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We explore the possibility of avoiding cosmological singularity with a bounce solution in the early
Universe. The main finding is that simple and well-known semiclassical correction, which describes
the mixing of radiation and gravity in the effective action, may provide an analytic solution with a bounce.
The solution requires a positive beta function for the total radiation term and the contraction of the Universe
at the initial instant. The numerical estimate shows that the bounce may occur in an acceptable range of
energies, but only under strong assumptions about the particle physics beyond the Standard Model.
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I. INTRODUCTION

The initial cosmological singularity is considered an
important indication to either modify general relativity or
introduce exotic forms of “matter” with an unusual equa-
tion of state (see, e.g., [1]). One may also think about taking
into account the effects of quantum gravity. The last is a
direct consequence of the fact that the Planck density of
matter is achieved in the vicinity of a singularity. In this
sense, singularity may be a kind of window to observe the
quantum gravity effects.
The safest way to avoid the singularity is to have a

cosmological solution with a bounce, as pioneered by
Tolman in 1931 [2]. Starting from the 1970s, there are
numerous bouncing models [3,4], partially related to the
interest in taking quantum effects into account. Since then,
different bouncing cosmological scenarios attracted a lot of
attention (see Refs. [5,6] for the reviews of the literature). In
most of the existing models, the bounce is achieved by
using a scalar field with the specially designed potential, or
by using modified gravity actions. A new recent trend is
related to the introduction of the nonlocalities into the
gravitational action (see, e.g., [7,8]). The same purpose can
be achieved by taking into account the nonlocal semi-
classical corrections [9,10]. One of the challenges in
building bounce models is to avoid pathologies related
to quantum instabilities [11].
The conventional assumption is that the consistent

theory of quantum gravity would be as an ultimate solution
for the problem of singularities. The dimensional argu-
ments indicate that the quantum gravity effects should
become relevant at the Planck scale MP ≈ 1019 GeV. On
the other hand, the effects of quantum matter fields on the

classical gravitational background (semiclassical gravity)
may produce changes in the action of gravity and matter
such that the solution of the effective equations is free of
singularity. In thisway, thementionedwindowmaybe closed
to the observer from the later Universe. The purpose of the
present paper is to explore this possibility by constructing the
solution with a cosmological bounce, where the contraction
of the Universe goes on until a minimum point, after which
the expansion starts. This minimal point should correspond
to the energy densities far below the Planck densityM4

P, such
that the quantum gravity effects and also the possible higher
derivative terms in the gravitational action are Planck sup-
pressed and hence irrelevant. Thus,we take into account only
the quantum effects of matter fields.
The first necessary condition to meet a bounce is to have

a decreasing conformal factor of the metric, aðtÞ, at some
initial instant before the bounce. Since the bounce is a form
to remove the singularity, in its vicinity we can assume that
the typical distances are small, the energy density is high,
and the quantum effects of matter fields are relevant. In
such a UV regime, the typical energies are such that all
fields are approximately massless. This feature has the
following two consequences:

(i) One can use a massless approximation for at least
most of the matter fields in the UV limit. For the
sake of simplicity, let us assume that the nongravita-
tional contents of the Universe are pure electromag-
netic radiation. Later on, we discuss how other kinds
of matter may change the conditions of the bounce.

(ii) Since the matter content can be described by pure
radiation, the relevant semiclassical diagrams are
those with two external lines of photons and an
arbitrary number of linearized gravity tails, as shown
in Fig. 1.

