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Gravitational waves from condensates of ultralight particles, such as axions, around rotating black holes
are a promising probe to search for unknown physics. For this purpose, we need to characterize the signal to
detect the gravitational waves, which requires tracking the evolution of the condensates, including various
effects. The axion self-interaction causes the nonlinear coupling between the superradiant modes, resulting
in complicated branching of evolution. Most studies so far have considered evolution under the non-
relativistic approximation or the two-mode approximation. In this paper, we numerically investigate the
evolution of the axion condensate without these approximations, taking higher multipole modes into
account. We also investigate the possible signature in gravitational waves from the condensate. We show
that the higher multipole modes are excited, leading to the gravitational wave signal by the transition of the
axion between different levels. The most prominent signal of gravitational waves arises from the transition
between modes with their angular quantum numbers different by two. The gravitational wave signal is
emitted in the deci-Hz band for stellar mass black holes, which might be observable with the proposed
gravitational wave detectors.
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I. INTRODUCTION

Black holes and gravitational waves offer a promising
avenue to test physics beyond the standard model of particle
physics, such as an axion. The interesting possibility sug-
gested by string theory is that our Universe may contain
many species of axions, the so-called axiverse scenario [1–4].
In particular, axions in string theory typically havemass with
their Compton wavelength around the astrophysical scale
and the so-called axion decay constant, which determines the
strength of the interaction involving the axion around the
grand unification scale (∼1016 GeV) [5]. Besides the axi-
verse scenario, there are other motivations to assume the
existence of axions. The QCD axion is needed to solve the
strong CP problem [6–12], while also axion is a dark matter
candidate [13–16].
Axions with the Compton wavelength about the size of

astrophysical blackholes (mass around 10−20–10−10 eV) can
be probed by observing the condensate of the axion around

black holes [17]. The condensate of the axion is sponta-
neously formed by the superradiant instability [18–20].
Superradiant instability is a phenomenon such that the axion
bounded by the gravitational potential exponentially grows
by extracting the energy and angular momentum of the black
hole. The rate of instability is fastest when the Compton
wavelength of the axion is comparable to the size of the black
hole. For the solar mass black hole, the rate is around one
minute. As a result, the macroscopic number of axions will
occupy the superradiant modewithin the age of the universe.
In this paper, we call the condensate made solely by a single
superradiantmode as an axion cloud and the superposition of
axion clouds as an axion condensate.
One way to observe the axion condensate is to observe

the gravitational waves emitted from it [17,21–28] (see for
example [20,29,30] for other methods to observe axion
condensates). The gravitational waves are emitted through
two distinct processes: the pair annihilation of axions
and the level transition between different superradiant
modes. The characteristic feature of the emitted gravita-
tional waves is that they are monochromatic. If a rotating
black hole exists in our neighborhood, we have a chance to
observe the gravitational waves from the associated axion
condensate.
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To better characterize the gravitational wave signal,
a better understanding of the evolution of axion conden-
sates under various effects, such as the axion self-
interaction, is necessary (see [31–43] for investigations
on other effects such as tidal effects from the companion
and the coupling to the photon). The self-interaction
causes several effects [44–47], but the most significant
one is the dissipation of the cloud by transferring the energy
to another cloud [48–51]. At a certain amplitude, the
dissipation by the self-interaction is balanced with the
growth due to the superradiant instability, resulting in a
quasistationary configuration with various modes excited
simultaneously.
So far, the evolution of the self-interacting condensate

has been extensively investigated under the two-mode
approximation with the nonrelativistic approximation [49]
or the three-mode approximation neglecting the spin down
of the black hole [50]. These are not satisfactory to fully
characterize the gravitational wave signals. The observa-
tionally attractive regime where the growth rate is the
fastest, and the amplitude of the gravitational wave
becomes large is in the relativistic regime. Furthermore,
higher multipole modes are excited in the relativistic
regime [49,50]. In addition, the inclusion of the spin down
of the black hole is necessary since the spin of the black
hole determines the lifetime of the condensate [50].
In this paper, we numerically examine the co-evolution

of the self-interacting axion condensate and the black hole,
as well as the resulting gravitational wave radiation in the
relativistic regime, including higher multipole modes. We
use the adiabatic approximation to track the evolution,
which is well motivated in the current situation [47,52].
We find that the higher multipole modes are excited, but
representative excited modes depend on the axion mass
and the axion decay constant. In addition, we show that
the excitation of the higher multipole modes will result in
a characteristic gravitational wave signal different from
the one predicted in Ref. [49]. More specifically, the
transition, including the higher multipole modes, leads to
a louder signal than the pair annihilation signal or the
transition between the fastest and the second fastest
growing modes for the grand unified theory (GUT) scale
decay constant (1017–1016 GeV).
This paper is organized as follows. In Sec. II, we briefly

review the axion cloud formed by the superradiant insta-
bility. In Sec. III, we formulate the evolution equations of
the self-interacting axion condensate, including the multi-
ple modes up to l ¼ m ¼ 4 and the spin down of the central
black hole. In Sec. IV, we numerically solve the evolution
equations formulated in Sec. III and see how the excitation
of the higher multipole modes proceeds. In Sec. V, we
compute the gravitational and axion waves from the axion
condensate. Section VI summarizes our findings with some
comments on the detectability of the gravitational waves. In
the rest of this paper, we take the unit with c ¼ G ¼ ℏ ¼ 1.

II. AXION CLOUD

We first review the formation of a condensate of an axion
around a rotating black hole by the superradiant instability.
For a detailed review of this topic, see [20]. In this paper,
we employ the action

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
R

þ F2
a

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð1Þ

where we normalize the axion field ϕ with the decay
constant Fa. Note that Fa is measured in the unit of the
Planck mass Mpl ¼ G−1=2. Thus, we have Fa ∼ 10−3 for
the GUT scale decay constant. In this paper, we consider
the leading order piece of the cosine type potential,

VðϕÞ ¼ μ2ð1 − cosϕÞ ∼ μ2

2
ϕ2 −

μ2

4!
ϕ4: ð2Þ

The background metric is fixed to the Kerr metric given by

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2 −

4aMrsin2θ
ρ2

dtdφ

þ
�
ðr2 þ a2Þ þ 2Mr

ρ2
a2sin2θ

�
sin2θdφ2

þ ρ2

Δ
dr2 þ ρ2dθ2; ð3Þ

with

Δ ¼ ðr − rþÞðr − r−Þ; ρ2 ¼ r2 þ a2 cos2 θ; ð4Þ

and

r�
M

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
: ð5Þ

Here, M is the mass, and χ ¼ a=M is the dimensionless
spin parameter of the black hole. The radii rþ and r−
correspond to the positions of the event horizon and the
Cauchy horizon, respectively.
In the initial phase of the evolution, the amplitude of the

axion is small, and we can neglect the quartic term in the
potential (2). In this case, the equation of motion for
the axion is given by

ð□g − μ2Þϕ ¼ 0: ð6Þ

As shown in the literature [53], we can solve the equation of
motion by the separation of the variables,

