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We calculate the tensor bispectrum mediated by an excited scalar field during inflation and find that the
bispectrum peaks in the squeezed configuration, which is different from that of gravitational waves induced
by enhanced curvature perturbations reentering the horizon in the radiation-dominated era. Measuring the
bispectrum provides a promising way to distinguish the stochastic gravitational-wave background
generated during inflation from that generated after inflation.
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I. INTRODUCTION

Recently, several pulsar timing array collaborations,
including NANOGrav [1,2], PPTA [3,4], EPTA [5,6],
and CPTA [7], have individually reported the first compel-
ling evidence for a stochastic gravitational-wave back-
ground (SGWB) signal. Such a SGWB signal is expected
to arise from astrophysical sources or cosmological sources.
Owing to a mild tension between the astrophysical pre-
diction of the spectral shape and the reconstructed one from
observed data, cosmological sources fit current data better
than astrophysical sources. If the signal is of cosmological
origin, this raises a question: was the gravitational wave
(GW) signal generated during inflation or after inflation?
For a Gaussian SGWB, regardless of its astrophysical or

cosmological origin, the statistical properties of GWs are
described only by the power spectrum, which depends on
the generation mechanism of GWs. Distinguishing such a
SGWB signal from various sources relies on detailed study
of the power spectrum shape. Unfortunately, current pulsar
timing array observations provide only weak constraints on
the shape of the power spectrum, so that it is hard to identify
the origin of the observed signal [8]. Actually, the inter-
actions of quantum fields during inflation result in a large
amount of non-Gaussianity of the SGWB. In this case,
measurements of the power spectrum alone have limited
potential in revealing the interactions during inflation.
Compared to the power spectrum, the tensor bispectrum

provides richer physical information and thus is expected to
break the degeneracy of the GW sources.
In this paper, we calculate for the first time the one-loop

tensor bispectrummediated by an excited scalar field during
inflation. It is known that the enhancement of the scalar field
perturbation during inflation generically gives rise to two
SGWBs [9–15]. One is sourced by the enhanced scalar field
perturbation and stretched to superhorizon scales during
inflation. The other is produced when curvature perturba-
tions enhanced during inflation reenter the horizon in the
radiation-dominated era. The relation for the peak ampli-
tudes and peak frequencies in the spectrum of these two
SGWBs is discussed in the specific models [10,13] (see [16]
for general discussion). Since the purpose of this work is
to calculate the tensor bispectrum in the presence of
the enhanced scalar field perturbation, we do not specify
the mechanism to amplify the scalar field fluctuation but
consider an exponential amplification of scalar modes
during a short period of time.
Using the in-in formalism [17,18], we compute the

contribution of the one-loop diagrams, including the bubble
and triangle diagrams, to the tensor bispectrum due to the
interaction between the scalar field and tensor perturba-
tions. Although the one-loop contribution is suppressed by
a factor of H2=M2

p where H is the Hubble parameter and
Mp is the reduced Planck mass, the large enhancement of
the scalar field perturbation can enable the loop contribu-
tion to be comparable to the tree level (one-loop tensor
power spectrum from an excited scalar field was first
calculated in Refs. [19,20], which also pointed out the
implied large tensor non-Gaussianity.). Therefore, in this
paper we focus on the calculation of the one-loop tensor
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bispectrum. Our results show that the tensor bispectrum
mediated by an excited scalar field during inflation peaks in
a squeezed configuration. Actually, the addition of the tree-
level contribution to the bispectrum does not change this
conclusion [17,21,22]. Such a shape of the bispectrum is
different from that of the SGWB induced by enhanced
curvature perturbations reentering the horizon in the radi-
ation-dominated era. It is found that the bispectrum of the
latter is dominated by the equilateral configuration because
the source of GWs is composed by gradients of curvature
perturbations when reentering the horizon [23,24]. Meas-
urements of the shape of the tensor bispectrum provide a
promising way to distinguish the GW signal generated
during inflation from that generated after inflation.

