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Since the recent derivation of a well-defined D → 4 limit for regularized 4D Einstein-Gauss-Bonnet
(4DEGB) gravity, there has been considerable interest in testing it as an alternative to Einstein’s general
theory of relativity. In this paper we construct slowly rotating black hole solutions for 4DEGB gravity in
asymptotically flat, de Sitter, and anti–de Sitter spacetimes. At leading order in the rotation parameter, exact
solutions of the metric functions are derived and studied for all three of these cases. We compare how
physical properties (innermost stable circular orbits, photon rings, black hole shadow, etc.) of the solutions
are modified by varying coupling strength of the 4DEGB theory relative to standard Einstein gravity
results. We find that a vanishing or negative cosmological constant in 4DEGB gravity enforces a minimum
mass on the black hole solutions, whereas a positive cosmological constant enforces both a minimum and
maximum mass with a horizon root structure directly analogous to the Reissner-Nordström–de Sitter
spacetime. Besides this, many of the physical properties are qualitatively similar to general relativity, with
the greatest deviations typically being found in the low (near-minimal) mass regime.
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I. INTRODUCTION

Despite the empirical success and predictive power of
Einstein’s general theory of relativity (GR), its modifica-
tions continue to attract attention. Early attempts can be
seen in the writings of Weyl [1] or Eddington [2], and
continue through to present day, motivated by the singu-
larity problem (i.e. geodesic incompleteness), the need for
reconciling quantum physics and gravity, and the need for
phenomenological competitors so as to test GR in the most
stringent manner possible.
A common class of modifications to GR are higher

curvature theories (or HCTs), in which it is assumed that a
sum of powers of the curvature tensor is proportional to
stress energy, extending the assumed linear relationship
between spacetime curvature (the Einstein tensor) and
stress energy in GR. Logically this linear relationship is
not required, and it is conceivable that the empirical success
of Einstein’s theory could be improved upon by modifying
the left-hand side of the Einstein equations with a sum of
powers of the curvature tensor.
These HCTs play important roles in many different areas

of physics—they appear in a number of proposals for
quantum gravity [3], and may be necessary to account
for observational evidence of dark matter, early-time
inflation, or late-time acceleration [4]. Lovelock theories
[5] are the best-known examples of HCTs, and have the
distinct feature that their differential equations are of

second order. However, until recently, their equations only
had nontrivial solutions in spacetime dimensions larger
than four (D > 4) [6], so their physical significance had
been unclear. Recently, a new class of HCTs has been
proposed that do allow for higher-order gravity in four
dimensions and satisfy reasonable physical requirements
such as positive energy excitations on constant curvature
backgrounds. Such higher curvature theories are referred to
as “generalized quasitopological gravities” [6]. The origi-
nal HCTwas cubic in curvature [5,7]; it was soon followed
by a class quartic in curvature [3]. Most recently a
procedure was found for constructing physically reasonable
HCTs to any desired power of curvature [6].
Amidst the plethora of higher curvature gravity theories,

the quadratic Lovelock theory, or so-called “Einstein-
Gauss-Bonnet” gravity has been of special interest. In
addition to having second-order equations of motion, it is
the simplest HCT. For a long time it was thought that the
Gauss-Bonnet (GB) action term

SGBD ¼ α

Z
dDx

ffiffiffiffiffiffi
−g

p ½RμνρτRμνρτ − 4RμνRμν þ R2�

≡ α

Z
dDx

ffiffiffiffiffiffi
−g

p
G ð1Þ

could not contribute to a system’s gravitational dynamics
in D ≤ 4 (since it becomes a total derivative in such
cases), and hence the GB contribution (1) is often referred
to as a topological term of no relevance. Furthermore, a
new 3þ 1-dimensional gravity theory that possesses
diffeomorphism invariance, metricity, and second-order
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equations of motion would be a violation of the Lovelock
theorem [5] and thus should only be possible by introduc-
ing an additional field into the theory besides the metric
tensor.
In 2020, Glavan and Lin [8] claimed to have bypassed

the Lovelock theorem via the following rescaling of the
Gauss-Bonnet coupling constant:

ðD − 4Þα → α; ð2Þ

and then taking the D → 4 limit of exact solutions to
Einstein-Gauss-Bonnet gravity. This interesting approach
allowed for nonvanishing contributions from the GB action
term in D ¼ 4. In doing so, a number of four-dimensional
metrics can be obtained (for spherical black holes [8–12],
cosmological solutions [8,13,14], starlike solutions [15,16],
radiating solutions [17], collapsing solutions [18], etc.)
carrying imprints of higher curvature corrections inherited
from their D > 4 counterparts.
Unfortunately the existence of limiting solutions does

not actually imply the existence of a 4D theory, and a
number of objections in this vein quickly appeared [19–21].
However, the conclusion that there ultimately was no four-
dimensional Gauss-Bonnet theory of gravity proved to be
premature when it was shown that a D → 4 limit of the
action (2) could be taken [22,23], generalizing a previous
procedure for taking the D → 2 limit of GR [24]. It is also
possible to employ a Kaluza-Klein-like procedure [25],
compactifying D-dimensional Gauss-Bonnet gravity on a
(D − 4)-dimensional maximally symmetric space and
then rescaling the coupling constant according to Eq. (2).
The resultant 4D scalar-tensor theory is a special case of
Horndeski theory [26], which surprisingly has spherical

black hole solutions whose metric functions match those
from the naiveD → 4 limiting solutions derived by Glavan
and Lin [8]. Such solutions can be obtained without ever
referencing a higher-dimensional spacetime [22].
This theory, referred to as 4D Einstein-Gauss-Bonnet

gravity, provides an interesting phenomenological com-
petitor to GR [27]. Conformally transforming the metric
gμν → e−2ϕgμν in (1) and subtracting it from the original
GB action (1) yields the 4DEGB action after trivial field
redefinitions [22]:

SG4 ¼ α

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕGþ 4Gμν∇μϕ∇νϕ − 4ð∇ϕÞ2□ϕ

þ 2ð∇ϕÞ4� ð3Þ

using (2), where ϕ is an additional scalar field. No further
assumptions about particular solutions to higher-dimen-
sional theories or background spacetimes are required.
Adding to this the Einstein-Hilbert action with a cos-

mological term,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2Λ� þ SG4 ð4Þ

the equations of motion follow from the standard varia-
tional principle, with that for the scalar being given by

Eϕ ¼−Gþ 8Gμν∇ν∇μϕþ 8Rμν∇μϕ∇νϕ− 8ð□ϕÞ2
þ 8ð∇ϕÞ2□ϕþ 16∇aϕ∇νϕ∇ν∇μϕþ 8∇ν∇μϕ∇ν∇μϕ

¼ 0 ð5Þ

and the variation with respect to the metric yields

Eμν ¼ Λgμν þ Gμν þ α½ϕHμν − 2R½ð∇μϕÞð∇νϕÞ þ∇ν∇μϕ� þ 8Rσ
ðμ∇νÞ∇σϕþ 8Rσ

ðμð∇νÞϕÞð∇σϕÞ − 2Gμν½ð∇ϕÞ2 þ 2□ϕ�
− 4½ð∇μϕÞð∇νϕÞ þ∇ν∇μϕ�□ϕþ 8ð∇ðμϕÞð∇νÞ∇σϕÞ∇σϕ − ½gμνð∇ϕÞ2 − 4ð∇μϕÞð∇νϕÞ�ð∇ϕÞ2
þ 4ð∇σ∇νϕÞð∇σ∇μϕÞ − 4gμνRσρ½∇σ∇ρϕþ ð∇σϕÞð∇ρϕÞ� − 2gμνð∇σ∇ρϕÞð∇σ∇ρϕÞ − 4gμνð∇σϕÞð∇ρϕÞð∇σ∇ρϕÞ
þ 4Rμνσρ½ð∇σϕÞð∇ρϕÞ þ∇ρ∇σϕ� þ 2gμνð□ϕÞ2� ¼ 0 ð6Þ

where H is the Gauss-Bonnet tensor:

Hμν ¼ 2½RRμν − 2RμανβRαβ þ RμαβσR
αβσ
ν − 2RμαRα

ν

−
1

4
gμνðRαβρσRαβρσ − 4RαβRαβ þ R2Þ�: ð7Þ

These field equations satisfy the following relationship:

0 ¼ gμνEμν þ
α

2
Eϕ ¼ 4Λ − R −

α

2
G ð8Þ

which can act as a useful consistency check to see whether
prior solutions generated via the Glavin/Lin method are

even possible solutions to the theory. For example, using
(8) it is easy to verify that the rotating metrics generated
from a Newman-Janis algorithm [11,28] are not solutions
to the field equations of the 4DEGB theory.
Despite much exploration of the theory [29], there has

been relatively little work investigating rotating black hole
solutions. Attempts have been made using a naive rescaling
of the 4DEGB coupling constant [30], or by implementing
the Newman-Janis approach [11,28,31], neither of which
produce valid solutions to this theory in general (the latter
case not satisfying the positive energy condition). A notable
exception is a recently obtained class of asymptotically flat
slowly rotating black hole solutions [16] that were obtained
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for the 4DEGB theory. However, a detailed study of the
geodesics of particles surrounding such black holes (par-
ticularly in de Sitter and anti–de Sitter spacetimes) was
not done.
In this paper we address this issue, obtaining slowly

rotating black hole solutions to the field equations of the
4DEGB theory in asymptotically flat/(A)dS space. We then
analyze their physical properties (innermost stable circular
orbits, photon rings, black hole shadow, etc.) to see how
they differ from standard results in Einstein gravity. We find
for Λ ≤ 0 that 4DEGB gravity enforces a minimum mass
on the black hole solutions, whereas for Λ > 0 both a
minimum and maximum mass occur, whose horizon
structure is directly analogous to that of Reissner-
Nordström–de Sitter spacetime. Besides this, the results
are similar in form to general relativity. The incredible
empirical success of GR necessitates this similarity of
solutions for a correct theory, but makes differentiation via
measurement difficult. We find that the greatest deviations
from GR are typically in the low (near-minimal) mass
regime, motivating a search for the smallest observable
astrophysical black holes.

