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There has recently been some considerable interest expressed in a highly speculative model of black-
hole evolution—allegedly by a postulated direct coupling between black holes and cosmological expansion
independent of accretion or mergers. We wish to make several cautionary comments in this regard—at least
three exact solutions corresponding to black holes embedded in a Friedmann-Lemaître-Robertson-Walker
background are known (Kottler, McVittie, Kerr–de Sitter), and they show no hint of this claimed effect,
thereby implying that this claimed effect (if it exists at all) is certainly nowhere near ubiquitous.
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I. INTRODUCTION

There have recently been some rather bold and un-
usual claims made regarding how black holes might
directly interact with the overall Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmological expansion [1].
(See also the somewhat earlier closely related Refs. [2–4]
which developed the theoretical framework for these
claims.)
Key parts of the claims made in Ref. [1] were that
(i) “The Kerr black hole solution is ... provisional as its

behavior at infinity is incompatible with an expand-
ing universe.”

(ii) “Black hole models with realistic behavior at infinity
predict that the gravitating mass of a black hole can
increase with the expansion of the universe inde-
pendently of accretion or mergers ... ”

(iii) “The redshift dependence of the mass growth
implies that, at z ≤ 7, black holes contribute an
effectively constant cosmological energy density to
Friedmann’s equations.”

There are a number of significant problems with these
claims:

(i) The truly enormous “separation of scales” that is
observed to occur between galactic dynamics and
cosmological dynamics makes all such claims grossly
implausible. (More on this specific point below.)

(ii) There are at least three exact solutions to the Einstein
equations that embed black holes in expanding
universes (Kottler, McVittie, and Kerr–de Sitter),
and in those known exact solutions the claimed
effect simply does not occur. (This will be the main
point of the current article.)

(iii) The underlying theoretical framework [2–4] adopted
in Ref. [1] appears to be deeply flawed [5]. (One key
issue here is that the cosmological mass fraction
sequestered in black holes simply does not lead to an
equal but opposite pressure; a “black-hole gas”
mimics “dust,” it does not mimic “dark energy.”)
Several other authors have made related cautionary
comments [6,7].

(iv) An independent observational analysis [8] strongly
excludes the claimed effect at ∼3σ, and is compat-
ible with zero effect at ∼1σ. (The technical difficulty
with making this bound even tighter lies in guaran-
teeing that the observational sample is free of false
positives, due to the possible growth of superficially
quiescent black holes actually being driven due to
some unaccounted for variant of the usual processes
of accretion and/or mergers.) Several other indepen-
dent observational and/or numerical analyses sim-
ilarly disfavor the existence of the claimed effect; see
for instance [9–13].

In the current article we will concentrate on the general
relativistic aspects of the situation, paying particular
attention both to physically relevant approximations, and
to the known exact theoretical solutions; we will argue that
based on the known exact solutions there is simply no
physical reason to expect the claimed effect to occur, and
good physics reasons to reject the claimed effect.

II. SEPARATION OF SCALES

We start the discussion by pointing out that there is a
truly enormous separation of scales between galactic black-
hole physics and cosmological physics. Even the heaviest
known galactic black holes have masses only of order
3 × 1010 solar masses, corresponding to a Schwarzschild
radius ≲10−3 parsecs. In contrast the cosmological
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homogeneity scale is typically taken to be of order ≳108

parsecs,1 and the Hubble scale is even larger, of order 1010

parsecs. There simply is no plausible mechanism for
directly coupling milliparsec black-hole physics to giga-
parsec cosmological physics. (For related comments see
Refs. [14,15].)
What is much more plausible is to directly couple the

observed black-hole candidates found in most spiral galaxy
cores to matter in their immediate environment—the
galactic cores and galaxies in which they reside. But this
of course implies black-hole evolution due to the utterly
standard processes of accretion and/or mergers, which
is exactly what the authors of Ref. [1] are claiming to
sidestep.
More quantitatively, even in the absence of an explicit

exact solution to the Einstein equations, we can argue as
follows: Any attempt at inserting a black hole into a FLRW
cosmology will at the very least involve two separate mass
scales—m the mass of the central black hole, and ρFLRW r3,
the FLRW contribution to the mass contained in a ball of
radius r. Combining these two quantities defines a natural
distance scale

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

ρFLRW
3

r
: ð2:1Þ

At distances r < r� black-hole physics dominates, at
distances r > r� the FLRW cosmology dominates. We
shall see this natural transition-distance scale crop up
repeatedly in the discussion below.

