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We study cosmological models based on the interior of the revisited Schwarzschild black hole recently
reported in [Phys. Rev. D 109, 104032 (2024)]. We find that these solutions describe a nontrivial
Kantowski-Sachs universe, for which we provide an explicit analytical example with all the details and
describe some general features of the singularity.
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I. INTRODUCTION

The Schwarzschild metric is the most famous and
simplest black hole (BH) solution in general relativity
(GR), containing a pointlike singularity of Arnowitt-Deser-
Misner (ADM) massM hidden behind the event horizon or
radius 2M. Reference [1] investigated alternative sources
for the exterior region of the Schwarzschild BH in GR,
under the conditions that it does not contain any form of
exotic matter nor does it depend on any new parameter other
thanM. A large set of new solutions was then found that can
describe the inner region before all matter energy contrib-
uting to the total mass M has collapsed into the singularity
in accordance with Penrose’s singularity theorem [2].
The most attractive features of these interiors are that

the space-time across the horizon is continuous (without
additional structures like a thin shell) and tidal forces
remain finite everywhere for (integrable [3–5]) singular
solutions. The importance of some of these solutions lies in
the fact that they might be alternative to the Schwarzschild
BH as the final stage of the gravitational collapse and are
therefore potentially useful for studying the gravitational
collapse of compact astrophysical objects: if we enforce the
weak cosmic censorship conjecture [6] to avoid naked
singularities, the event horizon must form before the central
singularity. This means that (at least) part of the total mass
M enclosed within the event horizon is still on the way to
the final singularity. Such a scenario is precisely described
by the (integrable) singular solutions reported in Ref. [1].

Finally, we want to highlight that the existence of such an
(incomplete) set of solutions shows very explicitly the
broad diversity that is possible in the interior region of the
Schwarzschild geometry. This is very attractive if we want
to study the appearance of singularities, not only associated
with the formation of BHs, but also in the very early
Universe. The main goal of this work is precisely to
investigate cosmological consequences that can be derived
from the aforementioned solutions.

II. INSIDE THE BLACK HOLE

We begin by recalling that the most general static and
spherically symmetric metric can be written as [7]

ds2 ¼ −eΦðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where

f ¼ 1 −
2mðrÞ

r
: ð2Þ

The Schwarzschild solution [8] is obtained by setting

ΦðrÞ ¼ 0 ð3Þ

and the Misner-Sharp mass function

mðrÞ ¼ M; for r > 0; ð4Þ

where M is the ADM mass associated with a pointlike
singularity at the center r ¼ 0. The coordinate singularity at
r ¼ 2M≡ h indicates the event horizon [9–13].
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We are interested in exploring extensions of the
Schwarzschild BH which still belong to the Kerr-Schild
class [14] and will therefore keep the condition (3) but relax
the condition (4) to

mðrÞ ¼ M; for r ≥ h; ð5Þ

where1

M≡mðhÞ ¼ h=2 ð6Þ

stands for the total mass of the BH and h is again the radius
of its event horizon. In summary, the line element for the
problem we want to solve is given by

ds2¼
8<
:
−ð1− 2m

r Þdt2þ dr2

1−2m
r
þr2dΩ2; 0<r≤h

−ð1− 2M
r Þdt2þ dr2

1−2M
r
þr2dΩ2; r>h;

ð7Þ

where m is the mass function associated with a Lagrangian
LM representing ordinary matter only, so that our theory is
described by the Einstein-Hilbert action

S ¼
Z �

R
2κ

þ LM

� ffiffiffiffiffiffi
−g

p
d4x; ð8Þ

with R the scalar curvature. Notice that Eqs. (7) and (8)
imply that LM ¼ 0 for r > h only, and the Einstein
field equations in the interior 0 < r < h yield an energy-
momentum tensor

Tμ
ν ¼ diag½pr;−ϵ; pθ; pθ�; ð9Þ

such that the energy density ϵ, radial pressure pr and
transverse pressure pθ satisfy

