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We study gravitational wave production during kinetic preheating after inflation with a focus on
scenarios that arise in α-attractor models where a scalar dilatonlike inflaton is kinetically coupled
to a second scalar field. We present high-resolution lattice simulations of three α-attractor models
for a range of parameters to probe regions where preheating is efficient. We find that preheating
in these models can be extremely violent, resulting in gravitational wave energy densities that can be
constrained by cosmic microwave background measurements of the effective number of relativistic
species, Neff .
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I. INTRODUCTION

An early phase of accelerated expansion, inflation
[1–5], solves the horizon and flatness problems of the
hot big bang cosmology. Quantum vacuum fluctuations of
the fields and metric during inflation are stretched outside
the horizon before later reentering to seed the density
fluctuations that eventually give rise to the inhomogene-
ities of the cosmic microwave background (CMB) and
the large scale structures in the Universe today [6–9].
However, the microphysical origin of the accelerated
expansion is far from understood. The simplest models
for inflation (for example, Refs. [5,10]) are now strongly
disfavored [11,12] and nonminimal inflationary mecha-
nisms (for example, Starobinsky inflation [2], Higgs
inflation [13], and α-attractors [14]) are now the leading
candidates for the theory of inflation.
An inflationary cosmology consistent with the present

observable Universe requires that the energy in the
inflaton must have been transferred into matter degrees
of freedom to ignite the hot big bang in time for big bang
nucleosynthesis [15]—the Universe must be reheated. Yet
reheating remains one of the most poorly understood
epochs of our cosmic history due to the dearth of
observational probes. Because reheating is a local process,
the information about its dynamics is largely erased as the
standard model plasma reaches local thermal equilibrium.
Further, the nonlinear gravitational evolution of structure
formation washes out information on scales relevant to
preheating. Studies of the physics of preheating with
direct observational predictions therefore remain acutely
important and timely.

The nonperturbative decay of the inflaton, known as
preheating [16–19], often occurs at the end of inflation;
the explosive production of particles during this epoch can
lead to distinctive gravitational signatures that persist
through the opaque, hot, dense phases of early expansion
of the Universe. Among these signatures are the produc-
tion of a high-frequency stochastic gravitational wave
background [20–31], and collapsed compact objects such
as primordial black holes [32–39] or compact minihalos
[40,41]. Nongravitational signatures include the produc-
tion of primordial magnetic fields [42], and the possible
generation of the baryon asymmetry, [43–49]. These
signatures may provide important observational evidence
of the reheating and post-inflationary epochs and lead to
clues about the microphysics of the early Universe.
In this paper, motivated by observationally favored,

nonminimal classes of inflationary model involving kineti-
cally coupled scalar fields [50–52], we study a type of
kinetic preheating in which the inflaton is coupled to a
second scalar field via a dilatonlike interaction [50,53,54].
We specialize to exponential-type couplings that arise in
dilaton-axion theories, where the dilaton drives inflation.
Generalizing our previous work [54], we explore the effects
of different potentials on preheating and study the pro-
duction of gravitational waves. We characterize the con-
ditions under which the predicted gravitational wave
spectra can be constrained by present or next-generation
CMB measurements of the effective number of relativistic
degrees of freedom, Neff . Importantly, the class of models
we study here can generically produce gravitational wave
backgrounds loud enough that CMB bounds on Neff may
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provide constraints on these models. Here, we continue to
restrict our attention to scenarios where the axion does not
play a role during inflation, and enters the reheating phase
with no vacuum expectation value (VEV); this makes this
work distinct from other preheating scenarios in α-attractor
models, [55–57], which have also been shown to generate
gravitational wave backgrounds [58,59].
This paper is organized as follows. In Sec. II we describe

the model and derive the equation of motion for the fields
and the background Friedmann-Lemaître-Robertson-
Walker spacetime. We then analyze the growth of small
fluctuations during the coherent oscillations at the end of
inflation and validate our code using a Floquet analysis in
Sec. III. In Sec. IV we describe the numerical methods we
use to study the preheating period, and in Sec. V we discuss
our results, in particular characterizing the reheating
efficiency and gravitational wave production in the models
we study. Our conclusions are presented in Sec. VI.
We use natural units, ℏ ¼ c ¼ 1, and define the reduced

Planck mass Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
. We use the “mostly plus”

metric convention and repeated/contracted Greek space-
time indices are summed via the Einstein summation
convention.

II. THE MODEL

We consider a theory with an inflaton, ϕ, and a second
scalar field, χ, minimally coupled to Einstein gravity
described by the Langrangian,

L¼ −
M2

Pl

2
R−

1

2
ð∂ϕÞ2 −WðϕÞ

2
ð∂χÞ2 −VðϕÞ−m2

χ

2
χ2; ð1Þ

where R is the Ricci scalar. The inflaton interacts with χ via
an exponential dilatonlike coupling [51,52],

WðϕÞ ¼ e2ϕ=μ: ð2Þ

For this work, we assume that the field χ has no VEV
during inflation. Note that this configuration is stable, as
shown in Ref. [60].
During inflation, potentials that plateau, e.g. polynomial

attractors [53] or α-attractors [50], are favored by the CMB
[11,12]. Phenomenologically, α-attractors are particularly
interesting as, once the normalization of the scalar power
spectrum is specified, the single parameter μ that controls
the remaining freedom in specifying the potential also
controls the kinetic coupling. We consider potentials in this
class including the asymmetric E-model α-attractor [50]

V ¼ m2μ2

2

�
1 − e−

ϕ
μ

�
2

; ð3Þ

the symmetric T-model α-attractor

V ¼ m2μ2

2
tanh2

�
ϕ

μ

�
; ð4Þ

and the polynomial α-attractor [53]

V ¼ m2μ2

2

ϕ2

ϕ2 þ μ2
: ð5Þ

Depending on the choice of μ, these potentials lead to
different phenomenology at the end of inflation. In the limit
where μ ≫ Mpl, the potential is very well approximated as
a quadratic. For smaller values of μ ≲Mpl, such as those
studied in [61], the potential causes anharmonic oscillations
of the ϕ field. These anharmonic contributions during
preheating generate self-resonances that cause the homo-
geneous mode of ϕ to decay. In the absence of a coupled
field, these anharmonic oscillations have been shown to
create oscillons [62–77] and produce gravitational waves
[78,79]. While these self-resonances also occur in the
model presented here, we demonstrate that the additional
instabilities in the axion field can dominate the preheat-
ing phase.
The action, Eq. (1), leads to the classical equations of

motion for the fields ϕ and χ,

ϕ̈ ¼ −3
ȧ
a
ϕ̇þ∇2ϕ

a2
−
∂V
∂ϕ

þ e2ϕ=μ

μ

�
χ̇2 −

ð∇χÞ2
a2

�
; ð6Þ

χ̈ ¼ −3
ȧ
a
χ̇ þ∇2χ

a2
−

1

e2ϕ=μ
m2

χχ

−
2

μ

�
χ̇ ϕ̇−

ð∇!χÞ · ð∇!ϕÞ
a2

�
: ð7Þ

Here and in what follows, an overdot represents a derivative
with respect to cosmic time. The expansion of the Universe
is given by the Friedmann constraint,

