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We explore the 21-cm signal in our Universe containing inhomogeneous matter distribution at
considerably large scales. Employing Buchert’s averaging procedure in the context of a model of
spacetime with multiple inhomogeneous domains, we evaluate the effect of our model parameters on the
observable 21-cm signal brightness temperature. Our model parameters are constrained through the
Markov chain Monte Carlo method using the Union 2.1 supernova Ia observational data. We find that a
significant dip in the brightness temperature compared to theΛ cold dark matter prediction could arise as an
effect of the inhomogeneities present in the Universe.
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I. INTRODUCTION

For quite some time now, 21 cm cosmology has been an
essential tool in studying the physics of the cosmic dark age
[1–3]. It is a unique probe of the reionization epoch of the
Universe [4,5]: 21 cm is the wavelength corresponding to
the energy shift due to hyperfine splitting in the ground
state of neutral hydrogen, the most abundant element in the
Universe. It occupies ∼75% of the entire baryonic alloca-
tion of the Universe. The transition between hydrogen
atoms’ electronic spin states (s = 0,1) generates the 21-cm
(∼1.42 GHz) hyperfine spectrum.
The brightness temperature T21 associated with this

spectrum is a function of Ts − Tγ where Tγ is the cosmic
microwave background temperature given by Tγ ¼
2.725ð1þ zÞK and Ts is the spin temperature [1–3].
Recently, the “Experiment to Detect the Global Epoch
of Re-ionization Signature” (EDGES) [6] generated quite a
bit of excitement in the field with its reported T21 in the
redshift range 14 < z < 20 to be −500þ200

−500 mK. However,
the subsequent SARAS experiment [7] failed to detect the
EDGES 21-cm signal [8].
The Λ cold dark matter (ΛCDM) model of standard

cosmology estimates a brightness temperature of about
≈ − 200 mK without any additional thermal contribution.
To account for any additional cooling, various pheno-
menological effects in the early Universe have been
employed [9–14], including exotic models of dark
matter [11,13,15] and dark energy [16]. The 21-cm signal
provides an avenue towards discerning several physical

phenomena of this epoch, such as evaporating primordial
black holes [9,12,14,17], baryon-dark matter scattering
[11,13,15], and neutrino physics [18].
Although theΛCDMmodel has been highly successful in

establishing the basic tenets of standard cosmology, it has
been confronted with certain discordant observations in
recent times, notably among them the so-called Hubble
tension [19,20].Moreover, recent observations of large-scale
structures indicate the scope of including additional features
within the framework of standard cosmology. Although the
Universe may be uniform and isotropic at the largest scales,
various astrophysical surveys have revealed prominent
matter distribution inhomogeneities up to slightly smaller
scales [21]. Significant (more than 3σ) deviations from the
ΛCDMmock catalogs have been reported [22] on luminous
red galaxy samples as large as 500 h−1Mpc. Recently, a
giant arc of galaxies spanning ∼1 Gpc (proper size, present
epoch) has been observed [23].
Such observed deviations in large-scale structures from

the assumed smooth homogeneous ΛCDM paradigm may
necessitate the inclusion of the impact of inhomogeneities
in the analyses of cosmological phenomena. An averaging
procedure is required to incorporate the effect of inhomo-
geneities in the analysis. Various averaging schemes have
been proposed in the literature [24–28]. Buchert introduced
a simplified averaging procedure [29,30] restricted to scalar
quantities on spacelike hypersurfaces. Several studies
employing the Buchert averaging procedure have been
done to investigate the effect of backreaction of inhomo-
geneities on cosmological dynamics, including attempts to
explain the current accelerated expansion of the Universe
without invoking exotic physics [29–55].
Buchert’s averaging procedure for evaluating the effect

of backreaction of matter distribution inhomogeneities
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offers the prospect of relating theoretically calculated
spatially averaged quantities to observationally measurable
quantities, such as redshift-distance relations [41,42,56–59].
Analyses of light wave propagation in the presence of
inhomogeneities have revealed interesting features in the
modified redshift-distance relation due to the backreaction
effect [41,42,58]. Similar effects have also been derived in
the context of gravitational waves emitted from compact
binaries propagating through the inhomogeneous matter
distribution [48,49]. In the present work, we are thus
motivated to explore the 21-cm signal under the impact of
backreaction from matter inhomogeneities employing the
Buchert averaging framework.
Specifically, in the present analysis, we employ a model

of spacetime with a spectrum of matter distribution inho-
mogeneities in multiple domains, which can imitate our
actual Universe more realistically compared to earlier
analyses of cosmological dynamics under backreaction,
which have primarily relied on toy two-domain models
[41,45–48]. We aim to theoretically analyze the 21-cm
signal in the context of modified Hubble dynamics due to
the effect of backreaction from matter distribution inho-
mogeneities evaluated using the Buchert formalism. We
constrain our model parameters by performing Markov
chain Monte Carlo analysis using the Union 2.1 supernova
Ia data to determine the model parameters’ best fit and
optimum values. We compute the 21-cm brightness temper-
ature, which reveals a significant dip compared to the
ΛCDM prediction in the redshift range 14 < z < 20,
without invoking any additional nonstandard cosmological
effects or exotic physics.
The paper is organized as follows. We briefly introduce

the formalism for evaluating the 21-cm signal brightness
temperature in Sec. II. Next, we briefly outline Buchert’s
averaging procedure in Sec. III. Our model of multidomain
inhomogeneities is presented, leading to modified Hubble
dynamics in Sec. IV. We then present our analysis of the
21-cm signal in the context of our multidomain model in
Sec. V. In Sec. VI, we use the Union 2.1 supernova Ia data
to constrain our model parameters and compute the 21-cm
brightness temperature in the redshift range 14 < z < 20
using the best fit and optimum values of our model
parameters. Finally, we summarize our results in Sec. VII.

II. 21-CM BRIGHTNESS TEMPERATURE

The 21-cm absorption line of the hydrogen atom is
generated by the transition of an electron between the two
hyperfine spin states (spin 0 and spin 1). This 21-cm line
has a characteristic temperature associated with it called the
brightness temperature, T21, which represents the intensity
of the 21-cm line as a function of the cosmological redshift
z. The expression for T21 is given by [10,60]

T21 ¼
Ts − Tγ

1þ z
ð1 − e−τðzÞÞ; ð1Þ

where Ts is the 21-cm spin temperature at redshift z, Tγ is
the cosmic microwave background temperature ðTγ ¼
2.725ð1þ zÞKÞ and τðzÞ is the optical depth of the
intergalactic medium. τðzÞ is given by [60]

