair. As a consequence,
we find that the ϕ dependence in the functions giðϕ; XÞ is
essential for achieving hairy BH solutions.

B. Asymptotically flat solutions

We derive asymptotically flat solutions satisfying
f; h → 1, V → V∞, and ϕ → ϕ∞ as r → ∞, where V∞
and ϕ∞ are constants. To obtain the solutions at spatial
infinity, we expand f, h, V, and ϕ as the power series of
1=r, as

f ¼ 1þ
X∞
i¼1

f̃i
ri
; h ¼ 1þ

X∞
i¼1

h̃i
ri
;

V ¼ V∞ þ
X∞
i¼1

Ṽi

ri
; ϕ ¼ ϕ∞ þ

X∞
i¼1

ϕ̃i

ri
: ð3:11Þ

We substitute Eq. (3.11) into the background equations
given in Eqs. (2.9)–(2.12) and expand them for the large r.
Solving the resultant equations order by order in terms
of inverse power of r, we find the following iterative
solutions:

f ¼ 1 −
2M
r

þ γg1g3Q
2 þ ð1þ g1ÞP2

2M2
plr

2
þQs½MQs − ðg1;ϕ þ g3;ϕÞQ2 þ 2g2;ϕPQþ g1;ϕP2�

6M2
plr

3
þO

�
1

r4

�
; ð3:12Þ

h ¼ 1 −
2M
r

þ γg1g3Q
2 þQ2

s þ ð1þ g1ÞP2

2M2
plr

2
þQs½MQs − ðg1;ϕ þ g3;ϕÞQ2 þ 2g2;ϕPQþ g1;ϕP2�

2M2
plr

3
þO

�
1

r4

�
; ð3:13Þ

V ¼ V∞ þQ
r
−
½ðg1;ϕ þ g3;ϕÞQ − Pg2;ϕ�Qs

2γg1g3r
2

þO
�
1

r3

�
; ð3:14Þ

ϕ ¼ ϕ∞ þQs

r
þ 1

r2

�
MQs −

ðg1;ϕ þ g3;ϕÞQ2 − 2g2;ϕPQ − g1;ϕP2

4

�
þO

�
1

r3

�
; ð3:15Þ

where the coupling functions are evaluated at spatial
infinity, i.e., giðϕ; XÞjr→∞ ¼ giðϕ∞; 0Þ. Among these cou-
plings, g1 and g3 start to appear in the metric components f
and h at the order of 1=r2, while g2 first appears at the order

of 1=r3. We also find that the scalar charge Qs appears in
the metric component h at the order of 1=r2 while it does
not appear in f at the same order. Remembering that f ¼ h
holds in the RN solution, it shows that the existence of
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scalar chargeQs triggers the deviation of solutions from the
RNmetric far away from thehorizon. If the coupling has noϕ
dependence, Eq. (3.15) reads ϕ ¼ ϕ∞ þ ðQs=rÞð1þM=rÞ.
Although the scalar field seems to be nontrivial, this scalar
chargeQs should vanish since the scalar profile is constant in
all regions outside the horizon from the discussion in the last
of the previous subsection. Then, the metric components
reduce toRN solution under the redefinition ofQ andP. As a
consequence, we conclude that the ϕ dependence of the
functions gi generates the nonzero scalar charge Qs and the
modification to the RN solution.

IV. CONCRETE MODELS AND
NUMERICAL ANALYSES

In this section, we study numerical analyses in concrete
models with fixed coupling functions. We numerically
solve the background equations given in Eqs. (2.9)–
(2.12) outside the horizon by using the analytic solutions
(3.3)–(3.7) as boundary conditions around r ¼ rh. To
analyze the fundamental effects of each coupling, we set
the functions giðϕ; XÞ to be linear in terms of ϕ and X as

giðϕ; XÞ ¼
ciϕ
Mpl

�
1þ diX

M4
pl

�
with i∈ f1; 2; 3g; ð4:1Þ

where ci and di are coupling constants. Remembering that
our interest is in the effect of derivative couplings on BH
solutions, the coupling function g3 characterizing the
derivative interaction Y plays a key role. The derivative
interactions appearing through the X dependence in gi are
considered to contribute only as corrections to the ϕ
dependence since the scalar hair is generated by the ϕ
dependence in gi as we discussed in Sec. III.