H2 ¼ 1

3M2
pl

ρ: ð8Þ

Here H ¼ ȧ=a, and ρ ¼ ρϕ þ ρχ , where

ρϕ ¼ ϕ̇2 þ ð∇ϕÞ2
a2 þ ϕ2

2
; ð9Þ

and

ρχ ¼
e
2ϕ
μ

�
χ̇2 þ ð∇χÞ2

a2

�
þm2

χχ
2

2
: ð10Þ

The energy density of the χ field relative to the total
energy density, ρχ=ρ, serves as a useful figure of merit to
characterize the efficiency of preheating; complete reheat-
ing occurs when this ratio approaches unity.
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In all three α-attractor models, Eqs. (3)–(5), we are free
to chose one parameter, in our case μ. Planck [11]
constrains the ratio of the squared Hubble rate, H2, and
the slow-roll parameter, ϵ ¼ −Ḣ=H2, via the amplitude of
scalar fluctuations,

H2
50

8πM2
plϵ50

¼ 2 × 10−9; ð11Þ

which fixes mϕ. Here, H50 and ϵ50 are evaluated 50e-
foldings before the end of inflation; these quantities as well
asmϕ vary from one value of μ [and one choice of VðϕÞ] to
another.

III. STABILITY ANALYSIS

Preheating is defined by the parametric or tachyonic
amplification of specific bands of modes (of the inflaton or
other matter fields to which it is coupled), generally sourced
by the homogeneously oscillating mode of the inflaton. We
employ Floquet analysis to identify scales on which
instabilities exist in these models. We first linearize the
equations to study their stability and predict where the
instability bands (in the χ field) might occur. We then
explore the stability of the linearized solutions about the
homogeneous oscillating inflaton background and compare
them to our simulations.
While the linearized analysis makes a number of

assumptions—both about the self-interactions of the fields
and the expansion of the Universe—it is a way to validate
our simulations and to gain intuition for the dependence of
preheating on the model parameters. In this section, we
restrict attention to the quadratic potential, where the
inflaton oscillations are harmonic in Minkowski spacetime.

A. Linearized equations

Ignoring spatial gradients, and neglecting the backreac-
tion of the χ field, the equation of motion for the
homogeneous mode of the inflaton is

ϕ̈þ 3Hϕ̇þm2
ϕϕ ¼ 0: ð12Þ

Assuming that the fluctuations of the χ field are linear
perturbations, we can study their independent Fourier
modes,

χðt;xÞ ¼
Z

d3k
ð2πÞ3 χkðtÞe

ik·x; ð13Þ

which are subject to the linearized equation of motion,

χ̈k þ
�
3
ȧ
a
−
2

μ
ϕ̇

�
χ̇k þ

�
k2

a2
þ m2

χ

e2ϕ=μ

�
χk ¼ 0: ð14Þ

We rescale χ to bring its kinetic term to canonical form,

φk ≡ zχk ¼ a3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
WðϕÞ

p
χk; ð15Þ

so that Eq. (14) becomes

φ̈k þ
�
k2

a2
þ m2

χ

e2ϕ=μ
−
̈z
z

�
φk ¼ 0: ð16Þ

Substituting WðϕÞ ¼ e2ϕ=μ, we can evaluate

̈z
z
¼

�
3

2
H þ ϕ̇

μ

�
2

þ
�
3

2
Ḣ þ ϕ̈

μ

�
: ð17Þ

The analogous, linearized equation of motion for the modes
of the canonically normalized inflaton, πk ≡ a3=2ϕk, reads

π̈k þ
�
k2

a2
þ ∂

2V
∂ϕ2

−
9

4
H2 −

3

2
Ḣ

�
πk ¼ 0: ð18Þ

We use Eq. (18) to set initial conditions for the fluctuations
of the inflaton in our simulations.

B. Floquet analysis

We begin by studying the behavior of Eqs. (12) and (16)
in Minkowski space, which can be done analytically. In this
limit, a ¼ 1 andH ¼ Ḣ ¼ 0, and hence the solution for the
homogeneous inflation field is

ϕ ¼ ϕ0 cosðmϕtÞ: ð19Þ

Under these assumptions, the equation of motion for the
modes of φ is

φ̈k þ
�
k2

a2
þm2

χe−2ϕ=μ −
�
ϕ̇

μ

�
2

−
ϕ̈

μ

�
φk ¼ 0; ð20Þ

which is the equation for a harmonic oscillator with a time-
dependent (periodic) effective mass. Floquet’s theorem
states that solutions to Eq. (20) are of the form
φk ∝ PþðtÞeμft þ P−ðtÞe−μft, where μf is the Floquet
exponent and P�ðtÞ ¼ P�ðtþ TÞ is a periodic function
with period T which is the same period as the time-
dependent mass. When RðμÞ ≠ 0, the modes, φk, grow
exponentially.
In the small amplitude limit, ϕ0 ≪ μ, Eq. (20) can be

recast as the Mathieu equation,

d2φk

dz2
þ ½p − 2q cosð2zÞ�φk ¼ 0; ð21Þ

where z ¼ mϕ=2 and we have defined
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p ¼
�
2k
mϕ

�
2

þ
�
2mχ

mϕ

�
2

; ð22Þ

q ¼ 2ϕ0

M

m2
χ

m2
ϕ

�
1 −

m2
ϕ

2m2
χ

�
: ð23Þ

When ϕ0 ≪ μ, q ≪ 1, the solutions of the Mathieu
equation are known to be unstable when p ¼ n2 for
n∈Z. Notice that, for k ≪ mϕ, if mχ ¼ nmϕ=2, then the
instability band persists down to arbitrarily small wave
numbers; this can also be seen in the right panel of Fig. 1
when directly using Eq. (20). This effect is analogous to
that which occurs for kinetically coupled massive vector
fields [80].
Floquet exponents can be obtained analytically for small

q, and for mχ ¼ mϕ=2 they are given by

R½μ� ¼ ϕ0

μ

mϕ

4
: ð24Þ

Away from this limit, for both large q and mχ ≠ mϕ=2, the
Floquet exponents must be found numerically. These are
displayed in Fig. 1, which shows the Floquet exponents, μf,
as the amplitude of the velocity of the homogeneous mode,
ϕ̇0 ¼ mϕϕ0, is varied relative to the kinetic coupling, μ, for
a set of wave numbers using Eq. (20).