II. HIGHER ORDER ACTION

To expand the action to higher order in tensor perturba-
tions, it is convenient to write the metric in the Arnowitt-
Deser-Misner form

ds2 ¼ −N2dτ2 þ γijðdxi þ NidτÞðdxj þ NjdτÞ; ð1Þ

where N and Ni are the lapse function and shift vector,
respectively, serving as Lagrange multipliers, τ is the
conformal time, and γij is the spatial components of the
metric. Following Maldecena [17], we choose the follow-
ing gauge to fix time and spatial reparametrizations around
a spatially flat Friedmann-Robertson-Walker metric, such
that N ¼ a, Ni ¼ 0, and

γij ¼ a2
�
δij þ hij þ

1

2
hki hkj þ

1

6
hki h

l
khlj þ � � �

�
; ð2Þ

where hij are tensor perturbations which are transverse
(∂ihij ¼ 0) and traceless (δijhij ¼ 0).
We consider the loop contribution to the tensor bispec-

trum due to a minimally coupled spectator scalar field χ.
The scalar field fluctuation is denoted by δχ. Then the
action up to fourth order in hij and δχ is expanded as

S ¼ M2
p

Z
dτd3xa2

�
1

4
hikhjl −

1

8
hijhkl

�
∂k∂lhij

þ
Z

dτd3xa2
�
−
1

2
hij þ 1

4
hikhkj

�
∂iδχ∂jδχ: ð3Þ

Then, Legendre transformation gives the interaction
Hamiltonian

Hint ¼ M2
p

Z
d3xa2

�
−
1

4
hikhjl þ 1

8
hijhkl

�
∂k∂lhij

þ
Z

d3xa2
�
1

2
hij −

1

4
hikhkj

�
∂iδχ∂jδχ: ð4Þ

Note that the terms in the first line in Eq. (4) represent
the classical third-order gravitational Hamitonian, which
results in the tensor bispectrum dominated by the squeezed
configuration [17,21,22]. The rest in Eq. (4) represent the
interaction between δχ and hij which arise from the kinetic
term of the minimally coupled scalar field in the action.
We shall focus on such a tensor-scalar interaction and
calculate the tensor bispectrum mediated by the scalar field
perturbation.
The Fourier modes of the scalar field perturbation and

tensor perturbations are expressed as

δχðτ;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xδχkðτÞ; ð5Þ

hijðτ;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·x
X
s¼�2

esijðkÞhskðτÞ; ð6Þ

where esijðkÞ is the polarization tensor with the helicity states
s ¼ �2, satisfying es1ij ðkÞeij;s2�ðkÞ ¼ δs1s2 and esijð−kÞ ¼
es�ij ðkÞ. The quantized field operators are expanded into the

creation and annihilation operators as δχkðτÞ ¼ ukðτÞak þ
u�kðτÞa†−k and hskðτÞ ¼ vkðτÞbsk þ v�kðτÞbs†−k. The nonvan-
ishing commutation relations for the creation and annihila-
tion operators are given by ½ak1

; a†−k2
� ¼ ð2πÞ3δðk1 þ k2Þ

and ½bs1k1
; bs2†−k2

� ¼ ð2πÞ3δs1s2δðk1 þ k2Þ. The initial condi-
tions for the mode functions, uk and vk, correspond to the
Bunch-Davis vacuum, which are given by

uBDk ðτÞ ¼ Hffiffiffiffiffiffiffi
2k3

p ð1þ ikτÞe−ikτ; ð7Þ

vBDk ðτÞ ¼ 2H

Mp

ffiffiffiffiffiffiffi
2k3

p ð1þ ikτÞe−ikτ: ð8Þ

III. TENSOR BISPECTRUM

Using the in-in formalism [17,18], we compute the one-
loop contribution to the tensor bispectrum from the gravi-
tational interaction with the excited scalar field. The in-in
formalism was firstly proposed by Maldacena to compute
the non-Gaussianity of primordial tensor perturbations in
the context of single-field slow-roll inflation [17,21] and
was later applied to extra fields [25,26], nonattractor phase
for tensor fluctuations [27], massive gravity theory [28],
generalized G inflation [22,29–31], α vacuum [32,33],
axion-gauge field models [34,35], and more generally,
effective field theory [36–39]. The equal-time correlators
are computed with the in-in formalism via the following
formula:
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hOi ¼ lim
τ0→−∞ð1−iϵÞ

h0jT̄ exp

�
i
Z

τ

τ�
0

dτ0Hint;Iðτ0Þ
�

×OIðτÞT exp

�
−i
Z

τ

τ0

dτ00Hint;Iðτ00Þ
�
j0i; ð9Þ

where the subscript I labels fields in the interaction picture,
and T and T̄ denote the time and antitime ordering operator,
respectively. According to the order counting parameter,
Eq. (9) is expanded to