ϕ ¼ e−iðωt−mφÞRlmωðrÞSlmωðθÞ þ c:c: ð7Þ
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Here, c.c. denotes the complex conjugate. The radial part
and the angular part of the equation become

d
dr

�
Δ
dRlmω

dr

�
þ
�
K2ðωÞ
Δ

−μ2r2− λlmðωÞ
�
Rlmω ¼ 0; ð8Þ

1

sin θ
d
dθ

�
sin θ

dSlmω

dθ

�
þ
�
c2ðωÞcos2θ − m2

sin2θ

�
Slmω

¼ −ΛlmðωÞSlmω; ð9Þ

with

c2ðωÞ ¼ a2ðω2 − μ2Þ; KðωÞ ¼ ðr2 þ a2Þω − am;

λlmðωÞ ¼ −2amωþ a2ω2 þ ΛlmðωÞ; ð10Þ

and ΛlmðωÞ is the separation constant that is reduced to
lðlþ 1Þ in the limit a → 0. The normalization of the
spheroidal harmonics Slmω is taken to satisfy

Z
d cos θSlmωðθÞSl0mωðθÞ ¼ δll0 : ð11Þ

Since we are interested in the bound states of the
axion, we solve the radial equation (8) with the boundary
conditions

RlmωðrÞ →

8><
>:

ðr−rþM Þ−i
2Mrþ
rþ−r−

ðω−mΩHÞ; ðr → rþÞ;

ð rMÞ
−1−M μ2−2ω2ffiffiffiffiffiffiffiffi

μ2−ω2
p

e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r; ðr → ∞Þ;

ð12Þ

where ΩH ¼ a=ðr2þ þ a2Þ is the angular velocity of the
event horizon. By the analytical [19] and numerical
methods [54], the solutions are found, and they are labeled
by the three integers n, l, and m with n ≥ lþ 1, where n, l,

and m is called the principal, azimuthal, and magnetic
quantum numbers, respectively. We denote a solution as

ϕnlm ¼ e−iðωnlmt−mφÞSlmωnlm
ðθÞRlmωnlm

ðrÞ þ c:c: ð13Þ

Here, ωnlm is the angular frequency of the solution. We call
the solutions with the smallest nð¼ lþ 1Þ as the funda-
mental modes and those with larger n as the overtone
modes. Note that we normalize the radial mode function in
such a way that the energy of the configuration calculated
within the linearized approximation is equal to F2

aM.
The real and the imaginary parts of the frequency of the

l ¼ m ¼ 1 and l ¼ m ¼ 2 fundamental modes are shown
in Fig. 1. We observe that the frequencies possess the
positive imaginary part, indicating the presence of insta-
bility. This instability is called superradiant instability.
The superradiant instability occurs for [18]

0 < Re½ωnlm� < mΩH: ð14Þ

Because of the superradiant instability, the axion will
occupy the superradiant states. As a result, the condensate
of the axion will be spontaneously formed. In this paper, we
denote the condensate made purely from a single super-
radiant mode as an axion cloud and the superposition of
such clouds as an axion condensate.
The radial configuration of the axion cloud is shown in

Fig. 2. We observe that the configuration is quite similar
to the radial wave function of the hydrogen atom. In fact,
in the small gravitational coupling regime, μM ≪ 1, the
frequencies, and the mode functions coincide with those
of the hydrogen atom at a distant place [19]

ωnlm;R ≡ Re½ωnlm� ∼ μ

�
1 −

ðμMÞ2
2n2

�
; ð15Þ

FIG. 1. Left: the behavior of Mðμ − ωnlm;RÞ as the function of μM, where ωnlm;R denotes the real part of the frequency ωnlm. The red
and the blue solid curve correspond to the l ¼ m ¼ 1 and l ¼ m ¼ 2 fundamental superradiant modes, respectively. The corresponding
dotted curves are the ones with the nonrelativistic approximation Eq. (15). The spin of the central black hole is set to a=M ¼ 0.99.
Right: the similar plot for the imaginary part of the frequencies ωnlm.
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SlmωðθÞ ∼ YlmðθÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!ð2lþ 1Þ

2ðlþmÞ!

s
Pm
l ðcos θÞ; ð16Þ

RlmωðrÞ ∼ RnlðrÞ

≡ 1

2
ffiffiffi
π

p
μM

�
2ðμMÞ2

n

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − l − 1Þ!
n4ðnþ lÞ!

s

×

�
2μ2Mr

n

�
l

e−
μ2Mr
n L2lþ1

n−l−1

�
2μ2Mr

n

�
: ð17Þ

Here, Lk
n is the associated Laguerre polynomials. By the

asymptotic matching method, the approximate formula for
the imaginary part of the frequency is found as

ωnlm;I ≡ Im½ωnlm�

∼
2rþ
M

ðμMÞ4lþ5ð−μþmΩHÞ
24lþ1ðlþ nÞ!

ðn − l − 1Þ!n2lþ4

×
�

l!
ð2lÞ!ð2lþ 1Þ!

�
2

×
Yl
j¼1

�
j2
�
1 −

a2

M2

�
þ 4r2þðμ −mΩHÞ2

�
: ð18Þ

We refer to the formulas using the leading order approx-
imations in μM [Eqs. (15) and (16)] as the “nonrelativistic
approximation.” The more accurate approximation can be
found in Refs. [55,56]. As the figures show, the non-
relativistic approximation breaks down in the μM ∼ 1
regime. For example, the radial mode function becomes
more compact than the one predicted by the nonrelativistic
approximation (see Fig. 2).

III. EVOLUTION EQUATIONS OF THE
AXION-BLACK HOLE SYSTEM

As the condensate grows, various effects would alter its
evolution from the naive exponential growth predicted by
the linear approximation in the previous section. The self-
interaction [17,44–50,57,58] and the change of the spin of
the central black hole [17,52] are particularly important. The
self-interaction would change the evolution by causing the
nonlinear mode coupling, which results in the saturation
of the evolution [48–50]. In addition, the spin of the central
black hole gradually slows down. Once the spin reaches
a certain value, the growth of the condensate terminates
because the superradiant condition (14) is no longer met.
Since the growth timescale of the cloud is much longer

than its dynamical timescale and the light crossing time of
the black hole, ωnlm;I ≪ ωnlm;R;M−1

BH, we can assume that
the evolution is adiabatic. Under the adiabatic evolution,
at each moment, the metric is approximated by the Kerr
metric with a given black hole massMBHðtÞ and an angular
momentum JBHðtÞ. The evolution of each axion cloud is
captured by that of the normalized mass, Mcl;iðtÞ, where i
specifies the mode. Since we have normalized the axion
by the decay constant Fa, the actual mass of the cloud is
expressed by the normalized mass as F2

aMcl;iðtÞ.
Evolution equations for the clouds are derived from

the local conservation laws of the energy and the angular
momentum [50]. The results are summarized in the
following form

dMcl;i

dt
¼þ2ωi;IMcl;i

−
X
j;k

ð1þδijÞωi;R

ωi;Rþωj;R−ωk;R
FH
ijk�Mcl;iMcl;jMcl;k

þ
X
j;k

ωi;R

ωj;Rþωk;R−ωi;R
FH
jki�Mcl;iMcl;jMcl;k

−
X
j;k

ð1þδijÞωi;R

ωi;Rþωj;R−ωk;R
FI
ijk�Mcl;iMcl;jMcl;k

þ
X
j;k

ωi;R

ωj;Rþωk;R−ωi;R
FI
jki�Mcl;iMcl;jMcl;k: ð19Þ

The first term represents the increase in the energy due
to the superradiance. The coefficients FH

ijk� and FI
ijk� are

defined by

dEa

dt

				
r¼rþ

¼ F2
aF

H
ijk�Mcl;iMcl;jMcl;k; ð20Þ

dEa

dt

				
r→∞

¼ F2
aFI

ijk�Mcl;iMcl;jMcl;k; ð21Þ

which represent the magnitude of the energy flux of the
axion to the horizon and that to infinity, respectively,