II. SOLUTIONS

A. Metric functions

To construct slowly rotating solutions for the new
4DEGB theory, we begin with the following metric ansatz:

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ 2ar2pðrÞsin2θdtdϕ

þ r2½dθ2 þ sin2θdϕ2� ð9Þ

where a is a small parameter governing the rate of rotation.
Of particular interest are Schwarzschild-like solutions where
hðrÞ ¼ fðrÞ. With this, and the substitution x ¼ cos θ, our
line element can be written

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ 2ar2pðrÞð1 − x2Þdtdϕ

þ r2
�

dx2

1 − x2
þ ð1 − x2Þdϕ2

�
: ð10Þ

Inserting this into the equations of motion Eqs. (5) and
(6) considering the combination E0

0 − E1
1, we derive the

following equation for the scalar field:

ðϕ02 þ ϕ00Þð1 − ðrϕ0 − 1Þ2fÞ ¼ 0 ð11Þ

which admits either the solution ϕ ¼ lnðr−r0l Þ (with r0; l
integration constants), or the solutions

ϕ� ¼
Z ffiffiffi

f
p � 1ffiffiffi

f
p

r
dr; ð12Þ

where the latter solution with a minus sign reproduces
previous results [8] in the spherically symmetric case, and
falls off as 1=r when Λ ¼ 0. We shall choose this solution
henceforth.
Using (11) we can solve for the metric function fðrÞ

from the geometric expression (8). It can easily be shown
that

r2ð1 − fðrÞÞ − Λr4

3
þ αfðrÞ2 − 2αfðrÞ − αC2rþ C1 ¼ 0:

ð13Þ

As we wish to recover the Schwarzschild-AdS solution
when α ¼ 0, we set C1 ¼ α and C2 ¼ 2M

α yielding

f� ¼ 1þ r2

2α

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3
þ 4

3
αΛ

r �
ð14Þ

where the f− (or Einstein) branch is the one yielding the
Schwarzschild AdS solution in the limit α → 0. From here
it is straightforward to show that ϕ− falls off as 1=r when
Λ ¼ 0, whereas all other solutions for ϕ diverge logarithmi-
cally at large r.
Remarkably the solution (14) is still valid to leading

order in a. The only remaining independent equation from
(6) to this order is given by E03:

rp00ð24αM þ r3ð4αΛþ 3ÞÞ
þ 4p0ð15αM þ r3ð4αΛþ 3ÞÞ ¼ 0 ð15Þ

and admits the exact solution

p ¼ C2 − C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

r3 þ 4
3
αΛ

q
12αM

: ð16Þ

We require that the metric match the slowly rotating
Kerr-(A)dS metric function p in the large r limit. An
expansion of the function f−ðrÞ in this limit indicates that

Λeff ¼
3

2α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αΛ

3

r
− 1

�
¼ 2Λ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αΛ

3

q ð17Þ

is the effective cosmological constant, yielding

C1 ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12αΛþ 9

p
; C2 ¼

3þ 4αΛ − 2αΛeff

6α
: ð18Þ

This leaves us with the final expression
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pðrÞ ¼ 2Λ
3

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αΛ

3

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αΛ

3

q
1
CA

þ 1

2α

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αΛ

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

3

�
Λþ 6M

r3

�s #
ð19Þ

which, in the Λ ¼ 0 limit, matches1 the result [16] for
asymptotically flat spacetime. Additionally we note that we
can rewrite the metric functions in terms of Λeff as

f� ¼ 1þ r2

2α

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

3
αΛeff þ 1

�
2

þ 8αM
r3

s !
; ð20Þ

pðrÞ ¼Λeff

3

�
2

3
αΛeff þ 1

�

þ 1

2α

"
1−
�
2

3
αΛeff þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

3
αΛeff þ 1

�
2

þ 8αM
r3

s #
:

ð21Þ

It is straightforward to show that the metric (9) is
asymptotically of constant curvature, with

Rμν → Λeffgμν ð22Þ

as r → ∞.
We pause to comment on the range of validity of the

metric (9) [with f−ðrÞ and pðrÞ given respectively by (14)
and (19)], which is within the class of generalized Lense-
Thirring metrics recently discussed in [32]. Unlike Einstein
gravity, the solution (9) is characterized by two metric
functions, as was shown for this class [32]. It generalizes
the asymptotically flat case previously obtained [16] and
reduces to the slowly rotating Kerr-(A)dS metric if α ¼ 0.
We first note that ifM ¼ 0 the metric is that of a spacetime
of constant curvatureΛeff in rotating coordinates, and that if
a ¼ 0 the metric is an exact solution to the field equa-
tions (5) and (6), with event horizons given by the real
solutions of

Λr4 − 3r2 þ 6Mr − 3α ¼ 0 ð23Þ

where f−ðrÞ ¼ 0. If Λ > 0 there are, in decreasing order of
magnitude, three solutions rc, rþ, and r− to (23); if Λ < 0
only the latter two are present. In both cases rþ is the outer
horizon of the black hole. Note that the values of these
solutions to (23) are independent of a, as is the case for the
Kerr solution to leading order in a, though the latter has
only a single horizon in this approximation. Using analytic

continuation via a Kruskal-type extension to continue to
values of r < rþ, our solution will be valid for all values of
r > r− provided a ≪ r−. In analyzing the structure of
the metric, we shall make this assumption.2 However
phenomenologically we need only consider physics in
regions where r > rþ, in which case it is sufficient to
require a ≪ rþ, ensuring that the gtϕ component of the
metric remains small in this region. Consequently, any
effects due to rotation that modify the spherically sym-
metric case at some radius rwill be smaller than those at the
horizon. For α ¼ 0 ¼ Λ this criterion becomes a < 2M.

B. Analytic properties

The slowly rotating 4DEGB metric (10), with p given
by (19) and f ¼ h given by (14), is singular near r ¼ 0,
which can be seen by computing the Ricci scalar to lowest
order in r. In doing so we find that

RðrÞr→0 ∼
15

4

ffiffiffiffiffiffiffi
2M
αr3

r
ð24Þ

regardless of the value of Λ. We consider here only
solutions where this singularity is behind the horizon.
Computed explicitly to leading order in the rotation
parameter, the Kretschmann scalar is

K ¼ f00ðrÞ2 þ 4f0ðrÞ2
r2

þ 4ðfðrÞ − 1Þ2
r4

; ð25Þ

and the only other condition leading to a curvature
singularity is

4αΛþ 24αM
r3

þ 3 ¼ 0 ð26Þ

which always occurs inside the horizon and is never true
since the quantity 4αΛþ 3 ≥ 0 in the allowed region of
ðα;ΛÞ parameter space (see Sec. III). Therefore the 4DEGB
metric is regular everywhere but the black hole singularity.
The metric (9) has two Killing vectors ξðtÞ ¼ ∂=∂t

and ξðϕÞ ¼ ∂=∂ϕ. It can be shown easily that parameter
M ¼ MK ≡QðξðtÞÞ is the Komar mass, where

QðξÞ ¼ 1

8π

Z
∂Σ
⋆K ¼ c

8π

Z
∂Σ
⋆
�
dξþ 3∇2dξ

2Λeff

�
ð27Þ

is the Komar charge [33] associated with the Killing form
ξ ¼ ξμdxμ (with ⋆ the Hodge dual); the normalization

constant c ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
αΛ

q
, and ∂Σ is the 2-surface of

1Up to an errant factor of the rotation parameter included in the
metric function in [16].

2It is possible to consider values of the scalar field for r < rþ if
the solution (12) is extended to the time-dependent solution

ϕ ¼ qtþ R f−
ffiffiffiffiffiffiffiffiffiffiffi
fþq2r2

p
fr dr where q is a constant of integration.

Remarkably this does not affect the solution for the metric [16].
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constant t at spatial infinity. Likewise, it is straightforward
to show that J ¼ 2Mac is the angular momentum asso-
ciated with the Komar charge QðξðϕÞÞ.
For black hole solutions, the scalar field (12) is ill-

defined inside the horizon where fðrÞ < 0. Such solutions
can be made regular across the horizon [16]. As we are
primarily interested in the phenomenological aspects of the
slowly rotating solutions, we shall focus on exterior
solutions in the sequel.
The structure of the field equations is such that all

quantities can be rescaled into a unitless form, relative to
some length scale. Writing

Λ ¼ � 3

L2
ð28Þ

where the positive and negative branches correspond to de
Sitter and anti–de Sitter space respectively, and L is the
Hubble length, we shall perform the rescalings:

α → ᾱL2; M → M̄L; r → r̄L; a → āL ð29Þ

in units of L. The 4DEGB metric functions then become

f̄ðr̄Þ ¼ 1þ r̄2

2ᾱ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ᾱþ 8ᾱ M̄

r̄3

r !
ð30Þ

and r2pðrÞ → r̄2p̄ðr̄Þ, where

p̄ðr̄Þ ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ᾱ

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ᾱ

p

þ 1

2ᾱ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ᾱ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ᾱþ 8ᾱ M̄

r̄3

r !
: ð31Þ

If instead we consider an asymptotically flat spacetime,
we can directly set Λ ¼ 0 in Eqs. (14) and (19) and rescale
all quantities in units of some fiducial mass. In what follows
we shall take this to be a solar mass.