III. RELEVANT EXACT SOLUTIONS
IN GENERAL RELATIVITY

There are at least three well-known exact solutions of
Einstein’s equations for black holes embedded in expand-
ing FLRW universes:

(i) Schwarzschild–de Sitter (Kottler),
(ii) Schwarzschild-FLRW (McVittie),
(iii) Kerr–de Sitter.

Note that de Sitter spacetime is just a special case of FLRW,
which, in appropriate coordinates, corresponds to expo-
nential expansion aðtÞ ¼ eHt, with constant Hubble param-
eter H. Furthermore, since in the standard framework of Λ
cold dark matter cosmology, the Universe at the current
epoch is believed to already be cosmological-constant
dominated, it follows that de Sitter space is an excellent
approximation to both the near-current-epoch and future
expansion history of the Universe. Allowing for a com-
pletely arbitrary expansion history for the scale factor aðtÞ
[as in the Schwarzschild-FLRW (McVittie) spacetime

discussed below], while it would be “nice to have,” is
not really critical for the purposes of the current discussion.
In the discussion below the only even slightly tricky

part is to keep careful track of a number of suitable
coordinate transformations. A useful recent reference
explicitly discussing coordinate freedom in cosmological
spacetimes is [16].

A. Schwarzschild–de Sitter (Kottler)

Let us start from Schwarzschild–de Sitter (Kottler)
spacetime presented in its most common form, in static
ðt; rÞ coordinates [17]:

ds2 ¼ −
�
1 −

2m
r

−H2r2
�
dt2 þ dr2

1 − 2m
r −H2r2

þ r2dΩ2:

ð3:1Þ

This coordinate system makes it obvious that at small r one
recovers the Schwarzschild solution, and that the massm of
the central black hole is not changing. In Kottler spacetime
the natural distance scale (in physical units) reduces to

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m

ρFLRW
3

r
⟶

ffiffiffiffiffiffiffiffi
mc2

H2

3

r
; ð3:2Þ

and can be identified as the radius of the outermost stable
circular orbit [18,19]. For r ≪ r� the physics is black-hole
dominated, for r ≫ r� the physics is cosmological-constant
dominated.
Now this particular static slicing makes the physical

interpretation in terms of an exponentially expanding
FLRW spacetime not entirely obvious; we need to make
a few coordinate transformations to make this fully explicit.
To proceed with the discussion, we first substitute

dt ¼ dt̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r þH2r2

q
1 − 2m

r −H2r2
dr ð3:3Þ

to go to ðt̄; rÞ Painlevé-Gullstrand coordinates (see for
instance Ref. [16]):

ds2 ¼ −dt̄2 þ
�
dr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r

þH2r2
r

dt̄

�2
þ r2dΩ2: ð3:4Þ

Second, we now set r ¼ eHt̄ r̄, so that dr ¼
eHt̄½dr̄þ r̄Hdt̄�. Then in these new ðt̄; r̄Þ coordinates

ds2 ¼−dt̄2þ e2Ht̄

" 
dr̄þ

(
Hr̄−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me−3Ht̄

r̄
þH2r̄2

s )
dt̄

!
2

þ r̄2dΩ2

#
: ð3:5Þ

1This is usually called the statistical scale of homogeneity and
estimates thereof are most often based on the galaxy-galaxy two-
point correlation method.
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Note that at large distances

(
Hr̄ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me−3Ht̄

r̄
þH2r̄2

s )
¼ Hr̄

(
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2me−3Ht̄

H2r̄3

s )

¼ −
m
Hr̄2

e−3Ht þO
�
1

r̄5

�
:

ð3:6Þ

Thus at large r̄,

ds2 ¼ −dt̄2 þ e2Ht̄
�
dr̄2 þ r̄2dΩ2

�þO
�
1

r̄2

�
; ð3:7Þ

making it obvious that the Schwarzschild–de Sitter
(Kottler) black hole is embedded in an exponentially
expanding FLRW universe.
We emphasize that in this specific example there simply

is no coupling between the mass parameter m and the
cosmological parameterH; they are independent constants.
The only even slightly tricky part of the analysis was in
setting up the coordinate transformations used to make
these properties manifest.