IV. NUMERICAL PROCEDURE

We employ GABE [81] to carry out 3þ 1 simulations of
the fields ϕ and χ in a self-consistent, but rigidly expanding
background (we ignore local gravity). To set our initial
conditions, we evolve the equations of motion in the
homogeneous limit, Eq. (6) alongside the Friedmann
constraint, Eq. (8) for at least 60e-folds of inflation.
This ensures that the system is following the corresponding
attractor solution for each model we study. From this
homogeneous evolution, we extract ϵ50 and H50 which
allow us to calculatemϕ for every choice of potential and μ.
These also give the inflaton amplitude and velocity half an
e-folding before the end of inflation (inflation ends, by
definition, when ä ¼ 0). We initialize the fluctuations of
the inflaton and χ fields from the Bunch-Davies vacuum,

hjϕðkÞj2i ¼ ð2aωϕÞ−1; ð25Þ

hjχðkÞj2i ¼ ð2aωχWðϕ̄ÞÞ−1; ð26Þ

where for each field ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=aÞ2 þm2

eff

p
and the effective

mass squared for ϕ and χ are calculated from the equations
of motion Eqs. (18) and (15), evaluated half an e-folding
before the end of inflation. Note the factor of W in the χ
initial spectrum is a consequence of the fact the kinetic term
for χ carries the dilatonlike coupling W.

FIG. 1. Contours of the real part of the Floquet exponent showing the regions of parameter space where the modes grow exponentially
in the case where χ is massless (left) and massive (right). The parameter space corresponding to exponentially growing modes is
significantly different in the two cases, and importantly, for a massive χ field there exists parameter space for exponential growth for
modes of arbitrarily long wavelength, even for very small values of ϕ̇0=μmϕ. The wave numbers on the horizontal axis correspond to
physical wave numbers since this analysis assumes a Minkowski spacetime.
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We start the runs at half an e-folding before the end of
inflation to ensure that the effective mass of ϕ is positive,
and the modes of interest are in the Bunch-Davies vacuum.
We initialize our box to have size L ¼ H−1

ende
−0.5, where

Hend is the Hubble scale at the end of inflation. This
initialization ensures that our box is the size of the horizon
at the end of inflation and the onset of preheating. These
initial conditions seed the fully nonlinear evolution of the
system Eqs. (6) and (7) alongside the homogenous expan-
sion of the Universe, . (8), from half an e-folding before the
end of inflation through the reheating epoch. Unless
otherwise noted, we use grids with N3 ¼ 2563 points with
periodic boundary conditions. We set the time step is set to
be Δt ¼ L=N=30 < L=N=

ffiffiffi
3

p
to satisfy the Courant-

Friedrichs-Lewy condition.

A. Instability in a toy model

Before we turn to the α-attractor models, we validate our
simulations using the quadratic potential,

VðϕÞ ¼ 1

2
m2ϕ2; ð27Þ

where we set mϕ ¼ 5 × 10−5Mpl as a reference value, and
compare our full nonlinear results to the linearized Floquet
analysis from Sec. III above. In practicemϕ sets the scale of
the simulation and is only relevant for setting the initial
conditions of the fields. In Minkowski space, a quadratic
potential leads to a harmonic oscillation of the homo-
geneous value of ϕ. While this is not true in an expanding
universe, when the ϕ field crosses zero—the point at which
particle creation is most violent—we can instantaneously
approximate the magnitude of the sinusoidal oscillation to
the velocity of the field at the zero crossing, ϕ0 ¼ ϕ̇0=mϕ.
Then we can use this value to predict where the instability
bands are. We perform a set of simulations where mχ ¼ 0

and mχ ¼ mϕ=2 for a range of μ.
For these runs we are able to start at the end of inflation

with an initial comoving box size of L ¼ 12m−1
ϕ ≈ 6H−1

end
since the quadratic potential prevents tachyonic modes at
the end of inflation. In this toy model, we can also take
coarser resolution, where N3 ¼ 1283, which roughly
probes modes between kmin ¼ 2π=L ≈ 0.5mϕ and the 3D
Nyquist fruency, kmax ¼ ð128 ffiffiffi

3
p

=2Þkmin ¼ 58mϕ. Figure 2
shows the comparison between the Floquet analysis for the
first zero-crossing of the homogeneous mode of ϕ and the

FIG. 2. A comparison of Floquet analysis and mode amplification. The top panels show the Floquet exponent, μ, as calculated from
s. (16) (red, dashed) and (20) (blue, solid); curves terminate when the Floquet exponent is identically zero. The bottom panel shows the
amplification of the power spectrum of our simulations, jφkj2, evaluated just before the first zero crossing of the homogeneous mode of
ϕ, tb, and just after, ta. The time interval is symmetric about the zero crossing with width ta − tb ≈m−1

ϕ . We compare these for two

different scenarios; the left panels show the case where μ ≈ 0.122Mpl (corresponding to 2ϕ̇=μmϕ ≈ 7.92 during the first zero crossing)
and the right panel shows the case where μ ≈ 0.217Mpl (corresponding to 2ϕ̇=μmϕ ≈ 4.46 during the first zero crossing). Note that the
relative amplitude and the range of k-modes that are amplified show agreement with Fig. 1.
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results of two fully nonlinear simulations, one with μ ¼
0.122Mpl and one with μ ¼ 0.217Mpl, both in the case
where mχ ¼ 0. We see excellent agreement with regards to
which modes are amplified and the relative strength of
these amplifications. Note that the results of the nonlinear
simulations do not show all the bumps of the Floquet
analysis; this is due to the fact that the modes from the
nonlinear simulations are binned and that, even over the
short timescale over which we compare, the physical size of
the modes vary enough to smear out the finest features of
the Floquet analysis. Nonetheless, this agreement validates
that kinetic preheating is responsible for the particle
creation in these models.
We also calculate the efficiency of preheating in this toy

model. Figure 3 shows the ratio of energy in the χ field
compared to the total energy in the box as a function of
scale factor throughout the simulation for a range of values
of μ for both mχ ¼ 0 and mχ ¼ mϕ=2. While we terminate
all the runs when the scale factor hits a ∼ 500, we see that
when χ is massive, the low-k instability continues to source
particle creation until we end the simulation. In the
Appendix, we compute the spectrum of gravitational waves
from these toy scenarios.

V. RESULTS

In this section, we present the results of our nonlinear
simulations. We demonstrate that kinetic preheating can be
extremely efficient in α-attractor models, across all variants
of the potential we study. We also compute the resulting

spectrum of gravitational waves, and demonstrate that
current and upcoming CMB measurements will constrain
kinetic preheating in these models.