III. PROPERTIES OF THE SOLUTION

In this section we study physical properties of the
solutions derived above. We discuss the location and
angular velocity of the black hole horizons, the equatorial
geodesics—including the innermost stable circular orbit,
photon rings (and associated Lyapunov exponents)—as
well as the black hole shadow. In each case we compare the
properties of the 4DEGB solution for multiple values of the
coupling constant to the analogous GR result, and discuss
how the rotational corrections affect these properties.

A. Location and angular velocity
of the black hole horizons

The angular velocity of the black hole horizon is
defined as

Ωh ¼ −
gtϕ
gϕϕ

����
r¼rh

¼ −apðrhÞ ð32Þ

where rh is the radius at which grr diverges [i.e. fðrhÞ ¼ 0].
To determine the locations of the horizons, it is con-

venient to rewrite the metric function f−ðrÞ as

f−ðrÞ ¼
r2

α

FðrÞ
fþðrÞ

ð33Þ

where

FðrÞ ¼ 1 −
2M
r

þ α

r2
−
1

3
Λr2:

The denominator fþ does not vanish, and the horizons are
given by the roots of the numerator, which obey the
equation

Λr4h − 3r2h þ 6Mrh − 3α ¼ 0 ð34Þ

which has exact solutions for all values of Λ.

1. Λ= 0

In asymptotically flat space, (34) admits the following
simple solutions:

rh ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − α

p
ð35Þ

with rþ (the outer horizon) recovering the Schwarzschild
value as α → 0. Assuming α > 0, this equation sets a
minimum value for black hole mass in the theory, namely

Mmin ¼
ffiffiffi
α

p ð36Þ

when Λ ¼ 0. For smaller masses, the metric function fðrÞ
does not vanish anywhere and thus no horizon exists. These
solutions have naked singularities.
Since we have an exact solution for pðrÞ from (19) and a

simple analytic form for rh, the angular velocity of the
horizon

Ωh ¼ a
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8αM

ðMþ
ffiffiffiffiffiffiffiffiffi
M2−α

p
Þ3

q
2α

ð37Þ

is straightforward to compute. In Fig. 1 we plot Ωχ (in units
of inverse seconds) as a function of M (in units of solar
mass) for a variety of values of α alongside the GR solution
for comparison (where χ ¼ a=M). The main new feature
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introduced by the 4DEGB theory is the existence of a
maximal angular velocity, indicated by the termination
points of the blue curves at any given α, due to the presence
of a minimum mass. As α increases, this maximal value
decreases.
For a fixed α we observe that the 4DEGB theory predicts

a significantly larger angular velocity at a given (small)
mass than does GR, but quickly converges to the GR result
when the mass is large.

2. AdS space (Λ < 0)

Solutions to (34) yield rather cumbersome expressions
for the two different positive values of rh. For this reason,
we solve numerically for the horizon as a function of black
hole mass, illustrating the results in Fig. 2(a). As in the
asymptotically flat case, a minimum mass black hole exists
at which the inner and outer horizons merge, given by

Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12αΛ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4αΛÞ3

pq
3
ffiffiffiffiffiffi
2Λ

p ð38Þ

which yields (36) in the limit Λ → 0.
There are also upper and lower bounds on the Gauss-

Bonnet coupling constant α for any fixed Λ. These are
given by the two conditions 4αΛþ 3 > 0 [so that pðrÞ is
real] and 1 − 4αΛ > 0 (so that Mmin is real). This corre-
sponds to

−
3

4
≤ αΛ ≤

1

4
: ð39Þ

Since we restrict ourselves to positive values of the 4DEGB
coupling constant, only one of these inequalities is relevant
when Λ is nonzero, depending on its sign. In asymptoti-
cally anti–de Sitter space, Λ ¼ −jΛj and these inequalities
reverse. We can then define a critical value for the coupling
constant at its upper limit:

αC ¼ 3

4jΛj : ð40Þ

The angular velocity at the horizon is

Ωh ¼ −
4aΛ2α

3ð2αΛþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Λαþ 9

p þ 3Þ þ
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Λαþ 9

p

3r2h
ð41Þ

where the horizon radius rh is obtained from setting
f−ðrhÞ ¼ 0. In Fig. 2(b) we plot Ωh for the AdS case
for various allowed values of the coupling constant α. We
again observe the existence of a maximal angular velocity
indicated by the termination points of the blue curves at
any given α due to the presence of a minimum mass.
Interestingly, for large enough α the angular velocity of the
horizon can become negative due to frame dragging effects.

(a)

(b)

FIG. 2. Black hole horizons and angular velocities inAdS space.
(a) The locations of the anti–de Sitter black hole horizon plotted as
a function of mass. The red line represents the solution from GR
(i.e. when α ¼ 0), and the blue lines represent the 4DEGB
solutions for α

αC
¼ 0.01, 0.1, 0.4, 0.7, 0.85, 1 from left to right.

We see that as soon as a nonzero coupling constant is introduced,
the horizon structure includes an inner horizon and a minimum
mass point. (b) Angular velocity of the black hole horizon in the
AdS case as a function ofmass for α

αC
¼ 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1 in blue from left to right, plotted
against the Einstein (α ¼ 0) solution Ω ¼ χ=4M (in red).

FIG. 1. Angular velocity of the black hole horizon as a function
of mass when Λ ¼ 0 for α=M2

⊙ ¼ 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1 (in blue from left to right) plotted against the
Einstein (α ¼ 0) solution Ω ¼ χ=4M (in red).
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This behavior can also be noted in the behavior of Eq. (41),
where in the large α=M regime the negative constant term
starts to dominate.
Another interesting feature is the existence of a crossover

mass (M̄x) at which the small α 4DEGB solutions become
less than the GR solutions. We can find this crossover point
analytically for solutions where ᾱ ≪ 1. We begin by fixing
a black hole mass, and describe it using both the GR black
hole horizon radius (r̄hðGRÞ), and the 4DEGB horizon radius
(r̄hðGBÞ):

2M̄ ¼ r̄hðGRÞ þ r̄3hðGRÞ ¼ r̄hðGBÞ þ r̄3hðGBÞ þ
ᾱ

r̄hðGBÞ
: ð42Þ

The horizon angular velocity of an Einsteinian black
hole can then be written as

Ω̄GR

χ̄
¼ M̄r̄hðGRÞ

2M̄ − r̄hðGRÞ
: ð43Þ

Similarly, from (41) this quantity for a 4DEGB black hole
can be expanded in a power series in ᾱ:

Ω̄GB

χ̄
¼ Ω̄GR

χ̄
þ
1 − 2ðr̄3hðGBÞ þ r̄hðGBÞÞ2

2r̄3hðGBÞ
ᾱþOðᾱ2Þ ð44Þ

after using Eq. (42) to replace Mðr̄hðGBÞ; αÞ in the higher-
order terms. The crossover occurs when the subleading
contribution in (44) vanishes, yielding

r̄hðGBÞ ¼ 0.545121 ð45Þ

which corresponds to a crossover mass of

M̄Ω̄
x ≈ 0.353553þ 0.917228ᾱ ð46Þ

to leading order in ᾱ.

3. dS space (Λ > 0)

If Λ > 0, the 4DEGB theory returns three positive
solutions to (34): r− (inner), rþ (outer), and rc (cosmologi-
cal). The horizon structure is identical to that of the so-called
“charged Nariai” solutions in the Reissner-Nordström–de
Sitter metric [34–36], with the 4DEGB coupling constant α
playing a role analogous to that of Q2, where Q is the total
charge. Indeed, upon replacing α withQ2, the function FðrÞ
in (33) is equivalent to the charged Nariai metric, and
asymptotes to [36]

FðrÞ → 1 −
1

3
Λr2 ð47Þ

as r → ∞.

Unlike the asymptotically flat and AdS cases, the de
Sitter 4DEGB theory enforces both a minimum mass black
hole (below which only a naked singularity surrounded by
a cosmological horizon exists), and a maximum mass black
hole, corresponding to the merging of the outer and
cosmological horizons, which is the Nariai solution. We
find the location of these extremal mass points to be

Mmax =min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12αΛ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4αΛÞ3

pq
3
ffiffiffiffiffiffi
2Λ

p ð48Þ

which forMmin (the minus value) is identical in form to that
of the limiting mass for the Reissner-Nordström–de Sitter
black hole [36].
From (48) we can again set an upper and lower bound on

the α parameter for a given Λ:

−
3

4
< αΛ <

1

4
; ð49Þ

using the same reality criteria as in the AdS case. When α is
outside this allowed range we find solution sets that lie in a
region of parameter space with no black hole event horizon.
Since we restrict ourselves to α > 0, we can then define a
critical value for the coupling constant in de Sitter space
from the upper bound

αC ¼ 1

4jΛj : ð50Þ

Armed with an understanding of the de Sitter horizon
structure and the allowed regions of parameter space,
we solve numerically for the black hole horizon radius
and angular velocity, the results of which are plotted in
Figs. 3(a) and 3(b) respectively. Once again we observe that
the presence of a minimum mass yields a maximal angular
velocity indicated by the leftmost termination points of the
blue curves for any given α. In all cases the angular velocity
reaches its global minimum at the maximal mass. As α
increases the allowed range of mass/angular velocity
increasingly diminishes, vanishing when α ¼ αC.