hOi0 ¼ h0jOIðτÞj0i; ð10Þ

hOi1 ¼ 2Im
Z

τ

τ0

dτ0h0jOIðτÞHint;Iðτ0Þj0i; ð11Þ

hOi2a ¼
Z

τ

τ�
0

dτ0
Z

τ

τ0

dτ00

× h0jHint;Iðτ0ÞOIðτÞHint;Iðτ00Þj0i; ð12Þ

hOi2b ¼ −2Re
Z

τ

τ0

dτ0
Z

τ0

τ0

dτ00

× h0jOIðτÞHint;Iðτ0ÞHint;Iðτ00Þj0i; ð13Þ

hOi3a ¼ 2Im
Z

τ

τ0

dτ0
Z

τ

τ0

dτ00
Z

τ00

τ0

dτ000

× h0jHint;Iðτ0ÞOIðτÞHint;Iðτ00ÞHint;Iðτ000Þj0i; ð14Þ

hOi3b ¼ −2Im
Z

τ

τ�
0

dτ0
Z

τ0

τ0

dτ00
Z

τ00

τ0

dτ000

× h0jOIðτÞHint;Iðτ0ÞHint;Iðτ00ÞHint;Iðτ000Þj0i; ð15Þ

with hOi2 ≡ hOi2a þ hOi2b and hOi3 ≡ hOi3a þ hOi3b.
Since the vacuum expectation values of O are evaluated at
the end of inflation, we set τ ¼ 0 in the end of calculation.
For the three-point correlators of GWs, hOi0 vanishes.
Given the interaction Hamiltonian (4), we can calculate the
vacuum expectation value of the three-point correlators
hOi1, hOi2 and hOi3. The first one is the tree-level
contribution while hOi2 and hOi3 are the one-loop con-
tributions, which correspond to the bubble (left) and
triangle (right) Feynman diagrams in Fig. 1, respectively.
Equations (12)–(15) are the basic equations we use in what
follows.

Traditionally, to capture the shape of the tensor bispec-
trum it is convenient to define the shape function
Ss1s2s3ðk1; k2; k3Þ by

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi ¼ ð2πÞ3δðk1 þ k2 þ k3Þ

×
P2

h

k21k
2
2k

2
3

Ss1s2s3ðk1; k2; k3Þ; ð16Þ

where Ph is the power spectrum of tensor perturbations
given by Ph ¼ 2H2

π2M2
p
in the slow-roll inflationary model. The

amplitude of the bispectrum relies on the amplification
factor of the scalar field perturbation. In this work, we are
interested in the shape of the bispectrum rather than its
amplitude. Since the one-loop contribution is suppressed by
a factor of H2=M2

p, we rescale the shape function as
hhs1k1

hs2k2
hs3k3

i0ðH=MpÞ−6k21k22k23, where the prime denotes
omitting the delta function for the momentum conservation.

IV. ONE-LOOP CONTRIBUTIONS FROM
THE EXCITED SCALAR FIELD

We consider an exponential growth of the scalar field
perturbation on subhorizon scales, which can be achieved
through parametric resonance [9–15]. The amplification of
δχ from ti to tf is given by δχ ¼ eμHðtf−tiÞδχBD, where μ is a
dimensionless constant. In terms of the conformal time,
the amplification factor A ¼ eμHðtf−tiÞ can be written as
A ¼ ðτi=τfÞμ, where τi and τf correspond to ti and tf,
respectively. We assume the amplification factor is constant
when τ > τf. Therefore, the amplification factor as a
function with τ is parametrized by

AðτÞ ¼

8>>>><
>>>>:

1 τ < τi;�
τi
τ

�
μ

τi ≤ τ ≤ τf;�
τi
τf

�
μ

τ > τf:

ð17Þ

In practice, we set A ¼ 0 when τ < τi so that the vacuum
contribution is subtracted. For simplicity, we consider that
the scalar field perturbation is amplified only at k ¼ k� (k� is
the pivot scale) and tensor perturbations remain unchanged.
Thus the mode functions are given by

ukðτÞ ¼ AðτÞuBDk ðτÞδðln k=k�Þ; ð18Þ

vkðτÞ ¼ vBDk ðτÞ: ð19Þ

In principle it is straightforward to generalize the delta
function to a realistic momentum distribution.
Now let us consider the one-loop contribution to the

tensor bispectrum from the bubble diagram in Fig. 1. For
the polarization configuration þþþ, the results are

FIG. 1. One-loop Feynman diagrams including the bubble (left)
and triangle (right) diagrams.
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hhþk1
ðτÞhþk2