τðzÞ ¼ 3

32π

T�
Ts

nHIλ
3
21

A10

HðzÞ þ ð1þ zÞδrvr
; ð2Þ

where T� ¼ hc=ðkBλ21Þ ¼ 0.068 K, A10 ¼ 2.85× 10−15 s−1

is the Einstein coefficient [61], λ21 ≈ 21 cm, nHI is the local
neutral hydrogen density,HðzÞ is the Hubble parameter and
δrvr is the radial gradient of the peculiar velocity. The
above equations are derived from the principles of atomic
physics and radiative transfer. The expression for optical
depth has a term for the gradient of the proper velocity
along the line of sight, and this term includes both the
Hubble expansion and the peculiar velocity, as can be seen
in Eq. (2) [1]. This is how HðzÞ, the Hubble parameter,
which measures the Universe’s rate of expansion, enters the
analysis. Since HðzÞ itself depends on the model of
cosmology, the values of the quantities of interest turn
out to be different for different models of cosmology.
The spin temperature Ts is related to the ratio of the

number density of hydrogen atoms in excited and ground
states and is given by [60]

n1
n0

¼ 3e−T�=Ts ; ð3Þ

where n1 and n0 are the number densities of hydrogen
atoms in excited and ground states, respectively. In equi-
librium, Ts is given by [12,62]

Ts ¼
Tγ þ ycTb þ yLyαTLyα

1þ yc þ yLyα
; ð4Þ

where yc is the collisional coupling parameter, Tb is the
baryon temperature, yLyα represents the Wouthuysen-Field
effect [63,64] and TLyα is the Lyman-α (Lyα) background

temperature. The coefficients yc and yLyα are given by yc ¼
C10T�
A10Tb

and yLyα ¼ P10T�
A10TLyα

[65]. Here, C10 is the collisional

deexcitation rate of the triplet hyperfine level, P10 ≈ 1.3 ×
10−12SαJ−21s−1 is the indirect deexcitation rate due to Ly-α
absorption, Sα is a factor of order unity that incorporates
spectral distortions [66] and J−21 is the Lyman-α background
intensity written in units of 10−21 ergcm−2 s−1Hz−1 sr−1,
and can be estimated by the procedure mentioned in [12,67].
The baryon temperature Tb can be obtained from the

standard evolution equations of Tb and xe, the ionization
fraction. The ionization fraction xe is given by xe ¼ ne=nH,
wherene and nH are the number densities of free electron and
hydrogen, respectively, is an important quantity in estimating
thermal evolution. Here, we will not consider exotic physics
or nonstandard processes like dark matter decay. We just
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consider standard evolution equations. These equations
governing thermal evolution are given by [12,68,69]

ð1þ zÞ dTb

dz
¼ 2Tb þ

Γc

HðzÞ ðTb − TγÞ; ð5Þ

ð1þ zÞ dxe
dz

¼ CP

HðzÞ
�
nHαBx2e − 4ð1 − xeÞβBe−

3E0
4kBTγ

�
; ð6Þ

where Γc ðΓc ¼ 8σTarT4
γxe

3ð1þfHeþxeÞmec
Þ describes the Compton

interaction rate (σT is the Thomson scattering cross
section, ar is the radiation constant, fHe is the fractional
abundance of helium,me is themass of an electron),CP is the
PeeblesC factor [68,70],E0 ¼ 13.6 eV, kB is theBoltzmann
constant and αB and βB are the recombination and ionization
coefficients, respectively. The Peebles C factor is given
by [68]

CP ¼
3
4
RLyα þ 1

4
Λ2s1s

βB þ 3
4
RLyα þ 1

4
Λ2s1s

; ð7Þ

where RLyα represents the rate of escape of Ly α photons,
RLyα ¼ 8πH=ð3nHð1 − xeÞλ3LyαÞ, nH is the total number
density of hydrogen and Λ2s;1s ≈ 8.22 s−1 [68]. αB and βB
can be calculated using the procedure mentioned in [9,10].
Similar to the case of Eqs. (1) and (2), the cosmological
dependence of the equations [Eqs. (5) and (6)] are enshrined
in HðzÞ, the Hubble parameter.

III. BUCHERT’S BACKREACTION FORMALISM

Buchert’s averaging procedure that we are using here is
for the pressureless dust universe model [29,71]. Buchert’s
backreaction formalism simplifies the averaging problem
by considering only scalar quantities to average. The
spacetime is divided into flow-orthogonal hypersurfaces
with the line element [29,37]

ds2 ¼ −dt2 þ gijdXidXj; ð8Þ

where t is the proper time, Xi are Gaussian normal coor-
dinates in the hypersurfaces and gij is the spatial three-metric
of the hypersurfaces of constant t. The volume of a compact
spatial domain D on these hypersurfaces is defined as

jDjg ≔
Z
D
dμg; ð9Þ

where dμg ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Þgðt; X1; X2; X3Þ

q
dX1dX2dX3. Now, we

define a dimensionless (“effective”) scale factor

aDðtÞ ≔
� jDjg
jDijg

�
1=3

; ð10Þ

normalized by the volume of the initial domain jDijg, which
can be considered the domain’s volume at the present time,
t0. The average over a scalar quantity f is defined as

hfiDðtÞ ≔
R
D fðt; X1; X2; X3ÞdμgR

D dμg
: ð11Þ

Using this averaging procedure and Einstein equations
along with the continuity equation, Hamiltonian constraint,
and Raychaudhuri equation gives us evolution equations,

3
äD
aD

¼ −4πGhρiD þQD; ð12Þ

3H2
D ¼ 8πGhρiD −

1

2
hRiD −

1

2
QD; ð13Þ

0 ¼ ∂thρiD þ 3HDhρiD; ð14Þ

where hρiD, hRiD and HD are the averaged matter density,
averaged spatial Ricci scalar and the Hubble parameter
(HD ≔ ȧD=aD) of the domainD, respectively.QD is called
the kinematical backreaction and is defined as

QD ≔
2

3
ðhθ2iD − hθi2DÞ − 2hσ2iD; ð15Þ

where θ is the local expansion rate and σ2 ≔ 1=2σijσij is
the squared rate of shear. The Hubble parameter HD and
hθiD are related by the relation HD ¼ 1=3hθiD. QD is zero
for a FLRW-like domain. The necessary condition of
integrability connecting Eqs. (12) and (13) is given by

1

a2D
∂tða2DhRiDÞ þ

1

a6D
∂tða6DQDÞ ¼ 0: ð16Þ

Equation (16) shows an important feature of the averaged
equations as it couples the evolution of the averaged
intrinsic curvature ðhRiDÞ to the kinematical backreaction
term ðQDÞ that symbolizes the inclusion of matter inho-
mogeneities in the analysis. This relationship between
hRiD and QD together with the term QD embodies the
diversion from homogeneity.
We now adopt a specific approach within the Buchert

formalism, in which ensembles of disjoint regions represent
the global domain [35–55]. Here, the global domain D is
considered to be partitioned into subregions F l that them-

selves consist of elementary space entities F ðαÞ
l . Therefore,

mathematically, we have D ¼∪l F l, where F l ≔∪α F
ðαÞ
l

andF ðαÞ
l ∩ F ðβÞ

m ¼ ∅ for allα ≠ β and l ≠ m. The averageof
a scalar-valued function f on the domain D is given by

hfi ≔ jDj−1g
Z
D
fdμg ¼

X
l

jDj−1g
X
α

Z
F ðαÞ

l

fdμg;