A. Preheating

We begin by examining the reheating efficiency in the
three α-attractor models from Sec. II. Figure 4 shows the
ratio ρχ=ρ as a function of e-folding number for a range of μ
values for the E-model, P-model, and T-model in the left,
center, and right panels, respectively. In all models pre-
heating is more efficient as μ is decreased. For a fixed μ
value, we find that reheating is most (least) efficient for the
T-model (E-model). This can be seen more clearly in Fig. 5,
where we show the maximum energy density ratio ρχ=ρ
achieved in each simulation as a function of μ. Generally,
for each model there is a sharp transition between ineffi-
cient (ρχ=ρ ≪ 1) reheating and complete reheating ρχ=ρ ∼
1 that occurs when μ drops below a critical value. This
transition occurs at larger μ values for the T-model and
lower values for the E-model, and beyond this transition all
three models reach roughly the same maximum value of
ρχ=ρ. Finally, for each model, our results demonstrate that
if μ is small enough, preheating proceeds very rapidly and
violently, causing the simulations to crash before reheating
can fully complete (see the cool colored curves that end
abruptly in Fig. 4). This is a physical consequence of the
fact that the kinetic coupling W generates an infinite
sequence of higher-dimensional operators. These operators
generate a high-frequency, ultraviolet cascade that quickly

FIG. 3. Reheating efficiency for the toy-model given by Eq. (27) for a range of μ values as a function of e-folding in the case where χ is
massless (top left) and massive, mχ ¼ mϕ=2 (top right) and the equation of state for both cases, mχ ¼ 0 (bottom left) and mχ ¼ mϕ=2
(bottom right), time-averaged over a period of the homogeneous mode of ϕ. The horizontal (blue, dot-dashed) line corresponds to a pure
radiation-dominated equation of state, w ¼ 1=3. Smaller μ values correspond to a larger dilatonlike couplingsW, yielding more efficient
reheating. Warm colors (cool colors) correspond to the data produced by simulations with a smaller (larger) μ values, as indicated by the
colorbar. The stars represent the points in each run where the ratio ρχ=ρ is largest. Reheating into the χ field is faster and more complete
for smaller μ values.
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transfers power to high-frequency modes that our simu-
lations cannot resolve [82,83].

B. Gravitational waves

Strong resonance dynamics during preheating generi-
cally leads to the robust generation of gravitational waves
[20–31]. The α-attractor models studied here can lead to
very efficient kinetic preheating and we anticipate that they

may also lead to a strong gravitational wave background.
Here, we calculate the power in gravitational waves by
passively calculating tensor perturbations of the metric,
following the basic procedure of [24]. Ignoring scalar and
vector perturbations, the metric reads

ds2 ¼ −dt2 þ a2ðδij þ hTTij Þdxidxj: ð28Þ

Here, the transverse-traceless perturbations of the spatial
metric, hTTij , are gravitational waves. These satisfy the
linearized equation of motion,

□hTTij ¼ 16πGTTT
ij ; ð29Þ

which follows from the Einstein equation. Gravitational
waves are sourced by the transverse-traceless projection of
the anisotropic stress tensor,

TTT
ij ¼

�
PilPjm −

1

2
PijPlm

�
Tlm; ð30Þ

where P is the projection operator,

Pij ¼ δij −
kikj
k2

: ð31Þ

Equation (29) allows us to compute the evolution of hij,
from which we can compute the effective stress energy
tensor for gravitational waves [84],

FIG. 4. Reheating efficiency, ρχ=ρ, for the E-model (top left), T-model (top center) and P-model (top right) α-attractor given by
Eqs. (3)–(5) for a range of μ values as a function of e-folding and the equation of state for each scenario, E-model (bottom left), T-model
(bottom center), and P-model (bottom right), time-averaged over a period of the homogeneous mode of ϕ. The horizontal (blue, dot-
dashed) line corresponds to a pure radiation-dominated equation of state, w ¼ 1=3. Smaller μ values correspond to a larger dilatonlike
couplings W [and a broader potential VðϕÞ], yielding more efficient reheating. Warm colors (cool colors) correspond to the data
produced by simulations with a smaller (larger) μ values, as indicated by the colorbar. The stars represent the points in each run where
the ratio ρχ=ρ is largest.

FIG. 5. Comparison of maximum ratio of energy densities ρχ=ρ
between the three different α-attractor models, the E-model
(black, circles), T-model (blue, squares), and P-model (red,
triangles) over a range of μ values, demonstrating the critical
μ value for which reheating becomes efficient in each model.
These are the maxima that correspond to the starred points in
Fig. 4. The E-model generally requires the smallest μ value to
reheat efficiently; by contrast, the T-model can reheat efficiently
at larger μ values.
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Tgw
μν ¼ 8πGhhTTij;μhij;νTTi: ð32Þ

The energy density in gravitational waves is therefore

ρgw ¼ 8πGjhTTij;0j2; ð33Þ

and the spectral energy density of the gravitational waves
during the simulation is found from

ΩgwðkÞ≡ 1

ρ

dρgw
d ln k

¼ 1

24π2L3

k3

H2

X
i;j

jḣijðk; tÞj2: ð34Þ

To compare between simulations, we evaluate the gravita-
tional wave spectra when ρχ=ρ is at its maximum. This
occurs at the points identified with stars in Fig. 4. Once
computed, the spectral energy density in gravitational
waves today can be found from [21,22]

Ωgw;0h2 ¼ Ωrad;0h2
g⋆ðarÞ
g⋆ða0Þ

�
g⋆SðarÞ
g⋆Sða0Þ

�
−4=3

ΩgwðaÞ; ð35Þ

with frequencies today given by

f ¼ k=2πa

ρðaÞ1=4 ρradða0Þ
1=4

�
g⋆ðarÞ
g⋆ða0Þ

�
1=4

�
g⋆SðarÞ
g⋆Sða0Þ

�
−1=3

ð36Þ

≈ 3.2 × 1010 Hz
k=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðaÞMpl

p
�
g⋆ðarÞ=g⋆ða0Þ

100

�
−1=12

:

ð37Þ

In the preceding expressions g⋆ is the number of ultra-
relativistic degrees of freedom evaluated at reheating, ar, or
today, a0, g⋆ðarÞ=g⋆ða0Þ ≈ 100. We also make the standard

assumption that the Universe is radiation-dominated at the
time when the power spectrum in the simulation is
evaluated.1 We examine the validity of this assumption
explicitly by evaluating the equation of state, w ¼ hpi=hρi,
averaged over one period of the homogeneous mode of ϕ,
in each of our simulations. The bottom panels of Figs. 3 and
4 show that the equation of state generally approaches
w ¼ 1=3 in cases where the decay field is massless and
preheating is efficient. For many of these cases, the
equation of state does not fully reach w ¼ 1=3 if the
simulation ends due to an ultraviolet cascade. We also note
that we are limited in the range of frequencies for which we
can compute the gravitational wave spectra, bounded below
by the size of the box and bounded above by the Nyquist
frequency of the grid. Nevertheless, we are able to resolve
the gravitational wave spectra over several decades in
frequency around 1010 Hz, as indicated by Eq. (37).
We present the gravitational wave spectra from preheat-

ing in the three α-attractor scenarios over a range of μ
values in Fig. 6. The spectra in each model share some
similarities, but in general the spectra depend nontrivially
on μ. Roughly speaking, the gravitational wave spectra are
strongest (that is, they reach a largest maximum value at
some f) for values of μ near the critical value (the largest
value of μ for which a model preheats). For these values, the
physics of reheating is sufficiently violent to produce a
strong gravitational wave spectrum, but the process also