ϵ ¼ 2m0

κr2
; pr ¼ −

2m0

κr2
; pθ ¼ −

m00

κr
: ð10Þ

We remark that Eq. (9) takes into account the fact that
the radial and temporal coordinates exchange roles for
0 < r < h. Finally, since Eqs. (10) are linear in the mass
function m, any two solutions can be linearly combined to
produce a new solution, which represents a trivial case of
the so-called gravitational decoupling [15,16].
The contracted Bianchi identities ∇μGμ

ν ¼ 0 leads to
∇μTμν ¼ 0, which yields the continuity equation

ϵ0 ¼ −
2

r
ðpθ − prÞ: ð11Þ

Since the energy density ϵ is expected to decrease mono-
tonically from the origin outwards, that is ϵ0 < 0, Eq. (11)
implies that

pθ > pr; ð12Þ

so that the fluid experiences a pull towards the center as a
consequence of negative energy gradients ϵ0 < 0 that is
canceled by a gravitational repulsion caused by the aniso-
tropic pressure.
We next need to examine the compatibility of the

Schwarzschild exterior with the above interior, i.e., the
continuity of the metric (7) across the horizon r ¼ h. This
clearly implies that the mass function must satisfy the
matching conditions

mðhÞ ¼ M; m0ðhÞ ¼ 0: ð13Þ

Finally, we see from Eqs. (10) and (13) that the continuity
of the mass function implies the continuity of both density
and radial pressure,

ϵðhÞ ¼ prðhÞ ¼ 0: ð14Þ

However, the pressure pθ can be in general discontinuous.

III. BLACK HOLES WITHINTEGRABLE
SINGULARITIES

BH geometries are usually grouped into two types:
(i) singular BH with a physical singularity of some kind,
and (ii) regular BH without singularities. The existence of
regular BHs is, of course, very attractive but it is well
known that they usually display an inner (Cauchy) horizon
inside the event horizon, which turns out to give rise to
problems such as mass inflation, instability, and eventual
loss of causality [17,18] (see also Refs. [5,19–26] for recent
studies). Between the two aforementioned families we can
also find integrable BHs [3], which are characterized by a
singularity in the curvature R that occurs at most as

R ∼ r−2; ð15Þ

so that their Einstein-Hilbert action is indeed finite. Their
main features are that tidal forces remain finite everywhere,
the mass function is well-defined and finite, and (in
general) there are no Cauchy horizons.
Regarding the last feature, we here review the work in

Ref. [1] and start with the scalar curvature for the interior
metric (7), which reads

R ¼ 2rm00 þ 4m0

r2
; for 0 < r ≤ h: ð16Þ1We shall denote FðhÞ≡ FðrÞjr¼h for any F ¼ FðrÞ. We shall

also use units with c ¼ 1 and κ ¼ 8πGN.
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In order to have an integrable singularity, we demand [1]

R ¼
X∞
n¼0

Cnrn−2; n∈N; ð17Þ

which, from Eq. (16), yields the mass function

m ¼ M −
Q2

2r
þ 1

2

X∞
n¼0

Cnrnþ1

ðnþ 1Þðnþ 2Þ ; ð18Þ

for 0 < r ≤ h, whereM andQ are integration constants that
can be identified with the mass of the Schwarzschild
solution and a charge for the Reissner-Nordström (RN)
geometry, respectively. However, since it is known that the
RN geometry contains a Cauchy horizon, we impose
Q ¼ 0. This leaves us with the two charges M and M.
Finally we want to highlight that the series in (18) can give
rise to two types of solutions. The first case corresponds to
the singular (integrable) solutions that we have already
mentioned, which contain the terms n ¼ 0 and n ¼ 1 of the
series (18). The second case corresponds to regular
solutions, which exclude these two terms. These two
groups can eventually be subdivided demanding different
requirements, such as energy conditions, continuity of Tμ

ν

at the horizon, etc. In this work we will be focused on
Table I, which shows singular solutions with Tμ