B. Schwarzschild-FLRW (McVittie)

The Schwarzschild-FLRW (McVittie) spacetime metric
[20–23] describes an eternal black hole that has been part of

the Universe ever since the big bang; if in contrast one
wants to describe a black hole that forms from stellar
collapse, then a segment of the Schwarzschild-FLRW
(McVittie) spacetime should be used only for describing
the quiescent period after the initial collapse and ringdown.
McVittie spacetime can be represented in any of the

following four completely equivalent forms [16]:

ds2 ¼ −

 
1 − m

2aðtÞr̃
1þ m

2aðtÞr̃

!
2

dt2 þ
�
1þ m

2aðtÞr̃
�

4

aðtÞ2

× fdr̃2 þ r̃2dΩ2g; ð3:8Þ

ds2 ¼
�
1þ m

2r̄

�
4
(
−

 �
1 − m

2r̄

�
2�

1þ m
2r̄

�
6

!
dt2

þ 	½dr̄ −HðtÞr̄dt�2 þ r̄2dΩ2

)

; ð3:9Þ

ds2 ¼ −
�
1 −

2m
r̂

�
dt2 þ

�
dr̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m=r̂
p −HðtÞr̂dt

�
2

þ r̂2dΩ2; ð3:10Þ

ds2 ¼ −
�
1 −

2m
aðtÞr

�
dt2 þ aðtÞ2

8><
>:

2
64
�
drþHðtÞr

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

aðtÞr
q i

dt
�
2

1 − 2m
aðtÞr

3
75þ r2dΩ2

9>=
>;: ð3:11Þ

All four of these coordinate systems use the same time
coordinate t, and also the same angular coordinates fθ;ϕg,
while we have used coordinate freedom of general relativity
to adopt differing radial coordinates fr̃; r̄; r̂; rg. (The
relevant coordinate transformations connecting these
differing radial coordinates are explicitly presented
in Ref. [16].)
In all four of these coordinate systems the energy density

is determined by finding the timelike eigenvector of the
stress energy, and is easily calculated to be [16]

ρ ¼ 3

8π
HðtÞ2: ð3:12Þ

The pressure is determined by the spacelike eigenvectors
of the stress energy and is more subtle: Depending on
which of the coordinate systems (3.8)–(3.11) one adopts
one finds the superficially differing but physically

equivalent results [16]:

p ¼ −ρ −
1

4π

1þ m
2aðtÞr̃

1 − m
2aðtÞr̃

ḢðtÞ; ð3:13Þ

¼ −ρ −
1

4π

1þ m
2r̄

1 − m
2r̄

ḢðtÞ; ð3:14Þ

¼ −ρ −
1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m=r̂

p ḢðtÞ; ð3:15Þ

¼ −ρ −
1

4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

aðtÞr
q ḢðtÞ: ð3:16Þ

At large distances, in all four of these coordinate
systems, one recovers the standard spatially flat (k ¼ 0)
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FLRW result:

p → −ρ −
ḢðtÞ
4π

: ð3:17Þ

Turning now to the explicit representations of the
spacetime metric, at suitably large distances, aðtÞr̃ ≫ m,
the line element (3.8) implies

ds2 ≈ −dt2 þ aðtÞ2fdr̃2 þ r̃2dΩ2g; ð3:18Þ
which clearly is (k ¼ 0) FLRW with arbitrary scale
factor aðtÞ.
On the other hand at suitably small distances,

r̄HðtÞ ≪ 1, the line element (3.9) implies

ds2 ≈
�
1þ m

2r̄

�
4

−
�½1 − m

2r̄�2
½1þ m

2r̄�6
�
dt2 þ fdr̄2 þ r̄2dΩ2g

�
:

ð3:19Þ
This is just Schwarzschild spacetime in isotropic coor-

dinates. So the mass of the central black hole is simplym, a
time-independent constant. Note there is no mass flux onto
the central black hole; there is no accretion. That is, there
simply is no direct coupling between the mass parameterm
and the cosmological parameterHðtÞ ¼ ȧðtÞ=aðtÞ; they are
independent quantities. As previously noted, the only even
slightly tricky part of the analysis was in setting up the

coordinate transformations used to make these properties
manifest.