FIG. 6. The gravitational wave spectral energy density for the E-model (left), T-model (center), and T-model (right) α-attractor kinetic
reheating scenarios for a range of μ values. These spectra are evaluated at the starred-locations in Fig. 4. Simulations that reheat
completely and last longer produce stronger gravitational wave backgrounds that are particularly enhanced at the low frequency end of
the resolved spectrum. The dot-dashed lines show the 2σ constraints on the amplitude of the gravitational wave spectrum that can be
inferred from current (Planck [86], gray) and future (CMB-S4 [87], black) CMB measurements of Neff . The smaller, high-frequency
peaks in these spectra are a numerical artifact.

1Note that, the transfer functions in Eq. (35) assume continu-
ous radiation domination from the time of gravitational wave
emission until matter-radiation equality at redshift z ∼ 3000.
However, in cases where the equation of state deviates from w ¼
1=3 due to the domination of some exotic species, these transfer
functions are modified.
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persists for longer, and the combination of these two factors
leads to the strongest gravitational wave spectra [85].
For models where μ at and below the critical value

necessary for complete reheating, reheating is very fast and
the simulations end very quickly as described in Sec. VA,
yielding somewhat weaker gravitational wave spectral
energy density, with similar spectral shapes. We note that
the ultraviolet cascade in the field sector makes evolving
the simulations any further prohibitive in our setup; more
sophisticated numerical techniques, larger grids, and longer
run times might be able to resolve preheating in these
models. The gravitational wave spectra we evaluate in these
scenarios are likely lower bounds on the actual generated
spectra.
Importantly, in all three α-attractor models, the gravita-

tional wave spectra can reach Ωgw;0 ≈ 10−6 − 10−7 over a
range of scales. A gravitational wave background of this
strength contributes significantly to the radiation content of
the early Universe and can therefore potentially be con-
strained by bounds on extra relativistic degrees of freedom,
ΔNeff ¼ Neff − 3.044 [88–90]. If we take the conservative
simplifying assumption there are no additional ultra-
relativistic degrees of freedom at recombination beyond
the Standard Model and the gravitational waves from
preheating, then the present-day gravitational wave energy
density is related to the present day photon energy density
and ΔNeff via

Ωgw;0h2 ¼ Ωγ;0h2
7

8

�
4

11

�
4=3

ΔNeff ; ð38Þ

where the present-day photon energy density is
Ωγ;0h2 ≈ 2.47 × 10−5. Planck 2018 [11] gives an upper
bound of jΔNeffj < 0.33 (95%CL)which yields a constraint
on the gravitational wave energy density Ωgw;0h2≲
1.851 × 10−6. A joint BBN-CMB analysis [91] gives a
slightly stronger bound jΔNeff j < 0.168 (95% CL), which
tightens the constraint to Ωgw;0h2 ≲ 9.424 × 10−7. This
means that under the assumptions listed here, and depending
on the value of μ, these models can already be constrained at
the 2σ level as a consequence of violent gravitational wave
production during the preheating epoch. This picture is even
more promising when looking ahead to next generation
CMB experiments; the projected sensitivity of CMB-S4 is
jΔNeffj < 0.06 (95% CL) [87], which further tightens
the constraint on the gravitational wave spectrum to
Ωgw;0h2 ≲ 3.366 × 10−7. In Fig. 7, we show the maximum
energy density in gravitational waves for each α-attractor
model over a range of μ values as well as the CMB bound
from Planck and projected bound from CMB-S4. This
indicates that several μ values are already in 2σ tension with
bounds on ΔNeff , emphasizing the role that next-generation
CMB experiments will play in constraining the parameter
space in these models as a consequence of gravitational
waves production during the violent preheating epoch.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied gravitational wave pro-
duction from kinetic preheating after inflation in α-attractor
potentials. These nonminimal inflationary models are
currently among the leading candidates for the theory of
inflation. In these models, one or more scalar fields are
nonminimally coupled to the Ricci scalar. After trans-
forming to the Einstein frame and canonically normalizing
the inflaton, these models generically lead to exponential
couplings between the inflaton and any other degree of
freedom in the theory. Motivated by these models, in this
work we have investigated the effect of an exponential
kinetic coupling between the inflaton and an ultralight
spectator field during the onset of reheating after α-attractor
inflation.
Beyond their appeal as inflationary candidates, α-attrac-

tor models also have the attractive feature that they
effectively contain only one free parameter. This parameter
characterizes both the shape of the inflationary potential as
well as the strength of the couplings of the inflaton to other
degrees of freedom. After the normalization of the scalar
power spectrum is fixed, the remaining free parameter sets
the tensor-to-scalar ratio. In this paper we have extended
the study of these models to the preheating phase, char-
acterizing the conditions under which these models can
efficiently preheat the Universe and produce strong gravi-
tational wave backgrounds.
Our analysis has shown that kinetic preheating in the

three classes of α-attractor potentials studied here can be

FIG. 7. The maximum gravitational wave spectral energy
density from kinetic preheating for each α-attractor model, the
E-model (black, circles), T-model (blue, squares), and P-model
(red, triangles) over a range of μ values. Each point represents the
maximum value of the gravitational wave spectra presented in
Fig. 6. The gravitational wave background is significantly
stronger for models that completely reheat. The dot-dashed lines
show the 2σ constraints on the amplitude of the gravitational
wave spectrum that can be inferred from current (Planck [86],
gray) and future (CMB-S4 [87], black) CMB measurements
of Neff .
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very efficient and is highly sensitive to the sole free
parameter μ. For normalization of the scalar spectrum
fixed to the observed value, complete reheating is achieved
for μ=Mpl ≲ 0.077 or the E-model, Eq. (3), μ=Mpl ≲ 0.11
for the T-model, Eq. (4), and μ=Mpl ≲ 0.81 for the P-model,
Eq. (5). Because of the exponential sensitivity of the kinetic
coupling to μ, even slightly smaller values of μ yield
significantly faster preheating. That is, there exists an upper
bound on μ below which both the inflationary predictions
agree with the CMB and the kinetic preheating is highly
efficient.
We have shown that highly efficient preheating in these