ðτÞhþk3
ðτÞi02a ¼ −

1

2

�
H
Mp

�
6

Θ2−k̃1w̄
þþþ
k1

1

k31k
3
2k

3
3k

4�

Z
0

x0

dx0
Z

0

x0

dx00F ðk̃1; x0ÞGðk̃2; k̃3; x00Þ þ 2 perms; ð20Þ

hhþk1
ðτÞhþk2

ðτÞhþk3
ðτÞi0

2b
¼ 1

2
Re

�
H
Mp

�
6

Θ2−k̃1w̄
þþþ
k1

1

k31k
3
2k

3
3k

4�

Z
0

x0

dx0
Z

τ0

x0

dx00½F ð−k̃1; x0ÞGðk̃2; k̃3; x00Þ

þ F �ðk̃1; x00ÞG�ð−k̃2;−k̃3; x0Þ� þ 2 perms; ð21Þ

where x ¼ k�τ, k̃i ¼ ki=k�, and Θ2−k̃1 is the Heaviside step

function with the argument 2 − k̃1 that implies the momen-
tum conservation. Here we have introduced

F ðk̃1; xÞ ¼
1

x2
ð1þ ik̃1xÞð1þ ixÞ2e−iðk̃1þ2ÞxAðx=k�Þ2;

Gðk̃2; k̃3; xÞ ¼
1

x2
ð1 − ik̃2xÞð1 − ik̃3xÞð1 − ixÞ2

× eiðk̃2þk̃3þ2ÞxAðx=k�Þ2;

w̄þþþ
k1

¼ −A2
k1k2k3

k2Tk
4�ðk21 − 4k2�Þ2

512π2k31k
2
2k

2
3

; ð22Þ

where Ak1k2k3 ≡ 1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTðkT − 2k3ÞðkT − 2k2ÞðkT − 2k1Þ

p
is the area of the triangle of sides ki and

kT ≡ k1 þ k2 þ k3. The detailed derivation of the one-loop
contribution from the bubble diagram is given in
Appendix A.
The scalar field perturbation is enhanced on subhorizon

scales due to parametric resonance. Without loss of
generality, we set the initial time and final time of
amplification as xi ¼ −100 and xf ¼ −10, and set the
index as μ ¼ 2. This implies that δχ is amplified by a factor
of ðxi=xfÞμ ¼ 102 within the horizon. The rescaled shape
function hhþk1

hþk2
hþk3

i0ðH=MpÞ−6k21k22k23 is shown in Fig. 2.
We see that the tensor bispectrum peaks in the squeezed
configuration. As discussed in Refs. [19,20], for the power
spectrum of tensor perturbations the delta function in (18)
violates the causality resulting in the infrared divergence.
To overcome such an issue, a log-normal distribution with
a finite width Δ is introduced to replace the delta function,

δðln k=k�Þ →
1ffiffiffiffiffiffi
2π

p
Δ
e−

lnðk=k�Þ2
2Δ2 : ð23Þ

Although our work is free from this issue, we also consider
the tensor bispectrum in the log-normal case. We find that
the log-normal function gives the same shape of the
bispectrum as the delta function. Compared to the delta
function case, the value of the shape function in the
squeezed limit is smaller in the log-normal case. The reason
is as follows. For the log-normal distribution, as k → 0, the
step function behaves as a linear function of k, resulting in a
peak value smaller than one in the delta function case. The
full comparison between the delta case and log-normal case
is shown in Appendix B. Since this work focuses on the
shape of the tensor bispectrum, in what follows we shall
consider only the delta function.
Similar to the bubble diagram, it is straightforward to

calculate the one-loop contribution from the triangle dia-
gram. From Eqs. (14) and (15) we have

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi0

3a
¼
�
H
Mp

�
6

Θ2−k̃1
4

k31k
3
2k

3
3k�

�
16A2

k1k2k3
−
k21k

2
2k

2
3

k2�

�−1=2
Ds1s2s3ðk1; k2; k3Þ

× Im
Z

0

x�
0

dx0
Z

0

x0

dx00
Z

x00

x�
0

dx000Xðk̃1; x0Þ½Yðk̃2; x00ÞZðk̃3; x000Þ þ Yðk̃3; x00ÞZðk̃2; x000Þ� þ 2 perms;

ð24Þ

FIG. 2. Rescaled shape function for the þþþ polarization
from the bubble diagram, where we choose k1=k� ¼
0.1. The plot is normalized to unity for equilateral configurations
k2=k1 ¼ k3=k1 ¼ 1.
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hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi0

3b
¼
�
H
Mp

�
6

Θ2−k̃1
4

k31k
3
2k

3
3k�

�
16A2

k1k2k3
−
k21k

2
2k

2
3

k2�

�−1=2
Ds1s2s3ðk1; k2; k3Þ

× Im
Z

0

x�
0

dx0
Z

x0

x0

dx00
Z

x00

x�
0

dx000Xð−k̃1; x0Þ½Yðk̃2; x00ÞZðk̃3; x000Þ þ Yðk̃3; x00ÞZðk̃2; x000Þ� þ 2 perms;