ν continu-
ous at the horizon and satisfying the strong energy
condition.
Let us notice that the series (18) converges around r ¼ h

as soon as we impose the condition (6), but it remains
to be seen if it can represent an analytic function in its
whole domain 0 < r ≤ h. Moreover, the Schwarzschild
metric is simply given by the condition in Eq. (4), that is
M ¼ M ≠ 0 and Q ¼ Cn ¼ 0 for all n in Eq. (18). In
Ref. [1], other interior solutions where found with

M ¼ Q ¼ 0; ð19Þ

which are determined by the total mass M and some of
the Cn ≠ 0, so that the exterior is still given by the
Schwarzschild solution in Eq. (7). From the mass

function (10), the energy density and pressures associated
with these interior geometries read

κϵ ¼
X∞
n¼0

Cnrn−2

nþ 2
¼ −κpr ð20Þ

κpt ¼ −
1

2

X∞
n¼0

n
nþ 2

Cnrn−2; ð21Þ

for 0 < r ≤ h.
The simplest of such solutions was found by imposing

the continuity conditions (13) on the mass function (18)
(see Ref. [1] for all details), which yields

m ¼ r −
r2

2h
; ð22Þ

corresponding to the interior line element

ds2 ¼
�
1−

r
h

�
dt2 −

dr2

1− r
h

þ r2dΩ2; for 0< r ≤ h: ð23Þ

The source is given by

κϵ ¼ −κpr ¼
2

r2

�
1 −

r
h

�
; κpθ ¼

1

hr
; ð24Þ

generating the curvature

R ¼ 4

r2

�
1 −

3r
2h

�
; for 0 < r ≤ h: ð25Þ

A second solution can be found by imposing a smoother
transition between the two regions separated by the
horizon, that is

m00ðhÞ ¼ 0; ð26Þ

which yields

m ¼ r −
r3

h2
þ r4

2h3
: ð27Þ

TABLE I. Interior geometries with mass function (37) satisfying m0ðhÞ ¼ m00ðhÞ ¼ 0.

fl; n; pg mðrÞ ¼ rþ Arl þ Brn þ Crp ϵ > 0 Energy condition

f2; n; pg mðrÞ ¼ r − ½2−2pþnðp−2Þ�
2ðn−2Þðp−2Þ

r2
h þ h

ðn−2Þðn−pÞ ðrhÞn þ h
ðp−2Þðp−nÞ ðrhÞp Yes Strong

f3; 4; pg mðrÞ ¼ r − r3

h2 þ r4

2h3
Yes Strong

f3; 5; pg mðrÞ ¼ r − h
4

ð3p−8Þ
ðp−3Þ ðrhÞ3 þ h

4

ðp−4Þ
ðp−5Þ ðrhÞ5 − h=2

ðp−3Þðp−5Þ ðrhÞp Yes (6 ≤ p ≤ 16) Strong

f3; 6; pg mðrÞ ¼ r − h
3

ð2p−5Þ
ðp−3Þ ðrhÞ3 þ h

6

ðp−4Þ
ðp−6Þ ðrhÞ6 − h

ðp−3Þðp−6Þ ðrhÞp Yes (7 ≤ p ≤ 10) Strong

f3; 7; 8g mðrÞ ¼ r − 7r3

10h2 þ r7

2h6
− 3r8

10h7
Yes Strong

f4; 5; 6g mðrÞ ¼ r − 5r4

2h3
þ 3r5

h4
− r6

h5
Yes Strong
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The line element is

ds2 ¼
�
1 −

2r2

h2
þ r3

h3

�
dt2 −

dr2

1 − 2r2

h2 þ r3

h3
þ r2dΩ2;

for 0 < r ≤ h; ð28Þ

sourced by

κϵ ¼ −κpr ¼
2

r2h3
ðh − rÞ2ðhþ 2rÞ;