A. Hairy BH solution arising from
the derivative interaction ḡ3Y

For the scalar and the axionic-type couplings of the forms
g1F and g2F̃, respectively, it has shown that the charged BH
solutions with scalar hair exist [27,28,30,49–51]. This
subsection aims to examine whether the new BH solutions
arise from the derivative interaction, ḡ3Y, in intermediate
scales. For this purpose, we concentrate on the case c3 ¼ 1
with vanishing c1, c2, and di. We solve the field equations
given in Eqs. (2.9)–(2.12) numerically with the model
parameters μ ¼ 0.1 and P ¼ 0.1Mplrh. The analytic
solutions around the horizon given in Eqs. (3.3)–(3.7) are
used as boundary conditions with ϕ0 ¼ −1.0 × 10−4Mpl at
r ¼ 1.001rh.

3Wepresent the result in Fig. 1. It shows that the

two asymptotic solutions, in the vicinity of the horizon and at
spatial infinity, connect to each other without any singular
behavior. This is a new type of BH solution with scalar hair
arising from the derivative interaction ḡ3Y. In this case, the
combination h − f characterizing deviation of solutions
from the RN metric takes the maximum value of order h −
f ∼Oð10−3Þ around the horizon and decreases for larger r.
We note that, although f generally converges to the value
being different from 1 at the large distances in numerical
calculationswhile themetrich settles down to 1 there,we can
normalize f to satisfy fðr → ∞Þ ¼ 1 by using the indefi-
niteness of f in terms of time rescaling. Indeed, in our
numerical calculation, the normalization factor is determined
by solving the background equations up to r ¼ 1016rh. In the
next subsection, we investigate the characteristics of this
solution compared to those arising from g1F and g2F̃.

B. Large coupling limit of each interaction
and possible parameter space

As we discussed in Sec. II, Eq. (2.6) shows that the
coupling g2F̃ identically vanishes and the effect of ḡ3Y will
be degenerated with one in g1F in the absence of magnetic
charge P. In this subsection, we focus on the case of P ≠ 0
and examine how we can distinguish these three types of
interactions considering the large coupling limit.
The combination jh − fj, which characterizes deviation

from the RN solution, can be expressed analytically around
the horizon from Eq. (3.5) as

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 1  10  100

  f
  h
  V
  -�
h - f

r / rh

FIG. 1. Numerical solutions of f; h; V;ϕ; h − f outside the
horizon for the coupling c3 ¼ 1, with vanishing c1, c2, and di.
The boundary conditions are chosen to satisfy Eqs. (3.3)–(3.7)with
μ ¼ 0.1,P ¼ 0.1Mplrh, andϕ0 ¼−1.0×10−4Mpl at r ¼ 1.001rh.

3The boundary conditions and model parameters are chosen so
that (i) a condition for the couplings to work as corrections to the
RN solution, (ii) a condition for avoiding discontinuity, and (iii) a
condition for the existence of horizon are satisfied. The concrete
expressions of these conditions will be discussed in Sec. IV B.
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jh − fj ¼
���� Φ2