models leads to the creation of a gravitational wave
background from the preheating phase, with an amplitude
and spectral energy density that far exceeds the stochastic
inflationary background in the same frequency band.
This frequency band is well above the range probed by
both current and next generation direct detectors such as
the Advanced Laser Interferometer Gravitational-Wave
Observatory [92], the Laser Interferometer Space Antenna
[93], Cosmic Explorer [94], and the Einstein Telescope
[95]. However, we have demonstrated that in some cases,
these backgrounds are strong enough to be constrained at
the 2σ level by present and next-generation CMB bounds
on Neff . Kinetic-preheating in α-attractor scenarios is
therefore both a highly predictive and also falsifiable
theory of the primordial Universe, which is desirable
given the challenge of constructing concrete early
Universe models that connect with present or near-term
observations.
The present work suggests several promising avenues for

further investigation into kinetic preheating. For example,
while our analysis has demonstrated intense gravitational
wave production, further work is needed to understand the
full gravitational dynamics in these scenarios. In particular,
we plan to investigate the fully nonlinear gravitational
dynamics by implementing full general relativity in the
simulations to study the potential for the production of
primordial black holes and other compact objects [96–98].
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APPENDIX: GRAVITATIONAL
WAVES FROM A TOY MODEL

For completeness, in this appendix we compute the
gravitational wave spectra from the toy model in Sec. IVA
where the inflationary potential is quadratic. In this model,
the presence of a nonzero mass in the χ field only slightly
changes the value of the kinetic coupling, μ, required to
fully preheat. Figure 8 shows that, independent of our two
choices for mχ, μ ≲ 0.18Mpl yields efficient preheating. At
the same time, the low-amplitude parametric resonance in
the case where mχ ¼ mϕ=2 allows for efficient preheating
at larger values of μ. In this case, the low-k instabilities
source χ-particle production over many e-foldings (see
Fig. 3), and potentially make it possible for the Universe to
fully reheat at much larger values of μ.
However, we find that the presence of a nonzero mass for

the axion, mχ ≠ 0, significantly affects the resulting gravi-
tational wave spectra. Using the same techniques as
described in Sec. V B, we can compute the resulting
gravitational waves the times identified with stars in
Fig. 3. These spectra are shown in Fig. 9. Despite the
mχ ¼ 0 and mχ ≠ 0 runs showing similar preheating
efficiencies, the amplitude of the gravitational waves
produced in the mχ ¼ 0 case generically exceed those in
the mχ ≠ 0, as can be seen in Fig. 10. This effect is
pronounced at intermediate values of μ, where the spectra
from the massless case exceeds that of the massive case by
several orders of magnitude for lower couplings, as we
show in Fig. 10. This is particularly relevant for the
marginal cases, μ ∼ 0.18Mpl.

FIG. 8. The preheating efficiency from kinetic preheating with
a quadratic potential in the case where χ is massless (black,
circles) and massive, mχ ¼ mϕ=2, (red triangles). Massive
preheating is more efficient here at higher coupling due to the
low amplitude resonance identified in the Floquet analysis in
Sec. IVA These are the maxima that correspond to the starred
points in Fig. 4.

ADSHEAD, GIBLIN, and TISHUE PHYS. REV. D 110, 043536 (2024)

043536-10



[1] Alan H. Guth, The inflationary universe: A possible solution
to the horizon and flatness problems, Phys. Rev. D 23, 347
(1981).

[2] Alexei A. Starobinsky, A new type of isotropic cosmologi-
cal models without singularity, Phys. Lett. 91B, 99 (1980).

[3] Andrei D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[4] Andreas Albrecht and Paul J. Steinhardt, Cosmology for
grand unified theories with radiatively induced symmetry
breaking, Phys. Rev. Lett. 48, 1220 (1982).

[5] Andrei D. Linde, Chaotic inflation, Phys. Lett. 129B, 177
(1983).

[6] Viatcheslav F. Mukhanov and G. V. Chibisov, Quantum
fluctuation and nonsingular universe. (In Russian), Pis’ma
Zh. Eksp. Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532
(1981)].

[7] Alan H. Guth and S. Y. Pi, Fluctuations in the new infla-
tionary universe, Phys. Rev. Lett. 49, 1110 (1982).

[8] S. W. Hawking, The development of irregularities in a single
bubble inflationary universe, Phys. Lett. 115B, 295 (1982).

[9] James M. Bardeen, Paul J. Steinhardt, and Michael S.
Turner, Spontaneous creation of almost scale—free density

FIG. 9. The gravitational wave spectral energy density from quadratic potential over a range of μ values for a massless χ field (left) and
massive χ field,mχ ¼ mϕ=2 (right). Simulations that reheat completely and last longer produce stronger gravitational wave backgrounds
that are particularly enhanced at the low frequency end of the resolved spectrum. These spectra are evaluated at the starred-locations
in Fig. 3.

FIG. 10. Maximum spectral energy density in the gravitational wave background as a function of coupling μ. The red triangles show
the case wheremχ ¼ mϕ=2, while the massless case,mχ ¼ 0, is shown in black circles. Each point represents the maximum value of the
gravitational wave spectra presented in Fig. 9.

GRAVITATIONAL WAVES FROM KINETIC PREHEATING PHYS. REV. D 110, 043536 (2024)

043536-11

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1016/0370-2693(82)90373-2


perturbations in an inflationary universe, Phys. Rev. D 28,
679 (1983).

[10] Katherine Freese, Joshua A. Frieman, and Angela V. Olinto,
Natural inflation with pseudo—Nambu-Goldstone bosons,
Phys. Rev. Lett. 65, 3233 (1990).

[11] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. X. Constraints on inflation, Astron. Astrophys.
641, A10 (2020).

[12] P. A. R. Ade et al. (BICEP, Keck Collaborations), Improved
constraints on primordial gravitational waves using Planck,
WMAP, and BICEP/Keck observations through the 2018
observing season, Phys. Rev. Lett. 127, 151301 (2021).

[13] Fedor L. Bezrukov and Mikhail Shaposhnikov, The stan-
dard model Higgs boson as the inflaton, Phys. Lett. B 659,
703 (2008).

[14] Renata Kallosh and Andrei Linde, Non-minimal inflation-
ary attractors, J. Cosmol. Astropart. Phys. 10 (2013) 033.

[15] Jong-Mann Yang, Michael S. Turner, G. Steigman, D. N.
Schramm, and Keith A. Olive, Primordial nucleosynthesis:
A critical comparison of theory and observation, Astrophys.
J. 281, 493 (1984).

[16] Jennie H. Traschen and Robert H. Brandenberger, Particle
production during out-of-equilibrium phase transitions,
Phys. Rev. D 42, 2491 (1990).

[17] Y. Shtanov, Jennie H. Traschen, and Robert H.
Brandenberger, Universe reheating after inflation, Phys.
Rev. D 51, 5438 (1995).

[18] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky,
Reheating after inflation, Phys. Rev. Lett. 73, 3195 (1994).

[19] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky,
Towards the theory of reheating after inflation, Phys. Rev. D
56, 3258 (1997).

