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Convolutional neural networks (CNNs) have recently been applied to cosmological fields—weak
lensing mass maps and Galaxy maps. However, cosmological maps differ in several ways from the vast
majority of images that CNNs have been tested on: they are stochastic, typically low signal-to-noise per
pixel, and with correlations on all scales. Further, the cosmology goal is a regression problem aimed at
inferring posteriors on parameters that must be unbiased. We explore simple CNN architectures and present
a novel approach of regularization and data augmentation to improve its performance for lensing mass
maps. We find robust improvement by using a mixture of pooling and shuffling of the pixels in the deep
layers. The random permutation regularizes the network in the low signal-to-noise regime and effectively
augments the existing data. We use simulation-based inference to show that the model outperforms CNN
designs in the literature. Including systematic uncertainties such as intrinsic alignments, we find a 30%
improvement over unoptimized CNNs and power spectrum in the constraints of the S8 parameter for
simulated Stage-III surveys. We explore various statistical errors corresponding to next-generation surveys
and find comparable improvements. We expect that our approach will have applications to other
cosmological fields as well, such as Galaxy maps or 21-cm maps.
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I. INTRODUCTION

The large scale structure (LSS) of the Universe contains
crucial information about its late-time growth history and
fundamental physics. Over the past few decades, a diverse
array of probes has been employed to study these struc-
tures, each contributing significantly to our understanding
of the Universe. Prominent among these are the Stage-III
LSS surveys, which include the Dark Energy Survey (DES)
[1–3], the Kilo-Degree Survey [4–6], the Hyper Suprime-
Cam Subaru Strategic Program [7–9], and the Baryon
Oscillation Spectroscopic Survey [10–12].
The upcoming Stage-IV LSS surveys, including Rubin

Observatory’s Legacy Survey of Space and Time (LSST)
[13], the Roman Space Telescope [14], and the recently
launched Euclid mission [15], in combination with the
Dark Energy Spectroscopic Instrument [16], are or will be
gathering data soon. All these efforts will shed light on two
of the most mysterious problems in physics: dark matter
and dark energy.
One of the most important analytical tools used in these

studies is the two-point correlation function. This function
links observational measurements with theoretical predic-
tions derived from perturbation theory. However, the
two-point correlation function only captures the Gaussian
information.

A variety of non-Gaussian statistics have thus been
proposed to study cosmological fields. These include the
three-point function and bispectrum [17–19], peaks and
voids [20–25], Minkowski functionals [26–28], Betti num-
bers and persistent homology [29–32], k-th nearest neigh-
bor (k-NN) and cumulative distribution function (CDF)
[33,34], and wavelet transform based statistics [35–40]. See
Ref. [41] for a forecast with the settings of the Euclid
Mission.
Most recently, machine learning has been used to

extract cosmological information at the field level,
particularly with convolutional neural networks (CNN)
[42–52], graph neural networks (GNN) [53–56], and
generative models [57–61].
Neural networks generally surpass traditional Gaussian

statistics in constraining cosmologies, such as the power
spectrum. However, the extent of the improvement can vary
significantly depending on the realism of the simulations
and the scales considered. When compared to other non-
Gaussian statistics, the situation is more complicated. For
instance, several studies [42,44] have suggested that CNNs
outperform peak count methods, whereas others have
pointed out that their enhancement over Minkowski func-
tionals is only moderate [47]. Moreover, there are scenarios
where CNNs appear not to perform as effectively as other
methods, such as the scattering wavelet transform [35], or
even the power spectrum with the presence of more realistic*Contact author: kunhaoz@sas.upenn.edu

PHYSICAL REVIEW D 110, 043535 (2024)

2470-0010=2024=110(4)=043535(18) 043535-1 © 2024 American Physical Society

https://orcid.org/0000-0002-6098-4991
https://orcid.org/0000-0001-6134-8797
https://ror.org/00b30xv10
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.043535&domain=pdf&date_stamp=2024-08-29
https://doi.org/10.1103/PhysRevD.110.043535
https://doi.org/10.1103/PhysRevD.110.043535
https://doi.org/10.1103/PhysRevD.110.043535
https://doi.org/10.1103/PhysRevD.110.043535


systematics [62]. In other words, even though the CNN
often contains thousands of free parameters to approximate
the underlying function, it might not be suitable to directly
apply the commonly used classification-oriented CNN in
cosmology. Such insights are crucial for guiding future
research and methodology choices in the field of cosmol-
ogy, particularly in the integration and application of
machine learning techniques.
In this paper, we explore modifications to the archi-

tecture of CNNs to enhance their performance in cosmo-
logical tasks. Cosmological maps such as weak lensing
mass maps differ from images used to develop CNNs in
that they are stochastic and low signal to noise. Moreover,
we use them for cosmological inference, which is a
regression task instead of classification as is typically done
in industry. So we explore a variety of regularization and
data augmentation schemes in applying CNNs on lensing
maps. Our preliminary findings suggest that employing a
combination of maximum and average pooling improves
the network’s ability to extract relevant information. We
also introduce a novel regularization scheme rooted in our
understanding of cosmological fields: the incorporation of
random permutation layers designed to effectively augment
the training data by sacrificing the information of large-
scale correlation. We demonstrate the effectiveness of this
straightforward technique for statistical noise levels
expected in current and upcoming weak lensing surveys.
We also include a number of sources of systematic
uncertainty.
Additionally, we conduct comparative analyses with

conventional regularization methods and alternative strat-
egies that disrupt large-scale correlation. Our initial results
indicate that the permutation operation directly applied to
the latent space of the neural network consistently boosts
accuracy in both the simplified and realistic simulation
cases considered in this work. This suggests that by
selectively filtering out large-scale information in the
deeper layers, the neural network exhibits enhanced per-
formance in extracting information from more critical
scales. We anticipate that this simple regularization tech-
nique holds promise for improving not only weak lensing
fields but also other stochastic fields, such as Galaxy maps
or 21-cm maps. We do not assert that our architecture
represents the optimal model as we have not carried out a
systematic study for all possible use cases.
The structure of this paper is as follows: In Sec. II we

describe the simulations we used for this work, the
preprocessing of the data, and the simulation-based
inference setup. In Sec. III we discuss how the CNN
for cosmological fields should be different from the
standard design for image classification. In Sec. IV we
present the random permutation layer as a regularization
scheme that helps model generalization. We summarize
the findings and outlook for future work in Sec. V, and we
perform extensive tests comparing to other models in the
Appendixes.

II. METHODOLOGY

A. Simulation of weak lensing convergence field

For this work, we use weak lensing mass maps (i.e.,
maps of the weak lensing convergence field) created from
the DarkGridV1 N-body simulation suite [63,64]. The
DarkGridV1 suite consists of ΛCDM-only simulations
that vary two parameters, Ωm and σ8, exploring 57 different
cosmologies.1 Each cosmology is represented by five
independent full-sky simulations. The simulations have
been produced using the PKDGRAV3 code [65]; the code
produces particle number counts at different redshifts (100
redshifts from z ¼ 49 to z ¼ 0.0), provided as HEALPIX

[66] maps. For this work, we downsample the resolution of
the original maps to NSIDE = 512, corresponding to a pixel
resolution ≈6.9 arcmin. To create weak lensing mass maps,
we follow a procedure similar to that in [67,68]. First,
noiseless convergence maps are produced from the particle
counts for each redshift shell assuming the Born approxi-
mation [69]. Noiseless shear maps, for each redshift shell,
are obtained from the convergence maps using a generali-
zation of the Kaiser-Squires algorithm [70,71]. Then, we
consider two cases.