FIG. 2. The real part of the radial mode function, Rlmω as a
function of r=M. The red and blue solid curves, respectively,
correspond to the l ¼ m ¼ 1 and l ¼ m ¼ 2 superradiant modes
without any approximation, while the dashed curves are the
counterparts in the nonrelativistic approximation. The spin of the
black hole and the mass of the axion are set to a=M ¼ 0.99 and
μM ¼ 0.42, respectively. The phase of the mode functions is
chosen so that there is no imaginary part for large r.
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induced by the process involving modes i, j, and k. Note
that FH;I

ijk� ¼ FH;I
jik� , since the modes i and j are interchange-

able in this process. These processes are caused by the
self-interaction, and see Fig. 3 for the meaning of their
subscript. The terms with the Kronecker delta δij are
necessary to take into account that two axions are lost
by a single transition when i ¼ j. See Appendix of [50] for
details of the derivation. The factor F2

a comes from the
normalization of the axion field.
The evolution of the black hole mass and the angular

momentum is governed by the balance equations [52],

dMBH

dt
¼ F2

a

�
−
X
i

2ωi;IMcl;i þ
X
ði;j;kÞ

FH
ijk�Mcl;iMcl;jMcl;k

�
;

ð22Þ

dJBH
dt

¼ F2
a

�
−
X
i

2
miωi;I

ωi;R
Mcl;i

þ
X
ði;j;kÞ

mi þmj −mk

ωi;R þ ωj;R − ωk;R
FH
ijk�Mcl;iMcl;jMcl;k

�
;

ð23Þ

where the right-hand sides are the energy and angular
momentum fluxes through the horizon, respectively. The
first term in the parenthesis corresponds to the mass and the
angular momentum loss (gain) due to the superradiance or
absorption of axions. The second term corresponds to the
energy and the angular momentum flux induced by the self-
interaction (the left panel of Fig. 3).

A. Subleading effects

There are subleading effects that we do not take into
account in the evolution. One is the other effect due to the
self-interaction. As summarized in Ref. [50], the effect of
the self-interaction can be classified into three parts. One is
the dissipation due to the low-frequency modes ω ∼ μ,

which is considered in this paper. The second one is the
dissipation due to the high-frequency modes ω≳ 2μ. These
contributions are small when considering the evolution in
the perturbative regime [46,49]. The third one is the
deformation of the cloud. When the amplitude of the cloud
is large, the condensate is deformed significantly [47],
and for a large amplitude, it leads to the collapse of the
condensate [44]. However, it has been shown that the
dissipative effects due to the self-interaction are large
enough to prevent the condensate from entering the
collapsing regime in the case the condensate starts with
a small amplitude, e.g., that produced by the quantum
fluctuation [49,50]. For these reasons, we only consider the
dissipative effect due to the low-frequency radiation.
According to the cloud deformation, the eigenfrequen-

cies of the cloud would change. It becomes essential when
we consider the long-term observation of the continuous
gravitational waves from the axion cloud [59]. When the
amplitude of the cloud is not so large, the frequency shift
can be calculated by the perturbative method both in the
nonrelativistic approximation [49] and in the relativistic
approach [42,46]. When the amplitude of the cloud is large,
it should be calculated numerically as in Ref. [47]. In this
paper, we do not compute the frequency shift for ease of
calculation, since the frequency shift does not change the
evolution significantly.
In addition, we neglect the gravitational wave radiation

and self-gravity of the cloud. The energy loss rate of clouds
due to the gravitational wave radiation is much smaller
than the energy transfer rate due to the superradiant
instability [60] and the scalar wave radiation induced by
the self-interaction. For this reason, we neglect the effect of
gravitational waves on the evolution. The correction to the
axion condensate due to the self-gravity is also small [61].

IV. TIME EVOLUTION WITH FOUR MODES

Now, we numerically solve the evolution equations (19),
(22), and (23). We analyze the situation in which the four
fundamental modes l ¼ m ¼ 1; l ¼ m ¼ 2; l ¼ m ¼ 3,

FIG. 3. Dissipative processes induced by the self-interaction. Each line represents an energy level. The left panel corresponds to the
dissipation of the axion due to the absorption by the black hole, and the right panel corresponds to the dissipation due to the radiation to
infinity. The particles in the cloud i and jmake a transition to the one in the cloud k and the dissipative mode specified by the superscript
H and I .
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and l ¼ m ¼ 4 are excited simultaneously. In our previous
paper [50], it has been shown that the amplitudes of overtone
modes are always subdominant. In addition, we neglect the
modes with l > m since the transition to these modes is
significantly suppressed due to the higher angular quantum
number. In the following we use i ¼ 1, 2, 3, 4 to label the
fundamental modes with ðl;mÞ¼ð1;1Þ;ð2;2Þ;ð3;3Þ;ð4;4Þ.
Our four mode approximation would give a correct

evolution unless the l ¼ m ¼ 3 or the l ¼ m ¼ 4 mode
grows to a significantly large amplitude. In the case of the
l ¼ m ¼ 3 or 4 modes growing to a large amplitude, we
need to include much higher multipoles. As we shall see
below, the substantial growth of the l ¼ m ¼ 3 or 4 mode
only happens for a much later time when the l ¼ m ¼ 1 and
2 modes have decayed. Therefore, when considering the
gravitational wave signal involving the l ¼ m ¼ 1 or
l ¼ m ¼ 2 mode, our four-mode approximation should
give an accurate result.
When considering these modes, the fluxes of the

processes that we need to take into account are the
following eighteen (ten from the processes dissipating to
the black hole and eight from the ones dissipating into
infinity):

Flux to the horizon:

FH
112� ; FH

113� ; FH
223� ; FH

114� ; FH
224� ;

FH
334� ; FH

123� ; FH
124� ; FH

134� ; FH
234� : ð24Þ

Flux to infinity:

FI
221� ; FI

331� ; FI
441� ; FI

442� ;

FI
231� ; FI

241� ; FI
341� ; FI

342� : ð25Þ

Other processes become subdominant because of the
following reasons: (1) the frequencies of the dissipative
modes are much larger than the axion mass, or (2) for
the modes dissipating to the black hole, the angular
momentum barrier of the dissipative mode is large enough
(l > 2) [49,50]. Note that when considering the flux to
infinity, its frequency must be larger than the axion mass.
When solving the evolution equations, we need the

numerical values of ωi; F
H;I
ijk� and so on for given

ðμM; χÞ. We numerically calculate these quantities on
the grid points in the parameter space of ðμM; χÞ in the
range between 0.02 ≤ μM ≤ 0.45 and 0.15 < χ < 0.998
with interval ΔðμMÞ ¼ 0.01 and Δχ ¼ 0.025. For the
calculation of the time evolution, we use the value of ωi

and FH;I
ijk� obtained by interpolating the values on the grid

points. The whole calculation is done using Mathematica.