ð25Þ

where

Xðk; xÞ ¼ 1

x2
ð1þ ikxÞð1þ ixÞ2e−iðkþ2ÞxAðx=k�Þ2;

Yðk; xÞ ¼ 1

x2
ð1 − ikxÞð1þ x2ÞeikxAðx=k�Þ2;

Zðk; xÞ ¼ 1

x2
ð1 − ikxÞð1 − ixÞ2eikxAðx=k�Þ2: ð26Þ

Here Ds1s2s3ðk1; k2; k3Þ is the product of projection tensors,
which can be written as a compact form for the þþþ
polarization in the equilateral situation (i.e., k1 ¼ k2 ¼ k3):

Dþþþðk1; k1; k1Þ ¼
365k61
6912

−
61k41k

2�
192

þ 9k21k
4�

16
−
k6�
4
:

In Fig. 3, we display the rescaled shape function for the
þþþ polarization in the case of the triangle diagram. We
can see that the tensor bispectrum peaks in the squeezed
configuration. Such a result is the same as that obtained in
the case of the bubble diagram. The emergence of the
squeezed shape appears to resemble the scenario in quasi-
single field inflation, where the modes for light isocurvaton
survive for a long time on superhorizon scales, thereby
leading to a quasilocal shape [40,41]. However, the scalar
field perturbation is enhanced on subhorizon scales in our
model. This anomaly could potentially be attributed to the

complex interplay between tensor perturbations and scalar
field perturbations during inflation. Considering a specific
inflationary model would aid in confirming this result.
Moreover, we find the peak value of the bispectrum is
significantly larger than that from the bubble diagram. The
reason is the triangle diagram involves more scalar propa-
gators. Therefore, in this case the contribution from the
triangle diagram dominates the one-loop contributions to
the tensor bispectrum.
We note that the tensor bispectrum is no longer scale

invariant, due to the presence of a pivot scale k�. In this
context, an additional critical characteristic, besides its
shape, is the running of the bispectrum. We take the bubble
diagram for example. Following the tradition in [41], we
show the dependence of the rescaled shape function on the
momenta ratio k2=k1 and k3=k1, while fixing the perimeter
of the momentum triangle kT in Fig. 4. A outstanding
feature is that the tensor bispectrum oscillates in k space.
The underlying physics can be readily understood in terms
of generation mechanism. The scalar field perturbation
experiences a resonant amplification on subhorizon scales
from τi to τf, which is similar to the resonant non-
Gaussianity shown in [42,43]. Moreover, since we have
chosen a specific starting point for resonant amplification,
the oscillatory period in k space is approximately equal to

FIG. 3. Rescaled shape function for the þþþ polarization
from the triangle diagram, where we choose k1=k� ¼
0.1. The plot is normalized to unity for equilateral configurations
k2=k1 ¼ k3=k1 ¼ 1.

FIG. 4. Rescaled shape function for the þþþ polarization
from the bubble diagram, where we set kT ¼ 0.5k�, k�, 2k� and
3k�, respectively.
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2π=xi which is a constant. Therefore, as kT increases
covering multiple periods, the oscillations become increas-
ingly evident.

V. CONCLUSIONS AND DISCUSSIONS

We have calculated the tenor bispectrum mediated by an
excited scalar field during inflation. We consider the one-
loop contributions to the tenor bispectrum from the bubble
and triangle Feynman diagrams. In both cases, the bispec-
trum peaks in the squeezed configuration. After inflation,
enhanced scalar perturbations induce another SGWB when
reentering the horizon. The tensor bispectrum of the SGWB
is dominated by the equilateral configuration. Hence
measurements of the bispectum provide a potential way
to distinguish the SGWBs.
We consider the interaction between tensor perturbations

and the spectator scalar field perturbation due to the
canonical kinetic term, which is independent of the potential
of the scalar field. Moreover, our calculation is based on the
exponential growth of the scalar field perturbation only for
the k ¼ k� mode. Such an amplification factor can be
realized through parametric resonance. For a log-normal
momentum distribution around k�, our conclusions are
unchanged.
As an illustration, we show the shape function of the

bispectrum only for the þþþ polarization in Figs. 2 and
3. Due to parity symmetry, the bispectrum for the − − −
polarization is the same as that for the þþþ polarization.
For the þþ − and − −þ polarizations we have checked
that the bispectrum takes its maximal value in the squeezed
configuration.
It is pointed out that a large amplification of the scalar

field perturbation during inflation enables the loop power
spectrum to dominate over the tree-level power spectrum in
the in-in formalism, indicating the breakdown of the
perturbation theory [19,20,44]. The necessary conditions
for the subdominant loop power spectrum are discussed in
Ref. [44]. In our model, the conditions are related to the
final value of the amplification factor and thus are assumed
to be satisfied.
It is widely held that tensor bispectrum is strongly