1;ϕ

2M2
plr

2
hð1 − μÞð2r4h −Φ1;XÞ

����ðr − rhÞ2 þOððr − rhÞ3Þ: ð4:2Þ

To distinguish how the deviation between two metric components, f and h, is affected by each coupling, we consider a large
coupling limit characterized by jcij ≫ 1. Expanding the subtraction of metric components (4.2) in a series of large jcij for
the three cases (i) jc1j ≫ fjc2j; jc3jg, (ii) jc2j ≫ fjc1j; jc3jg, and (iii) jc3j ≫ fjc1j; jc2jg, the leading-order contributions are
given as

jh − fj
ðr − rhÞ2

≃
����P

2c1ð2μM3
plr

2
h − P2c1ϕ0Þ

ð1 − μÞϕ0M4
plr

6
h

−
μðμM2

plr
2
h þ 2P2Þ

ð1 − μÞϕ2
0r

4
h

����þO
�
1

c1

�
ðjc1j ≫ fjc2j; jc3jgÞ; ð4:3Þ

jh − fj
ðr − rhÞ2

≃
P2c22ð2μM2

plr
2
h − P2Þ

ð1 − μÞM4
plr

6
h

ðjc2j ≫ fjc1j; jc3jgÞ; ð4:4Þ

jh − fj
ðr − rhÞ2

≃
����− ð2μM2

plr
2
h − P2Þ2

4ð1 − μÞϕ2
0M

2
plr

6
h

þ ð2μM2
plr

2
h − P2Þ2

2ð1 − μÞc3ϕ3
0Mplr6h

����þO
�
1

c23

�
ðjc3j ≫ fjc1j; jc2jgÞ; ð4:5Þ

respectively. Equation (4.3) shows that, in the case
(i) jc1j ≫ fjc2j; jc3jg, the contributions of quadratic term
c21 has opposite sign to that of linear term c1 as long as
c1ϕ0 > 0. Then, there should be an extreme value of c1 at
which the dominant contribution switches from the linear
term to the quadratic term. In the case (ii) jc2j ≫ fjc1j; jc3jg,
we find that the absolute value of quantity h − f monoton-
ically increases in proportion to c22 from Eq. (4.4). The
derivative interaction characterized by c3 exhibits particular
behavior at the large coupling limit. In the case
(iii) jc3j ≫ fjc1j; jc2jg, Eq. (4.5) shows that the quantity
h − f saturates in the large coupling limit jc3j → ∞.
We are going to confirm the above characteristic sig-

natures of each coupling by investigating numerical sol-
utions. In doing so, the model parameters ci, μ, P, and ϕ0

cannot be freely chosen but constrained from the require-
ments listed below.

(i) A condition for the couplings to work as corrections
to the RN solution. In Sec. III A, we regarded the
effect of couplings as corrections to the RN solution.
For the sake of consistency, the contributions origi-
nated from the couplings need to be subleading in
the metric components given in Eq. (3.5) compared
to those in the RN solution. In other words, regard-
ing the asymptotic solutions (3.5) with (3.4), we
demand the following condition:

���� Φ2
1;ϕ

8ðΦ1;X − 2r4hÞM2
pl

���� ≪ jð1 − μÞð2μ − 1Þj; ð4:6Þ

under which the correction terms remain subdomi-
nant compared to the RN solution.

(ii) A condition for avoiding discontinuity. The field
equations (2.11) and (2.12) contain the second
derivatives V 00 and ϕ00. Denoting the coefficients
of ϕ00 and V 00 in Eq. (2.11) as a and b, respectively,
they are represented as

a ¼ Jϕ
ϕ0 − hϕ0 ∂Jϕ

∂X
;

b ¼ −hϕ0
"
r2

ffiffiffi
h
f

s
ðg1;X þ g3;XÞV 0 þ g2;XP

#
: ð4:7Þ

We also denote the coefficients of ϕ00 and V 00 in
Eq. (2.12) as c and d, respectively, which are given by

c ¼ −hϕ0 ∂JA
∂X

; d ¼ r2

ffiffiffi
h
f

s
ð1þ g1 þ g3Þ: ð4:8Þ

One need to solve Eqs. (2.11) and (2.12) with respect
toV 00 andϕ00 when performing numerical calculation.
In doing so, the combination ad − bc appears in the
denominator of these solutions. We demand this
combination not to cross zero, i.e., ad − bc ≠ 0, so
that the quantities V 00 and ϕ00 remain continuous
during numerical calculation. In the absence of the
couplings, we obtain a ¼ −r2