C. Kerr–de Sitter

Rotating black holes are much more subtle than their
nonrotating counterparts. The basic asymptotically flat
Kerr spacetime was first discovered some 60 years ago
in 1963; see Ref. [24]. Further discussion can be found
in [25–30], and more recently in Refs. [31–38].
The Kerr–de Sitter geometry is even more subtle than

Kerr, and was first obtained by Carter some ten years later
in 1973—still some 50 years ago; see Refs. [39,40]. The
Kerr–de Sitter geometry represents an eternal rotating black
hole embedded in de Sitter spacetime. For a recent easily
accessible discussion see Ref. [41], and even more recently
see Refs. [42,43].
For a black hole formed from stellar collapse, one should

certainly wait until after the initial collapse and ring-
down, until the black hole is quiescent, and also wait until
the Universe is old enough to be cosmological-constant
dominated—as is now expected to be the situation in the
current epoch. That is, the Kerr–de Sitter geometry should be
a good approximation to rotating black holes in the current
epoch. (This point is implicit in the discussion of Ref. [41].)
The metric for the Kerr–de Sitter spacetime is most

typically presented in stationary coordinates [39,40]:

ds2 ¼ −
ðr2 þ a2Þð1 − Λ

3
r2Þ − 2mr

r2 þ a2cos2 θ

�
dt − a sin2 θdϕ

1þ 1
3
Λa2

�
2

þ sin2 θ

�
1þ 1

3
Λa2cos2 θ

r2 þ a2cos2 θ

��
adt − ðr2 þ a2Þdϕ

1þ 1
3
Λa2

�
2

þ ðr2 þ a2cos2 θÞ
�

dr2

ðr2 þ a2Þð1 − Λ
3
r2Þ − 2mr

þ dθ2

ð1þ 1
3
Λa2cos2 θÞ

�
: ð3:20Þ

[Warning: Here a is the spin parameter a ¼ J=m, not the
FLRW scale factor aðtÞ.] In this spacetime, the cosmo-
logical constant is related to the Hubble constant by
Λ ¼ 3H2. A perhaps mildly surprising aspect of this line
element is the presence of the constant 1þ 1

3
Λa2 ¼ 1þ

H2a2 in several strategic places.
To be able to efficiently use computer algebra packages,

it is more beneficial to have this metric in a fully expanded
form, and to eliminate the trigonometric functions. We
therefore rewrite the line element in the following form:

gμνdxμdxν ¼−
�
Δr−Δθ a2ð1− χ2Þ

ρ2Ξ2

�
dt2þ ρ2

Δr
dr2

þ ρ2

Δθð1− χ2Þdχ
2þð1− χ2Þ

ρ2Ξ2

×
�
Δθðr2þa2Þ2−Δra2ð1− χ2Þ�dϕ2

−
2að1− χ2Þ

ρ2Ξ2

�
Δθðr2þa2Þ−Δr

�
dtdϕ: ð3:21Þ

Here

χ ¼ cos θ;

Δr ¼ r2 þ a2 − 2mrþ Λ
3
r2ðr2 þ a2Þ;

Δθ ¼ 1þ Λ
3
a2cos2 θ ¼ 1þ Λ

3
a2χ2;

ρ2 ¼ r2 þ a2cos2 θ ¼ r2 þ a2χ2;

Ξ ¼ 1þ Λ
3
a2: ð3:22Þ

The Kerr–de Sitter spacetime is a Λ-vacuum solution of
the Einstein field equations, an Einstein manifold, and
therefore satisfies

Rμν ¼ −Λgμν; Gμν ¼ þΛgμν: ð3:23Þ

Using, for example, SAGEMATH or Maple, we may easily
check if this is in fact true.
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We must also check that the Weyl tensor is nonzero, and that the Weyl scalar, CμναβC μναβ, is position dependent: Indeed

CμναβC μναβ ¼ −
m2ða2χ2 þ 4arχ þ r2Þða2χ2 − 4arχ þ r2Þðr2 − a2χ2Þ

ðr2 þ a2χ2Þ6 ; ð3:24Þ

which depends on both r and χ. Furthermore, the Kretsch-
mann scalar, RμναβR μναβ, is also nonzero and position
dependent. Lastly, due to the Kerr–de Sitter spacetime
no longer being a pure vacuum solution to the Einstein
equations, we expect the difference between the Kretsch-
mann scalar and Weyl scalar to be nonzero (and position
independent). We find