¼
X
l

jF ljg
jDjg

hfiF l
¼

X
l

λlhfiF l
; ð17Þ
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where

λl ≔
jF ljg
jDjg

ð18Þ

is the volume fraction of the subregionF l such that
P

l λl ¼
1 and hfiF l

is the average of f on subregion F l. The scalar
quantities ρ, R, and HD are governed by Eq. (17), but QD,
due to the presence of hθi2D term, does not adhere to the above
equation and instead follows

QD ¼
X
l

λlQl þ 3
X
l≠m

λlλmðHl −HmÞ2; ð19Þ

whereQl andHl are defined in subregionF l in the sameway
as QD and HD are defined in the domain D.
We can also define the scale factor al for a subregion

F l. By definition, the different subregions are disjoint;
therefore it follows that jDjg ¼

P
l jF ljg and hence, using

Eq. (10), we have

a3D ¼
X
l

λlia
3
l ; ð20Þ

where λli ¼
jF li

jg
jDijg is the initial volume fraction which can also

be taken as the volume fraction at present and can be
represented as λl0 , where the subscript 0 stands for quantities
calculated at the present time. Differentiating this relation
twice with respect to the foliation time results in

äD
aD

¼
X
l

λl
älðtÞ
alðtÞ

þ
X
l≠m

λlλmðHl −HmÞ2: ð21Þ

IV. A MODEL OF MULTIPLE SUBREGIONS

Several studies have been performed within the Buchert
averaging scheme using models having just one type of
overdense subdomain and one type of underdense sub-
domain [42,43,45–48]. This oversimplifies the actual
spacetime scenario with matter inhomogeneities where
the matter density may vary from very low to very high
across different subdomains. Therefore, a more realistic
model would have multiple overdense and underdense
subregions with distinct evolution profiles. A similar model
has been used in [54] to study the future evolution of the
currently accelerating Universe with multiple inhomo-
geneous domains.
Here, using Buchert’s backreaction framework, we

consider a model of the Universe in which domain D
comprises multiple underdense and overdense subregions,
viz., there are i number of overdense subregions and i
number of underdense subregions. The underdense sub-
regions have densities smaller than those of the overdense
subregions. Our underdense subregions are modelled to

mimic almost empty FLRW regions with very little matter
(dust) present. The overdense subregions are modeled to
mimic FLRW models with matter (dust) content. The
underdense subregions are taken to have Friedmann-like
1=a2 negative curvature, while the overdense subregions
have Friedmann-like 1=a2 positive curvature. The time
evolution of the scale factor of ith overdense subregions,
aoi , is given in terms of a development angle ϕoi of the ith
overdense subregion [72],

aoi ¼
qoi;0

2qoi;0 − 1
ð1 − cosϕoiÞ; ð22Þ

t ¼ t0
ðϕoi − sinϕoiÞ
ðϕoi;0 − sinϕoi;0Þ

; ð23Þ

where qoi;0 and ϕoi;0 are, respectively, the deceleration
parameter of the ith overdense subregion and the value
of ϕoi at time t0, which is the present time. qoi;0 should be
greater than 1=2 [72]. Here, we have taken qoi;0 to have a
range of values from 1=2 to 1. The time t in Eq. (23) [41,55]
is the cosmic time, although for each overdense subregion,
this t is parametrized in terms of ðϕoi;0 ;ϕoiÞ (ϕoi;0 itself is a
function of qoi;0). The value of t0 is the same across all
overdense subregions as well as for the global domain
which is ensured by the specific form of Eq. (23). The time
evolution of the scale factor of ith underdense subregions,
aui is given in terms of a development angle ϕui of the ith
underdense subregion [72],

aui ¼
qui;0

1 − 2qui;0
ðcoshϕui − 1Þ; ð24Þ

t ¼ t0
ðsinhϕui − ϕuiÞ
ðsinhϕui;0 − ϕui;0Þ

; ð25Þ

where qui;0 and ϕui;0 are, respectively, the deceleration
parameter of the ith underdense subregion and the value
ofϕui at time t0, which is the present time. qui;0 has a range of
values from 0 to 1=2 [72]. The time t in Eq. (25) is the cosmic
time, although for each underdense subregion, this t is
parametrized in terms of ðϕui;0 ;ϕuiÞ (ϕui;0 itself is a function
of qui;0). The value of t0 is the same across all underdense and
overdense subregions aswell as for the global domain,which
is ensured by the specific form of Eqs. (23) and (25). Since
the values of t0 and HD0

are interrelated, one needs to fix
either of them [55]. In our subsequent analysis, we choose
HD0

to be 70 km s−1Mpc−1. The value of t0 is calculated
using the procedure used in [55], modified for ourmodel (see
Appendix A).
Note that aoi and aui can be expressed in terms of the

volume of the respective subregions using Eq. (10), which
gives us
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aoiðtÞ ≔
� jDjoi
jD0joi

�
1=3

; auiðtÞ ≔
� jDjui
jD0jui

�
1=3

; ð26Þ

where jDjoi is the volume of the ith overdense subregions at
time t, jD0joi is the volume of the ith overdense subregion
at time t0 as was done in Eq. (10), and similarly for the case
of the underdense subregions. Equations (10) and (26)
require that at t ¼ t0, aD ¼ aoi ¼ aui ¼ 1, leading to

cosϕoi;0 ¼
�

1

qoi;0
− 1

�
; coshϕui;0 ¼

�
1

qui;0
− 1

�
: ð27Þ

For a given value of qoi;0 and qoi;0 ; aoiðtÞ and auiðtÞ can
be calculated using Eqs. (22)–(25) and (27). Then using
Eq. (20), aDðtÞ can be obtained provided λl0 , which is the
set of all λui;0 and λoi;0, is known.
It may be noted that aD can also be obtained from

solving the second order differential equation [Eq. (21)].
Using Eqs. (22) and (24) in Eq. (21), we get

äD
aD

¼
�X

i

λoi
äoi
aoi

�
þ
�X

j

λuj
äui
aui

�

þ
�X

k

X
l

λkλlðHl −HkÞ2
�
; ð28Þ

where λoi is the volume fraction of the ith overdense
subregion, λuj is the volume fraction of the jth underdense
subregion, λ is the set of all λoi and λui and H is,
respectively, the set of all Hoi and Hui . The combined
volume fraction of all the underdense subregions is given
by λu, i.e.,

P
i λui ¼ λu. Similarly, the total volume fraction

of all the overdense subregions is given by
P

i λoi ¼ λo.
Clearly, λo þ λu ¼ 1. The evaluation of aD obtained from
these two methods is identical, as confirmed through our
analysis.
The volume fraction of the ith overdense subregion can

be written as

λoi ¼
jF oi jg
jDjg

¼ a3oi jF oi;0jg
a3DjD0jg

¼ λoi;0
a3oi
a3D

; ð29Þ

where t0 is a reference time which can be taken as the
present time, jF oi jg is the volume of the ith overdense
subregion, jF oi;0jg is the volume of the ith overdense
subregion at time t0, jD0jg is the volume of the domainD at
time t0 and λoi;0 is the volume fraction of the ith overdense
subregion at time t0. The present time (t0) value of ðλo; λuÞ
is given by ðλo;0; λu;0Þ, which we have taken to be
(0.09,0.91) [37].
In our model, we consider the present time volume

fraction of ith underdense subregion, λui;0 to have a
Gaussian distribution within the allowed range of qui;0

from 0 to 1=2, given by

λui;0 ¼
Nu

σu
ffiffiffiffiffiffi
2π

p e−ðqui;0−μuÞ
2=2σ2u ; ð30Þ

where Nu is a normalization constant, which ensures thatP
i λui;0 ¼ λu;0 ¼ 0.91, μu is the mean value of qui;0 and σu

is the standard deviation of qui;0 . Therefore, each ith
underdense subregion is associated with a particular value
of qui;0 and λui;0 such that qui;0 varies from 0 to 1=2 in the i
number of underdense subregions and

P
i λui;0 ¼ 0.91.