1. Simulation case 1—no observational
systematics or tomography

In case 1, we simplify the map-making procedure, and
we choose to not include observational systematics in the
modeling. We first generate integrated DES-Y3-like shear
maps, by weighting the shear maps as a function of redshift
by the DES-Y3 redshift distributions [72]. To simplify
and reduce the number of maps generated, we focus on
just one of the four DES redshift bins, specifically the
third bin. Next, we introduce Gaussian noise to the shear
maps. This noise is assumed to have a per-pixel value of
σ ¼ σe=

ffiffiffiffiffiffiffiffi
Neff

p
, where σe ¼ 0.26 represents the shape

noise, and Neff ¼ 5.6 × Apixel is the effective number of
galaxies per pixel. This is equivalent to adding σ ¼
σe=

ffiffiffiffiffiffiffiffiffiffiffi
2Neff

p
to the convergence (mass) map as used in

Ref. [43]. Note that here we have used the number density
of the full DES-Y3 shear sample, not just that of the third
bin. This approach is intended to yield cosmological
constraints similar to the entire DES-Y3 survey, even
though we are using only one tomographic redshift bin.
Next we cut 12 nonoverlapping square patches from the
full-sky mass maps; each patch is 512 × 512 pixels (see
Fig. 1), and is chosen to be centered on the center of a
HEALPIX pixel with a resolution NSIDE = 1. For the 285 full-
sky simulations we generated, we have 285 × 12 ¼ 3420
patches in total.

1The samples are chosen to follow lines of approximately
constant S8. See Fig. 2 of Ref. [63] for the grid spanning the
Ωm–σ8 plane.
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2. Simulation case 2—full map-making procedure

In case 2, we produce weak lensing maps using the full
procedure implemented in [67,68]. The procedure produces
four maps, one for each of the four DES tomographic bins.

Moreover, a DES footprint (fixed mask for bright galaxies;
see Fig. 1) is applied. Each map also includes observational
and astrophysical systematics, namely redshift uncertain-
ties, shear biases, intrinsic alignment [in the form of
the nonlinear alignment model], and source clustering.
These are managed using various nuisance parameters.
Practically, for each map, we forward model these effects
by randomly selecting the nuisance parameters that control
them from their respective priors—see [68] for details. In
this case, we only train using a single patch of the same
galaxy mask, approximately centered at the center of the
DES footprint (see Fig. 1). For each full-sky simulation
with the same cosmology, we shift and rotate the DES
footprint four times to generate four nonoverlapping maps.
For the 2280 full-sky simulations we generated, we thus
have 2280 × 4 ¼ 9120 patches in total.
In both cases, the training set is images of size 512 × 512

with a resolution of 6.9 arcmin, which corresponds to
3367 degree2. In case 1 images have one channel, while in
case 2 images have four channels, one for each tomo-
graphic bin. These maps are significantly larger than
previous works [42–44,47,49,50,73] allowing us to use
one patch to represent the survey area. Using a larger patch
also has the benefit of keeping more modes. We tested the
six-layer CNN model in comparison to cutting to smaller
patches of size 256 × 256, or 128 × 128. Although the total
training set is larger with smaller patches, we observed a
lower accuracy of the CNN, especially in the case of galaxy
masks. Therefore, we use the large 512 × 512 image in this
work. Note that the large sky area of a single projection
breaks the flat-sky approximation. This in theory would not
produce a biased result since it is part of the data
compression for simulation-based inference as discussed
in Sec. II C. However, in the future we will extend the work
to the curved sky, e.g., with structures as presented in [53].

B. Data augmentation and training

Prior to training, we add random Gaussian noise to each
pixel as a data augmentation technique, particularly effec-
tive for noisy images [74]. In our methodology, we apply
Gaussian noise with a mean equal to the image’s mean
value and a standard deviation equivalent to 10% of the
original image’s standard deviation. In this work, we add
this to all images (training, validation, and test). The noise
level remains almost unchanged since it increases byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.12

p
. Note that since the additional noise is added

according to each image and each channel, it is different
from the global shape noise where the variance is fixed for
all maps. While Ref. [43] demonstrates the efficacy of
augmenting data through random rotation and flipping, we
observe no significant difference with these methods. The
difference may be attributed to our approach of extracting
patches from nonoverlapping regions of the full sky.
Although our data augmentation strategy differs from
previous studies, we emphasize its importance as it

FIG. 1. Upper panel: example patch of the weak lensing mass
maps for simulation case 1, in which no mask is applied and only
one tomographic bin is used. The side length is 58 degrees and is
given in pixel units. Lower panel: example patch for simulation
case 2, which includes a mask that follows the DES footprint. The
figure shows the third of the four tomographic bins. For
visualization purposes, we show the kappa map in log scale,
and both figures share the same color range. For the rest of this
work when training the neural network and other comparisons,
we keep the maps in the physical linear scale and do not
normalize them in training.
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improves the test error by ∼25%. This approach is also
applied to the entire masked map, ensuring that the aug-
mented map assigns nonzero values to the masked regions.
This procedure can be optimized for future exercise. For
example, using a dynamic approach such that different noise
is added while training, the strengths of the noise can also
decay away as the model is trained for more epochs.
We train separate CNNs for inferring S8 and Ωm, as the

training time is short (15 mins for simulation case 1, and
1 hour for simulation case 2 on one A100 GPU). This
approach also mitigates the issue of degeneracy when
inferring two parameters simultaneously in a single net-
work. In this work, we chose the mean square error (MSE)
as the loss function, and we report both the root mean
square error (RMSE) and the coefficient of determination
(R squared) in the test results, which provides comple-
mentary information of goodness of fit. Although MSE is
widely adopted, alternative loss functions can significantly
influence results. For instance, had we noticed a tendency
for biased predictions at extreme input values, adopting a
log function could have been beneficial to more heavily
penalize such discrepancies. Since we did not have such
biases for the prediction, we kept MSE in this work. The
dataset is randomly divided into 80% for training, 10% for
validation, and 10% for testing. The last 10% test set data is
then used for the simulation-based inference. We note that
in [43] a more careful division method based on the initial
conditions of simulations is utilized. Since our simulation
only has 58 different cosmologies, we expect this not to be
an issue as the validation set effectively covers the full
sampling regions.
The CNN is implemented using PYTORCH [75] and

trained using the ADAMW [76] optimizer. We use a batch
size of 16 and a total epoch of 200. A learning rate
scheduler, REDUCELRONPLATEAU, is used with a reduction
factor of 0.3 (default is 0.1). For all other hyperparameters
not explicitly mentioned, we use PYTORCH-V1.13’s default
settings. Due to computational resource limits, we did not
show every test with averaging over different random
seeds. The random seeds in training affect the weight
initialization and also the training-validation split, and thus
affect the final results. However, we tested in a few cases
with different random seeds and found the variance of
RMSE to be as small as ΔRMSE ∼ 0.01%, which is
partially because we trained for long enough epochs. We
hold hyperparameters with respect to training the same for
all tests in this paper. We observe effective convergence
with this substantial number of epochs. However, it is
noteworthy that quasi-Newtonian optimization methods,
such as L-BFGS [77] or the Levenberg–Marquardt algo-
rithm [78], are theoretically more suitable for parameter
inference where accuracy is more important. Yet, their
application often demands substantial memory due to the
Jacobian computation. An effective quasi-Newtonian opti-
mizer should be helpful for precision cosmology.