ffiffiffiffiffiffi
fh

p
, b ¼ 0, c ¼ 0,

and d ¼ r2
ffiffiffiffiffiffiffiffi
h=f

p
, which lead to ad − bc ¼

−r4h < 0. In order to realize this RN limit when
gi → 0, we additionally require

ad − bc < 0: ð4:9Þ

We must choose the coupling constants ci and di as
well as the model parameters μ, P, and ϕ0 so as to
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satisfy the condition (4.9) for any r ðr > rhÞ. In the
absence of the kinetic couplings described by the X
dependence in the coupling functions, i.e., gi;X ¼ 0,
the coefficients b and c identically vanish while a
reduces to a ¼ −r2

ffiffiffiffiffiffi
fh

p
. Then, the condition (4.9)

simply reduces to 1þ g1 þ g3 > 0. This corresponds
to the positivity of the quantity γg1g3 defined in
Eq. (3.10). We note that the coupling g2 is not
constrained in such a case.

(iii) A condition for the existence of horizon. For the
existence of a real solution in the vicinity of the
horizon, we require the positivity of the term inside
the square root of V1 given in Eq. (3.3). This
requirement leads to the following inequality:

γg1g3 ½2μM2
plr

2
h − ð1þ g1ÞP2� ≥ 0: ð4:10Þ

This condition recovers the upper bound on electric
and magnetic charge in the RN solutions if
g1 ¼ g3 ¼ 0. The coupling g2 itself is free from this
requirement.

We note that these three conditions are derived for the
general coupling giðϕ; XÞ. Thus, we can apply these
conditions even in the presence of the derivative couplings
characterized by di in Eq. (4.1).
Figures 2–4 show the behavior of jh − fj for the several

values of c1, c2, or c3. The numerical results support the
analytic solutions given in Eqs. (4.3)–(4.5). From Eq. (4.3),

there is a threshold at which the dominant contribution
switches from the linear term to the quadratic term. For
increasing c1, our numerical result in Fig. 2 shows that the
metric difference grows first, but it starts to be suppressed
around c1 ≳Oð100Þ. In terms of large c2, jh − fj increases
monotonically in Fig. 3. This result shows good agreement
with Eq. (4.4). However, c2 cannot be large without the limit
since the upper bound (4.6) exists. For a too large c2 to violate
the condition (4.6) with fixed P, numerical integration
tends to be unstable. Indeed, we numerically confirmed that
the singular behavior starts to appear around c2 ¼ 1870,
for the model parameters μ¼ 0.1, P¼ 0.001Mplrh, and
ϕ0¼0.1Mpl. The violation of the condition (4.6) implies
that the resultant spacetime significantly deviates from RN
spacetime. Since the asymptotic solutions (3.3)–(3.7) around
the horizon are obtained under the assumption that the
couplings behave as corrections to the RN solution, they
cannot approximate the solutions violating the condition
(4.6). We note that the large c2 limit has been discussed in
Ref. [30] under the assumption of the weak gravitational
field. It has been analytically shown that the solutions around
the horizon (r≳ rh) reduce to the RNmetric possessing only
a magnetic charge in such a case. In contrast to the previous
study, we do not assume the weak field approximation and
find that the solutions can deviate from theRNmetric in large
c2 but singular behavior occurs at some point. When taking
large c3, Eq. (4.5) implies that the metric difference con-
verges to finite values. We numerically confirmed that this
saturation realizes around c3 ≳Oð100Þ as shown in Fig. 4.

FIG. 2. Numerical solutions of h − f for different coupling
constants, c1 ∈ f1; 10; 100; 400; 1000g. The model parameters
are chosen as μ ¼ 0.1 and P ¼ 0.01Mplrh. The boundary con-
dition is determined to satisfy Eqs. (3.3)–(3.7) at r ¼ 1.001rh
with ϕ0 ¼ 0.5Mpl.