B. Geodesics in the equatorial plane

We begin the treatment of equatorial geodesics by setting
x ¼ 0 (θ ¼ π=2) in the metric ansatz (10) and multiplying
both sides of the line element by 1

2
fðrÞ, yielding

−ξ
fðrÞ
2

¼ −
fðrÞ2
2

ṫ2 þ 1

2
ṙ2 þ 1

2
r2fðrÞϕ̇2 þ afðrÞPðrÞṫ ϕ̇

ð51Þ

where the overdot refers to a derivative with respect to the
affine parameter s, PðrÞ ¼ r2pðrÞ, and ξ is a constant
which takes the value 0 or 1, for null and timelike geodesics
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respectively. Using the static and rotational Killing fields,
we know that E ¼ fðrÞṫ − aPðrÞϕ̇ and j ¼ r2ϕ̇þ aPðrÞṫ
are constants of motion along the geodesic, and thus

−
1

2
ξfðrÞ ¼ −

1

2
E2 þ 1

2
ṙ2 þ j2fðrÞ

2r2
− a

PðrÞjE
r2

ð52Þ

to leading order in a.
Asymptotically, j2 represents the total orbital angular

momentum of the body following the geodesic. Since we
are confined to the equatorial plane, clearly j2 ¼ l2

z for
nonspinning particles. If we rewrite Eq. (52) in the
following form

1

2
ṙ2 þ Veff ¼ 0 ð53Þ

it becomes clear that

Veff ¼
fðrÞ
2

�
l2
z

r2
þ ξ

�
−
1

2
E2 − a

PðrÞlzE
r2

ð54Þ

to leading order in the rotation parameter. Note that the
rescaled version of this equation is unchanged besides
swapping parameters with their barred counterparts. In the
following sections we further specialize this analysis by
considering the innermost stable circular orbit (or ISCO) for
timelike geodesics, and the photon ring for null geodesics.

C. Timelike geodesics: Innermost stable circular orbits

For timelike geodesics we set ξ ¼ 1 in (54). The
condition for the existence of circular geodesics is

V 0
effðrÞ ¼ 0 ð55Þ

where the sign of V 00
effðrÞ dictates the stability of such

orbits. Stable orbits are described by V 00
effðrÞ > 0, while

V 00
effðrÞ < 0 indicates instability. Of particular interest is the

ISCO, for which V 00
effðrÞ ¼ 0. It is always possible to

choose E so that VðrÞ ¼ 0 for a circular orbit.
Next, we solve these three equations to leading order in

the rotation parameter by making the following perturbative
expansions:

rISCO ¼ rð0ÞISCO þ arð1ÞISCO;

jISCO ¼ jð0ÞISCO þ ajð1ÞISCO;

EISCO ¼ Eð0Þ
ISCO þ aEð1Þ

ISCO: ð56Þ

Substituting these into (55) and expanding to leading order
in a yields a system of six equations for the six unknowns
on the right-hand side of (56), which can be solved for
numerically.

1. Λ= 0

In this section the numerical results of the aforementioned
six equations are plotted as a function of mass for five
different values of the coupling constant α, and are compared
to the GR solution where α ¼ 0 (see Fig. 4). Note that
these results correspond to the prograde solutions (namely

jð0ÞISCO > 0), and that an analogous retrograde solution set
exists. In all cases we find results similar in form to those
from GR, with the greatest deviation from occurring as
M → Mmin for any given α. As with the horizons, the
4DEGB theory induces a minimum mass black hole for a
nonzero coupling constant. We find that a static black hole
described by the 4DEGB theory should a have slightly
smaller innermost orbital radius, corresponding to a particle

(a)

(b)

FIG. 3. Black hole horizons and angular velocities in dS space.
(a) The locations of the de Sitter black hole horizons plotted as a
function of mass. In all cases the red line represents the solution
from GR (i.e. when α ¼ 0), and the blue lines represent the
4DEGB solutions for α

αC
¼ 0.01, 0.1, 0.4, 0.7, 1 from left to right.

We see that as soon as a nonzero coupling constant is introduced
the horizon structure includes an inner horizon and a minimum
mass point. Once α passes criticality, no physical black hole
solutions can exist. (b) Angular velocity of the black hole horizon
as a function of mass in an asymptotically de Sitter spacetime for
α
αC

¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 in blue from left

to right, plotted against the Einstein (α ¼ 0) solution Ω̄ ¼ χ̄=4M̄
(in red).
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with slightly lower angularmomentumand energy. The effect
of prograde slow rotation in the Einstein case is to subtract
slightly from these otherwise positive parameters. The
4DEGB rotation corrections act similarly to the GR correc-
tions, but with slightly largermagnitudes (with this difference
again being more pronounced near minimum mass).

2. AdS space (Λ < 0)

In Figs. 5 and 6 we plot the results for the ISCO
parameters when Λ ¼ − 3

L2. Recalling the AdS criticality
condition (40), we cover a range from α ¼ 0 (GR) to

α → αC. When α is outside this allowed range we find
solution sets for the ISCO which lie in the region of
parameter space with no physical event horizon.
When α is small, all zeroth-order ISCO parameters

(Fig. 5) start below the GR solution and become larger
at some constant critical mass. We can find this crossover

point for r̄ð0ÞISCO by expanding the nontrivial contribution to

V 00ð0Þ
eff ðrÞ as a power series in ᾱ [where V 00

effðrÞ ¼
V 00ð0Þ
eff ðrÞ þ aV 00ð1Þ

eff ðrÞ], since r̄ð0ÞISCO is uniquely decided by
this parameter. In doing so we find

FIG. 4. Plots of the ISCO parameters when Λ ¼ 0. The leftmost column contains the zeroth-order (static) terms, whereas the rightmost
column contains the leading-order corrections due to rotational effects. In all cases the red line represents the solution from GR (i.e.
when α ¼ 0), and the blue lines represent the 4DEGB solutions for α=M2

⊙ ¼ 0.02, 0.05, 0.02, 0.50, 1.0 from left to right.
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FIG. 5. In the regime α ∼ αC
100

we see the 4DEGB solution cross over the GR solution (in red) as mass increases for the zeroth-order
ISCO parameters shown in the left column. In the above plots we show this behavior in an asymptotically anti–de Sitter spacetime with
α
αC

¼ 0.002, 0.0033, 0.01, 0.066, 0.2, 0.33, 0.5, 0.5833, 0.66 from left to right (in blue).
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FIG. 6. Plots of the ISCO parameters in an asymptotically anti–de Sitter spacetime. The leftmost column contains the zeroth-order
(static) terms, whereas the rightmost column contains the leading-order corrections due to rotational effects. In all cases the red line
represents the solution from GR (i.e. when α ¼ 0), and the blue lines represent the 4DEGB solutions for α

αC
¼ 0.1, 0.9, 0.98, 0.99, 0.997,

0.998, 0.999 from left to right.
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V 00ð0Þ
eff ðrÞ ¼ 2r̄ð0ÞISCO

3M̄ − r̄ð0ÞISCO

h
6M̄2 þ M̄r̄ð0ÞISCOð15r̄ð0ÞISCO

2 − 1ÞÞ − 4r̄ð0ÞISCO
4
i

þ 1

r̄ð0ÞISCO
2ðr̄ð0ÞISCO − 3M̄Þ2

h
−72M̄4 þ 8r̄ð0ÞISCO

8 − 48M̄3ðr̄ð0ÞISCO þ 3r̄ð0ÞISCO
3Þ þ M̄2ð32r̄ð0ÞISCO

2 þ 48r̄ð0ÞISCO
4

þ 90r̄ð0ÞISCO
6Þ þ M̄ð4r̄ð0ÞISCO

5 − 66r̄ð0ÞISCO
7
i
αþOðᾱ2Þ: ð57Þ

The crossover point should occur when the leading-order ᾱ contribution vanishes and the equation reduces to its GR
equivalent. This is done by first fixing the mass in terms of the GR ISCO radius (since, at the crossover point,

r̄ð0ÞISCO ¼ r̄ð0ÞGRISCO ). This relation can be found by solving the zeroth-order coefficient of Eq. (57):

M̄ ¼ 1

12

�
r̄ð0ÞGRISCO − 15ðr̄ð0ÞGRISCO Þ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄ð0ÞGRISCO Þ2 þ 66ðr̄ð0ÞGRISCO Þ4 þ 225ðr̄ð0ÞGRISCO Þ6

q 	
: ð58Þ

This fixed mass is then substituted into the leading-order term in Eq. (57). Setting this equal to 0 and solving, we find the

crossover occurs at r̄ð0ÞGRISCO ¼ 0.965679 which corresponds to a crossover mass of

M̄
r̄ð0ÞISCO
x ¼ 0.247935: ð59Þ

For j̄ð0ÞISCO we have an analytic expression that is not too complicated, and can be directly expanded in a small α power
series as follows:

j̄ð0ÞISCO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄ð0ÞGRISCO Þ2

�
M̄ þ ðr̄ð0ÞGRISCO Þ3

	r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̄ð0ÞGRISCO − 3M̄

q −

�
2M̄ − ðr̄ð0ÞGRISCO Þ3

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̄ð0ÞGRISCO Þ2

�
M̄ þ ðr̄ð0ÞGRISCO Þ3

	r

2ððr̄ð0ÞGRISCO Þ3ðr̄ð0ÞGRISCO − 3M̄Þ3=2
�
M̄ þ ðr̄ð0ÞGRISCO Þ3Þ

	
×
�
6M̄2 − 3M̄ðr̄ð0ÞGRISCO Þ3 − 4M̄r̄ð0ÞGRISCO − ðr̄ð0ÞGRISCO Þ4

	
ᾱþOðᾱ2Þ ð60Þ

suggesting that the results will cross over when�
2M̄ − ðr̄ð0ÞGRISCO Þ3

	
¼ 0. We can solve this by replacing

M̄ in this simple expression with Eq. (58), yielding a

crossover point of r̄ð0ÞGRISCO ¼ 1ffiffi
2

p , or equivalently

M̄
j̄ð0ÞISCO
x ¼ 1

4
ffiffiffi
2

p ≈ 0.1768: ð61Þ

For Ēð0Þ
ISCO, the crossover condition is identical to that for

j̄ð0ÞISCO:
�
2M̄ − ðr̄ð0ÞGRISCO Þ3

	
¼ 0. Because of this it is clear that

M̄
Ēð0Þ
ISCO

x ¼ M̄
j̄ð0ÞISCO
x ¼ 1

4
ffiffiffi
2

p ≈ 0.1768: ð62Þ

These values for M̄x all agree with the expected values
from a visual inspection of Fig. 5. On the other hand, the
leading-order ISCO parameters are smaller (more negative)
than their GR counterpart.
As α approaches criticality (Fig. 6), we see an extreme

departure from the GR results for almost all of the AdS

ISCO solutions. No crossover behavior is observed, and the
equations become very sensitive to changes in α in this
region of parameter space (however, the value of M̄min is
nearly constant). When α=αC ∼ 0.90 we start to see this
extreme sensitivity, with M̄min ¼ 0.544 when ᾱ ¼ ᾱc.