C. Simulation-based inference

We do not use neural networks to directly infer poste-
riors; for that one usually needs to assume a Gaussian
likelihood. Instead, we use the neural density estimator
(NDE) package PYDELFI introduced in [79]. Our CNN thus
serves as a field-level data compressor similar to the
DEEPCOMPRESSOR in [48]. PYDELFI provides different flow
models for neural density estimation. In this paper, we use
masked autoregressive flows (MAF) [80], which is a
stacked version of masked autoencoders for distribution
estimation [81] with normalizing flow. The network of the
NDE is trained to minimize the Kullback-Leibler (KL)
divergence [82] between the true probability distribution
and the proposed probability distribution. The true like-
lihood is of course unknown, but it is reduced to a constant
in calculating the expectation value of the KL divergence
over the implicit prior (the prior set by the distribution of
the point cloud of parameter values used for the training
simulations). For details, see [48,79,83].
In this work, we stack two MAFs with two and three

hidden layers of length 50. Since one patch corresponds to
approximately 3367 square degrees of the sky, we infer the
posterior using only one image. Note that the simulations
used for NDE training are the test set that is not used for
CNN training or validation. After the isolikelihood surface
is learned, we use the affine Markov chain Monte Carlo
(MCMC) sampler EMCEE [84] to get the final posterior with
a flat prior of S8 ∈ ½0.45; 1.1� and Ωm ∈ ½0.1; 0.5�. For the
purpose of forecasting, we average over nine predicted
values of the same underlying cosmology as the target
vector (in our case S8 and Ωm). This way the posterior is
more centered and minimizes the effect of the prior, which
allows us to make a more direct comparison of the
constraining power.
We follow previous work on the validation for simu-

lation-based inference (SBI) via the empirical coverage test
[85–87], which plots the expected coverage probability
(usually from the highest posterior density) vs the credible
region. For a calibrated posterior with enough samples of
the coverage test, one should find that the true parameter is
contained within the X% credible region for X% times of
the tests. This plot, often called the p-p plot, is not unique
to SBI as it is used for comparing two probability
distributions in general. In this work, we use a test of
accuracy with random points (TARP) [87], which is a more
computationally efficient way of performing the coverage
test. It is important to note that the coverage test aims to
verify that the posterior learned from NDE is neither
overconstrained nor underconstrained. A failed result
would suggest that the NDE network is not suitable for
the given problem, e.g., leading to overfitting. As shown in
Sec. IV, the results we obtain are well calibrated.
SBI, also called likelihood-free inference, is an emerging

field and has been applied to cosmology in several recent
studies [83,88–90]. The results for the inferred likelihood
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have been tested for summary statistics that have an explicit
form of the likelihood such as the power spectrum
[40,48,91]. However, a robust convergence criterion and
calibration of misspecification are missing. Various other
robustness tests have been proposed to check that the
results are not biased or overestimated [92,93]. Since the
main topic of this paper is to improve the CNN for data
compression, we do not further examine the robustness of
SBI in the presence of model misspecification.

III. CNN FOR COSMOLOGICAL FIELDS

Unlike the prevalent use of CNNs in image recognition
tasks, their application in cosmology typically addresses
regression problems rather than image classification. In this
context, the precision of the output is most important.
Moreover, the input data in cosmology, in particular weak
lensing fields, significantly differ from conventional
images, such as those of cats and boats and others that
are part of ImageNet [94], the long-standing industry
benchmark for image classification algorithms. As depicted
in Fig. 1, the weak lensing field is stochastic, low signal to
noise, and has correlations on all scales. We seek a CNN
approach that is simple and generalizable, rather than
adopting complex architectures like ResNet [95] or
VGGNet [96] that have been optimized for classifica-
tion tasks on images in other domains. Prior research
[42–44,47,49,50,73] employing CNNs for analyzing weak
lensing fields has yielded promising results using relatively
simple architectures.
Our six-layer CNN model, as shown in Fig. 2, incor-

porates a notable departure from previous designs
[42–51], where either the maximum pooling or the
average pooling is used. Instead, we have combined the
use of maximum pooling and average pooling layers. One
motivation for us to use maximum pooling in the initial
layers is driven by the observation that positive extreme
values in our pixels correspond to galaxy clusters which
are known to carry valuable cosmological information.
Indeed, a study of CNNs using saliency maps for lensing
mass maps [47] found that clusters are more informative
than voids in the presence of realistic noise. Conversely,
deeper layers, correlating distant sky regions of the
original map, may require equitable consideration.
Here, our choice to switch to average pooling facilitates
better generalization in the subsequent multilayer percep-
tron (MLP) layers. We test these choices as discussed
below and in Appendix. A.
We tested both simulation cases 1 and 2 and also

increased the effective galaxy density (lower noise) to
approximately represent future LSST and Roman weak
lensing surveys. As shown in Table VI we reduced the
noise by assuming 2× and 4× the effective number density
of source galaxies, which roughly span the range of
expectations for LSST Year 1-10 data (we do not attempt
to simulate the redshift coverage of those surveys).

However, the best pooling option does not appear to
correlate with the noise level. In fact, the average pooling
is similar to or better than the mix pooling. When training
with average pooling on Ωm though, the network fails to
converge. We also tested extreme pooling with the largest
absolute value (which then includes underdense extrema)
and found no difference in the final results. For this reason,
we use the mixed pooling as our baseline choice. One
caveat is that the extreme valued pixels could also be the
ones most affected by noise or limitations in the simulations
or unmodeled effects; this becomes more of a concern for
smaller pixel values than ours. Adopting pooling layers in a
Bayesian way could potentially overcome this problem [97].
It is important to note that this architecture is not optimal

for every scenario, such as when dealing with patches of
different sizes or different choices of systematic uncertain-
ties. Furthermore, we only optimize the architecture for the
inference of S8 while a better design for Ωm is likely
different and merits follow-up work.
Nonetheless, our findings below show that simple,

physics-inspired modifications to a CNN can significantly
improve accuracy. This encourages the pursuit of tailored
models for specific problems in cosmology, rather than
relying on existing architectures primarily designed for
image classification.