A. Example of the time evolution

To demonstrate the behavior of solutions of Eqs. (19),
(22), and (23), we fix the initial mass of the black hole to

MBH;ini ¼ 10M⊙ in this section. Then, the superradiant
instability of the l ¼ m ¼ 1mode occurs for the axion mass
in the range μ≲ 6 × 10−12 eV. We take the initial spin of
the black hole to be relatively large χ ¼ 0.99. The initial
mass of the cloud is taken to be Mcl;i ¼ 10−10MBH;ini,
which is just set to a sufficiently small value. In reality,
the cloud mass will start with a much smaller value, but in
such a small mass (Mcl;i ∼ 10−80M⊙ if the cloud starts with
the quantum fluctuation with GUT scale decay constant),
self-interaction is totally negligible, and hence our result
should give the qualitatively correct results, even if we do
not start with such an extremely small number. For the
detail of the dependence of the evolution on the initial
condition, see Ref. [50].
We first show the evolution of the cloud for the axion

mass with μMBH;ini ¼ 0.2, and Fa ¼ 10−3 in Fig. 4. This
axion mass corresponds to μ ∼ 2.6 × 10−12 eV. The evolu-
tionary track of the cloud is summarized as follows:
(1) The l ¼ m ¼ 1 cloud grows exponentially by the

superradiant instability.
(2) The energy of the l ¼ m ¼ 1 cloud is transferred to

the l ¼ m ¼ 2 cloud. Then, the l ¼ m ¼ 2 cloud
grows exponentially. At a certain amplitude, the
energy gained by the superradiance and the dis-
sipation by the self-interaction balance result in a
quasistationary configuration. The mass of each
mode is roughly determined by solving the sta-
tionary conditions

dMcl;i

dt
¼ 0; ði ¼ 1; 2; 3; 4Þ: ð26Þ

Note that, around the maximum of the cloud
mass, we cannot neglect the deformation of the

FIG. 4. An example of the time evolution of the normalized
axion cloud mass Mcl;i. For clarity, we recovered the normali-
zation of the cloud mass. The red solid, blue dashed, black dotted,
and green dash-dotted curves correspond to the l ¼ m ¼ 1, 2, 3,
and 4 modes, respectively. The initial black hole mass and black
hole spin are MBH;ini ¼ 10M⊙ and χini ¼ 0.99, respectively. We
take the axion mass such that αini ≡ μMBH;ini ¼ 0.2 and the axion
decay constant to be Fa ¼ 10−3.

OMIYA, TAKAHASHI, TANAKA, and YOSHINO PHYS. REV. D 110, 044002 (2024)

044002-6



mode function due to the self-interaction [50]. The
clouds become compact at a large amplitude, and
the frequencies of the clouds would be modified.
However, the numerical analysis shows that the
qualitative evolution does not change from the
perturbative calculation. The change in the cloud
configuration might enhance the gravitational wave
amplitudes, but we neglect this effect for simplicity.
The modification to the frequencies is important for
the actual observation, but we also neglect it.

(3) Higher multipole modes are excited by the same
mechanism. In the present example, the l ¼ m ¼ 3
cloud is excited. Which modes are excited depends
on the parameters of the axion, ðμ; FaÞ, as we briefly
discuss below.

(4) The l ¼ m ¼ 1 cloud is depleted because of the
spin down of the black hole by the superradiance of
the l ¼ m ¼ 2 mode. As the obstruction due to the
presence of the l ¼ m ¼ 1 cloud disappears, the
l ¼ m ¼ 2 mode starts to grow by the superradiant
instability.

(5) Once the energy of the l ¼ m ¼ 2 cloud dominates,
the energy transfer from the l ¼ m ¼ 2 cloud to the
l ¼ m ¼ 3 cloud becomes efficient. Since there is no
process to transfer the energy of the l ¼ m ¼ 3
mode to the l ¼ m ¼ 2 mode, the l ¼ m ¼ 3 mode
continues to grow. For this case, we need to include
much higher multipoles, such as l ¼ m ¼ 6 mode.
Then, in the end, the energy is transferred to much
higher multipoles and settles into the quasistation-
ary state.

Now, let us vary the parameters of the axion, Fa and μ. In
Fig. 5, we show the case with only the value of Fa changed
from that of Fig. 4. Changing the value of Fa is identical to
changing the relative size of the black hole spin down rate
and the energy transfer rate of the cloud due to the self-
interaction. Increasing Fa weakens the self-interaction and
increases the relative spin down rate while decreasing Fa
does the opposite. The top panel of Fig. 5 is the case
when Fa is increased. We observe that the saturation of the
l ¼ m ¼ 1 cloud occurs much before the excitation of the
l ¼ m ¼ 2 cloud. This saturation occurs because the black
hole has spun down to the superradiance threshold of
Eq. (14). Although the saturation due to the spin down
occurs, the energy transfer from the l ¼ m ¼ 1 cloud to the
l ¼ m ¼ 2 cloud still occurs, leading to much earlier
excitation of the l ¼ m ¼ 2 cloud than the excitation by
the superradiant instability alone. This regime corresponds
to the “small self-coupling regime” in Ref. [49]. On the
other hand, we observe a delay in the decay of the
l ¼ m ¼ 1 cloud when we decrease Fa (bottom panel of
Fig. 5). This regime corresponds to the “large self-coupling
regime” in Ref. [49].
We now change the axion mass μwhile the value of Fa is

fixed as 10−3. Figure 6 shows the cases with μMBH;ini ¼ 0.1

and 0.4, which correspond to μ ∼ 1.3 × 10−12 and
5.2 × 10−12 eV, respectively. The behavior is similar to
the case with μMBH;ini ¼ 0.2, except that the l ¼ m ¼ 3

cloud is no longer excited before the depletion of the
l ¼ m ¼ 1 cloud. Since the simultaneous excitation of
higher multipole modes will be important when we con-
sider gravitational wave signals (Sec. V B), we discuss the
parameter range in which the simultaneous excitation of
higher multipole modes is possible. We define the effective
growth rate of the l ¼ m ¼ 3 mode, when the l ¼ m ¼ 1
and the l ¼ m ¼ 2 modes are in the quasistationary state as

ωeff
3;I ≡ 2ω3;I þ FH

113�M
2
sat;1 þ FH

223�M
2
sat;2

þ ðFH
123� − FI

231� ÞMsat;1Msat;2: ð27Þ

Here,Msat;1 andMsat;2 are the masses of the l ¼ m ¼ 1 and
l ¼ m ¼ 2 clouds when the growth is saturated by the self-
interaction between the two clouds. We define ωeff

4;I in the
same way.
The region where ωeff

3;I and ωeff
4;I are positive is shown in

Fig. 7. The excitation of the l ¼ m ¼ 3 mode is possible
when 0.12≲ μMBH ≲ 0.25, and the excitation of the
l ¼ m ¼ 4 mode is possible when 0.20≲ μMBH ≲ 0.45.
In the overlapping regime, the one with the larger effective
growth rate will be excited, and the other mode is depleted

FIG. 5. The same figure as Fig. 4 but with Fa ¼ 10−1(top) and
10−7(bottom), respectively.
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by the processesFI
341� and F

I
342� . In most of the overlapping

regions, the effective growth rate for l ¼ m ¼ 3 is larger
than that for l ¼ m ¼ 4. Note that the region in Fig. 7 is
the necessary condition for the excitation of the higher

multipole modes but not sufficient. The region also depends
on the decay constant and the initial black hole mass
and spins in a complicated manner. The region on the
ðμMBH;ini; FaÞ plane for the black holes with mass and the
spin similar to the Cygnus X-1 and the remnant of
GW170817 can be observed in Figs. 15 and 16 below.
Finally, let us comment on the evolution of the black hole

spin. In Fig. 8, we show the evolution of the black hole spin
with various μ and Fa. Since the superradiant rate depends
on the axion mass μ, the time when the significant spin
down occurs depends on μ. In addition, the spin down

FIG. 6. The same figure as Fig. 4 but with αini ¼ 0.1 (top) and
0.4 (bottom), respectively.