3. dS space (Λ > 0)

The ISCO solutions in de Sitter space are particularly
nuanced. We begin with a thorough investigation of the
nonrotating ISCO solutions in GR (α ¼ 0) before moving
forward with the 4DEGB solutions.
The Einstein–de Sitter ISCO solutions are plotted in

Figs. 7(a) and 8 alongside the corresponding black hole
horizons for a positive cosmological constant. We immedi-
ately observe that for nonzero positive Λ, a turning point
appears for M ¼ 2

75
ffiffiffi
Λ

p . There are no ISCOs for
2

75
ffiffiffi
Λ

p < M < 1

3
ffiffiffi
Λ

p , the latter value being the Nariai upper

mass limit 1

3
ffiffiffi
Λ

p obtained by setting α ¼ 0 in (48).

For M < 2

75
ffiffiffi
Λ

p , there is at most one stable orbit and two

unstable orbits at any given mass less than this value,
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depending on the value of lz. Requiring (55) and setting
V 00ðrÞ ¼ 0 we find two distinct solutions for the ISCO
depending of the magnitude of jlzj. The larger of these is
the outer innermost stable orbit (or OSCO) [37]. Since this
turning point always occurs at M < Mmax, the ISCO and
OSCO solutions within the allowed mass range are physi-
cal. For spacetimes with masses that do not permit stable
orbits, the effective potential always has at least one local
maxima, corresponding to an unstable orbit; this happens
via the merging of the outer and inner stable orbits and
occurs due to the balance of gravity with a positive
cosmological constant. These unstable orbits beyond the
ISCO turnaround point are only noted for pedagogical
reasons and are not shown in any plots.

When a nonzero Gauss-Bonnet coupling constant is
introduced, many of our ISCO solutions are no longer
physical due to the presence of a minimum mass. This is

clear from Fig. 8 [and Fig. 7(b)], which plots r̄ð0ÞISCO (red
curve) as a function of M for different values of α. We
see for α ¼ 0 that all points on the double-valued ISCO
curve are physically allowed, whereas for α > 0, all points
to the left of M ¼ Mmin (indicated by the lower turning
point of the black horizon curve) are unphysical. This is
because the M < Mmin region of parameter space repre-
sents a naked singularity due to a change in horizon
structure [see Figs. 3(a) and 7(b)]. Increasing α causes
the zeroth-order ISCO radius to decrease, and the zeroth-
order OSCO to increase.
Finally, at some transitory value (α ¼ αT), the turning

point corresponding to the merger of the ISCO and OSCO
(which is also its maximum mass point) equals the
minimum mass value shown in the Fig. 7(c). We find that
αT ¼ αC

260
¼ 1

1040Λ. For α > αT no physical ISCOs or OSCOs
exist; all putative solutions correspond to spacetimes with
naked singularities surrounded by a cosmological horizon.
When α ¼ αT , there is a single ISCO, which occurs at the
critical mass point

Mcritjα¼αT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
263 − 259

ffiffiffiffiffiffi
259
260

qr
3
ffiffiffiffiffiffiffiffiffiffiffi
520Λ

p ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1000Λ
p ð63Þ

from (48).
Armed with this knowledge, we solve numerically the

ISCO equations once again for a positive cosmological
constant with α varying from 0 to αT . These results
are shown in Fig. 9. Again, the main feature of interest

(a) (b) (c)

FIG. 7. Depiction of the zeroth-order ISCO/OSCO radii for α ¼ 0 (a), α ¼ αT
5
(b), and α ¼ αT (c). The lower turning point of the

horizon curve corresponds to the minimal mass; the upper turning point corresponds to the maximal mass. (a) The zeroth-order (static)
ISCO/OSCO radius (red) and the black hole horizons (black) for GR (α ¼ 0) plotted as a function of mass in an asymptotically de Sitter
spacetime. A nonzero, positive (Λ) forces the ISCO solution to curl back into a loop, which has two stable radii (the larger OSCO and
smaller ISCO) for each fixed mass (and also has a maximum mass at which the OSCO and ISCO merge; above this there is no ISCO).
(b) The zeroth-order (static) ISCO/OSCO radius (red) and the black hole horizons (black) for α ¼ αT

5
plotted as a function of mass when

in an asymptotically de Sitter spacetime. The introduction of a nonzero Gauss-Bonnet coupling constant introduces an inner black hole
horizon, enforcing a minimum mass as well as the maximum mass from the de Sitter GR case. (c) The zeroth-order (static) ISCO/OSCO
radius (red) and the black hole horizons (black) for α ¼ αT plotted as a function of mass in an asymptotically de Sitter spacetime. By this
point the entire ISCO/OSCO solution set lies in the region of parameter space that describes a naked singularity.

FIG. 8. Depiction of the zeroth-order ISCO radius for α ¼ 0,
α ¼ αT

5
, and α ¼ αT (from most to least opaque, respectively).

These plots are the same as those shown in Fig. 7, superimposed
on one another. Increasing the 4DEGB coupling causes the
zeroth-order ISCO radius to decrease, and the zeroth-order OSCO
to increase.
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in asymptotically de Sitter space is the existence of two
discrete stable orbits for a fixed black hole mass. All zeroth-
order ISCO parameters are double-valued (hence yielding
an ISCO and an OSCO), with the 4DEGB case having
a cutoff atMmin as noted above, and turning around atMcrit.
The first-order ISCO parameters are also double-valued

and confined between Mmin and Mcrit, with the actual
values depending on α. The smallest and largest allowed
zeroth-order ISCO radii at any given mass in the 4DEGB
theory are respectively smaller and larger than their GR
counterparts. As α → αT , the 4DEGB ISCO parameters
occur at values of the mass larger than the GR upper limit

FIG. 9. Plots of the ISCO parameters in an asymptotically de Sitter spacetime. The leftmost column contains the zeroth-order (static)
terms, whereas the rightmost column contains the leading-order corrections due to rotational effects. In all cases the red line represents
the solution from GR (i.e. when α ¼ 0), and the blue lines represent the 4DEGB solutions for α

αT
¼ 0.0001, 0.01, 0.2, 0.5, 0.75, 0.9375

from left to right.
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M ¼ 2

75
ffiffiffi
Λ

p , hence having no overlap in allowed mass

with GR.

D. Null geodesics: Photon rings

Now we turn our attention to how slow rotation in the
4DEGB theory deforms the photon rings of black holes. The
photon ring is defined by null geodesic orbits (ξ ¼ 0) of
constant r, which we take to lie in the equatorial plane (i.e.
x ¼ 0) without loss of generality. Rather than work with
conserved quantities E and j as in the previous section, we
instead follow [38] and consider the problem in terms of
angular velocity (ω ¼ dϕ=dt), which is conserved along the
null trajectory. From Eq. (54) we know that a photon outside
of our black hole will be subject to an effective potential

Vph ¼
fðrÞl2

z − r2E2

2r2
− a

PðrÞlzE
r2

: ð64Þ

For circular orbits (i.e. ṙ ¼ 0), the location of the photon
ring is determined by

VphðrÞ ¼ 0; V 0
phðrÞ ¼ 0 ð65Þ

where ω ¼ dϕ
dt ¼ ϕ̇

ṫ is conserved along the photon trajectory,
and we have let E ¼ 1 without loss of generality by
rescaling the affine parameter. These end up being equiv-
alent to the following two conditions:

fðrprÞ − r2prω2 − 4aPðrprÞω ¼ 0; ð66Þ

f0ðrprÞ − 2rprω2 − 4aP0ðrprÞω ¼ 0 ð67Þ

which can be solved analytically to leading order in a by
writing

rpr ¼ rð0Þpr þ arð1Þpr ; ωpr ¼ ωð0Þ
pr þ aωð1Þ

pr : ð68Þ

With this, we find that

f0ðrð0Þpr Þ ¼ 2
fðrð0Þpr Þ
rð0Þpr

; ωð0Þ
pr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrð0Þpr Þ

q
rð0Þpr

ð69Þ

and

rð1Þpr ¼ � 2rð0Þ3pr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrð0Þpr Þ

q
p0ðrð0Þpr Þ

rð0Þ2pr f00ðrð0Þpr Þ − 2fðrð0Þpr Þ
; ωð1Þ

pr ¼ −pðrð0Þpr Þ;

ð70Þ
where the plus/minus signs correspond to prograde/
retrograde motion. The above expressions can easily be

solved numerically for rð0Þpr , r
ð1Þ
pr , ω

ð0Þ
pr , and ωð1Þ

pr , which is
done in the following subsections for Λ ¼ 0 as well as dS/
AdS space.