IV. CNN WITH RANDOM PERMUTATION
LAYERS

Adding randomness is a common way in machine
learning to improve the generalization accuracy. In this
section, we introduce such a technique: random permuta-
tion of the pixels in the deeper layers of the network that
correspond to large scales.
Figure 2 illustrates our design and the positions where

we replace the normal design with the random permutation
layers. The network is designed similarly to a VGG net
[96]. In this work, we use nch ¼ 8 channels in the first
layer, with nch increasing by a factor of 2 for successive
deeper layers. The three “options” shown involve replacing
the deeper layers with a random permutation layer followed
by convolution and activation at different depths as
indicated (note that the arrows do not indicate skip
connections). There is always an extra convolutional layer
with an activation function followed by the random
permutation layer to make the shuffling effective and
efficient. The random permutation layer shuffles (random-
izes) the position of each pixel of the feature map.
As an example, if we add the permutation layer before

convolution layer 6 (option 1), the input is the feature map
of size 8 by 8 for 128 channels. The random permutation
operation shuffles these 8 × 8 pixels randomly, and we
perform different shuffles for each 128 channel. Each pixel
in this feature map approximately corresponds to
512=8 × 6.8 ≈ 435.2 arcmin. At this scale, the two-point
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correlation has a large sample variance. We find that by
removing the information at large scales in the deeper
layers, the neural network optimizes for the scales that are
more relevant for cosmology. Moreover, it appears to
extract some of the large-scale information in the earlier
layers, though as discussed below we do not yet understand
exactly how it does that. The shuffling operation can be
inserted at different positions in the network, depending on
the scale of which noise dominates over the signal. Note
that this way of calculating scales is only approximate.
In this work, the shuffle is different for each batch, each

channel, and changes every epoch. Note that the four
tomographic bins have the same random permutation
(shuffle) applied.2 The convolution operation makes this
shuffle effective. Otherwise, the data would be the same
with the global pooling. One can also flatten the deep layer
pixels, but that would increase the MLP size, and we show
in Table III that it decreases accuracy. We perform addi-
tional tests in Sec. IVA.
A pseudocode in PYTORCH is displayed in Algorithm 1.

Only the lines associated with the random permutation

operation are shown. Note that the SELF_TRAINING variable
might not be effective depending on the version of
PYTORCH. In that case, a customized variable should be
used. This is also optional as in some cases random
shuffling in both training and validation could boost the
overall accuracy. Similar to this, we can also easily define
the model to only shuffle the pixels after every N epoch.
We test the positions of the shuffling operation for

simulation cases 1 and 2. As shown in Fig. 3, the accuracy
depends on where we perform the shuffling. For simulation
case 1 it is the second to the last layer, and for simulation
case 2 it is the third to the last layer. The simplification
effectively makes them five-layer and four-layer models
respectively. In general, we expect the results to depend on
the underlying variation of cosmologies, the noise level,
tomographic binning, patch size, training set size, and other
details. In particular, it will be interesting to see how
increasing sample variance at large scales impacts the
choice of the network [98]. To ensure a fair comparison,
we also varied the depth of the nonshuffled CNN and found
the six-layer one works the best (see Appendix B). For
comparison with traditional Gaussian 2-point statistics, we
include the results of the power spectrum as well. We
present the details of training 1D vectors in Appendix F.
The errors on the test set for both simulation cases are

conv1

conv3
conv4

conv6
FC7 FC8 FC9

nch x 510 x 510 == Output Size: [channel, height, width]

2nch x 253 x 253

8nch x 60 x 60

16nch x 32 x 32
32nch x 8 x 8 N x 1

128

Convolution + Leaky ReLU

Maximum pooling

Fully connected + Leaky ReLU

Average pooling

64 32 1

conv5

4nch x 124 x 124

conv2

FC10

Option 3

Random Permutation Layer

Option 2

Option 1

FIG. 2. The six-layer CNN design used in our study, including the optional random permutation blocks. The network is designed
similarly to a VGG net [96]. In this work, we use nch ¼ 8 channels in the first layer, with nch increasing by a factor of 2 for successive
deeper layers. The three “options” shown involve replacing the deeper layers with a random permutation layer followed by convolution
and activation at different depths as indicated (note that the arrows do not indicate skip connections). In option 1, one extra random
permutation layer is added without any change to the six-layer CNN design. For option 2 and option 3, the random permutation is
performed at earlier layers. There is always an extra convolutional layer with an activation function followed by the random permutation
layer to make the shuffling effective and efficient. See Sec. IV for more detailed discussions. Note that we also mix average and
maximum pooling layers: see Sec. IV for details. The blocks shown in this figure are not to scale.

2This is due to the fact that we use the Conv2d function imple-
mented in Pytorch https://pytorch.org/docs/stable/generated/
torch.nn.Conv2d.html.
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shown in Fig. 4 and Fig. 5 respectively. The posteriors for
the two parameters are shown in Fig. 6. We found that the
CNN with shuffling the standard deviation of S8 is 30%
smaller than the nonshuffle case. When compared to the
power spectrum, the unoptimized CNN does not give more
constraining power by itself, which is similarly found in the
recent study that uses similar simulations and map-making
processes [62]. We also show the results that combine the
CNN and power spectrum. We concatenate the two com-
pressed data vectors and retrain the NDE to learn the
likelihood surface. The nonshuffled CNN benefits a lot
from the combination with the power spectrum, giving a
20% smaller standard deviation in S8, whereas the shuffled-
CNN only improves by 8%. Comparing the CNNþ PS
results to the power spectrum alone, we found 27%
improvement for nonshuffled CNN and 36% for
shuffled CNN.
Note that the CNN for the two cases is optimized

separately, and indeed it is also different for S8 and Ωm.
In particular, it is the six-layer model for nonshuffle for S8,
the four-layer model for nonshuffle for Ωm, and four-layer
model for shuffle CNN (option 3). To make the comparison
for the same CNN model with the same weight size, we use
shuffle option 1 for S8 as well and get a 17% improvement
on the standard deviation of S8. However, it is important to
note that this change of layer depths only helps the shuffle
CNN, while the nonshuffle CNN suffers from insufficient
depth in our case.
We applied the TARP coverage test with 58 simulations

(as there are only 58 independent cosmologies for the
S8-Ωm plane), and found the posterior is well calibrated as

FIG. 3. The test errors for two simulation cases are shown for
different positions of the random permutation layers. Solid lines
mean the shuffling case and dashed lines for the corresponding
network without shuffling. “Conv 6” denotes adding the shuffling
operation before the final convolution, namely option 1 in Fig. 2.
On the other hand, “Conv 1” refers to the first layer, so every pixel
of the input image is randomly permuted (which leads to a higher
loss as expected). While it is clear that shuffling is effective only
in the deeper layers, the best shuffling position varies for the two
cases and is not necessarily the final layers—possibly because
either option 2 or 3 leads to a simplified MLP structure (see
Fig. 2). We also notice that the training fails to give meaningful
results if the network is too shallow and without shuffling for
regularization.

ALGORITHM 1. Pytorch pseudocode of CNN with random permutation.

class ShuffledCNN:
def __init__(self):

//Initialize CNN layers here

def randomize_images(self, tensor, image_size):
x_flat = tensor.view(-1, image_size*image_size)
idx = torch.stack([torch.randperm(image_size*image_size) for _ in range(x_flat.size(0))])
if tensor.is_cuda:

idx = idx.cuda()
x_randomized_flat = torch.gather(x_flat, 1, idx)
x_randomized_flat.view(tensor.shape[0], tensor.shape[1], image_size, image_size)

def forward(self, x):
// Implement the initial forward pass here
// Randomly permute the feature maps at corresponding position
if self.training: // This is optional

x = self.randomize_images(x, x.shape[-1])
x = self.conv6(x)
x = self.LeakyReLU(x)
x = self.pool6(x)
// Implement the rest forward pass here
return x
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shown in Fig. 7. As an additional sanity check, we applied
our CNN on Gaussian random fields and tested that the
CNN does not give a more constraining posterior than
using the power spectrum as the summary statistics.