The present-time volume fraction of ith overdense
subregion, λoi;0 is considered to have a Gaussian profile
within the allowed range of qoi;0 from 1=2 to 1 given by

λoi;0 ¼
No

σo
ffiffiffiffiffiffi
2π

p e−ðqoi;0−μoÞ
2=2σ2o ; ð31Þ

where No is a normalization constant that ensures thatP
i λoi;0 ¼ λu;0 ¼ 0.09, μo is the mean value of qoi;0 and σo

is the standard deviation of qoi;0 . In this case, each ith
overdense subregion is associated with a particular value of
qoi;0 and λoi;0, where qoi;0 lies within the range 1=2 to 1
across the i number of overdense subregions andP

i λoi;0 ¼ 0.09. The volume fraction of the ith underdense
subregion at a time t, λui is related to the volume fraction at
present time t0 by

λui ¼ λui;0

�
1 −

P
iλoi

1 −
P

iλoi;0

�
: ð32Þ

We have used the Gaussian distribution to define the
present time volume fraction of various subregions. The
actual physical distribution can only be known by extensive
galactic surveys of the matter distribution in the Universe.
Although some such surveys have been performed for the
local Universe, for the redshifts of our interest, no such
surveys exist. Without such surveys, we assume a normal
distribution used in analysis where we do not expect any
bias. The Gaussian distribution is well known and exten-
sively used in diverse physical analyses to model unbiased
physical conditions. (Further details of our model are
provided in Appendix B.)
Using Eq. (19), the kinematical backreaction term for the

domain D for our model effectively becomes

QD ¼
X
i

λoiQoi þ
X
j

λujQuj þ 3
X
l≠m

λlλmðHl −HmÞ2;

ð33Þ

where Qoi is the kinematical backreaction term for the
ith overdense subregion, Qui is for the ith underdense
subregion. The summation in the last term runs over the
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sets of all λoi , λui , Hoi , and Hui . Equation (16) couples the
kinematical backreaction term to the Ricci scalar, and our
subregions are also governed by this coupling. Therefore,
by selectively choosing the curvatures of our subregions,
we can make the respective kinematical backreaction terms
for these subregions equal to zero [37,73]. Hence, in this
case, the global kinematical backreaction is governed by
only the interplay of the subdomain Hubble evolutions and
volume fractions [third term of Eq. (33)]. Note that the
above assumptions are made in the context of our present
model. On the other hand, if the subdomains are endowed
with dynamical curvature, other intricate effects could arise
through kinematical backreaction, as may also happen in a
more general case where the subregions may not neces-
sarily be FLRW.
Obtaining the values of λoi;0 and λui;0 from Eqs. (30) and

(31), respectively, and using these in Eqs. (29) and (32) gives
us λoi and λui . Hubble parameters for the subregions can be
obtained fromEqs. (22), (23) andEqs. (24), (25).We can then
use Eq. (28) to get aDðtÞ and HDðtÞ. We next relate these
quantities calculated theoretically from our model with
observational quantities redshift and angular diameter dis-
tance by using the covariant scheme [56,57], given by

1þ z ¼ 1

aD
; ð34Þ

HD
d
dz

�
ð1þ zÞ2HD

dDA

dz

�
¼ −4πGhρiDDA: ð35Þ

Equation (34) relates aDðtÞ with the cosmological redshift
zðtÞ and Eq. (35) relates the angular diameter distance DA

with hρiD andHD. Here, we use Eq. (34) to obtain zðtÞ from
aDðtÞ. We can thus evaluate HDðzÞ using HDðtÞ [from
Eq. (28)] and zðtÞ [from Eq. (34)].
In Fig. 1(a), HDðzÞ=HD;0 has been plotted as a function

of redshift z for different values of n, the number of each
type of subregion—overdense and underdense. The total
subregions are 2n, n, overdense subregions and n under-
dense subregions. Here, HD;0 is the value of HDðzÞ at
z ¼ 0. Depending on the model parameters, our back-
reaction model may be very close to a perturbed FRW or
mimic a single FRWat very early times. Considering a very
high value of n does not lead to a significant difference, as
can be seen in our following analysis. We define

hHDn
i¼ 1P

i

X
i

����ðHDðzÞ=HD;0Þj500−ðHDðzÞ=HD;0Þjn
ðHDðzÞ=HD;0Þj500

����
z¼zi

;

ð36Þ

which denotes the redshift-averaged variation of HDn
, from

the limiting case of n ¼ 500. In this analysis, we split the
redshift range (i.e., 0 ≤ z ≤ 100) into 100 bins. In Eq. (36),
i is the index number of such bins. The variation of hHDn

i
with n are plotted in Fig. 1(b). In this figure, the plots are
for different chosen sets of μo and μu, while the other two
parameters are kept at σu ¼ 0.01 and σo ¼ 0.01. For
n ≥ 100, the average fluctuation is less than ∼10−6.
Given the above results, we chose n ¼ 100 for our
remaining calculations.
From here onwards, in our calculations, we consider one

hundred underdense and one hundred overdense subdo-
mains. These subdomains are characterized by the respec-
tive volume fractions, λoi and λui [Eqs. (29) and (32)],
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FIG. 1. Subplot (a) is the plot of HDðzÞ=HD;0 for our backreaction model for different values of n, the number of underdense and
overdense subregions. Here, HD;0 is the value of HDðzÞ at z ¼ 0. The values of our model parameters are chosen as follows: μu ¼ 0.49,
σu ¼ 0.01, μo ¼ 0.51, and σo ¼ 0.01 for solid lines and μu ¼ 0.15, σu ¼ 0.01, μo ¼ 0.51, and σo ¼ 0.01 for dashed lines. The ΛCDM
model curve is shown with a black dashed line. Subplot (b) is the plot of hHDn