One interesting combination of quantities to consider is
ωþ
jω−j. In GR it is known that this ratio is controlled by the

black hole spin parameter alone [38,39] in asymptotically
flat space (or the spin parameter and black hole mass in
asymptotically dS/AdS space), whereas in the 4DEGB
theory we also have dependence on the higher-order
coupling. In principle this feature could be useful in
constraining the 4DEGB coupling constant via an inde-
pendent black hole spin/mass measurement.
We conclude this section by investigating the stability

of the photon ring orbits. Of course they are unstable,
although we can better understand this instability by calcu-
lating the associated Lyapunov exponent [38,40], which
provides a measure of the growth of the photon orbit
instability as a function of time. More precisely, under the
eikonal approximation the Lyapunov exponent comes from
the imaginary part of the quasinormal mode frequencies of
the photon orbit [40] (while the real part is related to the
angular velocity of the unstable null orbits). It can be proven
[41] that for any static, spherically symmetric spacetime

ωQNM ¼ ωð0Þ
pr l − i

�
nþ 1

2

�
jλj ð71Þ

where ωQNM is a quasinormal mode frequency, and λ is the
Lyapunov exponent associated with the orbit. We can extract
its value by again following the work of [38,40]. We begin
with differentiating the geodesic Eq. (53) with respect to the
affine parameter

d
ds

�
1

2
ṙ2 þ VphðrÞ ¼ 0

�
⇒

d2r
ds2

þ dVphðrÞ
dr

¼ 0 ð72Þ

and then perturb (72) according to

rðtÞ ¼ rð0Þpr ð1þ ϵFðtÞÞ; sðtÞ ¼ t
β
þ ϵGðtÞ;

ϕðtÞ ¼ jω�jð1þ ϵHðtÞÞ ð73Þ
where ϵ is a small parameter controlling the perturbation
strength and β ¼ dt

ds jr→rpr is a parameter relating coordinate
time to s in the absence of a perturbation. We require the
system to have vanishing perturbation at t ¼ 0. Expanding
(72) to first order in ϵ yields

β2F00ðtÞ þ FðtÞV 00
phðrð0Þpr Þ ¼ 0 ð74Þ

which has the solution

FðtÞ ∝ sinh ðtλÞ ð75Þ

where

λ2 ¼ −
V 00ðrð0Þps Þ

β2
≔ U:
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Aswith everything else up to this point, wewrite the solution
as a zeroth-order term plus a linear rotational correction:

λ ¼ λð0Þ þ aλð1Þ: ð76Þ

Since the perturbative and nonperturbative parts should

hold true independently [and since V 00ðrð0Þps Þ ¼ V 00
0 þ aV 00

1],

we can break the relation between λ and V 00ðrð0Þps Þ into two
equations, namely,

λ0 ¼
ffiffiffiffiffiffi
U0

p
; ð77Þ

λ1 ¼
U1

2λ0
ð78Þ

where U0 and U1 are the zeroth- and first-order terms of a
power series representation of U in the rotation parameter
a, respectively.

1. Λ= 0

In this subsection we solve for the photon ring in
asymptotically flat space. The solutions to Eq. (68) are
plotted in Fig. 10 alongside the results for GR. As the mass
for a given 4DEGB solution approaches its minimum

allowed mass, the results increasingly depart from those
in GR (whereas they become virtually indistinguishable for
larger masses). All curves are similar in form to the GR
results, apart from this low-mass behavior. It is worth
noting that the reason for the large values on the y axes of
Figs. 12(a) and 12(b) are due to the unit conversion from
inverse solar masses to inverse seconds. If instead the

FIG. 10. Photon ring solutions whenΛ ¼ 0. In all cases the red line represents the GR solution (α ¼ 0), and the blue lines represent the
4DEGB solutions for α

M2
⊙
¼ 0.01, 0.1, 0.2, 0.3, 0.7, 1 (from left to right).

FIG. 11. Ratio of ωþ
jω−j in GR (red) plotted against the same

ratio in the 4DEGB theory (blue) when Λ ¼ 0 for α
M2

⊙
¼ 0.01, 0.1,

0.2, 0.3, 0.7, 1 (from left to right). In this figure we have
fixed χ ¼ 0.1.
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quantity λ=Ω is plotted (see [41,42]), results on the order of
unity are observed.
In asymptotically flat spacetimes, the ratio Ω ≔ ωþ

jω−j ends
up being a function ofM, α, and χ. The numerical solutions

of this ratio for Λ ¼ 0 are plotted in Fig. 11 alongside the
corresponding quantity from GR. We see that the GR
results are constant with respect to mass, whereas the
4DEGB results change rapidly as mass gets small. Note

(a) (b)

FIG. 12. Lyapunov exponents when Λ ¼ 0. (a) Zeroth-order Lyapunov exponent correction for the photon ring when Λ ¼ 0. The red
curve shows the GR (α ¼ 0) result, whereas the blue curves represent the 4DEGB results for α

M2
⊙
¼ 0.01, 0.05, 0.1, 0.2, 0.3, 0.7, 1.

(b) Leading-order Lyapunov exponent correction for the photon ring when Λ ¼ 0. The red curve shows the GR (α ¼ 0) result, whereas
the blue curves represent the 4DEGB results for α

M2
⊙
¼ 0.01, 0.05, 0.1, 0.2, 0.3, 0.7, 1 (from left to right).

FIG. 13. Photon ring solutions in an asymptotically anti–de Sitter spacetime for α
αC

¼ 0.002, 0.0033, 0.01, 0.066, 0.2, 0.33, 0.5,
0.5833, 0.66 (from left to right in blue) against the GR (α ¼ 0) solution in red.
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that the greatest departure from the GR results occurs again
in the low-mass region near the minimum, and convergence
with the GR solution is observed as mass gets large.
Similarly, in Figs. 12(a) and 12(b), we find that the

stability of the photon ring in the 4DEGB theory is very
similar to GR unless the mass is near its minimum value, in
which case the value of λ drops considerably. While the
leading-order corrections to the Lyapunov exponent vanish
in Einstein’s theory, we find a nonzero negative value that
converges to GR in the large mass limit. Since both the
zeroth- and leading-order contributions to λ in the 4DEGB
theory are large and negative nearMmin, near-minimal mass
objects should have significantly less unstable photon rings
than the values predicted by GR.

2. AdS space (Λ < 0)

Here we solve for the photon ring parameters again, this
time in asymptotically AdS space. The relevant solutions to
(68) are plotted in Figs. 13 and 14 alongside the analogous
results from GR. In the small alpha regime we again
observe a “crossover” behavior at some critical mass for

two of the four photon ring parameters (with an additional
parameter just touching the GR solution rather than cross-
ing over). The radial location of the photon sphere is
uniquely determined by the equation

f0ðr̄ð0ÞISCOÞ − 2
fðr̄ð0ÞGRISCO Þ
r̄ð0ÞGRISCO

¼ 0: ð79Þ

As before we expand this equation to leading order in ᾱ:

�
3M̄

r̄ð0ÞGRISCO

− 1

�
−
6M̄
�
2M̄− ðr̄ð0ÞGRISCO Þ3

	
ðr̄ð0ÞGRISCO Þ4

ᾱþOðᾱ2Þ ¼ 0 ð80Þ

and fix the black hole mass in terms of its GR definition (by
solving the zeroth-order coefficient):

M̄ ¼ 1

3
r̄ð0ÞGRpr : ð81Þ

We can then substitute this fixed mass into the leading-
order coefficient to find the point of interest, yielding a

FIG. 14. Photon ring solutions in the asymptotically anti–de Sitter case when α is near its critical value (i.e. α
αC

¼ 0.1, 0.9, 0.98, 0.99,
0.997, 0.998, 0.999) from left to right in blue against the GR (ᾱ ¼ 0) solution in red.
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crossover at r̄ð0Þpr ¼
ffiffi
2
3

q
, or equivalently

M̄
r̄ð0Þpr
x ¼

ffiffiffiffiffi
2

27

r
ð82Þ

which matches what is expected from Fig. 13. For ω̄ð0Þ
pr ,

rather than a crossover we have a point at which the
solution touches the GR curve before increasing again. For
this point the analysis is identical, and we find

M̄
ω̄ð0Þ
pr

x ¼ M̄
r̄ð0Þpr
x ¼

ffiffiffiffiffi
2

27

r
: ð83Þ

In the regime of large α (i.e. α
αC
∼ 9

10
; see Fig. 14) the

solutions become very sensitive to small changes in the

4DEGB coupling, and again we see nonrotating radius
results that depart dramatically from GR at all mass scales
in this regime (similar to what was discussed for the AdS
ISCO). The other three parameters are bounded in this large
α limit, and change very little with respect to varying α.
In spacetimes with a nonzero cosmological constant, the

ratio Ω ≔ ωþ
jω−j again ends up being a function of M̄, ᾱ, and

χ. The numerical solutions of this ratio for AdS space are
plotted in Fig. 15 where we hold χ ¼ 0.01 constant. When
M̄ is small (and thus α is small), this ratio is larger for the
4DEGB theory than it is for GR. As the fixed mass
increases, the curves cross and ΩGR > Ω4DEGB. Since the
4DEGB theory has a minimum mass that depends on α,
only the black holes corresponding to α=αC ⪅ 1

5
will start

above the GR curve, whereas solutions with a larger
coupling constant are not defined in the small mass regime.
In order to find which combinations of M̄ and χ in the
4DEGB theory will give a ratio that agrees with GR (i.e. the
crossing point), we expand Ω4DEGB to first order in α:

Ω4DEGB ¼ ΩGR

þ ð27M̄2ð729M̄4 þ 864M̄2 − 28Þ − 32Þχ
M̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81M̄2 þ 3

p
ð ffiffiffi

3
p ð27M̄2 − 2Þχ þ 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27M̄2 þ 1

p
Þ2 ᾱ

þOðᾱ2Þ: ð84Þ

Requiring that the contribution linear in ᾱ go to 0 implies a
crossover mass of M̄ ¼ 0.234239 which can also be seen
via inspection of Fig. 15.
When α is small we again see values for the Lyapunov

exponent that are similar in form to GR until the minimum
mass is approached [see Figs. 16(a) and 16(b)]. We see
that the departure in this regime is less dramatic than what

FIG. 15. Ratio of ωþ
jω−j in an asymptotically anti–de Sitter

spacetime. The GR solution (red) is plotted against the same
ratio in the 4DEGB theory (blue) for α

αC
¼ 0.002, 0.066, 0.2, 0.33,

0.5, 0.5833, 0.66, 0.9, 0.98, 0.99, 0.997, 0.998, 0.999 (from left
to right). In this figure we have fixed χ ¼ 0.01.