suppressed at interferometer scales owing to Shapiro

time-delay effects associated with the propagation of
GWs [23,24,45,46]. A typical counterexample is the flat-
tened configuration of the tensor bispectrum, where phase
differences from source to detection are eliminated [47].
Despite the difficulties in measurement, we argue that we
theoretically provide a perspective to distinguish the
SGWBs generated during inflation from those generated
after inflation. Besides, the quadrupolar anisotropy of
SGWBs serves as an indirect probe for squeezed tensor
non-Gaussianity, which can escape the suppression by
propagation effects [48]. Examining the quadrupolar
anisotropy in our model may be interesting, and we leave
it for future work.
Finally, we mention that the SGWB can be sourced by

the production of the gauge quanta during inflation with the
coupling ϕFF̃ of the pesudoscalar field to the gauge field.
The shape of the tensor bispectrum for the þþþ polari-
zation is very close to equilateral [49]. Although this shape
is the same as that of the SGWB induced by enhanced
curvature perturbations in the radiation-dominated era, with
the help of parity symmetry, we can distinguish these
two SGWBs.
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APPENDIX A: A DETAILED DERIVATION OF
THE ONE-LOOP CONTRIBUTION

In this Appendix, I provide a detailed derivation of the
one-loop contribution from the bubble and triangle dia-
grams. The Hamiltonian has both third-order and fourth-
order contributions, which results in containing two parts of
contributions hOi2a;1 and hOi2a;2:

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;1
¼
Z

τ

τ�
0

dτ0
Z

τ

τ0

dτ00h0jHð3Þ
int ðτ0Þhs1k1

ðτÞhs2k2
ðτÞhs3k3

ðτÞHð4Þ
int ðτ00Þj0i; ðA1Þ

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;2
¼
Z

τ

τ�
0

dτ0
Z

τ

τ0

dτ00h0jHð4Þ
int ðτ0Þhs1k1

ðτÞhs2k2
ðτÞhs3k3

ðτÞHð3Þ
int ðτ00Þj0i: ðA2Þ
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Based on Eq. (5) and Eq. (6), we can expand the above two equations separately as

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;1
¼ −

1

8

Z
τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2
Y7
A¼1

�Z
d3pA

ð2πÞ3
�

× ð2πÞ3δ
 X3

A¼1

pA

!
ð2πÞ3δ

 X7
A¼4

pA

!X
s;s4;s5

esijðp̂1Þp2ip3je
s4
kmðp̂4Þes5mlðp̂5Þp6kp7l

× h0jhsp1
ðτ0Þhs1k1

ðτÞhs2k2
ðτÞhs3k3

ðτÞhs4p4
ðτ00Þhs5p5

ðτ00Þj0ih0jδχp2
ðτ0Þδχp3

ðτ0Þδχp6
ðτ00Þδχp7

ðτ00Þj0i; ðA3Þ

and

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;2
¼ −

1

8

Z
τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2
Y7
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼1

pA

!
ð2πÞ3δ

 X7
A¼4

pA

!

×
X
s;s4;s5

es1ij ðp̂1Þp2ip3je
s4
kmðp̂4Þes5mlðp̂5Þp6kp7lh0jhs4p4

ðτ0Þhs5p5
ðτ0Þhs1k1

ðτÞhs2k2
ðτÞhs3k3

ðτÞhsp1
ðτ00Þj0i

× h0jδχp6
ðτ0Þδχp7

ðτ0Þδχp2
ðτ00Þδχp3

ðτ00Þj0i: ðA4Þ

We only consider connected graphs, and Eq. (A3) can be simplified as

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;1
¼ −

1

2
ð2πÞ3δðk1þk2þk3Þ

Z
τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2

×
Y3
A¼2

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼2

pA −k1

!
es1�ij ðk̂1Þp2ip3je

s2�
km ðk̂2Þes3�ml ðk̂3Þp2kp3lv�k1ðτÞvk2ðτÞvk3ðτÞ

× vk1ðτ0Þup2
ðτ0Þup3

ðτ0Þv�k2ðτ00Þv�k3ðτ00Þu�p2
ðτ00Þu�p3

ðτ00Þ þ 2perms: ðA5Þ

Similarly, Eq. (A4) is simplified as

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a;2
¼ −

1

2
ð2πÞ3δðk1þk2þk3Þ

Z
τ

τ�
0

dτ0aðτ0Þ2
Z

τ

τ0

dτ00aðτ00Þ2

×
Y3
A¼2

�Z
d3pA

ð2πÞ3
�
ð2πÞ3δ

 X3
A¼2

pA −k1

!
es1�ij ðk̂1Þp2ip3je

s2�
km ðk̂2Þes3�ml ðk̂3Þp2kp3lv�k2ðτÞv�k3ðτÞvk1ðτÞ

× vk2ðτ0Þvk3ðτ0Þup2
ðτ0Þup3

ðτ0Þv�k1ðτ00Þu�p2
ðτ00Þu�p3

ðτ00Þ þ 2perms: ðA6Þ

Note that after exchanging τ0 and τ00, Eq. (A5) and Eq. (A6)
are conjugate to each other. Therefore,