FIG. 7. The parameter region where the effective growth rate
for the l ¼ m ¼ 3 (ωeff

3;I) and the l ¼ m ¼ 4 (ωeff
4;I) are positive in

the ðμMBH; χÞ-plane. The blue and orange region corresponds to
ωeff
3;I > 0 and ωeff

4;I > 0, respectively. In the most of the over-
lapping region, ωeff

3;I > ωeff
4;I holds.

FIG. 8. The time evolution of the black hole spin parameters χ
as functions of time. Top: the red solid, blue dashed, black dotted,
and green dash-dotted curves correspond to the decay constant
Fa ¼ 10−1; 10−3; 10−5, and 10−7, respectively. The axion mass is
chosen to satisfy αini ¼ μMBH;ini ¼ 0.1. Middle: the same figure
as the top one but with αini ¼ 0.2. Bottom: the same figure as the
top one but with αini ¼ 0.4.
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timescale becomes longer when one decreases Fa. This is
evident from the equation governing the angular momen-
tum evolution of the black hole, Eq. (23). The spin down is
initially driven by the l ¼ m ¼ 1 mode and later by higher
multipole modes because of the difference of the threshold
spin and the hierarchy in the rate of the superradiant
instability (see right panel of Fig. 1). However, we note
that the spin down due to the higher multipole modes starts
to function much earlier compared with the noninteracting
case as long as the decay constant satisfies Fa ≲ 10−1, since
the growth of higher multipole modes is accelerated by
the mode coupling due to the self-interaction. The spin up
observed in the figure is due to the fallback of the lower
multipole modes to the black hole.

V. OBSERVABLE SIGNALS

A. Gravitational waves

1. Calculation of the gravitational waves

Here, we consider gravitational waves emitted by the
axion condensate. Gravitational waves are generated from
the time-dependent part of the axion energy-momentum
tensor TμνðϕÞ. When the multiple modes are excited
simultaneously, the axion field is given in the form [62]

ϕ ¼
X
i

ffiffiffiffiffiffiffiffiffiffi
Mcl;i

MBH

s
e−iðωit−miφÞRlimiωi

Slimiωi
þ c:c: ð28Þ

Since Tμν is quadratic in ϕ, the time dependent pieces
behaves as ∝ e−iðωiþωjÞt or e−iðωi−ωjÞt. Namely, the frequen-
cies of gravitational waves are either the sum or the
difference of the frequencies of two clouds. The former
is called the “pair annihilation signal,” while the latter is the
“level transition signal.” The actual frequencies of the
gravitational waves for the 10M⊙ black hole mass with
spin χ ¼ 0.99 are shown in Fig. 9. The pair annihilation
signal has a much higher frequency (∼1 kHz) than the level
transition signal (∼1 Hz).
The energy flux and the amplitude of gravitational waves

can be calculated by solving the Teukolsky equation. We
briefly review the calculation of gravitational waves from
the axion condensate. The details of the calculations can be
found in Refs. [28,60,63].
The energy flux Fgw and the amplitude hgw of a

monochromatic gravitational wave with the angular fre-
quency ω in a distant region from the black hole are
described in terms of the Newmann-Penrose variable ψ4

as [64]

Fgw ¼ lim
r→∞

r2

4πω2

Z
dΩjψ4j2; ð29Þ

hgw ¼ 2

ω2
jψ4j: ð30Þ

When the source of the gravitational wave has the form
e−iðωt−mφÞ, the asymptotic form of the ψ4 is shown to be

ψ4 →
1

r
e−iωtþimφeiωr

X∞
l¼2

Zout
l −2Slmω; ðr → ∞Þ; ð31Þ

where the amplitude is given by

Zout
l ¼ 1

−2Wlmω

Z
∞

rþ
dr0Δ−2

−2R
in
lmωðr0Þ−2Tlmωðr0Þ: ð32Þ

Here, −2Slmω is the spin-weighted spheroidal harmonics
with the spin weight s ¼ −2, −2Rin

lmω is the solution to the
radial Teukolsky equation with the ingoing boundary
condition at the event horizon, and −2Wlmω is the
Wronskian of the radial Teukolsky equation. The function

−2Tlmω is the source term of the radial Teukolsky equation,
related to the energy-momentum tensor of the axion. The
precise form of −2Tlmω can be found in Ref. [64]. Note that

−2Tlmω depends on the mass of the cloud and the decay
constant as ∝ F2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl;iMcl;j

p
, since the energy-momentum

tensor is quadratic in ϕ. Therefore, the energy flux and the
amplitude scale as

Fgw ∝ F4
aMcl;iMcl;j; ð33Þ

hgw ∝ F2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl;iMcl;j

p
: ð34Þ

FIG. 9. Frequencies of gravitational waves fgw emitted from
the axion condensates as functions of the axion mass μ. The blue
circle corresponds to the pair annihilation of the l ¼ m ¼ 1
fundamental mode. The yellow square, green diamond, red
triangle, purple reversed triangle, brown open circle, and light
blue open square correspond to the level transition signal of
j322i → j211i, j433i → j211i, j433i → j322i, j544i → j322i,
j311i → j211i, j411i → j211i, respectively. Here, jnlmi corre-
sponds to the mode labeled by n, l, andm. Although overtones do
not appear in our calculation, we show them for reference. The
mass and spin of the black hole are fixed at MBH ¼ 10M⊙
and χ ¼ 0.99.
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In the left panel of Fig. 10, we show the energy flux of
gravitational waves from a black hole with the mass 10M⊙
and the spin χ ¼ 0.99. In terms of the energy flux, the pair
annihilation signal of the l ¼ m ¼ 1 cloud and the level
transition signal of the transition from the l ¼ m ¼ 3 mode
to the l ¼ m ¼ 1mode dominate if the masses of all clouds
are assumed to be the same. The energy dissipation of the
cloud due to the pair annihilation is much smaller than
the energy gain by the superradiance [60], which justifies
neglecting the gravitational wave emission when we con-
sider the evolution of the condensate.
In the right panel of Fig. 10, we show the amplitudes of

respective gravitational waves. We observe the hierarchy
among the amplitudes generated by different processes.
First of all, the amplitude of the pair annihilation signal is
the smallest. This is the case because the wavelength of the
gravitational wave (∼1=μ) is much shorter than the size
of the condensate [∼1=μ=ðμMÞ] in the situation we are
considering. In contrast, the level transition signal is not
suppressed since the wavelength is much longer
(∼1=μ=ðμMÞ2). The size of the level transition signal is
the largest for the transition with jmi −mjj ¼ 2, followed
by jmi −mjj ¼ 0, and then by jmi −mjj ¼ 1. The tran-
sition with jmi −mjj ¼ 1 is suppressed because the tran-
sition cannot occur through the mass quadrupole
radiation because of the parity argument. The relative
suppression of the signal with jmi −mjj ¼ 0 to the one
with jmi −mjj ¼ 2 is due to the axisymmetry of the source
for the case of jmi −mjj ¼ 0. Note that the amplitude of the