(a) (b)

FIG. 16. Lyapunov exponents when Λ < 0 and α is small. (a) Zeroth-order Lyapunov exponent correction for the photon ring in an
asymptotically anti–de Sitter spacetime when α is small. The red curve shows the GR (α ¼ 0) result, whereas the blue curves represent
the 4DEGB results for α

αC
¼ 0.002, 0.0033, 0.01, 0.066, 0.2, 0.33, 0.5, 0.5833, 0.66. (b) Leading-order Lyapunov exponent correction for

the photon ring when α is small and Λ < 0. The red curve shows the GR (α ¼ 0) result, whereas the blue curves represent the 4DEGB
results for α

αC
¼ 0.002, 0.0033, 0.01, 0.066, 0.2, 0.33, 0.5, 0.5833, 0.66 (from left to right).
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was seen in the asymptotically flat case. However, as α
approaches criticality [Figs. 17(a) and 17(b)], we notice a
change in direction in these results with respect to increas-
ing α. The zeroth-order contribution for large enough αwill

either cross over or start above the GR results (i.e. more
unstable), and the leading-order corrections end up con-
verging back to GR near αC, with even the point atMmin not
diverging too far from the red curve.

(a) (b)

FIG. 17. Lyapunov exponents when Λ < 0 and α is near criticality. (a) Zeroth-order Lyapunov exponent for the photon ring in an
asymptotically anti–de Sitter spacetime as α approaches criticality. The red curve shows the GR (α ¼ 0) result, whereas the blue curves
represent the 4DEGB results for α

αC
¼ 0.1, 0.3, 0.5, 0.9, 0.98, 0.99, 0.999. (b) Leading-order Lyapunov exponent correction for the

photon ring in an asymptotically anti–de Sitter spacetime as α approaches criticality. The red curve shows the GR (α ¼ 0) result,
whereas the blue curves represent the 4DEGB results for α

αC
¼ 0.1, 0.3, 0.5, 0.9, 0.98, 0.99, 0.999 (from left to right).

FIG. 18. Photon ring solutions in an asymptotically de Sitter spacetime for α ¼ 0.5αT, 0.01αC, 0.1αC, 0.25αC, 0.5αC, 0.9αC, 0.98αC
(from left to right in blue) against the GR (α ¼ 0) solution in red.
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3. dS space (Λ > 0)

Finally, we solve for the photon ring parameters one last
time in asymptotically de Sitter space. The relevant
solutions to (68) are plotted in Fig. 18. When α is small,
again we see the largest departure from the GR case for
small masses, and convergence as mass becomes large.
Larger α again corresponds to the pushing of the allowed
region of parameter space to the right, until eventually there
is no longer any overlap in allowed mass with the GR
results. The general forms of these curves are all reminis-
cent of the Einstein result when sufficiently far from the
minimum mass and critical α.
The ratio Ω ≔ ωþ

jω−j is a function of M̄, ᾱ, and χ in the

4DEGB theory whereas the GR solution of course has no α
dependence. The numerical solution for this ratio in

asymptotically dS space is plotted in Fig. 19. When ᾱ
is small we find that the 4DEGB solution diverges most
from GR in the small mass regime, whereas in the large
mass regime the result converges exactly with the
Einsteinian result. For larger ᾱ the allowed mass region
shrinks and shifts to the right until eventually there is no
overlap between the allowed masses of the 4DEGB
theory and GR.
In order to better understand the small ᾱ behavior, we

expand Ω4DEGB to leading order in ᾱ:

Ω4DEGB ¼ Ωnum
GR

þ ð27M̄2ð−729M̄4 þ 864M̄2 þ 28Þ − 32Þχ
3M̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 81M̄2

p
ðð27M̄2 þ 2Þχ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 81M̄2

p
Þ2
ᾱ

þOðᾱ2Þ: ð85Þ

With this we see that the small α results should asymptote to
those of GR when ð27M̄2ð−729M̄4 þ 864M̄2 þ 28Þ−
32Þ ¼ 0, i.e. when M̄ ¼ 0.156121. This behavior ismanifest
in Fig. 19.
The Lyapunov exponents for asymptotically de Sitter

space are plotted in Figs. 20(a) and 20(b) alongside the
GR results. Again for small α we find curves for λð0Þ that
are very similar to GR in form, diverging most near the
minimum mass limit, with the larger α curves being
pushed to a different region of parameter space like usual
(and similarly for λð1Þ). The low-mass reduction of
instability in the zeroth-order exponent is comparable
the asymptotically flat case, though less dramatic. The
leading-order corrections seem to care less about α near
Mmin, as the stability increases significantly for all curves
near this point.

FIG. 19. Ratio of ωþ
jω−j in GR (red) plotted against the same ratio

in the 4DEGB theory (blue) for (from left to right) α ¼ 0.0001αT ,
0.01αT , 0.2αT , 0.75αT , 2αT , 0.1αC, 0.5αC, 0.75αC, 0.8αC in an
asymptotically de Sitter spacetime. In this figure we have
fixed χ ¼ 0.1.

(a) (b)

FIG. 20. Lyapunov exponents whenΛ > 0. (a) Zeroth-order Lyapunov exponent correction for the photon ring in an asymptotically de
Sitter spacetime. The red curve shows the GR (α ¼ 0) result, whereas the blue curves represent the 4DEGB results for α ¼ 0.5αT,
0.01αC, 0.1αC, 0.25αC, 0.5αC, 0.9αC, 0.98αC. (b) Leading-order Lyapunov exponent correction for the photon ring when in an
asymptotically de Sitter spacetime. The red curve shows the GR (α ¼ 0) result, whereas the blue curves represent the 4DEGB results for
α ¼ 0.5αT , 0.01αC, 0.1αC, 0.25αC, 0.5αC, 0.9αC, 0.98αC (from left to right).
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E. Black hole shadow

A detailed, general study of nonequatorial null geodesics
for a slowly rotating metric ansatz was carried out in [38],
from which we obtain the following relations:

r2ϕ̇ ¼ lz

sin2 θ
−
aPðrÞE
fðrÞ ; r2θ̇ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 −

l2
z

sin2 θ

s
; ð86Þ

rps ¼ rð0Þps þ arð1Þps ; j2ps ¼ ðjð0Þps Þ2 þ aðjð1Þps Þ2; ð87Þ

rps ¼ rð0Þps þ 2alzfðrP0 − 2PÞ
rðr2f00 − 2fÞ

����
r¼rð0Þps

; ð88Þ

j2ps ¼
ðrð0Þps Þ2

fðrð0Þps Þ
þ 2alzPðrð0Þps Þ

fðrð0Þps Þ
; ð89Þ

where

rð0Þps f0ðrð0Þps Þ − 2fðrð0Þps Þ ¼ 0: ð90Þ

With this, similar to the procedure in [38], we consider
an observer placed far away from a black hole, with the
spherical coordinates ðr ¼ r0; θ ¼ θ0;ϕ ¼ 0Þ (without loss
of generality). One can imagine this observer receiving a
photon moving in the direction dr=dt > 0 defined by
the angular momentum parameters j2 and lz. Unlike our
analysis in Sec. III D, j is no longer necessarily aligned
with the z direction, and instead the two are related via (89).
From here, we would like to find the angle between the
photon’s velocity vector and the plane perpendicular to the
r direction at the observer’s location. At this point we write
the velocity tangent vector as

u ¼ −ṙer þ r0θ̇eθ þ r0 sin θ0ϕ̇eϕ ð91Þ

where we use the following orthonormal coordinate system
for the observer facing the black hole:

er ¼ −∂r; eθ ¼
∂θ

r0
; eϕ ¼ ∂ϕ

r0 sin θ0
: ð92Þ

We define π
2
− δ to be the angle between the tangent

vector and the observer’s plane (see Fig. 21), which in
general has a component below the x − y plane. γ is then
defined to be the angle the projected vector forms with the
direction eϕ. In doing so it is straightforward to show that

sin δ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ̇2 þ sin2θ0ϕ̇

2

q
; cos γ ¼ sin θ0ϕ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ̇2 þ sin2θ0ϕ̇
2

p
ð93Þ

where we have made the assumption that ṙ ≪
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ̇2 þ sin2 θ0ϕ̇

2
p

since the observer is placed at the limit
r0 → ∞. With this, the tangent vector is effectively
reparametrized:

u ¼ −ṙer þ sin δðeθ sin γ þ eϕ cos γÞ: ð94Þ

Invoking Eq. (86) furthermore allows us to express our
angular momentum parameters in terms of these angles and
the constants describing our observer’s location:

j ¼ r0 sin δ; lz ¼ r0 sin θ0 cos γ sin δ: ð95Þ

We know that the black hole shadow is determined by those
photons passing arbitrarily close to the photon sphere. We
take this into account by using relation (89) with (95),
yielding

r20 sin
2 δ ¼ ðrð0Þps Þ2

fðrð0Þps Þ
þ 2a sin θ0Pðrð0Þps Þ

fðrð0Þps Þ
cos γr0 sin δ ð96Þ

which determines the contour δðγÞ of the black hole
shadow. Expanding linearly in a, the solution reads

r0 sin δ ¼
rð0Þpsffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrð0Þps Þ

q þ a sin θ0Pðrð0Þps Þ
fðrð0Þps Þ

cos γ: ð97Þ

Finally, since δ ≪ 1 in the large r0 limit, we can set
sinðδÞ ≈ δ. Since in the large r0 limit R ≈ r0δ, we can say

Rsh ≈
rð0Þpsffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrð0Þps Þ

q þ a sin θ0Pðrð0Þps Þ
fðrð0Þps Þ

cos γ: ð98Þ

Here the rescaled equation is obtained simply by replacing
unbarred symbols with their barred counterparts. When
rotational effects vanish the above expression simply
describes a circle of radius

FIG. 21. Geometry used in the black hole shadow derivation,
with the red line representing an incoming photon.
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Rð0Þ
sh ¼ rð0Þpsffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrð0Þps Þ
q : ð99Þ

The effect of rotation is to offset this image in the x
direction of the observer’s plane. The center of the circum-
ference is offset by the amount corresponding to γ ¼ 0, i.e.,

Dsh ¼ a
sinðθ0ÞPðrð0Þps Þ

fðrð0Þps Þ
: ð100Þ

With this it is trivial to plot the contour of the black hole
shadow (parametrized by γ∶0 → 2π), keeping in mind that
x ¼ Rsh cos γ, y ¼ Rsh sin γ. This is done in the following
sections for asymptotically flat, anti–de Sitter, and de Sitter
spacetimes.