RμναβR μναβ − CμναβC μναβ ¼
8

3
Λ2: ð3:25Þ

When Λ ¼ 0—where the Kerr metric is recovered—the
difference is zero.
We will subsequently look at the asymptotic large-

distance behavior and verify that in a suitable coordinate
system the cosmological constant Λ can be reinterpreted in
terms of a constant Hubble parameter H (with Λ ¼ 3H2),
and an exponentially growing scale factor aðtÞ ¼ eHt. But
for now let us focus on a number of internal consistency
checks for the Kerr–de Sitter spacetime.

IV. EXTENDED CONSISTENCY CHECKS
FOR KERR–DE SITTER

In this section we shall spend a little effort checking that
the Kerr–de Sitter spacetime does in fact (under suitable
circumstances) reduce to the Kerr, Kottler, and de Sitter
spacetimes as required.

A. Kerr spacetime

We first investigate the Λ ¼ 0 limit of the Kerr–de Sitter
(KdS) metric given in (3.21), resulting in the Kerr space-
time. This results in a vacuum solution to the Einstein
equations, hence, providing the basis for a variety of
consistency checks for the KdS spacetime.
When Λ ¼ 0 we obtain the line element

gμνdxμdxν ¼−
�
Δ̄r−a2ð1− χ2Þ

ρ2

�
dt2þ ρ2

Δ̄r
dr2þ ρ2

ð1− χ2Þdχ
2

þð1− χ2Þ
ρ2

�ðr2þa2Þ2− Δ̄ra2ð1− χ2Þ�dϕ2

−
2að1− χ2Þ

ρ2
�ðr2þa2Þ− Δ̄r

�
dtdϕ; ð4:1Þ

where Δ̄r ¼ r2 þ a2 − 2mr.
To check that this is in fact the Kerr spacetime, we

compute the curvature quantities such as the Ricci tensor,
Weyl tensor, Kretschmann scalar, and Weyl scalar. For a

vacuum solution we expect the Ricci tensor to be zero and,
therefore, the Riemann tensor and Weyl tensor to be equal.
We verify this using SAGEMATH/Maple. Furthermore, we find
that the Riemann tensor and Weyl tensor are equal, non-
zero, and position dependent. Lastly, the Weyl scalar and
Kretschmann scalar are equal (as expected).

B. Kottler spacetime

In the a → 0 limit of the KdS spacetime, we recover the
Kottler (Schwarzschild–de Sitter) spacetime. First

Δr → Δ̂r ¼ r2− 2mr−
Λr4

3
¼ r2

�
1−

2m
r

−
1

3
Λr2
�
: ð4:2Þ

Then

ðds2ÞKottler ¼ −
Δ̂r

r2
½dt�2 þ ð1 − χ2Þr2½dϕ�2

þ r2
�
dr2

Δ̂r

þ dχ2

ð1 − χ2Þ
�
: ð4:3Þ

Rewritten, this becomes

ðds2ÞKottler ¼ −
Δ̂r

r2
dt2 þ r2

Δ̂r

dr2

þ r2
�

dχ2

ð1 − χ2Þ þ ð1 − χ2Þdϕ2

�
: ð4:4Þ

That is,

ðds2ÞKottler ¼ −
�
1 −

2m
r

−
1

3
Λr2
�
dt2 þ dr2

1 − 2m
r − 1

3
Λr2

þ r2
�

dχ2

ð1 − χ2Þ þ ð1 − χ2Þdϕ2

�
: ð4:5Þ

This metric is evidently the Kottler spacetime [17] in
standard ðt; rÞ coordinates [and not entirely standard ðχ;ϕÞ
coordinates]. We may now perform the same consistency
checks on this spacetime as we did in the KdS case. We
expect similar results, as it is no longer a pure vacuum
solution and corresponds to pure cosmological constant.
We again find

Rμν ¼ Λgμν; Gμν ¼ −Λgμν: ð4:6Þ
The curvature quantities such as the Riemann tensor and

Weyl tensor are not equal; they are again nonzero and
position dependent.
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The Kretschmann scalar is

RμναβR μναβ ¼
8

3
Λ2 þ 48m2

r6
; ð4:7Þ

and the Weyl scalar is

CμναβC μναβ ¼
48m2

r6
: ð4:8Þ

The difference is simply

RμναβR μναβ − CμναβC μναβ ¼
8

3
Λ2; ð4:9Þ

which is the same result as in the KdS case, which is to be
expected since in the KdS case, the difference did not
depend on the angular momentum.