gravitational waves does not change significantly as one
changes the black hole spin. This is because the configu-
ration of the cloud does not depend on the black hole
spin prominently.
Other than the signals presented in Fig. 10, it is possible

to consider pair annihilation between different modes.
However, one can confirm that this “cross annihilation”
process produces much smaller gravitational waves since
it starts with the octopole radiation rather than the quadru-
pole one.
To summarize, we expect a much larger signal than the

one previously considered, when there simultaneously exist
two modes whose magnetic quantum numbers are different
by two, e.g., the l ¼ m ¼ 1 and l ¼ m ¼ 3 modes or
the l ¼ m ¼ 2 and l ¼ m ¼ 4 modes. Let us estimate the
amplitude of the gravitational wave emitted during the
quasistationary state that is found in the previous section. In
Fig. 11, we show the normalized masses of the cloudsMcl;i

when they settle into the quasistationary state. We observe
that when the l ¼ m ¼ 3 cloud is excited, the relation
Mcl;1 ∼Mcl;3 ∼Oð102ÞMBH holds regardless of the spin.
The maximum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mcl;1Mcl;3

p
is ∼380MBH for χ ¼ 0.99

and ∼290MBH for χ ¼ 0.7, around μMBH ∼ 0.15. From the
numerical calculation, the value of hgw around μMBH ∼
0.15 normalized as in Fig. 10 is determined to be
∼3 × 10−18 for both χ ¼ 0.99 and 0.7. Thus, the maximum
amplitude of the level transition signal from the l ¼ m ¼ 3
mode to the l ¼ m ¼ 1 mode is given by

hgw ∼

8>><
>>:

1.0 × 10−21


1 kpc
r

�

MBH
10M⊙

�

Fa
10−3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mcl;1Mcl;3

p
380MBH

�
; ðχ ¼ 0.99; μMBH ∼ 0.15Þ;

7.9 × 10−22


1 kpc
r

�

MBH
10M⊙

�

Fa

10−3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mcl;1Mcl;3

p
290MBH

�
; ðχ ¼ 0.7; μMBH ∼ 0.15Þ:

ð35Þ

FIG. 10. Left: the energy flux of the gravitational waves from various processes. Each point corresponds to the same process in Fig. 9.
Right: the amplitude of the gravitational waves from various processes. Again, each point corresponds to the same process in Fig. 9. The
black hole is placed at r ¼ 1 kpc.
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For a black hole with mass 10M⊙, the frequency of this
gravitational wave is around 1 Hz, which is in the target
frequencies of the proposed gravitational wave detectors
such as DECIGO [65], atomic interferometers [66],
TOBA [67], TianGo [68], DO [69], AMIGO [70], and

LGWA [71]. The amplitude does not decrease significantly
even if the spin of the black hole is reduced.
The amplitudes of gravitational waves from other proc-

esses can be estimated similarly. The maximum amplitude
is given by

hgw ∼

8<
:

1.0 × 10−24


1 kpc
r

�

MBH
10M⊙

�

Fa
10−3

�
2



Mcl;1

36MBH

�
; ðχ ¼ 0.99; μMBH ∼ 0.42Þ;

2.1 × 10−25


1 kpc
r

�

MBH
10M⊙

�

Fa

10−3

�
2



Mcl;1

248MBH

�
; ðχ ¼ 0.7; μMBH ∼ 0.2Þ;

ð36Þ

for the l ¼ m ¼ 1 pair annihilation, and

hgw ∼

8<
:

4.0 × 10−23


1 kpc
r

�

MBH
10M⊙

�

Fa
10−3

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mcl;1Mcl;2

p
54MBH

�
; ðχ ¼ 0.99; μMBH ∼ 0.42Þ;

4.8 × 10−24


1 kpc
r

�

MBH
10M⊙

�

Fa
10−3

�
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mcl;1Mcl;2

p
64MBH

�
; ðχ ¼ 0.7; μMBH ∼ 0.2Þ;

ð37Þ

for the transition from the l ¼ m ¼ 2 cloud to the l¼m¼1
cloud. Thus, we find that the transition from the l ¼ m ¼ 3
cloud to the l ¼ m ¼ 1 cloud can provide the strongest
signal for the GUT scale decay constant.

We show the typical time evolution of the gravitational
wave amplitude for these processes in Fig. 12. After the
excitation of the l ¼ m ¼ 1 cloud, the gravitational waves
from the pair annihilation in the l ¼ m ¼ 1 cloud and the
level transition between the l ¼ m ¼ 1 and the l ¼ m ¼ 2
clouds are radiated. This phase lasts for the timescale of
superradiant instability, which is ≲1 yr in the current
choice of the parameters. After a few years, the larger
gravitational wave from the level transition between the
l ¼ m ¼ 3 and the l ¼ m ¼ 1 clouds appears. The ampli-
tude of this gravitational wave decays as the l ¼ m ¼ 1
cloud depletes due to the spin down.

FIG. 11. Normalized masses of the axion clouds in the
quasistationary configuration. The red solid, blue dotted, black
dashed, and green dot-dashed curves correspond to the mass of
the l ¼ m ¼ 1, 2, 3 and 4 cloud when the condensate is in the
quasistationary configuration. The spin of the black hole is fixed
at χ ¼ 0.99(top) and 0.7(bottom), respectively.

FIG. 12. An example of the time evolution of the gravitational
wave amplitude from an axion condensate. The red solid, blue
dashed, and black dotted curves correspond to the time depend-
ence of the gravitational wave amplitudes for the pair annihilation
signal from the l ¼ m ¼ 1 cloud, the level transition signals from
the l ¼ m ¼ 2 cloud to the l ¼ m ¼ 1 cloud, and from the
l ¼ m ¼ 3 cloud to the l ¼ m ¼ 1 cloud, respectively. We fix the
initial black hole mass and spin at 10M⊙ and 0.99. The axion
mass and decay constant are μMBH;ini ¼ 0.15 and Fa ¼ 10−3.
The gravitational wave amplitude is estimated from the calcu-
lation setting the black hole spin to χ ¼ 0.99.
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2. Dependence on the axion parameter

In the previous section, we estimated the amplitudes of
gravitational waves for the GUT scale decay constant.
However, the result does not scale simply as one changes
the parameters, μ, Fa, the initial black hole massMBH;ini and
the spin χBH;ini. Recall that the dependence of the evolution
on these parameters is complicated (see Sec. IVA). Here, we
investigate how the peak amplitude hpeak and the duration of
the signal τgw depend on the parameters mentioned above by
solving the evolution equation directly for various cases.
We estimate the duration by the full width at the half-
maximum (FWHM).
As the initial parameters of the black hole, we choose the

one similar to the Cygnus X-1 [72,73], which has been

proposed to be an interesting target for the axion
search [22,74], or to black holes produced from the compact
binary coalescence such as GW170817 [75]. The corre-
sponding parameters are MBH;ini ¼ 14.8M⊙; χini ¼ 0.99,
and d ¼ 1.82 kpc for Cygnus X-1-like black holes and
MBH;ini ¼ 3M⊙; χini ¼ 0.7, and d ¼ 40 Mpc for the black
holes from the compact binary coalescence, respectively.
Here, d is the distance to the black hole.
In Fig. 13, we show the peak amplitude and the duration

of the gravitational wave from the pair annihilation of the
l ¼ m ¼ 1 cloud on the ðμ; FaÞ plane. The amplitude of the
gravitational wave decreases as one decreases μ or Fa.
The amplitude dependence on μ is evident from Fig. 10.
The dependence on Fa is the consequence of Eq. (33). The