A. Experiments to understand the improvement

To get insights into the source of these improvements, we
conducted a series of experiments, varying the models and
altering the training datasets. We plot in Fig. 8 the loss
function decay for two models with and without shuffling.
The six-layer CNN nonshuffle model can fit the underlying

data very well as suggested by the training loss, but it does
not generalize well to the validation or test set. The four-
layer CNN with shuffling, however, can generalize very
well, even though it does not fit the training set as well. This
demonstrates that the shuffling technique is effective in
preventing overfitting. One hypothesis is that the six-layer
nonshuffle model suffers from coadaptation—a scenario
where certain neurons become highly interdependent,
leading to overfitting with new test inputs [99,100]. The
shuffling prevents any large-scale outliers from signifi-
cantly affecting the results.

FIG. 4. Comparison of the test error in S8 with and without shuffling (random permutation) for simulation case 1 (case 2 is shown in
Fig. 5). Left panel: six-layer CNN with no shuffle. Right panel: shuffled CNN (option 2 in Fig. 2 which corresponds to a five-layer
CNN), which corresponds to removing correlations for scales larger than 109 arcmin. Note the significant improvement due to shuffling
for the full range of values of S8. The two panels in this figure represent the best results we found for nonshuffle and with shuffle.

FIG. 5. Comparison of the test error in S8 with and without shuffling for simulation case 2 (with mask and tomography). Left panel:
six-layer CNN with no shuffle. Right panel: shuffled CNN (option 3 in Fig. 2 which corresponds to a four-layer CNN), which removes
correlations for scales larger than 56 arcmin. The two panels in this figure represent the best results we found for nonshuffle and with
shuffle. (If we shuffle at deeper layers, the performance is degraded to RMSE ≈ 3.0% but is still better than the nonshuffle case).
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One case of special interest is when we directly shuffle
the original images. As shown in Fig. 9, the result worsens
but by less than a factor of 2, which is not as bad as one
might expect in the context of standard image analysis,
since no structure of the image is retained. However, in
cosmology, it is known that the 1-point probability dis-
tribution function (PDF) of the image pixels has useful
information as it is the PDF of the projected density. In
particular, it includes its variance, the smoothed two-point
function. The pixel scale in our original image corresponds

FIG. 7. Empirical coveragevs credibility level.Awell-calibrated
posterior closely aligns with the identity line, indicating that the
CNN compression is neither overconstrained nor undercon-
strained. The lines are generated with TARP [87], as discussed
in Sec. II C.

FIG. 6. The posterior inferred using simulation-based inference for
simulation case 2. Upper panel: comparison between using two
CNNs and the power spectrum. Comparing the optimizedCNNwith
shuffle regularization, we found the improvement in the standard
deviation of marginalized S8 to be 30% over the nonshuffled CNN
and power spectrum. The Figure of Merit ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det CovðΩm; S8Þ

p

is 50%larger than thenonshuffleCNNandpower spectrum, although
this may not be the best metric as the posterior is very non-Gaussian.
Lower panel: the posterior inferred when combining CNNs and the
power spectrum. For the nonshuffled CNNwith the power spectrum,
we find 20% tighter constraints on S8 than nonshuffled CNN alone.
For the shuffled CNNwith the power spectrum, we found 8% tighter
constraints on S8 than shuffled CNN alone. These combinations
provided 36% and 27% better constrains on S8 than the power
spectrum, respectively. See Sec. IV for detailed discussion.

FIG. 8. The MSE loss vs training epoch. The solid line shows
the training loss while the dashed line shows the validation loss.
The blue lines are for the CNN without shuffle, and the orange
lines are for the shuffled CNN (option 3 in Fig. 2). The six-layer
CNN without shuffle can fit the training set very well, but the
generalization performance is not good as is evident from
the higher validation loss. This gives an accuracy boost for the
models with random shuffling. The loss decay curve shows some
differences from case to case, but this is a typical case of how
shuffling improves the CNN.
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to a few Mpc at the lens redshift. We test that if we simply
measure the average of the entire image, or even use the
PDF as summary statistics, the RMSE is ∼7%, which is
significantly worse. This example shows that even if all the
information on scales larger than the single pixel value is
destroyed, the convolutional layer (plus subsequent non-
linear operations) can extract more information than just
PDFs. We do not pursue this point further in this study.
Next, we test cases where we removed the large-scale

correlation directly from the map. We do this by setting the
spherical harmonic coefficients alm ¼ 0 for l < lmin when
making the map for simulation case 2. The results are
summarized in Table I. On removing the large-scale
correlations, the relative improvement from shuffling is
decreased, which makes sense as sample variance in the
large-scale modes is also removed by setting alm ¼ 0 (so
the CNN was not learning the noise in the nonshuffle case).
For different shuffling options, the variance is larger but
still follows the pattern in Fig. 3.
We note that if the six-layer CNN model (no shuffling in

training) undergoes a post hoc permutation in the final layer
during testing, the error only marginally increases from
1.1% to 1.7%. This suggests that, typically, the last
convolution layer is not optimized to capture spatial
correlation but instead functions more as the global average
and optimizes performance by its weighting of the different

channels. We note that the tests discussed in this section are
exploratory; a detailed analysis of regularization methods
in cosmology is interesting for future research.

B. Other tests, symmetries, and permutation invariance

We perform various tests of regularization in comparison
with the random permutation layers. In Appendix B, we
show seven additional models that share the same goal as
shuffling—to impose permutation invariance at certain
layers. For example, we replaced deep layers with an
adaptive average pooling layer that simply takes the
average value of the 32 × 32 feature maps to one value.
We also tested using other permutation invariant quantities
like variance, maximum, and minimum. The results suggest
that they are not as effective as the shuffling option. In
Appendix C we compare with two other regularization
schemes, DROPOUT and batch normalization. We showed
that they negatively affect the accuracy in our case. As a
supplementary test, we show in Appendix E the results for
different noise levels and training set sizes. Across various
test scenarios, the addition of random permutations con-
sistently elevates the generalization accuracy.
Constraining neural networks with physical symmetries

has been shown to help the training and the accuracy of the

FIG. 9. Test error for simulation case 1 with the random
permutation as the first layers, followed by a ½1 → 8� convolution
layer (eight different kernels to learn). The image is entirely
disrupted. The maximum information in each channel is thus the
PDF of pixel values. However, if we directly train an MLP using
mean, variance, or the full PDF, we get RMSE ∼ 7% at best. See
Appendix F for details. This example shows that the convolution
operation is a computationally efficient way of summarizing
different information, even when the input of the convolution has
no spatial correlation.

TABLE I. This table summarizes the results for the S8
predictions when we remove the large-scale correlation from
the maps by setting the spherical harmonic coefficients alm ¼ 0
for l < lmin. The goal is to understand the shuffle CNN better as
discussed in the text. lmin ¼ 76 approximately corresponds to
108 arcmin, and lmin ¼ 148 approximately corresponds to
56 arcmin. The column is the percentage improvement over
the CNN model without shuffle. In both cases, the overall
accuracy is decreased because information is removed from
the maps. The relative improvement of shuffling option 1 is also
decreased because shuffling at large scales becomes less relevant.