In the far UV, when the masses of all quantum fields are
small compared to the energies of the photons (important:
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not gravitons), one can ignore the effect of quantum
decoupling, i.e., the Appelquist and Carazzone theorem
[12], and take into account the quantum effects of matter
fields by using the minimal subtraction scheme of renorm-
alization. In this case, the leading quantum effect is the
conformal anomaly. While the classical radiation decouples
from the dynamical equation for aðtÞ and affects only the
initial condition (we elaborate on this point below), at the
quantum level, the matter contents of the Universe enter
the equation for aðtÞ.
There is extensive literature on the cosmological models

based on conformal anomaly, starting from [13] and [14],
where the anomaly-induced effective action served as an
extreme case of the first inflationary model. However, our
present purpose is different, as we are interested only in the
radiation part of the anomaly, which may become relevant
at the lower energies. The explanation is that the typical
energies of the photons in Fig. 1 are much greater than
those of gravitons, which define the energy scale of the
vacuum quantum effects. The electromagnetic part of
the anomaly has been used previously in [15] to explain
the seeds of magnetic fields in the epoch of forming
galaxies. In the present work, we apply the same approach
to describe the dynamics of the whole Universe and discuss
whether it is sufficient to avoid singularity in the con-
tracting Universe.
The paper is organized as follows. Section II contains a

short survey of the anomaly-induced action in the radi-
ation sector. In Sec. III, we derive the analytic bounce
solution in a theory formed by the Einstein-Hilbert action
with the anomalous contribution mixing the radiation
term with gravity. This solution is supported by the
plots obtained using the numerical solution, which also
includes the nonzero cosmological constant case.
Section IV reports on the numerical estimates for the
bounce and discusses the possibility of overcoming
the dramatic physical inconsistency which we met in
the simplest electromagnetic radiation case. Finally, in
Sec. V, we draw our conclusions.
We adopt the natural units such that c ¼ ℏ ¼ 1 and use

the signature ðþ;−;−;−Þ for the Minkowski metric ημν.

II. ANOMALY-INDUCED ACTION
WITH RADIATION

It proves useful to present the one-loop beta function for
the square of the gauge coupling g in the unconventional
form βg4, where1

β ¼ −
2

ð4πÞ2
�
11

3
C1 −

1

6
Ncs −

4

3
Nf

�
: ð1Þ

Here Ncs and Nf are the numbers of complex scalars and
fermions coupled to the given vector field.C1 is the Casimir
operator of the corresponding gauge group, which is zero in
the Abelian case. The g4 factor was separated from the beta
function for the sake of further convenience. In the non-
Abelian theory, C1 is positive, and this opens the possibility
of the asymptotic freedom in the theory [17,18]. At the
relatively low energies, for the electromagnetic field,
obviouslyC1 ¼ 0. However, above the scale of electroweak
phase transition, the electromagnetic fields mix with other
vector bosons and become part of the asymptotic freedom
scheme. Thus, depending on the energy scale both signs
are, in principle, possible. We assume that the one-loop
effects are dominating and ignore the higher loop effects,
except for the discussion in the last sections.
The trace anomaly in the radiation sector has the form

(see, e.g., [16] for the details)

hTμ
μi ¼ −

2ffiffiffiffiffiffi−gp gαβ
δΓr

δgαβ

¼ −
1ffiffiffiffiffiffi
−ḡ

p δΓr½ḡαβe2σ�
δσ

����
ḡαβ→gαβ ;σ→0

¼ β

4
g2F2; ð2Þ

where F2 ¼ FμνFμν is the square of the gauge field strength
tensor and Γr is the one-loop renormalized effective action
in the radiation sector. Also, we introduced the paramet-
rization of the metric

gαβ ¼ ḡαβe2σ ¼ ḡαβa2; ð3Þ

which will prove useful below. In the homogeneous and
isotropic Universe, the unique spacetime coordinate is the
conformal time η, related to the physical time t by the
formula dt ¼ aðηÞdη. We shall write the next few formulas
in a covariant way and then switch to the flat-space
cosmological metric.
Equation (2) can be used to find a solution to the

effective action, and its covariant nonlocal form [19,20]
(see also further developments in [21] and [22]) is

FIG. 1. The loop kernel of matter fields connects to the two
photon lines and an unrestricted number of the dashed lines of the
linearized metric hμν ¼ gμν − ημν.