FIG. 13. Upper left: the dependence of the peak amplitude of the gravitational wave from the pair annihilation signal of the l ¼ m ¼ 1
cloud on axion mass μ and decay constant Fa. The parameters of the black hole are taken to be the ones similar to Cygnus X-1,
MBH;ini ¼ 14.8M⊙; χini ¼ 0.99, and d ¼ 1.83 kpc. We set a cutoff at hgw ¼ 10−28. The upper ticks correspond to the μMBH;ini. Upper
right: the dependence of the duration of the pair annihilation signal, estimated by the FWHM, on μ and Fa. The parameters of the black
hole are the same as the upper left panel. Lower left: The similar figure as the upper left figure but with the initial black hole parameters
similar to the black hole of GW170817. Namely, MBH;ini ¼ 3M⊙; χini ¼ 0.7, and d ¼ 40 Mpc. We take the cutoff to be hgw ¼ 10−34.
Lower right: the same figure as the upper right figure but with the same parameters as the lower left figure.
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cutoff around μMBH;ini ∼ 0.2 observed in the lower left
panel of Fig. 13 is reflecting the superradiant condition
for χ ¼ 0.7 [see Eq. (14)]. Beyond this axion mass, the
l ¼ m ¼ 1 cloud will never be excited; thus, there is no
emission of the pair annihilation gravitational wave.
Next, we consider the dependence of the duration on the

parameters μ and Fa. For decay constant in the range
Fa ≳ 10−2, the duration becomes longer as one increases
Fa or decreases μ. In this range, the duration is determined
by the time when the l ¼ m ¼ 1 cloud decays, which is
determined by the spin down of the black hole due to the
superradiance assisted by the presence of the l ¼ m ¼ 2
cloud. Increasing the decay constant leads to relative
suppression of the excitation of the l ¼ m ¼ 2 cloud,
which means that the spin down becomes slower. For a
smaller axion mass, the superradiant instability rate is
reduced, which leads to a slower spin down rate. The
duration depends primarily on the axion mass for
Fa ≲ 10−2. In this region, the excitation of the l¼m¼2
cloud happens before the spin down to the threshold for the
superradiant instability of the l ¼ m ¼ 1 cloud completes.

Duration determined by the FWHM is short since a sharp
peak occurs for the amplitude of gravitational waves from
the pair annihilation in the middle of the transition process
(see Fig. 12).
Figure 14 shows the case for the level transition between

the l ¼ m ¼ 2 and the l ¼ m ¼ 1 clouds. The basic feature
is similar to the pair annihilation signal from the l ¼ m ¼ 1
cloud. The main difference is in the dependence of the
amplitude on μ, which is much weaker than the pair
annihilation signal. Another difference is in the size of
the amplitude, which is about one order of magnitude larger
for fixed ðμ; FaÞ. The signal duration has the same order of
magnitude as the l ¼ m ¼ 1 pair annihilation process.
The case with the level transition process between the

l ¼ m ¼ 3 and the l ¼ m ¼ 1 clouds is shown in Fig. 15.
In contrast to the pair annihilation or the level transition
between the l ¼ m ¼ 2 and the l ¼ m ¼ 1 clouds, the
emission occurs for the narrow parameter range, i.e., Fa ≲
10−3 and 0.12≲ μM ≲ 0.24ð0.2Þ for χ ¼ 0.99ð0.7Þ. The
region is determined by the condition that the l ¼ m ¼ 3
mode is excited before the l ¼ m ¼ 1 mode decays.

FIG. 14. The same figures as Fig. 13, but with the gravitational waves from the level transition between the l ¼ m ¼ 2 and the
l ¼ m ¼ 1 clouds.
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The l ¼ m ¼ 3 cloud is not simultaneously excited in the
large parameter range of Fa since the spin down of the
black hole is too fast and the l ¼ m ¼ 1 cloud decays
before the l ¼ m ¼ 3 cloud appears (see Fig. 5). The region
for the μM agrees with the blue shaded region of Fig. 7.
Finally, we consider the case with the level transition

process between the l ¼ m ¼ 4 and the l ¼ m ¼ 2 clouds
(Fig. 16). We cannot expect the signal from this process for
some parameter regions: small μ and Fa region, and the
large μ region (only for χini ¼ 0.7, see the region
μ≳ 1.8 × 10−11 eV). The small μ and Fa region corre-
sponds to the region where the l ¼ m ¼ 3 cloud is excited.
As pointed out in Sec. IVA, when the l ¼ m ¼ 3 cloud is
excited, the l ¼ m ¼ 4 cloud decays due to the mode
coupling. The right edges in the lower two panels of Fig. 16
correspond to the threshold of the superradiance condition
of the l ¼ m ¼ 2 mode.
The duration is determined in a complicated way (see

right panels of Fig. 16). In the case of a relatively small
initial spin (lower right panel of Fig. 16), the behavior is
similar to the level transition between the l ¼ m ¼ 2 and

the l ¼ m ¼ 1 clouds in the sense that the duration
becomes longer as Fa is increased and μ is decreased
(see right panels of Fig. 14).
Behavior is complicated for a larger initial spin (upper

right panel of Fig. 16). We observe the transition around
Fa ∼ 10−3 and Fa ∼ 10−4. This transition is determined by
the competition between the decay of the l ¼ m ¼ 1 cloud
and the excitation of the l ¼ m ¼ 4 cloud. In the large Fa
regime, the black hole spin down is so fast that the
l ¼ m ¼ 1 cloud disappears before the excitation of the
l ¼ m ¼ 4 cloud. Therefore, in this case, the transition
signal is emitted after the complete decay of the l ¼ m ¼ 1
cloud and the black hole spin down.
As Fa is decreased, the spin down timescale due to the

superradiance of the l ¼ m ¼ 1 cloud becomes longer,
and the transition signal between the l ¼ m ¼ 2 and the
l ¼ m ¼ 4 clouds is emitted before the depletion of the
l ¼ m ¼ 1 cloud until Fa ∼ 10−3. But still, the configura-
tion is almost determined by the stationary conditions for
the l¼m¼2 and the l ¼ m ¼ 4 clouds, and the l ¼ m ¼ 1
cloud is subdominant. The presence of the l ¼ m ¼ 1 cloud

FIG. 15. The same figures as Fig. 13, but with the gravitational waves from the level transition between the l ¼ m ¼ 3 and the
l ¼ m ¼ 1 clouds.
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reduces the peak amplitude by assisting the growth of
the l ¼ m ¼ 4 through the processes FH

114� and FH
124� . The

earlier growth of the l ¼ m ¼ 4 cloud results in the
smoothing of the sharp peak. Then, the peak amplitude
becomes smaller than twice the amplitude at the plateau.
In this case, the signal duration is determined by the spin
down due to the l ¼ m ¼ 2 superradiance, which greatly
enhances the signal duration defined by the FWHM. For
Fa ≲ 10−4, the excitation of the l ¼ m ¼ 4 cloud occurs
before the depletion of the l ¼ m ¼ 1 cloud. Then, the
configuration is determined by the balance among the three
modes, not between the two. Now, the signal duration is
determined by the spin down due to the superradiance of
the l ¼ m ¼ 1 mode, which is much faster than the spin
down due to the l ¼ m ¼ 2 mode. When we further
decrease Fa, the spin down timescale becomes longer,
and the duration increases.