Models RMSE (%) R2 ΔRMSE

Case 2 with NO lmin

Six-layer CNN (no shuffle) 3.703 0.934 � � �
CNN with shuffle option 1 2.946 0.958 20.4%
CNN with shuffle option 2 2.914 0.959 21.3%
CNN with shuffle option 3 2.579 0.968 30.5%

Case 2 with lmin ¼ 76

Six-layer CNN (no shuffle) 4.047 0.923 � � �
CNN with shuffle option 1 3.837 0.930 5.2%
CNN with shuffle option 2 3.261 0.950 19.4%
CNN with shuffle option 3 2.953 0.959 27.1%

Case 2 with lmin ¼ 148

Six-layer CNN (no shuffle) 4.476 0.903 � � �
CNN with shuffle option 1 4.095 0.918 8.5%
CNN with shuffle option 2 3.549 0.939 20.7%
CNN with shuffle option 3 3.240 0.949 27.6%
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model. In cosmology particularly, translation and rotation
symmetries are key ingredients to improve performance.
Previous work that imposes these symmetries in normal-
izing flows [57] and a graph neural network [55] demon-
strate great potential for both generative models and models
used for parameter inference. The scattering wavelet trans-
form [101] is powerful for cosmological fields partially due
to its translation invariance construction. The convolution
operation is translation equivariant by definition. However,
note that the max-pooling operation breaks the translation
equivariance so the CNN is not rigorously translation
invariant. Investing in architectures suitable for cosmology
with translational [102] and rotational symmetry [103,104]
is a promising future direction—we leave such investiga-
tions for future work.
Permutation invariance, although less relevant in CNN,

is very common for GNN [105]. JANOSSY POOLING [106]
employs a random sample of a subset of possible permu-
tations as an alternative pooling operation. Such tweaks to
the training process can also be found in CNNs. In
particular, in SHUFFLENET [107] a channel shuffle preced-
ing a group convolution is employed. A more extreme case
can be found in [108], where the authors disturb the loss
layer by directly giving wrong labels, and they show it
boosts the neural network’s ability to learn more general
features.
In this work, we shuffle the feature map for every epoch

but only for training. Other variations of random permu-
tation are also worth exploring—for example, we tested
shuffle every 10 epochs, which allows the convolution layer
to learn the same map within these 10 epochs. The test error
is similar to that of shuffling every epoch. One can also
introduce a probability distribution where say only 10% of
the time the feature map is shuffled. We expect that
shuffling every N epoch to be a more general solution
that can be optimized for other cases.

V. DISCUSSIONS AND CONCLUSIONS

CNNs are the most extensively developed deep learning
approach for image analysis. In recent years they have also
been applied for inferring cosmological parameters from
weak lensing and other cosmological maps. We show that
for the characteristics of cosmological fields like lensing
mass maps, variations of the standard CNN architecture can
lead to improved performance. We have presented a set of
regularization and data augmentation methods and quanti-
fied the performance improvement for simulated lensing
surveys. The simulated surveys mimic the Dark Energy
Survey parameters in both statistical and systematic uncer-
tainties, but we also consider the lower shape noise levels
corresponding to Stage-IV surveys. The explorations in this
paper are not definitive as the detailed implementation
should be adapted to the specific applications.
We use random permutations (shuffling operation) in the

deep layers of CNN as a novel regularization and data

augmentation technique. We also use a mix of maximum
and average pooling for varying layer depths. These simple
modifications can enhance the performance compared to
traditional CNN designs that have been adapted from image
classification. Figure 6 demonstrates the improvement in
parameter inference. We also show in Fig. 8 that it can be
expected to have better generalization accuracy. While the
design requires optimization for specific problems, incor-
porating a random permutation layer emerges as a prom-
ising approach for cosmological fields. An open question
that we have addressed only partially is whether CNNs like
the ones we have tested lose some large-scale information.
It is possible that the early layers of the CNN, prior to
shuffling, have extracted the available signal. We find some
evidence for this when considering the power spectrum—
adding the power spectrum, including the large scales
(small angular wave numbers), to the MLP does not
improve the performance further. We leave a detailed
investigation for future work.
With the upcoming Stage-IV surveys (Euclid, Rubin-

LSST, and Roman), we expect a substantial improvement in
the quality and size of lensing mass maps. Deep learning
approaches along with higher-order statistics and field-level
inference can extract the vast amount of information from
these maps that goes beyond standard 2-point statistics.
WhileCNNsmaynot capture all the informationcontained in
cosmological maps, they offer some clear advantages. As a
model-specific data compressor, CNNs are flexible for a lot
of different settings. For example, if the data have multiple
tomographic bins as in current weak lensing surveys, CNNs
can take them as different channels and capture the cross-
channel information. If one prefers to analyze data with a
shear field instead of the convergence field, one can also treat
the two components as different channels and avoid the
complexity of reconstructing the convergence map. Hence
exploring improvedperformancewithCNNs is likely to be of
value in cosmological applications.

VI. CAVEATS AND FUTURE WORK

This paper has focused on testing a set of regularization
and data augmentation schemes with a simple CNN
design. Given that this approach is inspired by our
understanding that cosmological fields are noisy on scales
approaching the survey size, we anticipate that the random
permutation layer, when applied at appropriate scales,
could be synergized with more complex architectures. For
instance, similar shuffling operations can be easily tested
with Vision Transformer [109] or Graph-based Neural
Networks [53].
It is also interesting to test if this regularization and data

augmentation method can be effective in other cosmologi-
cal fields such as the overdensity field [110–113], 21-cm
maps [114–119], and secondary anisotropies in cosmic
microwave background (CMB) temperature or polarization
maps [120,121].
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A useful direction for future research is the optimization
of the shuffling operation. One possibility is to introduce a
hyperparameter that modulates the probability of perform-
ing the shuffle, which is a technique used in [122]. Our
limited explorations are conservative in the sense that we
did not tune hyperparameters, so there is room for improve-
ment by tuning all the hyperparameters for different
variations of the noise level. Additionally, exploring other
randomness-incorporating structures, such as random shift-
ing [123] or randomly wired CNNs [124], could also offer
valuable insights.
Another important direction for future research is in the

interpretability of CNNs when applied to cosmological
data. Despite their proven efficacy in regression problems,
a persistent challenge with CNNs is the “black box” nature
of their decision-making processes. Understanding how
these networks derive their conclusions is important, not
just for validating and improving accuracy, but also for
gaining deeper insights into the underlying physics.
Previous studies [47,125] show intriguing results by using
saliency maps [126,127] (see also a recent study [128]
using a “sum-of-parts” approach to interpretability).
Architectures designed to relate the neural network results
to physical qualities like the N-point correlation function
are also promising [129,130]. It will be interesting to see
how the results change with the presence of random
permutation layers.
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APPENDIX A: TEST POOLING CHOICES

The experiments involving various pooling options are
detailed in Table II. The outcomes vary between simulation
cases 1 and 2 and with the level of shape noise but not in a
straightforward way. This quantitative comparison is
restricted to S8. We selected mixed pooling as the baseline
since the all-average approach is consistently ineffective for
training on Ωm. Although this investigation is far from
comprehensive due to computational resource limitations,
it shows that different choices in pooling can impact the
outcomes.