1The detailed derivation of this expression can be found in
many Quantum Field Theory (QFT) textbooks, e.g., in [16].
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Γr ¼ −
βg2

16

Z Z
x;y

�
E4 −

2

3
□R

�
x
Gðx; yÞF2ðyÞ; ð4Þ

where E4 ¼ R2
μναβ − 4R2

αβ þ R2 is the Gauss-Bonnet invari-
ant, Gðx; yÞ is the conformally covariant Green function of
the operator Δ4 ¼ □2 þ 2Rμν∇μ∇ν − 2

3
R□þ 1

3
ð∇μRÞ∇μ

and
R
x ¼

R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

. It is possible to formulate the
induced action in the covariant local form [19], including
with two auxiliary scalar fields [23]. The last is the most
useful formulation for many applications, such as the
classification of vacuum states [24] or the reaction of
gravitational waves to the presence of higher derivatives
[25]. A qualitatively similar representation, with certain
simplifications [21,22], should be most useful for the
analysis of cosmological perturbations. We leave this part
for future work and, in the rest of this paper, will restrict the
consideration by the basic elements of the cosmological
model, i.e., the dynamics of the homogeneous and isotropic
Universe. In this case, one can use a much simpler form
of induced action, which is equivalent to (4) for this
special metric.
In covariant form, the anomaly-induced term mixes

radiation and curvature-dependent terms. In the cosmo-
logical framework, we assume that the fiducial metric is flat
and then (4), with an additional Einstein-Hilbert term and
cosmological constant, boils down to the noncovariant
local form

Γ ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ − βg2

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
F̄2σ;

ð5Þ

where the bars denote quantities defined using the fiducial
metric, ḡ ¼ detðḡμνÞ and F̄2 ¼ ḡμαḡνβFμνFαβ. It is fairly
easy to check that the last term in (5) is a solution of (2).

III. THE BOUNCE SOLUTION

Let us consider an analytical cosmological solution in
the theory (5) and use it for making general conclusions
that go beyond QED and even beyond the Standard Model.
Taking the variational derivative with respect to σðηÞ and

changing the variables to the physical time t and
aðtÞ ¼ expfσðtÞg, we arrive at the equation (note the
change of notations compared to [22])

ä
a
þ ȧ2

a2
¼ M

2a4
þ 16π

3M2
P
ρΛ: ð6Þ

In this expression and below, we use the notations

M2
P ¼ 1

G
; M ¼ 2πβg2

3M2
P
F̄2; ρΛ ¼ Λ

8πG
: ð7Þ

Previously, the bounce with a cosmological constant had
been considered, e.g., in [26]. Our expression (7) includes
the cosmological constant term and the anomalous part
described above. Usually, one can assume that the cosmo-
logical constant is irrelevant at extremely high energies
where the cosmological singularity or a bounce should take
place. On the other hand, at the energies above the scale of
the electroweak phase transition, the cosmological constant
is supposed to change its magnitude by many orders [27].
Regardless of the cosmological term ρΛ is subleading [28]
compared to the radiation energy density, we take it into
account. That is especially important because classical
radiation does not enter directly [Eq. (6)] and, as we shall
see in a moment, shows up only after the first integration.
The first integration, or order reduction, can be done by

taking the Hubble parameter as a function of the conformal
factor HðaÞ ¼ ȧ=a. This approach brings the relation