[20] S. Y. Khlebnikov and I. I. Tkachev, Relic gravitational waves
produced after preheating, Phys. Rev. D 56, 653 (1997).

[21] Richard Easther and Eugene A. Lim, Stochastic gravita-
tional wave production after inflation, J. Cosmol. Astropart.
Phys. 04 (2006) 010.

[22] Richard Easther, John T. Giblin, Jr., and Eugene A. Lim,
Gravitational wave production at the end of inflation, Phys.
Rev. Lett. 99, 221301 (2007).

[23] Juan Garcia-Bellido and Daniel G. Figueroa, A stochastic
background of gravitational waves from hybrid preheating,
Phys. Rev. Lett. 98, 061302 (2007).

[24] Richard Easther, John T. Giblin, and Eugene A. Lim,
Gravitational waves from the end of inflation: Computa-
tional strategies, Phys. Rev. D 77, 103519 (2008).

[25] Jean Francois Dufaux, Amanda Bergman, Gary N. Felder,
Lev Kofman, and Jean-Philippe Uzan, Theory and numerics
of gravitational waves from preheating after inflation, Phys.
Rev. D 76, 123517 (2007).

[26] Jean-Francois Dufaux, Gary Felder, Lev Kofman, and Olga
Navros, Gravity waves from tachyonic preheating after
hybrid inflation, J. Cosmol. Astropart. Phys. 03 (2009) 001.

[27] Jean-Francois Dufaux, Daniel G. Figueroa, and Juan
Garcia-Bellido, Gravitational waves from Abelian gauge
fields and cosmic strings at preheating, Phys. Rev. D 82,
083518 (2010).

[28] Peter Adshead, John T. Giblin, and Zachary J. Weiner,
Gravitational waves from gauge preheating, Phys. Rev. D
98, 043525 (2018).

[29] Peter Adshead, John T. Giblin, Mauro Pieroni, and Zachary
J. Weiner, Constraining axion inflation with gravitational
waves from preheating, Phys. Rev. D 101, 083534 (2020).

[30] Peter Adshead, John T. Giblin, Mauro Pieroni, and Zachary
J. Weiner, Constraining axion inflation with gravitational
waves across 29 decades in frequency, Phys. Rev. Lett. 124,
171301 (2020).

[31] Catarina Cosme, Daniel G. Figueroa, and Nicolas Loayza,
Gravitational wave production from preheating with tri-
linear interactions, J. Cosmol. Astropart. Phys. 05 (2023)
023.

[32] Bruce A. Bassett, David I. Kaiser, and Roy Maartens,
General relativistic preheating after inflation, Phys. Lett.
B 455, 84 (1999).

[33] Anne M. Green and Karim A. Malik, Primordial black hole
production due to preheating, Phys. Rev. D 64, 021301
(2001).

[34] Karsten Jedamzik, Martin Lemoine, and Jerome Martin,
Collapse of small-scale density perturbations during pre-
heating in single field inflation, J. Cosmol. Astropart. Phys.
09 (2010) 034.

[35] Jérôme Martin, Theodoros Papanikolaou, and Vincent
Vennin, Primordial black holes from the preheating insta-
bility in single-field inflation, J. Cosmol. Astropart. Phys. 01
(2020) 024.

[36] Nathan Musoke, Shaun Hotchkiss, and Richard Easther,
Lighting the dark: Evolution of the postinflationary uni-
verse, Phys. Rev. Lett. 124, 061301 (2020).

[37] Pierre Auclair and Vincent Vennin, Primordial black holes
from metric preheating: Mass fraction in the excursion-set
approach, J. Cosmol. Astropart. Phys. 02 (2021) 038.

[38] Jérôme Martin, Theodoros Papanikolaou, Lucas Pinol, and
Vincent Vennin, Metric preheating and radiative decay in
single-field inflation, J. Cosmol. Astropart. Phys. 05 (2020)
003.

[39] Benedikt Eggemeier, Bodo Schwabe, Jens C. Niemeyer, and
Richard Easther, Gravitational collapse in the postinfla-
tionary Universe, Phys. Rev. D 105, 023516 (2022).

[40] Torsten Bringmann, Pat Scott, and Yashar Akrami, Im-
proved constraints on the primordial power spectrum at
small scales from ultracompact minihalos, Phys. Rev. D 85,
125027 (2012).

[41] Grigor Aslanyan, Layne C. Price, Jenni Adams, Torsten
Bringmann, Hamish A. Clark, Richard Easther, Geraint F.
Lewis, and Pat Scott, Ultracompact minihalos as probes of
inflationary cosmology, Phys. Rev. Lett. 117, 141102 (2016).

[42] Peter Adshead, John T. Giblin, Timothy R. Scully, and
Evangelos I. Sfakianakis, Magnetogenesis from axion in-
flation, J. Cosmol. Astropart. Phys. 10 (2016) 039.

[43] Mohamed M. Anber and Eray Sabancilar, Hypermagnetic
fields and baryon asymmetry from pseudoscalar inflation,
Phys. Rev. D 92, 101501 (2015).

[44] Peter Adshead and Evangelos I. Sfakianakis, Leptogenesis
from left-handed neutrino production during axion inflation,
Phys. Rev. Lett. 116, 091301 (2016).

[45] Kohei Kamada and Andrew J. Long, Baryogenesis from
decaying magnetic helicity, Phys. Rev. D 94, 063501
(2016).

[46] R. R. Caldwell and C. Devulder, Axion gauge field inflation
and gravitational leptogenesis: A lower bound on B modes

ADSHEAD, GIBLIN, and TISHUE PHYS. REV. D 110, 043536 (2024)