C. de Sitter spacetime

The last parameter we shall set to zero is the mass of the
black hole, m → 0. The only change in the metric compo-
nents is that now

Δr → Δ̃r ¼ r2 þ a2 −
Λr2

3
ðr2 þ a2Þ

¼ ðr2 þ a2Þ
�
1 −

1

3
Λa2

�
: ð4:10Þ

The KdS line element now reduces to

gμνdxμdxν ¼−
�
Δ̃r−Δθa2ð1− χ2Þ

ρ2Ξ2

�
dt2þ ρ2

Δ̃r
dr2

þ ρ2

Δθð1− χ2Þdχ
2þð1− χ2Þ

ρ2Ξ2

×
�
Δθðr2þa2Þ2− Δ̃ra2ð1− χ2Þ�dϕ2

−
2að1− χ2Þ

ρ2Ξ2

�
Δθðr2þa2Þ− Δ̃r

�
dtdϕ: ð4:11Þ

Though not entirely obvious, this is actually de Sitter
space in (rotating) oblate spheroidal coordinates.
In this m → 0 limit, it is easy to check that the Weyl

tensor is zero (and, therefore, the Weyl scalar will be zero
too). The Kretschmann scalar is found to be

RμναβR μναβ ¼
8

3
Λ2: ð4:12Þ

Note, that (as expected) this is (trivially) the difference of
the Kretschmann scalar and Weyl scalar, as for the KdS and
Kottler cases.
One may now go one step further and perform an explicit

coordinate transformation on the line element (4.11) to
obtain the “standard” form of the de Sitter metric. Using the
explicit coordinate transformation given in Ref. [41]

T ¼ t
Ξ
;

Φ ¼ ϕ −
aΛt
3Ξ

;

y cosΘ ¼ rχ;

y2 ¼ 1

Ξ
�
r2Δθ þ a2ð1 − χ2Þ�; ð4:13Þ

one can show that (4.11) reduces to

gμνdxμdxν ¼ −
�
1 −

Λ
3
y2
�
dT2 þ 1

1 − Λ
3
y2

dy2 þ y2dΘ2

þ y2sin2ΘdΦ2: ð4:14Þ

This is in fact the standard form for de Sitter space
presented in terms of the coordinates ðT; y;Θ;ΦÞ, which
we could simply rename ðt; r; θ;ϕÞ if desired.
Performing two further coordinate transformations

allows us to cast this metric into a form where, explicitly,
space is exponentially expanding. First, we transform the
time coordinate according to

T ¼ t̃þ
Z

Hy
1 −H2y2

dy ¼ t̃þ ln ð1 −H2y2Þ
2H

; ð4:15Þ

resulting in the Painlevé-Gullstrand [16] form of de Sitter
space:

gμνdxμdxν ¼ −dt̃2 þ ½dy −Hy dt�2 þ y2dΩ2: ð4:16Þ

Second, we transform the radial coordinate according to

y ¼ r̃eHt; ð4:17Þ

resulting in de Sitter space in comoving coordinates:

gμνdxμdxν ¼ −dt̃2 þ e2Ht̃fdr̃2 þ r̃2dΩ2g: ð4:18Þ

Therefore, it is apparent that, as desired, the m → 0 limit
of Kerr–de Sitter is indeed the exponentially growing
FLRW spacetime. We again see that the only even slightly
tricky part of the analysis was in setting up the coordinate
transformations used to make these properties manifest.

V. ASYMPTOTIC BEHAVIOR
OF KERR–DE SITTER

The claim that the mass of a black hole grows as
a function of time has been proven to be false thus far.
In Sec. III A we have shown that for the Schwarzschild–de
Sitter (Kottler) spacetime the mass of the central black hole
is simply m, a time-independent constant. In Sec. III B we
obtained the same result for McVittie (Schwarzschild-
FLRW) spacetime. We shall now show that this also holds
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for the Kerr–de Sitter black hole by considering the
asymptotic behavior of the Kerr–de Sitter spacetime.