κpθ ¼
6

h3
ðh − rÞ; ð29Þ

which produces a curvature

R ¼ 4

r2

�
1þ 5r3

h3
−
6r2

h2

�
; for 0 < r ≤ h: ð30Þ

Finally, it can be proven [1] that the mass function (27) is a
particular case of

m ¼ rþ r
n2 − 2n − 1

�
r
h

�
n
�
1 −

ðn − 1Þ2
2

�
r
h

� 2
n−1
�
; ð31Þ

where n > 1∈N includes the polynomial case n ¼ 2 in
Eq. (27). The mass function (31) yields the metric function

f ¼ 1þ
�
r
h

�
n ½2 − ðn − 1Þ2ðr=hÞ 2

n−1�
n2 − 2n − 1

: ð32Þ

It is easy to show that the BHs in Eqs. (23), (28), and (32)
have no inner horizon. Indeed, as conjectured in Ref. [1],
apart from the Schwarzschild BH, the simplest two single
horizon BH solutions, with the total mass M as a unique
charge, are those displayed in Eqs. (23) and (28) for the
region 0 < r < h, which smoothly join the Schwarzschild
exterior at the horizon r ¼ h ¼ 2M.
We can obtain more solutions by considering the metric

function in Eq. (18) and truncating the series as2

m ¼ rþ
XN
i¼2

Ciri; ð33Þ

where N > 2 and the (N − 1) unknown Ci can be found by
the condition (6) and

dnm
drn

ðhÞ ¼ 0; ð34Þ

for all n ≤ N − 2. A straightforward consequence of the
differential constraints (34) is that the energy-momentum
tensor is continuous at the horizon for N > 3, that is,

Tμ
νðhÞ ¼ 0: ð35Þ

For example, the solution with N ¼ 10 is given by

m ¼ rþ 27r2

2h
−
84r3

h2
þ 231r4

h3
−
378r5

h4
þ 399r6

h5

−
276r7

h6
þ 243r8

2h7
−
31r9

h8
þ 7r10

2h9
; ð36Þ

which is displayed in Fig. 1. A simple analysis of the
expression for the mass function (33) shows that the strong
energy condition is violated for N > 4 (pθ < 0 for r≳ 0).
However, the weak energy condition still holds. If we
instead consider a polynomial solution of the form

m ¼ rþ Arl þ Brn þ Crp; p ≠ n ≠ l > 1; ð37Þ

FIG. 1. Mass function in Eq. (36) (upper panel) and corre-
sponding metric function f¼1−2m=r (lower panel) for N ¼ 10.
The vertical line represents the horizon h ¼ 2M for M ¼ 1 and
red (blue) color is for the interior (exterior).

2Expressions in Eqs. (22) and (27) correspond to (33) for
N ¼ 3 and N ¼ 4, respectively.
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where A, B, and C are constants to be determined from
Eqs. (13) and (26), we generate the solutions displayed in
Table I. Indeed, we could go further by including additional
terms in (37), or just by relaxing the energy conditions,
which are most likely violated at high curvature. Therefore,
we can safely conclude that the inner region is much richer
than illustrated in Table I. This will be particularly
important for the cosmological models, as we will see next.

IV. COSMOLOGY

All of the interior BH solutions in Table I can be
considered as a whole universe [27], which is precisely
what we will explore next. Let us start by noticing that for
0 < r ≤ h the line element has the form

ds2 ¼ FðrÞdt2 − dr2

FðrÞ þ r2dΩ2; ð38Þ

where

F ¼ 1 −
2μðrÞ
r

≥ 0; ð39Þ

and

μ ¼ −ðArl þ Brn þ CrpÞ ð40Þ

can be read directly from Table I. We can rewrite the
metric (38) by making explicit the role of time and radial
coordinates as

ds2 ¼ −
dt2

FðtÞ þ FðtÞdr2 þ t2dΩ2; ð41Þ

where

F ¼ 1 −
2μðtÞ
t

≥ 0 ð42Þ

is displayed in Table II for each case of Table I, respec-
tively, with 0 < t < t0 ¼ h.