H2 ¼ C
a4

þM
a4

log
a
a0

þ Λ
3
: ð8Þ

It is worth noting that, in the classical approach, there are
both a dynamical equation for the scale factor and a
constraint equation. In case of the terms generated by
trace anomaly in both gravitational and radiation sectors,
the constraint equation also takes place in the form
h∇μTμνi ¼ 0, reflecting the general covariance of the
anomaly-induced action, including the nonlocal term (2).
This part was elaborated in detail in Ref. [22], so we can
skip the details and just give the equation for the pressure of
radiation in the presence of the anomaly, which supple-
ments the energy density formula equivalent to (8),

pr ¼
1

3

�
ρr −

1

4

jβjg2F̄2

a4

�
: ð9Þ

The last term on the rhs represents a quantum correction to
the equation of state for the radiation. In the present work,
we will not use this expression, but it may be useful for the
analysis of cosmic perturbations. On the other hand, a more
solid approach should be based on the local version of the
covariant expression (4).
Coming back to our consideration, the second term in the

rhs of (8) vanishes in the classical limit, and this enables us
to identify the integration constant C with the product
ρr0a40M

−2
P , where ρr0 is a radiation energy density at

a ¼ a0. The comparison with our previous parametrization
of the metric (3) makes us assume that ḡμν corresponds to
the value of a0. Consequently, we replace F̄2 → F2

0a
4
0 in the

formula forM in (7). After that, the previous relation (8) is
cast into the form
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H2 ¼ a40
a4

�
ρr0
M2

P
þM log

a
a0

�
þ Λ

3
: ð10Þ

In all these relations, the value a0 corresponds to the size
of the Universe where our approximations apply. That
means, a0 should provide sufficiently high energies to have
either (i) a radiation-dominated regime, when the role of
massive particles (in the form of dust or larger objects) is
irrelevant compared to radiation; or (ii) all matter particles
at such high temperatures that their masses are negligible.
Thus, the questions to address are as follows: (a) whether

Eq. (10) admits an analytic solution corresponding to a
bounce and (b) if the required difference in size between a0
and the value am corresponding to a bounce, takes us to the
trans-Planckian energies. The successful bounce model
should answer negatively to the last question, as otherwise,
we cannot justify ignoring the quantum gravity effects.
Here we consider part (a) and leave the more complicated
question (b) to the next section.

A. Analytic solution for a bounce

As we know [28], for a sufficiently small am ≪ a0, the
cosmological term is small compared to other terms on the
rhs of (10). Thus, we can explore the bounce solution for
Λ ¼ 0 and then include a nonzero Λ term, treating it as a
small perturbation. In this way, using (7), we arrive at the
condition of HðamÞ ¼ 0 in the form

ρr0 ¼ −MM2
P log

am
a0

¼ 2π

3
βg2F2

0 log
a0
am

: ð11Þ

Since we suppose that the Universe is initially contracting,
a0 > am and hence the necessary condition of the bounce is
that βF2

0 > 0.
As the first example, consider the simplest case when the

Universe is very hot and its contents can be described by
the energy density of radiation ρr. On the other hand, the
space is conducting owing to the presence of a hot gas of
charged particles. For the sake of simplicity, we assume
that, in the initial point of the relevant phase of the
contracting Universe, most of ρr0 consists of the electro-
magnetic radiation [15]. Then we have

ρr ≈
H⃗2 þ E⃗2

2
and F2 ≈

H⃗2 − E⃗2

2
: ð12Þ

Owing to the conducting media, E⃗2 ≈ 0 we arrive at the
estimate ρr0 ≈ F2

0. Thus, we arrive at the solution for am in
the form

am ¼ amðΛ ¼ 0Þ ¼ a0 exp

�
−

3

2πβg2

�
: ð13Þ

Another possibility is to use relation (10) withΛ ¼ 0 and
get the general solution

t − t0 ¼ �
ffiffiffiffiffiffiffiffiffi
π

2M

r
e−2C=M

h
erfi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log aþ 2C=M

p 	

− erfi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C=M
p 	i

; ð14Þ

where erfiðxÞ ¼ −ierfðixÞ is the imaginary error function.
Treating M as a small perturbation, we can use the
asymptotic expansion

erfiðxÞjx→∞ ≃ −iþ ex
2

ffiffiffi
π

p
x
þOðx−1Þ; ð15Þ

and derive the following approximate solution:

t ≃� 1

2
ffiffiffiffi
C

p


a2
�
1 −

M
2C

log a

�
− 1

�
; t0 ¼ 0: ð16Þ

In the limit t → 0, we verify that aðtÞ → 1, which is
consistent with the numerical solutions, as we will see
in the next subsection. Additionally, taking the limits
t → �∞, we find aðtÞ → þ∞. Let us note that this scheme
is opposite to what is required for the bounce since, in the
last case, M cannot be regarded as small.
Taking the cosmological constant term as a small

perturbation in Eq. (10) is a technically simple exercise,
and we give only the final result:

amðΛÞ ¼ am

�
1 −

4πρΛ
βg2F2

0

a4m
a40

�
: ð17Þ

Typically, this formula describes a small correction to the
basic solution (13).

B. Plots corresponding to the bounce

Let us first illustrate the analytic solution presented
above by a few plots obtained by the numerical solution
of Eq. (6) with ρΛ ¼ 0 using Mathematica [29]. Imposing
the initial conditions corresponding to contraction, one
arrives at the bounce type plots of aðtÞ, with a smooth
transition between the contracting and expanding phases.
These plots are shown in Fig. 2. The last curve clearly
shows that the Hubble parameter H evolves smoothly
through the bounce region.
The last point concerning the solutions without the

cosmological constant is that the general shape of the
bouncing solutions does not depend on the values of
parameters and on the details of initial conditions. Thus,
the analytic results from the previous subsection are
perfectly well confirmed, and there are no issues with
the stability in this model of the bounce. When the
cosmological constant term is positive, the numerical
analysis shows that the bounce-type solutions remain.
However, with the growth of the magnitude of Λ, the plots
become narrow. The plots obtained with different values of
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Λ and ranges of t, are presented in Fig. 3. We adopt Planck
units for time t in all the plots.
All the mentioned features concern only the positive

cosmological constant. Let me mention that, in the case
with the negative cosmological constant, there is a non-
singular cyclic behavior of aðtÞ. The difference with the
known cyclic models (see, e.g., [30], also [31,32], and
references therein) is that, in the present case the frequency
of the oscillations is very high. Since we do not have
physical interpretation of this type of solution, it will not be
discussed in detail here.

IV. QUANTITATIVE ESTIMATES AND ANALYSIS

The consideration of the physical significance of the
bounce solution starts with the note that, in the expanding
or contracting Universe, the typical energy of a photon, or
the temperature of the background radiation, is inverse to
the scale factor, i.e.,

a
a0

¼ T0

T
: ð18Þ

Thus, the solution (13) implies the following estimate for
the energy in the bounce point:

Tm ¼ T0 exp

�
3

2πβg2

�
: ð19Þ

Taking the values corresponding to QED, the coupling
satisfies α ¼ g2=ð4πÞ ≈ 1=137, which provides a very
pessimistic estimate of Tm ≫ 10100 GeV. This means,
the bounce solution occurs at the energies in the very deep
trans-Planckian regime, i.e., far beyond the framework of
the approximation we use. The conclusion is that the
consideration based on QED does not form a sound basis
for the semiclassical bounce model without additional
assumptions. Is it possible to get a better estimate in more
general theories?
The expression (19) is quite sensible to the magnitude of

the product βg2, owing to the exponential dependence. It is
clear that the numerical estimate for the bounce may be
improved in two ways, namely by increasing the value of g
and increasing the beta function, according to the general
formula (1) and beyond this formula. According to

FIG. 2. Numerical solution for the scale factor aðtÞ in the presence of the anomalous radiation term. We assumed the value
βg2F2

0 ¼ 0.1 in the Planck units and the initial conditions að0Þ ¼ 1 and ȧð0Þ ¼ −10−3H0. The left plot shows aðtÞ in the range
−15 ≤ t ≤ 15. The right plot shows the Hubble parameter HðtÞ.