B. Axion wave

Besides gravitational waves, the self-interacting axion
condensate will emit the axion to infinity. Since the mass of

the axion is ultralight and the frequency is close to the
axion mass, the emitted axion has properties similar to the
ultralight dark matter. Here, we estimate the amplitude and
the axion number flux from the saturated configuration.
From the definition of FI

ijk� , the energy flux of the axion
is given by

dEa

dt
¼ F2

aFI
ijk�Mcl;iMcl;jMcl;k; ð38Þ

for each process. The axion field responsible for the energy
flux (38) behaves near infinity as

ϕ ∼ A∞e−iðωt−mφÞSmmωðθÞ
eikr

r
þ c:c:; ð39Þ

with

A∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FI
ijk�Mcl;iMcl;jMcl;k

4πωk

s
; ð40Þ

FIG. 16. The same figures as Fig. 13, but with the gravitational waves from the level transition between the l ¼ m ¼ 4 and the
l ¼ m ¼ 2 clouds.
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k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
: ð41Þ

Here, the frequency and the magnetic quantum number
of the axion are given by ω ¼ ωi þ ωj − ωk and m ¼
mi þmj −mk, respectively, and used the fact that the
contribution from the l ¼ m modes dominates the con-
densate in the index of the spheroidal harmonics. The
amplitude is converted to the axion number flux per unit
area as

Φa ∼
1

4πr2ω
dEa

dt
¼ F2

aFI
ijk�Mcl;iMcl;jMcl;k

4πr2ω
: ð42Þ

When the l ¼ m ¼ 1 cloud is present, the energy flux is
dominated by the two processes, i.e., 2 × j322i → j211i þ
ðmode dissipating to infinityÞ and j322i þ j433i →
j211i þ ðmode dissipating to infinityÞ. In Fig. 17, we
show the amplitude and the axion number flux for these
processes, assuming the black hole withMBH ¼ 10M⊙ and
χ ¼ 0.99 at 1 kpc away from us. Note that if we assume the
axion to be a dominant component of the dark matter,
the amplitude (normalized by Fa) and the number flux in
the solar system are estimated as

jϕDMj ∼
ffiffiffiffiffiffiffiffiffiffi
ρDM
F2
aμ

2

r
∼ 2.6 × 10−15

�
ρDM

0.4 GeV=cm3

�
1=2

×

�
10−3

Fa

��
10−12 eV

μ

�
; ð43Þ

ΦDM ∼
vDMρDM

μ
∼ 1.2 × 1028 ½cm2=s�

�
ρDM

0.4 GeV=cm3

�

×

�
vDM
10−3

��
10−12 eV

μ

�
: ð44Þ

Therefore, the amplitude of the axion from the black hole
that we consider here becomes smaller than that of the

ultralight dark matter, but the number flux can be compa-
rable. This is because the velocity of the emitted axion
(∼μMBH) is one order of magnitude larger than that of the
dark matter particle (vDM ∼ 10−3). Since the amplitude is
not so small as the dark matter particle, we might have a
chance to observe the axion emitted from the black
hole [49]. We leave further investigation of the detectability
of the axion wave from the black hole as a future work.

VI. CONCLUSION

In this paper, we have numerically investigated the
evolution of the self-interacting axion condensate and
the observational signals of emitted gravitational waves
in the relativistic regime ðμM ≳ 0.1Þ, including the inter-
action between higher multipole modes up to l ¼ m ¼ 4.
We have found that the excitation of the higher multipole
modes heavily depends on the axion mass μ and the axion
decay constant Fa. These parameters control the relative
size between the spin down rate and the energy transfer rate
of clouds due to the self-interaction. As a result, the l ¼
m ¼ 3 cloud can be excited only for the narrow parameter
range: 0.12≲ μM ≲ 0.25 and Fa ≲ 10−3. Except this
parameter range, the l ¼ m ¼ 4 cloud can be excited.
Owing to the presence of the higher multipole modes, we

would expect gravitational wave signals in several fre-
quency bands. The pair annihilation gives the signal in the
high-frequency regime (kHz for a black hole with the mass
10M⊙), and the level transition process gives the low-
frequency signal (Hz for a black hole with the mass 10M⊙).
In this paper, we have shown that the gravitational waves
from the level transition between the modes whose mag-
netic quantum numbers are different by two (i.e., Δm ¼ 2)
can provide a larger amplitude than the pair annihilation
signal or the level transition signal with Δm ¼ 1 [see
Eqs. (35)–(37)]. We have also estimated the flux of axion
waves emitted from the condensate and have shown that it
can be comparable to the flux of the dark matter.

FIG. 17. Left: the blue solid and orange dotted curves show the amplitude of the axion wave normalized by the decay consent Fa from
the processes FI

221� and F
I
231� , respectively. We set the black hole mass toMBH ¼ 10M⊙ and the spin to χ ¼ 0.99. We put the black hole

to be 1 kpc away from us. Right: same as the left panel but with number density flux.
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Let us briefly consider the detection prospect of
these level transition signals from black holes made by a
binary neutron star merger. The frequency of the gravita-
tional wave would be around Hz, which is the target
of proposed detectors such as DECIGO [65], atomic
interferometers [66], TOBA [67], TianGo [68], DO [69],
and AMIGO [70]. For simplicity, let us focus on the case of
DECIGO. The current sensitivity target of DECIGO is
∼4 × 10−24 Hz−1=2 at around 1 Hz [76]. If we could
integrate the signal for 1 yr, we could observe the signal
with an amplitude of h ∼ 7 × 10−28. Therefore, the gravi-
tational wave signal of the transition between the l¼m¼3
mode and the l ¼ m ¼ 1 mode could be observed assum-
ing the GUT scale decay constant and 40 Mpc as the
distance to the source (see lower panels of Fig. 15). We
can observe signals from black holes which are located
much farther if we consider the heavier black holes. For
example, we can observe it up to 800 Mpc for a black
hole with the mass 60M⊙ (such as the one produced in
the GW150914 [77]). For the larger decay constant
(Fa ≳ 10−2), the dominant signal will be the gravitational
wave from the level transition between the l ¼ m ¼ 4 and
l ¼ m ¼ 2, which can be reached by the detectors with
target sensitivity ∼10−21 Hz−1=2 around 1 Hz (see lower
panels of Fig. 16).
However, to be more realistic, this estimation requires

further study. We would need to calculate the frequency
shift and fix the search strategy to estimate the detectability.
The calculation of the frequency shift in the relativistic

regime is already formulated in the literature [42,46] but
requires some further computation. Hence, we leave the
detailed investigation of the detectability of the level
transition signals to future work.
In this paper, we only considered the stellar mass black

hole and did not consider the supermassive black holes. A
huge signal would be expected if we scale our result to the
supermassive black holes due to their large mass. However,
we cannot simply scale our result since the environmental
effect must be addressed. We must especially consider
the effect of the accretion. The accretion would spin up
the black hole, which would affect the evolution of the
cloud [52]. Furthermore, the tidal effect could potentially
deplete the cloud [78]. We leave the investigation on the
supermassive black hole for the future.
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