APPENDIX B: TESTING ALTERNATIVES TO
RANDOM PERMUTATION LAYER

Since introducing random permutation layers improves
performance, we consider other ways to impose permuta-
tion invariance. A large average pooling over the entire
feature map, for example, is permutation invariant. One can
also add other permutation-invariant summary statistics
such as the variance, maximum, or minimum. This is more
common in graph neural networks, where permutation
invariance is crucial due to the data structure. For example,
in [131], the input of the MLP layers is the collection of
sum, mean, max, and min.
Here, we test the following possibilities:
(i) Test Model 1-3. Large Avg These test models

replace the random permutation layer and the
subsequent convolution layer with a large average
pooling. Test model 1-3 corresponds to models that
have five, four, and three convolution layers. Note
that the following MLP also changes in size because
the channel number changes.

(ii) Test Model 4. Meanþ Variance This model em-
ploys a large average pooling layer and additionally
calculates the variance of the 8 × 8 pixel blocks for

TABLE II. Summary of comparing pooling choices in different
simulation cases when applied to S8. Mixed pooling stands for
the 4maxþ2avg as shown in Fig. 2. Mixed pooling-v2 denotes
2maxþ4avg. Note that for simulation case 2 the all avg is
slightly better than mixed pooling, but the all avg does not work
at all for inferring Ωm. Hence, we use mixed pooling
(4maxþ2avg) as the baseline choice for this work. The bolded
font indicates the best performance.

Models RMSE (%) R2

Simulation case 1
All max pooling 2.174 0.975
All avg pooling 1.308 0.991
Mixed pooling 1.187 0.992

Simulation case 2
All max pooling 4.764 0.890
All avg pooling 3.61 0.937
Mixed pooling 3.703 0.934

Simulation case 2 with 2neff
All max pooling 4.5820 0.898
All avg pooling 2.520 0.969
Mixed pooling 3.079 0.954
Mixed pooling-v2 2.699 0.964

Simulation case 2 with 4neff
All max pooling 3.526 0.939
All avg pooling 2.042 0.980
Mixed pooling 2.380 0.972
Mixed pooling-v2 1.683 0.986
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each channel. These are then concatenated as the
input for the MLP.

(iii) Test Model 5. Meanþ SumþMaxþMin This
model is an extension of Test Model 4, using the
mean (avg), sum, maximum, and minimum of the
current channel as the inputs of the MLP.

(iv) Test Model 6. Large Flat Layer In this model,
the final average pooling is omitted. Instead, a
flattening operation is used to compile all the
information. The input size of the MLP is increased
to 128 × 8 × 8 ¼ 8192. We also tested other channel
numbers with flattening in the end and found similar
results.

(v) Test Model 7. Patchify into smaller CNNs For this
model, we patchify the original image to 8 × 8
smaller images of size 64 × 64. We forward these
smaller patches to the same weight-sharing convolu-
tional layers and then take the average as the input of
the MLP layers.

Note that all of the models above do not involve random
permutation. Models 1 to 5 are strictly permutation invariant
at corresponding layers. The test errors are summarized in
Table III, and they donot help the six-layerCNNmodel as the
random permutation layers. This is a model-specific result.
Following the idea of random shuffling at large scales, we
anticipate some of the choices above could increase accuracy
in certain simulation settings. However, the random permu-
tation layer remains a possibility when designing neural
networks for cosmological fields.
For Model 7, we patchify the original image into

smaller patches, and we tried various combinations of
patch sizes, convolutional layers, and MLP sizes. This
choice shares the same idea of making the corresponding
scales permutation invariant. However, the modes
between each patch are not captured by the convolution
operations, and thus much less information is available.
The RMSE is 1.84, significantly larger than the four-layer

shuffled model or the six-layer nonshuffle model. Note
that this experiment is conducted with simulation case 1,
and we expect this method to work worse for simulation
case 2 in the presence of masks.

APPENDIX C: COMPARISON WITH STANDARD
REGULARIZATION

1. DROPOUT

DROPOUT is a widely recognized regularization technique
for mitigating overfitting in machine learning. Essentially,
DROPOUT combats coadaptation by randomly deactivating a
portion of the neurons. Despite its effectiveness, DROPOUT
is not universally applicable, especially in more recent and
complex computer vision models like ResNet [95].
We show in Table IV three different use of DROPOUT:
(i) DROPOUT-v1 One DROPOUT layer before the MLP of

the six-layer CNN model. This test is to see if
masking some of the embedding representations can
prevent overfitting of MLP.

(ii) DROPOUT-v2 Three DROPOUT layers after each
linear þ activation function in MLP, namely fc
7-9 in Fig. 2. This is the more traditional use of
DROPOUT, where all the representations from the
convolution layer are kept, but the use of DROPOUT

directly prevents the overfitting of the MLP
regression.

(iii) DROPOUT-v3 A 2D DROPOUT layer before convolu-
tion 6, where the random permutation layer is
applied. This test is to make a direct comparison
to the permutation layer, but instead of shuffling
the positions, some patches are masked out during
training.

For all three tests, we use a DROPOUT rate of 0.2. We found
no improvement over the six-layer CNN model.

2. BATCHNORM

Batch Normalization (BATCHNORM) [132] is another very
powerful regularization scheme that is commonly used in
machine learning and has been adopted in previous weak
lensing analyses such as [43,49,50], but not in [42].
BATCHNORM essentially whitens the output activation
function and thus alleviates the internal covariance shift
problem,3 which is common in most of the neural network
design.
However, BATCHNORM is not a once and for all solution.

As a simple example, putting BATCHNORM before or after
the activation function is nontrivial, with either choice
differently affecting the goal of whitening.4 The issue is

TABLE III. Different models that we test as alternatives to
random permutation layers, in comparison with the best model
with shuffle (option 2). The description for each model is listed in
Appendix B. None of these models performs better than even the
six-layer CNN model without shuffling. This test shows that the
effect of random permutation layers cannot be replaced by such
permutation invariant statistics.

Models RMSE (%) R2

Best model with shuffle 0.865 0.996
Test model 1 1.235 0.992
Test model 2 1.126 0.993
Test model 3 1.147 0.993
Test model 4 1.263 0.991
Test model 5 1.419 0.989
Test model 6 2.316 0.971
Test model 7 1.84 0.982

3See https://joelouismarino.github.io/posts/2017/08/statistical_
whitening/ for a detailed explanation on statistical whitening and
data normalization.

4See http://torch.ch/blog/2016/02/04/resnets.html for a discus-
sion on different effects of BATCHNORM before or after the
activation.
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further complicated with regularization schemes such as
DROPOUT [133]. In fact, a large number of architectures find
that when combining the two most powerful regularization
schemes DROPOUT and BATCHNORM, the accuracy often
decreases.
In this work, we did not adopt any BATCHNORM in our

architecture, and we show in Table IV that it negatively
affects the results. Note that we use the default setting that
enables affine parameters, which are the only two learnable
parameters. However, this complicates the training in the
minibatch setting because they have a large effect on the
whitened output.
Again, this choice is only specific to optimizing our

problem, which can be different if the data and other
assumptions change. For instance, if one uses data
augmentation with less Gaussian noise injection level
than the 10% used in this work, or studies the case with all
cosmological parameters varying, the internal large vari-
ance of the input data can make BATCHNORM necessary.
We do, nevertheless, expect the permutation layer to
improve the generalization performance in the presence
of BATCHNORM.