i versus n, the total number of subregions of each type. We
take σu ¼ σo ¼ 0.01 for all three lines, while μu and μo are varied as mentioned in the legend.
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distributed using a Gaussian profile among these subdo-
mains [Eqs. (30) and (31)]. Our underdense regions are
characterized by parameters qui;0 that vary from 0 < qui;0 <
0.5 [72]. This range for qui;0 has been taken to ensure a wide
range of underdense subregions is present in our model to
mimic a variety of underdense regions that may be present
in the Universe. μu and σu are the mean and standard
deviation of the Gaussian profile of the underdense regions.
The underdense subregion with qui;0 ¼ μu will have the
largest value of λui and thus will be the most prominent
underdense subregion in the analysis. Here, σu governs the
distribution width about a given μu. Similarly, our over-
dense regions are characterized by parameters qoi;0 varying
from 1=2 < qoi;0 < 1. This range for qoi;0 has been taken to
ensure that a wide range of overdense subregions is present
in our model to mimic a variety of overdense regions that
may be present in the Universe. μo and σo are the mean and
standard deviation for the Gaussian profile of overdense
regions. The overdense subregion with qoi;0 ¼ μo will have
the highest value of λoi and, therefore, will be the most
prominent overdense subregion in the analysis. σo is the
standard deviation of the distribution, which governs the
width of the distribution about the mean value.
In Fig. 2, the average density parameters are plotted as a

function of the redshift in the redshift range (z < 30). See
Appendix B for the calculation of these average density
parameters. The density parameter associated with kin-
ematical backreaction QD plays a significant role in our
backreaction model at late redshifts (around z ¼ 5, as seen
from the inset), embodying the departure from FLRW
behavior in our framework. The QD term becomes negli-
gible at large redshifts, which can be seen from the
corresponding plot in Fig. 2. The term ΩD

Q going to zero
at high redshifts (or at early times) shows that our model
can mimic a perturbed FLRW model at early times.

In Fig. 3, the variation with respect to the redshift of
HDðzÞ=HD;0 [here HD;0 is the value of HDðzÞ at z ¼ 0] for
our backreaction model and for the ΛCDM model
[HðzÞ=H0 for ΛCDM, H0 ¼ Hðz ¼ 0Þ] are plotted. Our
backreaction model has four parameters that can be varied:
μu, σu, μo, σo. One of the above parameters is varied in the
four subfigures while keeping the other three fixed. From
Fig. 3(a), it can be observed that larger values of parameter
μo result in larger values of the quantity HDðzÞ=HD;0,
although the variation is very less and from Fig. 3(c) it can
be observed that larger values of parameter μu result in
larger values of the quantity HDðzÞ=HD;0. Let us first
consider Fig. 3(c) where μu is being varied, keeping the
other three parameters fixed. Since μu is the mean of the
Gaussian distribution of λui;0, it corresponds to the sub-
region with the largest value of λui;0 in the distribution. The
subregion with qui;0 ¼ μu possesses the largest value of λui;0
and, therefore, the largest value of λui also, from Eq. (32). It
follows from Eq. (17) that this underdense subregion
through its Hui provides the largest contribution among
all other underdense subregions in the determination ofHu,
the total Hubble parameter for all the underdense sub-
regions combined, and consequently, provides the largest
contribution inHD among all other underdense subregions.
Therefore, in Fig. 3(c) with all other parameters fixed, the
plotlines for HD follow the trend of variation of Hui with
respect to the redshift z, of the subregion with qui;0 ¼ μu.
The higher values of qui;0 result in higher values ofHuðzÞ at
higher values of z, which is observed in Fig. 3(c), where
higher values of μu give higher values of HDðzÞ=HD;0. The
behavior of the plotlines in Fig. 3(a) can also be explained
similarly, where the corresponding underdense subregion
analysis replaces the overdense subregion analysis. In
Fig. 3(a), there is not much difference between the plot-
lines. This can be ascertained to the fact that overdense
subregions have less impact on the global domain dynam-
ics. The reason for this is that the collective volume fraction
of the overdense subregions is much smaller than the
collective volume fraction of the underdense subregions.
On the other hand, from the Figs. 3(b) and 3(d), it can be

seen that larger values of σo and σu lead to larger values of
the quantityHDðzÞ=HD;0. Note that σo and σu represent the
spread of the Gaussian distributions. In Figs. 3(b) and 3(d),
only σo and σu are varied, respectively, keeping the other
three parameters fixed. Therefore, a wider distribution with
the same mean is considered in Figs. 3(b) and 3(d). Awider
distribution results in more subregions becoming signifi-
cant than for a narrower distribution. As the contributions
of more subregions become effective, the values of the
combined Hubble parameters for the overdense and under-
dense subregions, Ho and Hu, respectively, increase, and
hence the value of HD also increases, which is observed in
Figs. 3(b) and 3(d). Similar to the case of Fig. 3(a), varying
σo in Fig. 3(b) does not have much effect on the plotlines.

FIG. 2. Plot of average density parameters, ΩD
m and ΩD

Q as a
function of redshift, z. The values of the parameters are chosen as
μu ¼ 0.01, σu ¼ 0.01, μo ¼ 0.99, and σo ¼ 0.01. The inset
shows the magnified plot for ΩD

Q, the density parameter for
kinematical backreaction term QD.
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Therefore, model parameters associated with the overdense
subregions do not have significant impact on the global
domain dynamics.

V. EFFECT OF INHOMOGENEITIES
ON THE 21-CM BRIGHTNESS TEMPERATURE

To analyze the brightness temperature of the 21-cm
signal in the context of our model of multiple subregions of
spacetime with matter distribution inhomogeneities, we
replace HðzÞ in the equations of 21-cm cosmology with
HDðzÞ (Fig. 3), which is the effective Hubble parameter
calculated from our model using Eq. (28). Here, we employ
the general scheme to calculate the 21-cm brightness
temperature T21 for both ΛCDM and our backreaction
model. The only difference between these two models is
calculating the Hubble parameter HðzÞ, where z is the
redshift. For theΛCDMmodel,HðzÞ is calculated using the
standard relation of the Hubble parameter with various
density parameters, Ωs. In contrast, for our model HðzÞ is
replaced byHDðzÞ, since we are interested in the evaluation
of all physical quantities with respect to the global domain.

From Eq. (1), using Taylor expansion of e−τðzÞ, and
ignoring higher order terms of τðzÞ, we get

T21 ≈
Ts − Tγ

1þ z
τðzÞ:

Now, from Eq. (2), for δrvr ¼ 0, τðzÞ ∝ 1=HðzÞ. Therefore,

T21 ∝
Ts − Tγ

1þ z
1

HðzÞ : ð37Þ

Thus, for a given value of Ts and Tγ, T21 is inversely
proportional to HðzÞ. Note that the sign of T21 is governed
by Ts and Tγ. If Ts > Tγ , then T21 is positive and negative
for vice versa. HðzÞ has effect only on the magnitude of
T21. Also note that T21 is related to HðzÞ via Ts, which
itself depends on HðzÞ [from Eqs. (4) and (5)], but the
dominant and more direct relationship between T21 and
HðzÞ is from Eq. (37).
Though the primary redshift range of interest for our

present analysis is 14 < z < 20 corresponding to the range

(a) (b)

(c) (d)