A. Small r expansion

Let us begin with “small” r, i.e., jΛjr2 ≪ 1, while
keeping r > a. It is perhaps obvious that we should
expect—when close to the central black hole—the metric
to be of the form “Kerr þ perturbation.” For the following

analysis we shall use the binomial expansion in r. We note:

1

Ξ2
≈ 1 −

2

3
Λa2;

1

Δθ
≈ 1 −

1

3
Λa2χ2: ð5:1Þ

Component by component we explicitly find

ðgttÞKdS ≈ ðgttÞKerr −
2

3
Λa2ðgttÞKerr þOðΛa2Þ ¼ ðgttÞKerrð1þOðΛa2ÞÞ;

ðgrrÞKdS ≈ ðgrrÞKerr þ
1

3
Λr2ðgrrÞKerr þOðΛr2Þ ¼ ðgrrÞKerrð1þOðΛr2ÞÞ;

ðgθθÞKdS ≈ ðgθθÞKerr −
1

3
Λa2χ2ðgθθÞKerr þOðΛa2χ2Þ ¼ ðgθθÞKerrð1þOðΛa2χ2ÞÞ;

ðgϕϕÞKdS ≈ ðgϕϕÞKerr −
2

3
Λa2ðgϕϕÞKerr þOðΛr2Þ ¼ ðgϕϕÞKerrð1þOðΛr2ÞÞ;

ðgϕtÞKdS ≈ ðgϕtÞKerr −
2

3
Λa2ðgϕtÞKerr þOðΛr2Þ ¼ ðgϕtÞKerrð1þOðΛr2ÞÞ: ð5:2Þ

Note that the grr term is not merely a straightforward
binomial expansion in r. Rather, we use the fact that in the
region of interest

ðgrrÞKdS ¼
ρ2

ðr2 þ a2Þð1 −H2r2Þ − 2mr

≈
ρ2

r2 þ a2 − 2mr
1

1 −H2r2
; ð5:3Þ

which is true as we can safely neglect Oðr3Þ terms. Finally,
since χ ∈ ½−1; 1� and we have assumed a < r, all the
individual components of the Kerr–de Sitter metric may
be written as

ðgμνÞKdS ¼ ðgμνÞKerrð1þOðΛr2ÞÞ: ð5:4Þ

Consequently at small distances (meaning jΛjr2 ≪ 1)
Kerr–de Sitter reduces to Kerr as expected, with a constant
unchanging mass parameter m, and no sign of any direct

coupling between the de Sitter expansion and the central
black hole.

B. Large r expansion

For the large r expansion we assume r ≫ m (we also
assume m > a to avoid naked singularities). However we
do not want r to become cosmologically enormous; we still
want to keep jΛjr2 ≲ 1. (If Λ > 0 one certainly does not
want to go past the cosmological horizon at rC ≈ 1=

ffiffiffiffi
Λ

p
. In

counterpoint, if Λ < 0, corresponding to an asymptotically
anti–de Sitter space, there is simply no need to go past
r ∼ 1=

ffiffiffiffiffiffijΛjp
to detect cosmological physics.)

As we are a suitably large (but not too large) distance
away from the black hole, one would expect the metric to
be of the form “de Sitter þ perturbation:” For all of the
metric components except the grr component, we may
easily separate out the mass terms and then expand about
large r:

ðgttÞKdS ¼ ðgttÞdSO þ 2mr
ρ2Ξ2

≈ ðgttÞdSO þ 2m
r

þO
�
m
r3

�
;

ðgθθÞKdS ¼ ðgθθÞdSO ≈ ðgθθÞdSO þO
�
2m
r

�
;

ðgϕϕÞKdS ¼ ðgϕϕÞdSO þ 2mra2ð1 − χ2Þ4
ρ2Ξ2

1

Ξ2
≈ ðgϕϕÞdSO þ 2m

r
1

Ξ2
a2ð1 − χ2Þ4 þO

�
2m
r3

�
;

ðgϕtÞKdS ¼ ðgϕtÞdSO þ 2mrað1 − χ2Þ2
ρ2Ξ2

1

Ξ2
≈ ðgϕtÞdSO þ 2m

r
1

Ξ2
að1 − χ2Þ2 þO

�
2m
r3

�
: ð5:5Þ
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Here, the subscript dSO is used to make it explicit that
this is a component of the de Sitter metric oblate spheroidal
coordinates. The ðgrrÞKdS component is most easily dealt
with by writing