1. Asymptotically flat (Λ= 0)

The plots characterizing the properties of the black hole
shadow for Λ ¼ 0 can be seen in Figs. 22(a) and 22(b). As
we have come to expect, we see the greatest disagreement
with GR near Mmin, and we see convergence with GR as
mass gets large. The contours representing the black hole
shadow geometry in this case can be seen in Fig. 23. We
notice that as the coupling constant becomes large, the
radius of the shadow shrinks and its center is offset as the
equations suggest.

2. AdS space (Λ < 0)

The black hole shadow results for asymptotically anti–
de Sitter spacetimes are plotted in Figs. 24 and 25. Once
again we see very tight agreement with GR for small α,
which in the case of the ratio Dsh=Rsh crosses over the
GR result again in the small mass regime. The condition

for the crossing point in Fig. 24(b) turns out to be
equivalent to that in Eq. (84), implying that the small α
solutions cross GR at M̄ ¼ 0.234239. For larger α this
crossover behavior is not manifest. The small α shadow
radius on the other hand touches the GR result before
decreasing again. As alpha approaches criticality, the
shadow radius approaches a constant defined only up to
the expected minimum mass found in previous sections
(M̄min ¼ 0.544).

(a) (b)

FIG. 22. Properties of the black hole shadow when Λ ¼ 0. (a) Black hole shadow radius plotted as a function of mass for
α=M2

⊙ ¼ 0.01, 0.05, 0.1, 0.2, 0.3, 0.7, 1 (in blue from left to right) against the GR results (red) when Λ ¼ 0. Here we have fixed
χ ¼ −0.1 for comparison with [38], and have also fixed θ0 ¼ π=2. (b) Ratio Dsh=Rsh for α=M2

⊙ ¼ 0.01, 0.05, 0.1, 0.2, 0.3, 0.7, 1
(in blue from left to right) against the GR results (red) when Λ ¼ 0. Here we have fixed χ ¼ −0.1 for comparison with [38], and have
also fixed θ0 ¼ π=2.

–5 5 10
x (km)

–5

5

y (km)

FIG. 23. Contour of the black hole shadow for α=M2
⊙ ¼ 0.01,

0.05, 0.1, 0.2, 0.3, 0.7, 1 (in blue from left to right) against the GR
results (red) when Λ ¼ 0. Here we have fixed χ ¼ −0.5 for
comparison with [38], and have also fixed M̄ ¼ 1, θ0 ¼ π=2.
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The effect of increasing the 4DEGB coupling constant in
a universe with a negative cosmological constant is to
shrink the shadow radius show in Fig. 25, with a dimple
appearing on the right-hand side for large α.

3. dS space (Λ > 0)

In an asymptotically de Sitter spacetime, as expected, we
see strong agreement with the GR curves when α is small,
only deviating near M̄min for the ratio

Dsh
Rsh

(see Fig. 26). As
α → αC, we again see the behavior of the allowed mass
region diverging completely from those in GR (i.e. masses
that correspond to physical black holes in GR represent
naked singularities in 4DEGB with large enough α). The
effect of increased coupling strength on the shadow in
asymptotically de Sitter spacetimes can be seen in Fig. 27
and is very similar to the analogous case when Λ ¼ 0.

IV. SUMMARY

In this paper we investigated slowly rotating solutions to
the novel 4D Einstein-Gauss-Bonnet theory of gravity for
asymptotically flat, de Sitter, and anti–de Sitter spacetimes.
These solutions include exact analytic forms for the metric
functions fðrÞ and pðrÞ. We examined black hole horizon
structures and angular velocities, radial location/angular
momenta of innermost stable circular orbits for massive
particles, the location/angular velocities/stabilities associ-
ated with the photon spheres, and the geometry of the
shadows that characterize black holes in the 4DEGB theory
of gravity. In most cases, we found solutions that were
similar in form to the corresponding GR results, but with
the inclusion of enforced minimum mass points (and in the
dS case, maximum mass points). Most results tend to
converge with general relativity in the large mass regime,
although in AdS we instead sometimes see “crossover
behavior” where the 4DEGB curves intersect the GR
curves before diverging as mass gets larger.
Analytic properties of the solution were also investi-

gated, and we found that the slowly rotating black hole

(a) (b)

FIG. 24. Properties of the black hole shadow when Λ < 0. (a) Black hole shadow radius plotted as a function of mass for
α=αC ¼ 0.002, 0.066, 0.2, 0.5, 0.666, 0.9, 0.98 0.99, 0.997, 0.998, 0.999 (in blue from left to right) against the GR results (red) in an
asymptotically anti–de Sitter spacetime. Here we have fixed χ ¼ −0.1 for comparison with [38], and have also fixed θ0 ¼ π=2. (b) Ratio
Dsh=Rsh for α=αC ¼ 0.002, 0.066, 0.2, 0.5, 0.666, 0.9, 0.98 0.99, 0.997, 0.998, 0.999 (in blue from left to right) against the GR results
(red) in an asymptotically anti–de Sitter spacetime. Here we have fixed χ ¼ −0.1 for comparison with [38], and have also
fixed θ0 ¼ π=2.
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FIG. 25. Contour of the black hole shadow for α=αC ¼ 0.002,
0.066, 0.2, 0.5, 0.666, 0.9, 0.98 0.99, 0.997, 0.998, 0.999 (in blue
from right to left) against the GR results (red) in an asymptoti-
cally anti–de Sitter spacetime. Here we have fixed χ ¼ −0.5 for
comparison with [38], and have also fixed M̄ ¼ 1, θ0 ¼ π=2.
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metric in 4DEGB gravity was regular everywhere except
r ¼ 0 so long as we enforced α > 0. Solutions were only
considered if they concealed this singular point behind a
horizon (further investigation into interior solutions is

required). In de Sitter spacetimes we found that the black
hole horizon structure was directly analogous to the
charged Nariai solutions from the Reissner-Nordström–
de Sitter metric. We also found that, given a large enough
4DEGB coupling constant, the de Sitter results had no
overlap in allowed mass with the GR results. In principle
this feature (among others) could be used to set an upper
limit on α, using empirical evidence of black holes existing
within the allowed GR regime. In practice, since asymp-
totic flatness is a good approximation in our Universe,
detecting such deviations from GR is a daunting task with
how little the ISCO solutions differ in this case.
We also note that these Lense-Thirring-type metrics we

obtained were linear in a, and were the first step in
searching for a full rotating solution in a given gravity
theory. Obtaining solutions to order a2 will be of great
interest in studying tidal deformability, Love numbers, etc.,
leaving open an interesting avenue for future research.
These calculations will be even more involved, requiring an
expansion of the scalar and metric functions into spherical
harmonic components and then solving the resultant field
equations.
A thorough study of black hole shadow geometry

suggests that the 4DEGB theory will produce rotating
black hole shadows very similar to those generated by an
Einsteinian black hole, although slightly smaller in diam-
eter. These similarities between the theories elicit mixed
emotions. Since GR is so successful, in principle any
appropriate gravity theory should reproduce most or many
of the same results. This feature is also what makes
experimental verification difficult due to the extreme
precision required to measure differences of this order.
However, since many of the models outlined here do

(a) (b)

FIG. 26. Properties of the black hole shadow when Λ > 0. (a) Black hole shadow radius plotted as a function of mass for
α ¼ 0.0001αT , 0.01αT , 0.2αT , 0.5αT , 0.75αT , 0.9375αT , 0.1αT , 0.5αT , 0.8αC (in blue from left to right) against the GR results (red) in an
asymptotically de Sitter spacetime. Here we have fixed χ ¼ −0.1 for comparison with [38], and have also fixed θ0 ¼ π=2 (b) Ratio
Dsh=Rsh for α ¼ 0.0001αT, 0.01αT , 0.2αT , 0.5αT , 0.75αT , 0.9375αT , 0.1αC, 0.5αC, 0.8αC (in blue from left to right) against the GR
results (red) in an asymptotically de Sitter spacetime. Here we have fixed χ ¼ −0.1 for comparison with [38], and have also
fixed θ0 ¼ π=2.

FIG. 27. Contour of the black hole shadow for α ¼ 0.0001αT,
0.01αT , 0.2αT , 0.5αT , 0.75αT , 0.9375αT , 0.1αC, 0.5αC, 0.8αC
(in blue from left to right) against the GR results (red) in an
asymptotically de Sitter spacetime. Here we have fixed χ ¼ −0.5
for comparison with [38], and have also fixed M̄ ¼ 0.02,
θ0 ¼ π=2.
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predict unique features for certain small mass black holes,
this motivates the search for minimal mass astrophysical
black holes with which the 4DEGB theory could be put to
the test as a proper observational competitor to GR.
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