FIG. 3. Plots of HDðzÞ=HD;0 for ΛCDM and our backreaction model as a function of z. Our backreaction model has four parameters
that can be varied: μu, σu, μo, σo. In (a) μo is varied with σo ¼ σu ¼ 0.01 and μu ¼ 0.01 fixed. In (b) σo is varied with μo ¼ 0.51,
σu ¼ 0.01, and μu ¼ 0.01 fixed. In (c) μu is varied with σo ¼ σu ¼ 0.01 and μo ¼ 0.51 fixed. In (d) σu is varied with σo ¼ 0.01,
μo ¼ 0.51 and μu ¼ 0.01 fixed. The insets show the plot lines for the redshift range 10–20. The value of H0 (Hubble parameter at the
present time) used is 100 h km s−1 Mpc−1 where h ¼ 0.7.
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of the EDGES result [6], there are various future proposed
experiments to analyze the 21 cm signal at various redshift
ranges [74–78]. In Fig. 4, we display results for a large
redshift range up to z ¼ 1000, given the above-proposed
observations. The current analysis focuses on a much
narrower regime of 14 < z < 20 as displayed in the
figure insets.
In Fig. 4, the variations of the brightness temperature T21

in mK as a function of redshift z using Eq. (1) in the redshift
range 14–1000 are plotted for both the ΛCDM model and
our backreaction model. In the case of our model, HðzÞ is
replaced by HDðzÞ (plotted in Fig. 3). Our backreaction
model has four parameters that can be varied: μu, σu, μo, σo.
One of the parameters varied in each of the four subfigures,
while the other three were fixed. Each subplot of Fig. 4 has
a relation with the corresponding subplot of Fig. 3 via
Eq. (37). In Fig. 3(c), lower values of μu yielded lower
values of HDðzÞ, and since HDðzÞ is inversely proportional
to the magnitude of T21, lower values of μu should give us
the greater magnitude of T21. This is what is observed in

Fig. 4(c). Other subplots of Fig. 4 also have a one-to-one
correspondence with their counterparts in Fig. 3, which can
be explained similarly. At lower values of the redshift z, our
backreaction model for a large range of parameters leads to
lower brightness temperature than the ΛCDM model. In
general, lower values of μo, μu, σo, and σu lead to lower
(more negative) values of T21.
In Fig. 5, the variation of T21 at z ¼ 17.2 in the μo-σo

plane is shown for different sets of values of ðμu; σuÞ using
a contour plot. The value of μo varies in the range of
0.5–1.0 along the x axis, while σo is varied in the range
0.01–0.09 along the y axis. The contour colors describe the
value of T21ðz ¼ 17.2Þ per the color bar at the bottom of the
figure. In Figs. 5(a) and 5(b), ðμu; σuÞ are (0.01, 0.01) and
(0.01, 0.09), respectively. Figure 5(a) has a lower value
(more negative) of T21ðz ¼ 17.2Þ compared to Fig. 5(b).
There is also very little variation within the individual
Figs. 5(a) and 5(b). This shows that fixing ðμu; σuÞ and
varying ðμo; σoÞ has very little effect on the calculation of
T21 at z ¼ 17.2. However, changing σu between Figs. 5(a)

(a) (b)

(c) (d)

FIG. 4. Plots of brightness temperature T21 for the ΛCDM model and our backreaction model for the redshift range 14–1000. Our
backreaction model has four parameters that can be varied: μu, σu, μo, σo. In (a) μo is varied with σo ¼ σu ¼ 0.01 and μu ¼ 0.01 fixed. In
(b) σo is varied with μo ¼ 0.51, σu ¼ 0.01, and μu ¼ 0.01 fixed. In (c) μu is varied with σo ¼ σu ¼ 0.01 and μo ¼ 0.51 fixed. In (d) σu is
varied with σo ¼ 0.01, μo ¼ 0.51, and μu ¼ 0.01 fixed. The value of H0 (Hubble parameter at the present time) used is
100 h km s−1 Mpc−1 where h ¼ 0.7. The insets show the plot lines in the redshift range of our interest.
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and 5(b) results in significant variation. This also shows
the insignificance of the model parameters associated
with overdense subregions in the dynamics of the global
domain. From Figs. 5(c) and 5(d), it can be seen that
T21ðz ¼ 17.2Þ has high values (from −150 to −110 mK)
for ðμu; σuÞ ¼ ð0.45; 0.01Þ and (0.45, 0.09). Changing
σu from 0.01 to 0.09 while keeping μu fixed in Figs. 5(c)

and 5(d) has little effect on the value of T21ðz ¼ 17.2Þ. In
these subplots, T21ðz ¼ 17.2Þ has the lowest value of
around −350 mK in the lower left portion of Fig. 5(a).
This affirms our analysis of Fig. 4 that lower values of σu,
σo, μo, and μu lead to lower values (more negative) of
T21ðz ¼ 17.2Þ. From Figs. 5(a) and 5(c), it can be seen that
changing the value of μu keeping σu fixed has a more

FIG. 5. Contour representation of T21ðz ¼ 17.2ÞðmKÞ in the σo-μo plane for (a) μu ¼ 0.01, σu ¼ 0.01, (b) μu ¼ 0.01, σo ¼ 0.09,
(c) μu ¼ 0.45, σu ¼ 0.01, (d) μu ¼ 0.45, σu ¼ 0.09.
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prominent effect on the brightness temperature than doing
vice versa.
In Fig. 6, the variation of T21 at z ¼ 17.2 in the μu-σu

plane is shown for different sets of values of ðμo; σoÞ using
a contour plot. The value of μu varies in the range of 0–0.5
along the x axis while σu is varied along the y axis in the

range of 0.01–0.09. In Figs. 6(a) and 6(b), μo is fixed at
0.51, and σo has the values of 0.01 and 0.09, respectively. In
Figs. 6(c) and 6(d), μo is fixed at 0.99 while σu has the
values of 0.01 and 0.09, respectively. The effect of varying
σo while keeping μo fixed can also be seen from these two
subplots. From Figs. 6(a) and 6(c), it can be seen that

FIG. 6. Contour representation of T21ðz ¼ 17.2Þ (mK) in the σu-μu plane for (a) μo ¼ 0.51, σo ¼ 0.01, (b) μo ¼ 0.51, σo ¼ 0.09,
(c) μo ¼ 0.99, σo ¼ 0.01, (d) μo ¼ 0.99, σo ¼ 0.09.
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changing the value of μo keeping σo fixed has a slightly
more prominent effect on the brightness temperature than
vice versa. The lowest value of T21ðz ¼ 17.2Þ of around
−320 mK is obtained in the bottom left part of the Fig. 5(a)
of the figure for μu ≈ 0.01. This also affirms our analysis of
Fig. 4 that lower values of σu, σo, μo, and μu lead to lower
values (more negative) of T21ðz ¼ 17.2Þ. This figure also
highlights the insignificance of overdense parameters as all
four subplots are very much alike, so changing the over-
dense parameters does not affect the output much.