FIG. 3. Comparing numerical solutions of h − f between
different coupling constants, c2 ∈ f1; 10; 100; 1000g. The model
parameters are μ ¼ 0.1 and P ¼ 0.001Mplrh. The boundary
condition is decided to satisfy Eqs. (3.3)–(3.7) at r ¼ 1.001rh
with ϕ0 ¼ 0.1Mpl.
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Hence, we can distinguish the three couplings by jh − fj in
the large coupling limit.

C. Effects of X dependence in giðϕ;XÞ on scalar hair

In this subsection, we investigate the effects of the
derivative interaction through the X dependence in the
coupling functions giðϕ; XÞ. As we have discussed in
Sec. III, this type of coupling itself does not give rise to
scalar hair. However, it can affect the hairy BH solutions
originated from the ϕ dependence that we investigated in
Secs. IVA and IV B. In order to reveal this effect in detail,
we focus on the quantity h − f representing modification to
the RN solutions and examine how its behavior changes
depending on di which describes the strength of kinetic

interactions between the scalar field and Uð1Þ gauge field.
Although the kinetic term X vanishes at the horizon as a
result of the regularity of the scalar field, the kinetic
coupling di can affect the solutions around the horizon,
f2 and h2, given in Eq. (3.5) with (3.4) through the
coupling term Φ1;X. Since the term Φ1;X appears only in
the denominator of these solutions, the deviation from the
RN solution given in Eq. (4.2) should be suppressed when
the X dependence in Φ1 is significantly large compared to
the ϕ dependence. To clarify the difference among the
effects of d1, d2, and d3 on h − f, we take a large coupling
limit with respect to each jdij in the same manner as in
Sec. IV B. For the three cases (i) jd1j ≫ fjd2j; jd3jg,
(ii) jd2j ≫ fjd1j; jd3jg, and (iii) jd3j ≫ fjd1j; jd2jg, we
expand the metric difference (4.2) and find the leading-
order contributions described by

jh − fj
ðr − rhÞ2

≃
����− ½μM3

plr
2
h − P2ðc1ϕ0 þMplÞ�c1Mpl

ð1 − μÞðc1ϕ0 þMplÞd1ϕ0r2h
þ M6

plr
2
h

ð1 − μÞd21ϕ2
0

����þO
�
1

d31

�
ðjd1j ≫ fjd2j; jd3jgÞ; ð4:11Þ

jh − fj
ðr − rhÞ2

≃
����− Pc2Mpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μM2

plr
2
h − P2

q
ð1 − μÞd2ϕ0r2h

þ M6
plr

2
h

ð1 − μÞd22ϕ2
0

����þO
�
1

d32

�
ðjd2j ≫ fjd1j; jd3jgÞ; ð4:12Þ

jh − fj
ðr − rhÞ2

≃
����− ð2μM2

plr
2
hÞc3M2

pl

2ð1 − μÞðc3ϕ0 þMplÞd3ϕ0r2h
þ M6

plr
2
h

ð1 − μÞd23ϕ2
0

����þO
�
1

d33

�
ðjd3j ≫ fjd1j; jd2jgÞ; ð4:13Þ

FIG. 4. Numerical solutions of h − f for different coupling
constants, c3 ∈ f1; 10; 100; 1000g. The model parameters are
chosen as μ ¼ 0.1 and P ¼ 0.1Mplrh. The boundary condition
is determined to satisfy Eqs. (3.3)–(3.7) at r ¼ 1.001rh
with ϕ0 ¼ 0.5Mpl.