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

2a
¼ 2Rehhs1k1

ðτÞhs2k2
ðτÞhs3k3

ðτÞi
2a;1

:

ðA7Þ

Then, we deal with the polarization tensor and momentum
integral parts. Due to the conservation of momentum and
without losing generality, we can fix all ki in the ðx; zÞ
plane. Such vector triangles can be constructed as

k1 ¼ k1ð0; 0; 1Þ;
k2 ¼ k2ðsin θ; 0; cos θÞ;
k3 ¼ k3ðsinϕ; 0; cosϕÞ; ðA8Þ

where sin θ ¼ λ=2k1k2, cos θ ¼ ðk23 − k21 − k22Þ=2k1k2,
sinϕ ¼ −λ=2k1k3, cosϕ ¼ ðk22 − k23 − k21Þ=2k1k3, with
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k21k

2
2 þ 2k22k

2
3 þ 2k23k

2
1 − k41 − k42 − k43

p
. Polarizat-

ion tensors are as follows:
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es1ij ðk̂1Þ≡ 1

2

0
B@

1 is1 0

is1 −1 0

0 0 0

1
CA; ðA9Þ

es2ij ðk̂2Þ≡1

2

0
B@

cos2 θ −is2 cosθ −is2 sinθcosθ
is2 cosθ −1 −is2 sinθ

−is2 sinθ cosθ −is2 sinθ sin2 θ

1
CA;

ðA10Þ

es3ij ðk̂3Þ≡1

2

0
B@

cos2ϕ −is3 cosϕ is3 sinϕcosϕ

−is3 cosϕ −1 −is3 sinϕ
−is3 sinϕcosϕ −is3 sinϕ sin2ϕ

1
CA:

ðA11Þ

Because of the independence of the angle in Eq. (A5),
we have

Z
d3p2d3p3

ð2πÞ6 ð2πÞ3δðk1 − p2 − p3Þ

¼ 1

ð2πÞ2k1

Z
∞

0

dp2

Z
p2þk1

jp2−k1j
dp3p2p3: ðA12Þ

Note that pA ¼ pAðsin θA cosϕA; sin θA sinϕA; cos θAÞ;
combining Eq. (A5) and Eqs. (A8)–(A12), we obtain

Z
d3p2d3p3

ð2πÞ6 ð2πÞ3δðp2 þ p3 − k1Þes1�ij ðk̂1Þp2ip3je
s2�
km ðk̂2Þ

× es3�ml ðk̂3Þðp2kp3l þ p3kp2lÞfðp2; p3Þ

¼
Z

∞

0

dp2

Z
p2þk1

jp2−k1j
dp3w

s1s2s3
k1

fðp2; p3Þ; ðA13Þ

where

ws1s2s3
k1

¼ A2
k1k2k3

k2Tp2p3A4
k1p2p3

2π2k71k
2
2k

2
3

: ðA14Þ

Ak1p2p3
refers to the area of the triangle enclosed by k1, p2

and p3.
Then we apply the mode function Eq. (18) and Eq. (19)

to perform the momentum integration. The calculation is
straightforward, and the result (for þþþ polarization) is

hhþk1
ðτÞhþk2

ðτÞhþk3
ðτÞi0

2a
¼ −

1

2

�
H
Mp

�
6

Θ2−k̃1w̄
þþþ
k1

1

k31k
3
2k

3
3k

4�

Z
0

x0

dx0
Z

0

x0

dx00F ðk̃1; x0ÞGðk̃2; k̃3; x00Þ þ 2 perms; ðA15Þ

which is the same as Eq. (20). Note that the definition of ws1s2s3
k1

is different from w̄s1s2s3
k1

in Eq. (20). We omit the derivation
of hOi2b due to the similarity of calculations.
Now we consider the one-loop contribution from the triangle diagram. Taking hOi3a as an example,

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

3a
¼ 1

4
Im
Z

τ

τ�
0

dτ0a2ðτ0Þ
Z

τ

τ0

dτ00a2ðτ00Þ
Z

τ00

τ0

dτ000a2ðτ000Þ

×
Y9
A¼1

�Z
d3pA

ð2πÞ3
�
ð2πÞ9δ

 X3
A¼1

pA

!
δ

 X6
A¼4

pA

!
δ

 X9
A¼7

pA

!