We can further write the metric (41) in terms of the
cosmic (or synchronous) time defined by

dτ ¼ � dtffiffiffiffiffiffiffiffiffi
FðtÞp ; ð43Þ

which leads to the generic cosmological solution

ds2 ¼ −dτ2 þ a2ðτÞdr2 þ b2ðτÞdΩ2: ð44Þ

The metric (44) represents a Kantowski-Sachs universe
[28,29] with the two scale factors

a2ðτÞ≡ FðτÞ
b2ðτÞ≡ t2ðτÞ: ð45Þ

This solution in general describes an homogeneous but
anisotropic universe, with Einstein tensor

G0
0 ¼ −

�
1

b2
þ 2ȧ ḃ

ab
þ ḃ2

b2

�
ð46Þ

G1
1 ¼ −

�
1

b2
þ 2b̈

b
þ ḃ2

b2

�
ð47Þ

G2
2 ¼ −

�
ȧ ḃ
ab

þ ä
a
þ b̈
b

�
: ð48Þ

Let us consider, for instance, the simplest inner BH given
by the metric (23), which yields

ds2 ¼ −
dt2

1 − t=t0
þ
�
1 −

t
t0

�
dr2 þ t2dΩ2 ð49Þ

for 0 < t < t0. We have

F ¼ 1 −
t
t0
; ð50Þ

TABLE II. Cosmological form (41) of the geometries in Table I with t ≤ t0 ¼ h where μ0ðt0Þ ¼ 1 and μ00ðt0Þ ¼ 0.

fl; n; pg FðtÞ ¼ 1 − 2μðtÞ
t ≥ 0 ϵ > 0 Energy condition

f2; n; pg FðtÞ ¼ 1 − ½2−2pþnðp−2Þ�
ðn−2Þðp−2Þ ð tt0Þ þ 2

ðn−2Þðn−pÞ ð tt0Þn−1 þ 2
ðp−2Þðp−nÞ ð tt0Þp−1 Yes Strong

f3; 4; pg FðtÞ ¼ 1 − 2ð tt0Þ2 þ ð tt0Þ3 Yes Strong

f3; 5; pg FðtÞ ¼ 1 − 1
2

ð3p−8Þ
ðp−3Þ ð tt0Þ2 þ 1

2

ðp−4Þ
ðp−5Þ ð tt0Þ4 − 1

ðp−3Þðp−5Þ ð tt0Þp−1 Yes (6 ≤ p ≤ 16) Strong

f3; 6; pg FðtÞ ¼ 1 − 2
3

ð2p−5Þ
ðp−3Þ ð tt0Þ2 þ 1

3

ðp−4Þ
ðp−6Þ ð tt0Þ5 − 2

ðp−3Þðp−6Þ ð tt0Þp−1 Yes (7 ≤ p ≤ 10) Strong

f3; 7; 8g FðtÞ ¼ 1 − 7
5
ð tt0Þ2 þ ð tt0Þ6 − 3

5
ð tt0Þ7 Yes Strong

f4; 5; 6g FðtÞ ¼ 1 − 5ð tt0Þ3 þ 6ð tt0Þ4 − 2ð tt0Þ5 Yes Strong
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which leads to the cosmic time

τðtÞ ¼ −2t0
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
t0

r
; for t < t0; ð51Þ

and

ds2 ¼ −dτ2 þ τ2

τ20
dr2 þ τ20

4

�
τ2

τ20
− 1

�
2

dΩ2; ð52Þ

where τ0 ≡ 2t0. Notice that in this case the scale factors
satisfy

b2 ¼ τ20
4
ða2 − 1Þ2: ð53Þ

The source of the metric (52) is given by

κϵ ¼ −κpr ¼
8τ2

ðτ2 − τ20Þ2
ð54Þ

κpθ ¼
4

τ20 − τ2
; ð55Þ

with curvature

R ¼ 8ð3τ2 − τ20Þ
ðτ2 − τ20Þ2

: ð56Þ

The anisotropy for this example is therefore given by

Δ≡ pθ − pr ¼
4

κ

τ2 þ τ20
ðτ2 − τ20Þ2

: ð57Þ

The above example contains a curvature singularity in
Eq. (56) for τ → τ0. In fact, we can study the behavior of
these universes in the vicinity of the cosmological singu-
larity in general. The curvature scalar of the metric (41) is
given by