VI. OBSERVATIONAL CONSTRAINTS

We now examine the backreaction framework in the
context of our model of multiple subregions with respect to
observational data and determine the optimum values of
our model parameters. We perform a Bayesian analysis to
compare our model with the Union 2.1 supernova Ia
distance modulus versus redshift data [79]. To compare
our model with the observational data, we employ the
earlier-mentioned covariant scheme [Eqs. (34) and (35)].
The first equation of the covariant scheme [Eq. (34)] relates

FIG. 7. Corner plot showing the MCMC result for our model carried out using the observational results of the Union 2.1 supernova Ia
data [79]. The diagonal histograms show the marginalized posterior densities for each parameter.
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the theoretically calculated quantity from our model aD
with the cosmological redshift, z, and the second equation
[Eq. (35)] relates the theoretically calculated quantity from
our model hρiD with the observational quantity, the angular
diameter distance DA. From this DA, we can calculate the
distance modulus using standard cosmological distance
relations and thus compare our model with the Union 2.1
supernova Ia data.
In this analysis, the resulting posterior distributions of

different parameters are obtained by the Markov chain
Monte Carlo (MCMC) iteration method (Fig. 7) by using
the MCMCSTAT package [80,81]. We use a total of 3 × 103

number of events with the adaptation interval of 100, within
the parameter range: μu ∈ ½0.01; 0.49�, σu ∈ ½0.01; 0.09�,
μo ∈ ½0.51; 0.99�, and σo ∈ ½0.01; 0.09�. The topmost plots
of the first, second, third, and fourth columns of Fig. 7
represent the posterior distribution of the parameters μu, σu,
μo, and σo, respectively, obtained by marginalizing the
other parameters. The other plots of Fig. 7 show the contour
representation of the posterior distribution in different sets
of a two-parameter space. In these contour plots, the darker-
colored regions denote higher posterior regions, and the
lines indicate the boundaries of 1σ, 2σ, and 3σ regions,
respectively. The diagonal panels show the 1D histogram of
the posterior distribution for each model parameter
obtained by marginalizing the other parameters. The off-
diagonal panels show 2D projections of the posterior
probability distributions for each pair of parameters and
correlations between the parameters and contours.
From this analysis the obtained set of optimum points

are μu ¼ 0.01þ0.00
−0.00 , σu ¼ 0.01þ0.00

−0.00 , μo ¼ 0.63þ0.16
−0.08 , and

σo ¼ 0.05þ0.03
−0.03 , respectively. These optimum points are

obtained considering all four parameters. However, from
the marginalized posterior plot for μo (in Fig. 7), one can
notice that the most probable value of μo is slightly lower
(μo ¼ 0.55) than the corresponding optimal point. This is
because posterior plots for each parameter plotted along the
diagonal are obtained bymarginalizing the other parameters.
These plots do not consider other parameters; therefore, the
most probable values differ from the optimum values.
Similarly, the most probable values for other model param-
eters areμu ¼ 0.01, σu ¼ 0.01, and σo ¼ 0.06. It can be seen
that lower values of σu, μu, and μo are favored, which in turn
favors a reduced brightness temperature of the T21 signal, as
determined from our analysis of (Figs. 4–6).
In Fig. 8, the brightness temperature T21 is plotted in

units of mK as a function of redshift z in the range 14–20
for the ΛCDM model and for the optimal and most pro-
bable values of the parameters of our backreaction model,
obtained from theMCMCanalysis. The set of optimal values
used is ðμu; σu; μo; σoÞ ¼ ð0.01; 0.01; 0.63; 0.05Þ and the
set of most probable value used is ðμu; σu; μo; σoÞ ¼
ð0.01; 0.01; 0.55; 0.06Þ. Both the most probable and
optimal sets of values gives a brightness temperature con-
siderably lower than theΛCDMmodel for this redshift range.

At z ¼ 14, T21 for our backreaction model, the optimal and
most probable set of parameter values is around≈ − 350 mK,
which is within the range of the EDGES result. This value is
lower than the ≈ − 240 mK given by the ΛCDM model.

VII. CONCLUSIONS

Recent observations indicate that our Universe contains
an inhomogeneous matter distribution at considerably large
scales [21–23]. The effect of these inhomogeneities on
various cosmological phenomena calls for close scrutiny. In
the present study, we revisit the 21-cm cosmology [1–3], in
a spacetime with matter distribution inhomogeneities. We
explore the brightness temperature of the 21-cm signal as a
function of the redshift under the impact of backreaction
from matter inhomogeneities.
In our analysis, we use thewidely used Buchert formalism

[29,30] of averaging over inhomogeneities to evaluate the
backreaction effect. The Buchert framework facilitates the
relation of theoretically evaluated quantities with observ-
ables such as redshift and angular diameter distance
[41,42,56–58].Within this framework, we construct a model
of multiple subregions with a Gaussian distribution of
parameters to mimic the actual Universe containing multiple
voids and structures at the present epoch. We employ the
covariant scheme to relate our theoretically evaluated param-
eters with observational quantities.
Using this model, we calculate the brightness temper-

ature T21 of the 21-cm signal as a function of the redshift
and analyze it for our model parameters. Such a model of
spacetime that we have employed leads to a modification
of the Hubble evolution, making it desirable to constrain
our model parameters using observational results. To
correlate our model with observation data, we obtain the
marginalized posterior densities for each model parameter
through MCMC simulations using Union 2.1 supernova Ia
data [79].

FIG. 8. Plots of brightness temperature T21 (mK) for the
ΛCDM model and our backreaction model for the optimal values
and the most probable values of our model parameters obtained
from the MCMC analysis for the redshift range 14–20. Dashed
plotlines are for our backreaction model.
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Our analysis shows that the 21-cm brightness temper-
ature T21 could be lowered by a significant amount under
the impact of altered Hubble evolution resulting due to
backreaction from matter distribution inhomogeneities.
Such a result follows without utilizing any exotic physics
or nonstandard models of dark matter and dark energy, such
as schemes employed in a host of previous works [9–16]
to lower the 21-cm brightness temperature. In particular,
using the optimal and most probable values of our model
parameters obtained through the MCMC simulations, it can
be seen that T21 could drop to levels below the predictions
of ΛCDM and within the range of the EDGES result.
We conclude by noting that several earth-based and

space-based experiments have been proposed to observe
and record the 21-cm signal effectively [74–78]. Our
analysis obtains the evolution of T21 over a wide range
of redshift z in Fig. 4. Thus, it can be used in conjugation
with data from such experiments to analyze the role of
matter distribution inhomogeneities in 21-cm cosmology.
Specifically, if any dip of temperature below the ΛCDM
prediction is observed in the 21-cm signal, our present
analysis should motivate further detailed investigations of
other backreaction scenarios [24–28] as well.
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APPENDIX A: CALCULATION OF t0

Using Eq. (17), we can break down HD as

HD ¼
X
i

λoiHoi þ
X
j

λujHuj ¼ λoHo þ λuHu; ðA1Þ

where, λoHo ¼
P

i λoiHoi represents the collective contri-
bution of overdense subregions, and similarly λuHu ¼P

i λuiHui represents the collective contribution of under-
dense subregions. Also, using Eq. (20), we can write

a3D ¼ λo;0a3o þ λu;0a3u; ðA2Þ
where λo;0a3o represents the collective contribution of the
overdense subregions and similarly λu;0a3u for the underdense
subregions. Using Eq. (29), Eq. (A1) can be written as

HD ¼ λo;0
a3o
a3D

Ho þ λu;0
a3u
a3D

Hu;