FIG. 5. Numerical solutions of h − f for different coupling
constants, d3=ðrhMplÞ2 ∈ f1; 104; 105g with c3 ¼ 1. The boun-
dary conditions are chosen to satisfy Eqs. (3.3)–(3.7) at
r ¼ 1.001rh with μ ¼ 0.1, P ¼ 0.1Mplrh, and ϕ0 ¼ 0.1Mpl.
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respectively. Since each first term is proportional to 1=di in
Eqs. (4.11)–(4.13), the qualitative behaviors of the metric
difference for the cases (i), (ii), and (iii) are the same. Thus,
we focus on the numerical solutions of h − f only in terms of
d3 in the following. In Fig. 5, we compare the solutions of
h − f for different values of the constant d3. For the other
model parameters,we adopt c3 ¼ 1,μ ¼ 0.1,P ¼ 0.1Mplrh,
andϕ0 ¼ 0.1Mpl with the boundary conditions (3.3)–(3.7) at
r ¼ 1.001rh. We note that these parameters are chosen to be
in the range of the conditions (4.6)–(4.10). Figure 5 shows
the suppression ofh − f for increasingd3which is consistent
with the aforementioned expectation for the effect of di. At a
distance from the horizon, the kinetic termX starts to evolve.
This leads to a shift of the distance at the maximum point of
jh − fj to be larger for increasing d3. We also confirmed that
the effect of di on the metric difference h − f is the most
crucial for d3 among the three types of kinetic coupling di as
long as the values of the other parameters are similar.

V. CONCLUSIONS

We studied BH solutions in extended Einstein-Maxwell-
scalar theories with magnetic charge and kinetic couplings.
In Sec. II, we presented a subclass of the Uð1Þ gauge-
invariant scalar-vector-tensor theories described by the
quadratic interaction f2ðϕ; X; F; F̃; YÞ. To investigate the
fundamental effects of the scalar-vector interactions on BH
solutions, we focused on a static and spherically symmetric
spacetime whose line element is given by Eq. (2.4). We
introduced the scalar field ϕ and the vector potential Aμ

under the ansatz (2.5). TheUð1Þ gauge field was set to have
both electric and magnetic charges in order to resolve the
degeneracy between the two types of derivative inter-
actions, ∇αϕ∇αϕFμνFμν and ∇μϕ∇νϕFμαFνα, and to take
account of the contribution from FμνF̃μν. Introducing
magnetic charge breaks the spherical symmetry of the vector
field configuration itselfwhile keeping the same symmetryof
background equations. Then, we focused on the theories
described by Eq. (2.7) with the normalization (2.8) so as to
investigate the effects of the derivative coupling Y and the X
dependence in the coupling functions on the BH solutions.
For the aforementioned configurations, the background
equations were derived in Eqs. (2.9)–(2.12).
The aim of Sec. III is to find analytic solutions under

proper approximations. We focused on the two asymptotic
regions, in the vicinity of the horizon, r ≃ rh, and spatial
infinity, r ≫ rh. In Sec. III A, we expanded the equations of
motion with respect to r − rh, demanding regularity of
variables at r ¼ rh as in Eq. (3.1). In the vicinity of the
horizon, we obtained the expansion coefficients as in
Eqs. (3.3)–(3.7). The deviation of metric components from
the RN solution starts to arise at the order of ðr − rhÞ2. In
the absence of ϕ dependence in the coupling functions, the
metric settles down to the RN solution, and the scalar
profile becomes trivial. This shows that the crucial source

of scalar hair is the ϕ dependence in the coupling functions.
The kinetic couplings characterized by the X dependence in
the coupling functions can contribute as modifications to
the existing hairy solutions arising from the ϕ dependence
of them. In Sec. III B, in order to derive asymptotically flat
solutions at large distances, the metric components, scalar,
and vector fields are expanded in the power series of 1=r as
in Eq. (3.11). We then solved the background equations
order by order in terms of 1=r and determined the
expansion coefficients in Eqs. (3.12)–(3.15), up to the
order of 1=r3. The metric components are corrected by g1
and g3 from the order of 1=r2, while g2 first arises in these
solutions at the order of 1=r3. We also found that the metric
component h includes the scalar charge Qs at the order of
1=r2, unlike the other component f. Hence, the deviations
from the RN solutions start to appear at the order of 1=r2