FIG. 3. Numerical solution for the scale factor aðtÞ in the presence of the anomalous radiation term and positive cosmological
constant. The values used for getting the numerical solutions are indicated on the plots.
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interpretation (ii) in Sec. III, we can assume that the
temperature T0 is of the order of grand unification scale
MX or slightly lower, such that all matter particles have
high kinetic energies and their masses are negligible. Then
the definition (7) should be modified. Indeed, it is not
sufficient to replace F̄2 → L̄, where the last symbol indicates
the covariant Lagrangian of the whole theory, including
fermions, scalars, and vectors, at the point a0. The reason is
that the term ρr0 in the main equation (10), should be
interpreted as the energy density of the whole contents of
the Universe at the corresponding high energy scale. The
product βg2F2 should be replaced by the sum of the terms
corresponding to different parts of the Lagrangian. Then the
expression (19) should be replaced by

Tm ¼ T0 exp

�
3
P

kρ̄k
2π

P
kβkg

2
kL̄k

�
; ð20Þ

where index k runs over all fields in the Lagrangian. This
expression is model dependent, and its evaluation is beyond
the scope of the present work. Let us, anyway, list the
requirements for the acceptable bounce in this framework.
(1) To have a sufficiently small ratio in the exponential

in (20), at least some of the coupling constants
should be large. That implies that phenomenologi-
cally successful bounce can be achieved without
modifications of gravity or introducing a dedicated
scalar field. However, at least part of the couplings
need to be strong in this case. Consequently, one has
to account for the nonperturbative effects in the
corresponding QFT.

(2) The sign of the denominator in the exponential in
(20) should be positive as otherwise equation (10)
would not have bounce solutions.

(3) The magnitude of the ratio in the exponential in (20)
should be such that Tm belongs to the interval
between the masses of at least some of the quantum
particles and the Planck scale, where we assume
modifications of the action of gravity and, probably,
quantum gravitational effects.

(4) To provide a correspondence with the observational
data concerning inflations, it is important that the
bounce region starts and ends with a very high jH0j,
e.g., in the interval 1011–1013 GeV. Without modi-
fying the gravitational action, this means that the
initial point a0 corresponds to the temperature
(typical energy) T0 ∼ ½H2

0M
2
P�1=4. On the other hand,

the simplest description of inflation is the Starobin-
sky model [14], that corresponds to adding the R2

term with the coefficient about 5 × 108 [33]. We plan
to explore this extension of the model described
above in the future work [34], but assuming that this
extra term does not have a dramatic effect on the
value of T0, we arrive at the narrow interval of

Hubble parameters −jH0j < H < jH0j and the tem-
peratures T0 < T < MP.

The last observation concerns the first of the listed
points. In the case of strong coupling, the one-loop
approximation which we used here is not appropriate.
The required modifications do not reduce to the change of
the beta functions and the corresponding modifications in
the anomaly. The point is that the first order in σ in Eq. (5)
and in the similar extended formulas related to (20) reflect
only the violation of local conformal symmetry correspond-
ing to the first logarithms, such as terms proportional to
L ¼ logð□=μ2Þ in the UV form factors (see, e.g., [16] for
detailed explanation).
Let us use this information as a hint to what may happen

at higher loops. At the second loop, there is certainly the
L2-type addition in the form factor of the FμνFμν term in
the electromagnetic sector; in the third loop there will be the
L3-type addition, etc. Let us stress that these extra loga-
rithms are companions of the leading divergences of the
theory before the renormalization is applied. Thus, since
the underlying theory is renormalizable, the structure of the
terms in the action remains the same, and the changes
concern only the form factors. As a result, the leading-log
terms in the nonperturbative regime will give the compli-
cation in the action (5),

Γnp ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ

−
1

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
F̄2σBðg2σÞ; ð21Þ

where BðxÞ is some unknown function corresponding to the
summation of the perturbative series.2 Let us note that the
leading logarithmic terms always enter with the coefficient
g2, and the same is true for the powers of σ, such that the
argument of B should be the product g2σ. It is clear that this
modification may change the solution such as (13),
including it may wash out the bounce, or modify the shape
of the aðtÞ dependencies, etc. The only thing we can say at
this point is that the bounce of the described type,
completely based on particle physics and without addi-
tional inputs, is possible. On the other hand, its detailed
investigation requires better knowledge of many issues,
such as UV completion of the Standard Model and
summing up the leading logs in the UV regime.