ðgrrÞKdS ¼ ðgrrÞdSO −
2mrðr2þa2χ2Þ

ðr2þa2Þ2ð1−H2r2Þ2

≈ ðgrrÞdSO−
2m
r

1

ð1−H2r2Þ2
�
1þO

�
a2

r2

��
: ð5:6Þ

Therefore, we may write the Kerr–de Sitter metric
expanded about large r (r ≫ m, but r not cosmologically
large, jΛjr2 ≲ 1) as

ðgμνÞKdS ¼ ðgμνÞdSO þO
�
2m
r

�
: ð5:7Þ

As required, as we approach large (but not too large) r
the Kerr–de Sitter spacetime asymptotically approaches de
Sitter space. [Which, as we have already seen, after suitable
coordinate transformations can be recast in terms of an
exponentially growing scale factor aðtÞ ¼ expðHtÞ.] We
emphasize (again) that in this specific Kerr–de Sitter
example there simply is no coupling between the mass
parameter m and the cosmological parameter H; they are
independent constants. The only even slightly tricky part of
the analysis was in setting up the coordinate transforma-
tions used to make these properties manifest.

VI. KERR-FLRW SPACETIME?

While we have seen that Kerr–de Sitter, corresponding
to specifically exponential expansion at asymptotic spatial
infinity, can be written down explicitly in a not too
complicated form, we know of no equivalent result for
Kerr-FLRW for a general scale factor aðtÞ. There is a reason
for this: In Kerr’s original article [24] he asked whether it
would be possible to find a (perfect fluid) interior solution
for what is now called Kerr spacetime. This is a question
that still remains open after 60 years. Only partial results
are known, in terms of anisotropic nonperfect fluids and
other anisotropic sources [44–46]. Finding an exact Kerr-
FLRW spacetime would be tantamount to finding a time-
dependent perfect fluid exterior solution to the Kerr black
hole, which would be at least as hard as the still unsolved
problem of finding a perfect fluid interior solution.
However, as mentioned in Sec. II, the largest known

galactic black holes have masses of order 3 × 1010m⊙. This
corresponds to a Schwarzschild radius ≲10−3 parsecs,
whereas the statistical scale of homogeneity is of order
≳108 parsecs. Therefore, having a solution that asymptotes

to a perfect fluid on scales such that the FLRW solution is
applicable is certainly good enough.
Furthermore, observational evidence strongly suggests

that the Universe is currently cosmological-constant domi-
nated, so the relevant FLRW spactime, now and for the
foreseeable future, is de Sitter. Thence the Kerr–de Sitter
solution is, for all practical purposes, certainly good
enough.

VII. BLACK HOLE INTERNAL STRUCTURE?

As part of the plausibility argument for entertaining a
possible direct black-hole/ cosmology coupling, Ref. [1]
suggested that this might have something to do with an
assumed nontrivial internal structure for black holes.
Specifically, was dark energy inside the black hole slowly
being released? Several authors have tried to make this idea
more precise. Certainly there is widespread agreement that
regular black holes and more generally black holes with a
nonvacuum interior are of interest [47–55]; there is much
less agreement as to whether such black-hole variants
directly couple to the cosmology they are embedded in.
Most investigations suggest there is no such direct coup-
ling [56–59], and the few investigations that suggest there
is such an effect yield predictions that are quantitatively and
qualitatively at variance [60] with the original proposal
of Ref. [1].

VIII. CONCLUSIONS

What have we learned from this discussion? Starting
from three relatively well-known exact solutions to the
Einstein equations (Kottler, McVittie, Kerr–de Sitter) all of
which successfully embed black holes in suitable FLRW
background, we have seen that these exact solutions exhibit
no evidence of any “direct coupling” between the black-
hole mass and the cosmological expansion. Furthermore,
several purely phenomenological investigations have sim-
ilarly failed to find evidence for any direct coupling
between the black-hole mass and the cosmological expan-
sion. Indeed the enormous separation of scales between
milliparsec black-hole physics and gigaparsec cosmologi-
cal physics renders any such direct coupling (independent
of accretion or mergers) grossly implausible. We, therefore,
urge extreme caution and care when mooting such ideas.
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