due to the existence of scalar charge Qs. When the
couplings do not include ϕ dependence, the scalar charge
Qs should vanish to satisfy the consistency with the
discussion in Sec. III A.
In Sec. IV, we fixed the functional form as in Eq. (4.1) to

perform numerical integrations of the field equations.
Section IVA focused on investigating the solutions in
the presence of derivative interaction ḡ3Y. We used the
asymptotic solutions given in Eqs. (3.3)–(3.7) near the
horizon as boundary conditions for integration. In Fig. 1,
the numerical analysis showed that these analytic solutions
around the horizon smoothly connected to asymptotically
flat solutions given in Eqs. (3.12)–(3.15). We confirmed
the existence of new hairy BH solutions arising from the
derivative coupling ḡ3Y. In Sec. IV B, we discussed the
difference of hairy BH solutions originated from the three
types of interactions g1F, g2F̃ and ḡ3Y. To distinguish how
the metric components are corrected by each coupling, we
focused on the difference of metric components represented
by jh − fj in a large coupling limit characterized by
jcij ≫ 1. The leading-order contributions were obtained
in Eqs. (4.3)–(4.5). We found that each solution shows
distinguishable characteristic behavior in terms of ci.
Before proceeding to numerical analysis, we search for
the possible parameter space in the following way. First,
requiring the couplings to work as subleading corrections to
the RN solution results in the condition (4.6). Second, we
demand the condition (4.9) to avoid discontinuities of the
second-order derivatives of scalar field, ϕ00, and vector
field, V 00. Third, we require the existence of a real solution
in the vicinity of the horizon, which results in the condition
(4.10). In Figs. 2–4, we compared the different behaviors of
jh − fj for the several values of c1, c2 or c3. The numerical
results are consistent with the analytic solutions given in
Eqs. (4.3)–(4.5). In Sec. IV C, we studied the effects of the
derivative interactions characterized by the X dependence
in the coupling functions gi. When the X dependence in Φ1

appearing in the solutions around the horizon (3.3)–(3.7)
dominates over the ϕ dependence, we found that the
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difference of the metric components, jh − fj, should be
suppressed as in Eq. (4.2) since jh − fj includes Φ1;X only
in the denominator at the leading order. For the three cases
of the kinetic couplings d1, d2 and d3, the quantity jh − fj
was expanded for large jdij to give the leading-order
contribution as in Eqs. (4.11)–(4.13). Since the qualitative
behavior for these three cases is the same, we focused on
the numerical solutions of h − f for different values of d3 in
Fig. 5. For increasing d3, the numerical result shows the
suppression of h − f which is consistent with the analytic
expression given in Eq. (4.13). Figure 5 also indicates the
shift of the distance at the maximum point of h − f to large
r in the region away from the horizon where the kinetic
term X grows.
In this paper, we focused on the hairy BH solutions

electrically and magnetically charged on the static and
spherically symmetric background based on the quadratic
interaction f2ðϕ; X; F; F̃; YÞ in the Uð1Þ gauge-invariant
SVT theories. The hairy BH solutions originated from the

cubic and the quartic interactions, L3 and L4, in the Uð1Þ
gauge-invariant SVT theories in Ref. [69] in the absence of
magnetic charge. It would be of interest to investigate
whether the presence of magnetic charge gives rise to a new
type of hairy BH solution in the full Uð1Þ gauge-invariant
SVT theories. It is also of interest to step forward to BH
perturbation analyses to examine the stability of our
solutions. The BH perturbations within the theory includ-
ing scalar-vector coupling were studied in Refs. [69,83,84]
in the absence of magnetic charge. It is necessary to clarify
how the existence of magnetic charge affects the dynamics
of perturbations as well as stability conditions.
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