R ¼ F00 þ 4F0

t
þ 2F

t2
þ 2

t2
; ð58Þ

where primes stand for derivatives with respect to t. Since
all of the functions F in Table II are polynomials in t with
the constant term equal to 1, Eq. (58) is singular at t ¼ 0. In
fact, it is easy to see that the curvature behaves as

R ≈
4

t2
; for t → 0; ð59Þ

for all the functions F.

We can also consider the cosmic time

dτ ¼ dtffiffiffiffiffiffiffiffiffi
FðtÞp : ð60Þ

The function FðtÞ ≈ 1 in the vicinity of the singularity
t ¼ 0 and, with a convenient choice of the integration
constant, we have

τ ≈ t: ð61Þ

Thus, the curvature singularity in Eq. (59) can also be
written as

R ≈
4

τ2
; for τ → 0: ð62Þ

It is interesting to compare this result with the singu-
larities arising in isotropic Friedmann cosmologies. Let us
consider a flat Friedmann universe with the metric

ds2 ¼ −dτ2 þ a2ðτÞðdr2 þ r2dΩ2Þ; ð63Þ

whose scalar curvature is given by

R ¼ 6

�
ä
a
þ ȧ2

a2

�
; ð64Þ

where dots stand for derivatives with respect to τ. For a
power law expansion,

a ¼ a0τk; ð65Þ

we have

R ¼ 6kð2k − 1Þ
τ2

: ð66Þ

This leads to the same singularity as the one in Eq. (62) if
6kð2k − 1Þ ¼ 4, or

k ¼ 1

4

�
1þ

ffiffiffiffiffi
19

3

r �
: ð67Þ

It is known that a homogeneous and isotropic universe
which expands according to the power law (65) is filled
with a barotropic fluid with equation of state

p ¼ wε; ð68Þ

where the parameter w is constant and

k ¼ 2

3ð1þ wÞ ; ð69Þ
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or

w ¼ 2

3k
− 1: ð70Þ

From Eq. (67), we then find

w ¼ 8

3ð1þ ffiffiffiffiffiffiffiffiffiffi
19=3

p Þ − 1 ≃ −0.24: ð71Þ

This means that our homogeneous but anisotropic universe
behaves near the singularity like a homogeneous and
isotropic universe driven by a isotropic fluid with negative
pressure but equation of state parameter w > −1=3, which
is the critical value below which the deceleration would
turn into acceleration.

V. CONCLUSION

Generating cosmological models from BH geometries is
a well-known procedure which, in general, allows us to
develop solutions beyond the standard (isotropic and
homogeneous) cosmological models. On the other hand,
a plethora of new BH solutions have been reported in recent
years, whose interest is especially due to their interpretation

in terms of nonlinear electrodynamics [30]. This leads to
the possibility of constructing a plethora of new cosmo-
logical models as well. Obviously, this could become
counterproductive if what we seek are cosmological alter-
natives, beyond the standard model, whose origin is fully
justified by first principles.
In this sense, the advantage of our cosmological sol-

utions in Table II is that they are derived from a family of
very nontrivial BH geometries. They are solutions that in
fact tell us a lot about how complex the interior of the
simplest spherically symmetric BHs could be. Therefore,
their cosmological versions, as well as possible extensions,
are quite attractive, especially if we want to justify
processes that are not yet well understood, such as the
phenomenology of dark matter and dark energy, and
possible explanations based on cosmological models other
than the presently dominant one.
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