V. CONCLUSIONS AND DISCUSSIONS

We have found an analytic solution describing the cos-
mological bounce without modifying the action of gravity,
introducing a scalar field, or accounting for the vacuum
quantumeffects. The bounce occurs owing to the equilibrium
between the classical radiation term and the quantum

2Assuming that this series is convergent, in some sense.
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correction in the radiation-gravitational sector (4). The form
of these loop contributions is well known and does not
require anything besides the well-established results of
quantum field theory. If comparing with the previously
knownmodels with bounce, the anomaly-induced correction
to radiation plays the role of the phantom scalar [35].
The numerical estimates show that, in the minimalist

QED framework, the bounce occurs at absurdly high
energies, making the aforementioned analytic solution
physically senseless. On the other hand, this estimate is
exponentially dependent on the value of the strongest
coupling constant of the theory. The physically acceptable
bounce is possible, but this imposes strong restrictions on
the underlying particle physics model beyond the Standard
Model. In particular, there should be a UV regime with a
strong coupling, similar to what is required for the fully
QFT-based stable version of Starobinsky inflation [36].
The mentioned conditions do not look completely impos-

sible to satisfy, but, at the present state of the art, it is not
feasible to state that this kind of bounce is a realistic scenario
to avoid singularity. Anyway, we can conclude that, in
principle, the semiclassical effects in the radiation sector at
the scale of grand unification may provide the singularity
avoidance without additional ad hoc assumptions.
Another open question is the stability of the bounce

model under discussion under the density and metric
perturbations. This issue is typically complicated in all
bounce models. The reason is that, in the vicinity of the
bounce, the time derivative Ḣ is necessary positive, and this
leads to the violation of the null energy condition (NEC).
This feature may lead to instabilities in cosmic perturba-
tions [5,37] (see also [38] for an alternative discussion).
The analysis of the cosmological perturbations in a cos-
mological model is a necessary element of its development,
and this is especially true for models with a bounce [6].
Only the analysis of perturbations may show whether the
given model is viable or possesses inconsistencies.
In general, additional restrictions on the bounce models

come from the feature that the amplitude of the primordial
power spectrum is usually proportional to the energy scale
of the bounce. The power spectrum is constrained by

cosmic microwave background (CMB) data, which can
provide more stringent constraints on the bounce energy
scale. This part was extensively discussed, e.g., in [6,39,40]
and more recently in [41,42]. The general situation is such
that the mentioned constraints can be obtained only on the
basis of the given cosmological model, as they are sensible
to the structure of cosmic perturbations.3 Thus, we leave the
investigation of this issue to the next work with the analysis
of perturbations.
In the existing literature, there are strong indications of

that the violation of NEC by quantum corrections may not
lead to the inconsistencies [43] and that the same is true in
the theories with scalar fields [44,45]. Both arguments apply
to our case. It is important to note that the perturbations
should be analyzed not on the basis of the simplest non-
covariant form of induced action (5), but using the covariant
form (4), in the local representation. In this case, the theory
always includes two auxiliary scalar fields [23–25] and,
therefore, there are chances to arrive at the consistent model
of bounce, including the perturbations free of pathologies,
according to the criterion of [6]. We hope to come back to
the detailed consideration of this issue and, as a first step,
construct a new simplified formulation of the induced action
with auxiliary fields, in a close future.
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