×
X
s;s4;s7

esijðp̂1Þp2ip3je
s4
klðp̂4Þp5kp6le

s7
mnðp̂7Þp8mp9nh0jhsp1

ðτ0Þhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞhs4p4

ðτ00Þhs7p7
ðτ000Þj0i

× h0jδχp2
ðτ0Þδχp3

ðτ0Þδχp5
ðτ00Þδχp6

ðτ00Þδχp8
ðτ000Þδχp9

ðτ000Þj0i: ðA16Þ

Because the scalar field perturbation is amplified only at k ¼ k�,

hhs1k1
ðτÞhs2k2

ðτÞhs3k3
ðτÞi

3a
¼ 2Imδðk1 þ k2 þ k3Þp3�

Z
τ

τ�
0

dτ0a2ðτ0Þ
Z

τ

τ0

dτ00a2ðτ00Þ
Z

τ00

τ0

dτ000a2ðτ000Þ
Z

∞

0

dp3p2
3

×
Z

1

−1
d cos θ

Z
2π

0

dϕes1�ij ðk̂1Þp2ip3je
s2�
kl ðk̂2Þp2kp2le

s3�
mnðk̂3Þp3mp3nv�k1ðτÞvk2ðτÞvk3ðτÞvk1ðτ0Þ

× u2p�ðτ0Þjup� j2ðτ00Þðu�p� Þ2ðτ000Þðv�k2ðτ00Þv�k3ðτ000Þ þ v�k3ðτ00Þv�k2ðτ000ÞÞ
× δðp3 − p�Þδðjp3 − k1j − p�Þδðjp3 þ k3j − p�Þ þ 2 perms; ðA17Þ
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we integrate out the momentum and find that the integral
has support at the two points,

p3 ¼ k1

0
B@−k21 þ k22 þ k23

8Ak1k2k3

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16A2

k1k2k3
k2⋆ − k21k

2
2k

2
3

q
4Ak1k2k3k1

;
1

2

1
CA:

ðA18Þ

The following calculation is similar to the bubble diagram,
so we are not prepared to elaborate on details (so are hOi3b).
We can see that the above derivation is lengthy and
complex. A more elegant and systematic method to com-
pute the correlation functions is the diagrammatic method
based on the path integral, which provides an equivalent
description to the canonical in-in formalism [50].

APPENDIX B: SHAPE FUNCTIONS UNDER
DIFFERENT MOMENTUM DISTRIBUTIONS

In this Appendix, we show the shape functions from the
bubble diagram in both the delta distribution and log-
normal distribution.
In the log-normal case, from Eq. (23), we obtain [20]

fLNðp2; p3Þ ¼
e−

½lnðp2=p�Þ�2þ½lnðp3=p�Þ�2
2Δ2

2πΔ2
fðp�; p�Þ: ðB1Þ

We can integrate out one of the momenta, and the
remaining integral gives a step function characterized by
width Δ:

ΘΔ
2−k̃1

≡ eΔ
2=2

2

�
erf

�
Δ2 − ln ðj1 − k̃1jÞffiffiffi

2
p

Δ

�

−erf
�
Δ2 − ln ð1þ k̃1Þffiffiffi

2
p

Δ

��
: ðB2Þ

So the main difference between the delta and log-normal
distribution is Θ2−k̃1 → ΘΔ

2−k̃1
. Step functions correspond-

ing to the delta distribution and log-normal distribution are
illustrated in Fig. 5. We find that ΘΔ

2−k̃1
deviates signifi-

cantly from 1 when k approaches zero. Actually, it behaves
as a linear function of k̃1. The same conclusion applies to
the other two polarization configurations. The shape
functions under two different momentum distributions
are shown in Fig. 6. We can see that the peak value of
the shape function in the log-normal distribution is smaller
than the one in the delta case. Meanwhile, the rescaled
shape function corresponding to the delta distribution
∝ k̃−41 ; thus, the configuration of the tensor bispectrum
does not change with the momentum distribution, and the
squeezed configuration clearly dominates.

delta
log–normal

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. Step function corresponding to delta distribution and
log-normal distribution, respectively.

FIG. 6. Rescaled shape functions corresponding to different
momentum distributions for the þþþ polarization from the
bubble diagram, where we choose k1=k� ¼ 0.1 andΔ ¼ 0.1. Top:
delta distribution. Bottom: log-normal distribution.
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