¼ Ho

�
λo;0a3o

λo;0a3o þ λu;0a3u
þ λu;0a3u
λo;0a3o þ λu;0a3u

Hu

Ho

�
;

¼ Hoð1 − vþ vhÞ; ðA3Þ
where, using the definitions of h and v from [55], we have

defined similarly h ≔ Hu=Ho and v ≔ λu;0a3u
λo;0a3oþλu;0a3u

. Our

definition of v is different from theirs due to the different
scaling of aD that we have used here. Therefore,

HD ¼ Hoð1 − vþ vhÞ ¼
P

iλoiHoi

λo
ð1 − vþ vhÞ: ðA4Þ

Now, using Eqs. (22) and (23),

Hoi ¼
sinϕoiðϕoi − sinϕoiÞ

t0ð1 − cosϕoiÞ2
: ðA5Þ

Therefore,

HD ¼ 1

λot0
ð1−vþvhÞ

X
i

λoi
sinϕoiðϕoi − sinϕoiÞ

ð1− cosϕoiÞ2
: ðA6Þ

At present time, t0,

HD0
¼ 1

λo;0t0
ð1−v0þv0h0Þ

X
i

λoi;0
sinϕoi;0ðϕoi;0 −sinϕoi;0Þ

ð1−cosϕoi;0Þ2
:

ðA7Þ
We see that

t0 ¼
1

λo;0HD0

ð1 − v0 þ v0h0Þ
X
i

λoi;0

×
sinϕoi;0ðϕoi;0 − sinϕoi;0Þ

ð1 − cosϕoi;0Þ2
; ðA8Þ

so we need to fix either t0 or HD0
. Here, we have chosen

HD0
¼ 70 km/s/Mpc. Now we have

v0 ¼
λu;0a3u;0

λo;0a3o;0 þ λu;0a3u;0
; h0 ¼

Hu;0

Ho;0
:

We have defined our model in such a way that
ao;0¼au;0¼aD;0¼1. Also, ðλo;0;λu;0Þ¼ð0.09;0.91Þ [37].
Therefore, v0 ¼ 0.91. Also,

λoHo ¼
X
i

λoiHoi ⇒ Ho ¼
1

λo

X
i

λoiHoi

⇒ Ho;0 ¼
1

λo;0

X
i

λoi;0Hoi;0 ¼
1

λo;0 × t0

X
i

�
No

σo
ffiffiffiffiffiffi
2π

p e−ðqoi;0−μoÞ
2=2σ2o ×

sinϕoi;0ðϕoi;0 − sinϕoi;0Þ
ð1 − cosϕoi;0Þ2

�
ðA9Þ
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where we have used Eq. (31). Similarly, using Eqs. (24), (25), and (30), we get the following:

Hu;0 ¼
1

λu;0 × t0

X
i

�
Nu

σu
ffiffiffiffiffiffi
2π

p e−ðqui;0−μuÞ
2=2σ2u ×

sinhϕui;0ðsinhϕui;0 − ϕui;0Þ
ðcoshϕui;0 − 1Þ2

�
: ðA10Þ

The t0 term in the denominators of Eqs. (A9) and (A10) cancels out and all the other quantities are known. Therefore,
we have

h0 ¼
Hu;0

Ho;0
¼ λo;0

λu;0

P
i

�
Nu

σu
ffiffiffiffi
2π

p e−ðqui;0−μuÞ
2=2σ2u ×

sinhϕui;0
ðsinhϕui;0

−ϕui;0
Þ

ðcoshϕui;0
−1Þ2

�
P

i

�
No

σo
ffiffiffiffi
2π

p e−ðqoi;0−μoÞ
2=2σ2o ×

sinϕoi;0
ðϕoi;0

−sinϕoi;0
Þ

ð1−cosϕoi;0
Þ2

� : ðA11Þ

So, from Eq. (A11), we can calculate h0 and then using
this value of h0 and v0 in Eq. (A8), we can obtain t0. In this
way, using the above procedure, we can fix t0 for a given set
of values of our model parameters ðμu; σu; μo; σoÞ.

APPENDIX B: OUR MULTIDOMAIN MODEL

Our multidomain model is made up of multiple sub-
domains of overdense and underdense. The underdense
subdomains are negatively curved FLRW regions while
the overdense subdomains are positively curved FLRW
regions having densities greater than those of the under-
dense subdomains. Both of these subregions are composed
of dust. Now, the scale factor for these overdense and
underdense subdomains as functions of cosmic time t is
given by Eqs. (22)–(25), respectively.
The densities of underdense subregions is given by [72]

ρui ¼
ρui;0
a3ui

; ðB1Þ

where ρui;0 is the density at present time t0, which is
given by

ρui;0
ρui;c

¼ qui;0 ; where ρui;c ¼
3H2

ui;0

8πG
; ðB2Þ

where ρui;c is the critical density and Hui;0 is the value of
present time Hubble parameter for the ith underdense
subregion.
Densities for the overdense subregions can also be

defined similarly,

ρoi ¼
ρoi;0
a3oi

; ðB3Þ

where ρoi;0 is the density at present time t0, which is given by

ρoi;0
ρoi;c

¼ qoi;0 ; where ρoi;c ¼
3H2

oi;0

8πG
; ðB4Þ

where ρoi;c is the critical density and Hoi;0 is the value of
present time Hubble parameter for the ith overdense
subregion.
Choosing our parameters in the range 0 < qui;0 < 0.5

and 1=2 < qoi;0 < 1, it follows from Eqs. (B2) and (B4)
that the densities of underdense subdomains remain always
less than the densities of overdense subdomains.
The combined density for all overdense subregions (ρo)

is given by

λoρo ¼
X
i

λoiρoi ⇒ ρo ¼
P

iλoiρoiP
iλoi

; ðB5Þ

where λoi are defined in Eq. (29) and λo is the total volume
fraction of the overdense subregions. Similarly,

λuρu ¼
X
i

λuiρui ⇒ ρu ¼
P

iλuiρuiP
iλui

; ðB6Þ

where λui are defined in Eq. (32) and λu is the total volume
fraction of the underdense subregions.
Also, hρiD, the averaged density of the global domain is

given by

hρiD ¼ λoρo þ λuρu;

¼
X
i

λoiρoi þ
X
i

λuiρui : ðB7Þ

The various density parameters are obtained in our
analysis in the following way. From Eq. (13), we have

3H2
D ¼ 8πGhρiD −

1

2
hRiD −

1

2
QD: ðB8Þ

Dividing by 3H2
D throughout, we get

1 ¼ ΩD
m þΩD

R þ ΩD
Q; ðB9Þ
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where

ΩD
m ¼ 8πGhρiD

3H2
D

; ΩD
R ¼ −

hRiD
6H2

D
; ΩD

Q ¼ −
QD

6H2
D
:

ðB10Þ

From Eq. (33), we can calculate QD for our model and
then from Eq. (B10), ΩD

Q can be calculated. Then using,
Eqs. (B7) and (B10), ΩD

m can be calculated and ΩD
R can be

calculated from Eq. (B9). In this way, all the average
density parameters can be obtained.
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