APPENDIX D: COMPARISON WITH RESNET
USED IN PREVIOUS WORK

We also test an architecture with a residual connection.
The architecture is summarized in Table V, which is the
same as in [49,50] except the input channel is 4 for our
four tomography bin and the output number is 1 since we
are training one parameter per network. The residual
block consists of two convolution layers and a skip

connection, similarly in [95]. We use ten residual blocks
and nch ¼ 10 as suggested in [49]. We find no difference
between the ResNet and our six-layer CNN model with-
out shuffle. For simplicity, we did not further optimize
this design or test with random permutation layers with
this structure. This test suggests that the residual con-
nection might not be necessary for our simulations. We
stress again that the comparison is not exact because our
simulations are very different. Even though the input sizes
are both 512 × 512, the resolution is very different, with
those in [95] being 0.87 arcmin. However, this result
suggests that the proposed random permutation layer is
optimizing the neural network for cosmological fields in a
different way.

APPENDIX E: ADDITIONAL TESTS WITH
DIFFERENT NOISE LEVEL AND SIZE OF

TRAINING SET

We provide some additional tests varying the noise level
and training data size. As summarized in Table VI, the
shuffling operation consistently boosts the generalization
accuracy of the model. Note that the six-layer CNN should
be compared with CNN with shuffle option 1 as they have
the same structure and trainable parameters, but only differ
by one random permutation layer. In these tests, the other
option is not always better than option 1, but CNN with
shuffle option 1 is always better than the six-layer
CNN model.

TABLE IV. Test models with two other regularization methods
DROPOUT and BATCHNORM when applied to simulation case 1 and
S8. We also tested applying BATCHNORM before and after each
activation function. See Appendix C for the details of where these
regularization layers are used. As in Table III, none of these
methods do as well as the shuffle CNN. BN stands for
BatchNorm.

Models RMSE (%) R2

Best model with shuffle 0.865 0.996

DROPOUT

All avg w/ DROPOUT-v1 1.214 0.992
Mixed avg/max w/ DROPOUT-v1 1.115 0.993
Mixed avg/max w/ DROPOUT-v2 1.563 0.987
Mixed avg/max w/ DROPOUT-v3 1.165 0.993

BATCHNORM before activation
All avg w/ BN 1.664 0.985
Mixed avg/max w/ BN 2.780 0.959

BATCHNORM after activation
All avg w/ BN 2.169 0.975
Mixed avg/max w/ BN 1.890 0.981

TABLE V. The architecture used in [49], except for the
difference in the input and output size. The RMSE for simulation
case 2 is 3.776%, which is similar to our nonshuffle CNN model
as shown in Fig. 5.

Layer Kernel size Stride Output dimensions

(Input) (4 × 512 × 512)
Convolution 5 × 5 2 ðnch=2Þ × 254 × 254
Convolution 5 × 5 2 nch × 125 × 125
Residual block

..

. ..
. ..

. ..
.

Residual block
Pooling 2 × 2 2 nch × 62 × 62
Convolution 3 × 3 1 ð2nchÞ × 60 × 60
Pooling 2 × 2 2 ð2nchÞ × 30 × 30
Convolution 3 × 3 1 ð4nchÞ × 28 × 28
Pooling 2 × 2 2 ð4nchÞ × 14 × 14
Convolution 3 × 3 1 ð8nchÞ × 12 × 12
Pooling 2 × 2 2 ð8nchÞ × 6 × 6
Convolution 3 × 3 1 ð16nchÞ × 4 × 4
Pooling 4 × 4 � � � ð16nchÞ × 1 × 1
Linear � � � � � � 256
ReLU � � � � � � 256
Linear � � � � � � 1
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APPENDIX F: DETAILS FOR TRAINING 1D
DATA VECTORS: POWER SPECTRUM AND PDF

Here we present the details of training the summary
statistics used in this paper: power spectrum as shown in
Fig. 6, and PDF for the comparison in Sec. IVA.
For the architecture, we use a rather simple network as

shown in Table VII. We found the compression accuracy
insensitive to the choice of architectures for the 1D data
vector. We experimented with varying hidden layer sizes,
the number of layers, and other architectures, including
ResMLP and 1D-CNN. This suggests that the compression
converges for the simulations we have.
When making the data vectors, we found binning the

full-length data vector to a smaller number helps training,
especially forΩm in the case of the power spectrum. We use
a logarithm binning of the number 16 for each tomographic
bin, similar to Ref. [62].
When using PDFs as the summary statistics, we

smoothed the maps to get information across scales. We
applied a Gaussian filter with a standard deviation from 1 to
8 and concatenated the PDFs to get the final data vector. We
tested various bin sizes and found no difference in the final
result. They all gave around 9% RMSE, significantly larger
than the 2.6% shown in Fig. 9. This suggests that binning
the PDFs may not be the most efficient way to extract
nonspatial information.

TABLE VI. Additional tests varying noise level and size of the
training set. The reported RMSE is for S8. The shuffling operation
consistently improves the accuracy when comparing nonshuffle
six-layer CNN and shuffle option 1, which only differs by one
random permutation layer. Note that the best position of the
shuffling operation changes from the fiducial test of the paper.

Models RMSE (%) R2

Simulation case 1 with 2neff
Nonshuffle six-layer CNN 0.974 0.996
CNN with shuffle option 1 0.740 0.998
CNN with shuffle option 2 0.684 0.998

Simulation case 1 with 0.5neff
Nonshuffle six-layer CNN 1.537 0.988
CNN with shuffle option 1 1.275 0.991
CNN with shuffle option 2 1.833 0.982

Simulation case 1 with no shape noise
Nonshuffle six-layer CNN 0.561 0.998
CNN with shuffle option 1 0.424 0.999
CNN with shuffle option 2 0.565 0.998

Simulation case 2 with half training data
Nonshuffle six-layer CNN 4.097 0.912
CNN with shuffle option 1 3.594 0.932
CNN with shuffle option 2 3.478 0.936
CNN with shuffle option 3 2.921 0.955

Simulation case 2 with 2neff
Nonshuffle six-layer CNN (mixed pooling) 3.079 0.954
Nonshuffle six-layer CNN (avg pooling) 2.520 0.969
CNN with shuffle option 1 2.520 0.969
CNN with shuffle option 2 2.179 0.977
CNN with shuffle option 3 2.013 0.980

Simulation case 2 with 4neff
Nonshuffle six-layer CNN (mixed pooling-v2) 1.683 0.9886
Nonshuffle six-layer CNN (avg pooling) 2.042 0.980
CNN with shuffle option 1 1.994 0.981
CNN with shuffle option 2 1.748 0.985
CNN with shuffle option 3 1.410 0.990

TABLE VII. The architecture we used for performing the data
compression for 1D data vectors used in thiswork (power spectrum
and PDF).Wevaried the number of layers and hidden layer size and
observed negligible changes in the compression accuracy. We also
tried other architectures such asMLPwith residual connections and
1D-CNN. We found no difference in the results.

Layer Output dimensions

Denseþ ReLu 256
Denseþ ReLu 128
Denseþ ReLu 64
Denseþ ReLu 32
Denseþ ReLu 1
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