043536-12

https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1103/PhysRevD.28.679
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1088/1475-7516/2013/10/033
https://doi.org/10.1086/162123
https://doi.org/10.1086/162123
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.51.5438
https://doi.org/10.1103/PhysRevD.51.5438
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1103/PhysRevD.56.653
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1103/PhysRevLett.99.221301
https://doi.org/10.1103/PhysRevLett.99.221301
https://doi.org/10.1103/PhysRevLett.98.061302
https://doi.org/10.1103/PhysRevD.77.103519
https://doi.org/10.1103/PhysRevD.76.123517
https://doi.org/10.1103/PhysRevD.76.123517
https://doi.org/10.1088/1475-7516/2009/03/001
https://doi.org/10.1103/PhysRevD.82.083518
https://doi.org/10.1103/PhysRevD.82.083518
https://doi.org/10.1103/PhysRevD.98.043525
https://doi.org/10.1103/PhysRevD.98.043525
https://doi.org/10.1103/PhysRevD.101.083534
https://doi.org/10.1103/PhysRevLett.124.171301
https://doi.org/10.1103/PhysRevLett.124.171301
https://doi.org/10.1088/1475-7516/2023/05/023
https://doi.org/10.1088/1475-7516/2023/05/023
https://doi.org/10.1016/S0370-2693(99)00478-5
https://doi.org/10.1016/S0370-2693(99)00478-5
https://doi.org/10.1103/PhysRevD.64.021301
https://doi.org/10.1103/PhysRevD.64.021301
https://doi.org/10.1088/1475-7516/2010/09/034
https://doi.org/10.1088/1475-7516/2010/09/034
https://doi.org/10.1088/1475-7516/2020/01/024
https://doi.org/10.1088/1475-7516/2020/01/024
https://doi.org/10.1103/PhysRevLett.124.061301
https://doi.org/10.1088/1475-7516/2021/02/038
https://doi.org/10.1088/1475-7516/2020/05/003
https://doi.org/10.1088/1475-7516/2020/05/003
https://doi.org/10.1103/PhysRevD.105.023516
https://doi.org/10.1103/PhysRevD.85.125027
https://doi.org/10.1103/PhysRevD.85.125027
https://doi.org/10.1103/PhysRevLett.117.141102
https://doi.org/10.1088/1475-7516/2016/10/039
https://doi.org/10.1103/PhysRevD.92.101501
https://doi.org/10.1103/PhysRevLett.116.091301
https://doi.org/10.1103/PhysRevD.94.063501
https://doi.org/10.1103/PhysRevD.94.063501


from the matter-antimatter asymmetry of the Universe,
Phys. Rev. D 97, 023532 (2018).

[47] Peter Adshead, Andrew J. Long, and Evangelos I.
Sfakianakis, Gravitational leptogenesis, reheating, and mod-
els of neutrino mass, Phys. Rev. D 97, 043511 (2018).

[48] Valerie Domcke, Benedict von Harling, Enrico Morgante,
and Kyohei Mukaida, Baryogenesis from axion inflation, J.
Cosmol. Astropart. Phys. 10 (2019) 032.

[49] Valerie Domcke, Kohei Kamada, Kyohei Mukaida, Kai
Schmitz, and Masaki Yamada, Wash-in leptogenesis after
axion inflation, J. High Energy Phys. 01 (2023) 053.

[50] Andrei Linde, Dong-Gang Wang, Yvette Welling, Yusuke
Yamada, and Ana Achúcarro, Hypernatural inflation, J.
Cosmol. Astropart. Phys. 07 (2018) 035.

[51] Matteo Braglia, Dhiraj Kumar Hazra, Fabio Finelli, George
F. Smoot, L. Sriramkumar, and Alexei A. Starobinsky,
Generating PBHs and small-scale GWs in two-field models
of inflation, J. Cosmol. Astropart. Phys. 08 (2020) 001.

[52] Renata Kallosh and Andrei Linde, Dilaton-axion inflation
with PBHs and GWs, J. Cosmol. Astropart. Phys. 08 (2022)
037.

[53] Renata Kallosh and Andrei Linde, Polynomial α-attractors,
J. Cosmol. Astropart. Phys. 04 (2022) 017.

[54] Peter Adshead, John T. Giblin, and Reid Pfaltzgraff-
Carlson, Kinetic preheating after α-attractor inflation,
arXiv:2311.17237.

[55] Tomasz Krajewski, Krzysztof Turzyński, and Michał
Wieczorek, On preheating in α-attractor models of inflation,
Eur. Phys. J. C 79, 654 (2019).

[56] Oksana Iarygina, Evangelos I. Sfakianakis, Dong-Gang
Wang, and Ana Achucarro, Universality and scaling in
multi-field α-attractor preheating, J. Cosmol. Astropart.
Phys. 06 (2019) 027.

[57] Oksana Iarygina, Evangelos I. Sfakianakis, Dong-Gang
Wang, and Ana Achúcarro, Multi-field inflation and pre-
heating in asymmetric α-attractors, arXiv:2005.00528.

[58] Junmei Li, Hongwei Yu, and Puxun Wu, Production of
gravitational waves during preheating in α-attractor infla-
tion, Phys. Rev. D 102, 083522 (2020).

[59] Tomasz Krajewski and Krzysztof Turzyński, (P)reheating
and gravitational waves in α-attractor models, J. Cosmol.
Astropart. Phys. 10 (2022) 005.

[60] Ana Achúcarro, Renata Kallosh, Andrei Linde, Dong-Gang
Wang, and Yvette Welling, Universality of multi-field α-
attractors, J. Cosmol. Astropart. Phys. 04 (2018) 028.

[61] Josu C. Aurrekoetxea, Katy Clough, and Francesco Muia,
Oscillon formation during inflationary preheating with
general relativity, Phys. Rev. D 108, 023501 (2023).

[62] I. L. Bogolyubsky and V. G. Makhankov, On the pulsed
soliton lifetime in two classical relativistic theory models,
JETP Lett. 24, 12 (1976).

[63] I. L. Bogolyubsky and V. G. Makhankov, Dynamics of
heavy spherically-symmetric pulsons, Pis’ma Zh. Eksp.
Teor. Fiz. 25, 120 (1977).

[64] Marcelo Gleiser, Pseudostable bubbles, Phys. Rev. D 49,
2978 (1994).

[65] Edmund J. Copeland, M. Gleiser, and H. R. Muller, Oscil-
lons: Resonant configurations during bubble collapse, Phys.
Rev. D 52, 1920 (1995).

[66] S. Kasuya, M. Kawasaki, and Fuminobu Takahashi, I-balls,
Phys. Lett. B 559, 99 (2003).

[67] Paul M. Saffin and Anders Tranberg, Oscillons and quasi-
breathers in Dþ 1 dimensions, J. High Energy Phys. 01
(2007) 030.

[68] Mark P. Hertzberg, Quantum radiation of oscillons, Phys.
Rev. D 82, 045022 (2010).

[69] Mustafa A. Amin, Richard Easther, Hal Finkel, Raphael
Flauger, and Mark P. Hertzberg, Oscillons after inflation,
Phys. Rev. Lett. 108, 241302 (2012).

[70] Petja Salmi and Mark Hindmarsh, Radiation and relaxation
of oscillons, Phys. Rev. D 85, 085033 (2012).

[71] Stefan Antusch, Francesco Cefala, Sven Krippendorf,
Francesco Muia, Stefano Orani, and Fernando Quevedo,
Oscillons from string moduli, J. High Energy Phys. 01
(2018) 083.

[72] Fuminori Hasegawa and Jeong-Pyong Hong, Inflaton frag-
mentation in E models of cosmological α-attractors, Phys.
Rev. D 97, 083514 (2018).

[73] Marcelo Gleiser and Max Krackow, Resonant configura-
tions in scalar field theories: Can some oscillons live
forever?, Phys. Rev. D 100, 116005 (2019).

[74] Stefan Antusch, Francesco Cefalà, and Francisco Torrentí,
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