
K-inflation: The legitimacy of the classical treatment

Y. Ageeva * and P. Petrov †

Institute for Nuclear Research of the Russian Academy of Sciences,
60th October Anniversary Prospect, 7a, 117312 Moscow, Russia

(Received 2 April 2024; accepted 14 June 2024; published 26 August 2024)

In this paper we consider a general theory of k-inflation and find out that it may be in a strong coupling
regime. We derive accurate conditions of classical description validity using unitarity bounds for this
model. Next, we choose a simple toy model of k-inflation and obtain the explicit condition, which
guarantees that the generation of perturbations is performed in a controllable way, i.e., the exit from the
effective horizon occurs in the weak coupling regime. However, for the same toy model the corresponding

experimental bounds on a nonlinear parameter fequilNL associated with non-Gaussianities of the curvature
perturbation provide much stronger constraint than strong coupling absence condition. Nevertheless, for
other known models of inflation this may not be the case. Generally, one should always check if classical
description is legitimate for chosen models of inflation.
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I. INTRODUCTION

Nowadays, inflation [1–4] is a very successful paradigm
for understanding the properties of the early Universe.
Among many models of inflation, we choose the k-inflation
model [5,6] for our purposes. In such models the
Lagrangian involves the noncanonical kinetic term, which
drives the cosmological evolution. Although k-inflation
theories are known as free from obvious pathologies, we
address to the examination of the strong coupling problem
in k-inflation. The energy scale of strong coupling is an
important parameter in an effective quantum field theory
(QFT). In other words, it is the maximum energy below
which the effective QFT description is valid. The strong
coupling energy scale can often be qualitatively estimated
by naive dimensional analysis, see for example [7–10].
There are different notations of strong coupling concern in
other works, for example, in Ref. [11] authors use the
relation L3

L2
, so that when this ratio becomes larger than one,

the theory is strongly coupled. However, in this paper we
want to obtain more accurate estimations of strong coupling,
thus we stick to another criterion given in Refs. [12–14].
Our notation of legitimacy of classical treatment takes into
account precise estimates using unitarity bounds that follow

from general unitarity relations which must be used in order
to proceed to the precise analysis of the mentioned problem.
We show—first by the preliminary analysis of cubic order

action for scalar perturbation—that strong coupling problem
indeed arises in the most general setup for k-inflation. The
simple estimation of the s-channel matrix element for the
2 → 2 scattering processes and applied unitarity bound,
provide some nontrivial conditions on model functions and
parameters. Next, in order to improve our estimation, we
turn to the explicit calculation of all channels: s-, t-, and u-
matrix elements. The structure of k-inflation model
Lagrangian and cubic order action for scalar perturbation
in this model lead to nontrivial cancellations in the final
answer for the matrix element. It also turned out that t- and
u-elements are suppressed compared to s-channel and the
factor of suppression is the slow roll parameter ϵ, which
is usually a small quantity during inflation ϵ ≪ 1. Using
a more accurate result for the s-channel element, the
unitarity bound provides final constraint on the parameters
of the model.
Our next step is to choose a simple toy model of

k-inflation in order to show how to apply the unitarity
constraints. It turns out that the latter gives the lower bound
on the slow-roll parameter ϵ.
As we mention above, the analysis of strong coupling

involves cubic order action for scalar perturbation. The same
expansion is used in the calculations of non-Gaussianity of
the curvature perturbation. Thus, it is interesting to compare
the conditions on the parameters of the model that comes
from observational bound on non-Gaussianity [15] and from
the validity of the classical description. Note that these
bounds have different natures: conditions from non-
Gaussianity are experimental constraints, while the strong
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coupling absence guarantees that our classical description is
legitimate during considered times.
Again, working with a specific toy model of k-inflation,

the non-Gaussianities also lead to the lower bound on the
slow roll parameter ϵ. However, the condition from non-
Gaussianities turns out to be much stronger than the bound
from strong coupling analysis for the chosen toy model of
k-inflation. We emphasize that this result is obtained for the
specific model of k-inflation: the situation may differ in
other models of inflation. In other words, one should check
if the classical description is legitimate for the chosen
theory. For example, other models of inflation may not lead
to the cancellations in cubic order action between the
leading terms, so this can make the conditions of strong
coupling absence more restrictive.
This paper is organized as follows: a brief review of

general k-inflation model is given in Sec. II. Then the
analysis of the strong coupling problem is addressed in
Sec. III: simple estimations of s-channel matrix element and
naive condition from unitarity bound are given in Sec. III A.
This allows us to highlight the terms which provide the
strongest constraints. More accurate calculations of s-, t-, u-
channels matrix elements and the final condition from
unitarity bound are given in Sec. III B. Section IV is
dedicated to short discussion of the formulas for a nonlinear
parameter fequilNL associated with non-Gaussianities of the
curvature perturbation. Finally, in Sec. V we stick to the
specific simple model of k-inflation, find corresponding
constraints on model parameter from strong coupling
analysis as well as from bounds for non-Gaussianities.
The paper ends with the conclusion in Sec. VI. The
Appendix A is dedicated to the derivation of second order
action for scalar perturbation. We explicitly show, that at
considered times second order action has a canonical form
due to the smallness of slow-roll parameter as well as due to
the assumption, that we work at such energies that much
bigger than classical energy scales. Thus the standard
calculations of scattering amplitudes with the use of
energy-momentum conservation laws are acceptable. The
Appendix B collects full expressions of the couplings
from cubic order action for scalar perturbation. The
Appendices C and D contain the general clarifications to
the calculations of s-, t-, and u-channel matrix elements
from the Sec. III B as well as the discussion of one
interesting subtlety which arises in the calculation of
s-channel matrix element from the same Sec. III B.

II. GENERALITIES

In this paper we consider a class of k-inflation models in
the framework of the following action:

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p
L; ð1Þ

where
ffiffiffiffiffiffi−gp ≡ ffiffiffi

γ
p

with three dimensional metric tensor and
the determinant γ ≡ detðð3ÞγijÞ; the Lagrangian reads

L ¼ G2ðϕ; XÞ þ
M2

Pl

2
R;

X ¼ −
1

2
gμν∂μϕ∂νϕ; ð2Þ

and G2ðϕ; XÞ is an arbitrary function of scalar field and its
kinetic term; R is the Ricci scalar. Here we also note that we
work in the Einstein frame through the whole paper. Further
we will use the metric signature as ð−;þ;þ;þÞ.
We consider the flat FLRW space-time with a scale

factor aðtÞ, where t is the cosmic time, so the background
equations read [16]

3M2
PlH

2 þG2 − 2XG2X ¼ 0; ð3aÞ

3M2
PlH

2 þ 2M2
PlḢ þG2 ¼ 0; ð3bÞ

where H ¼ ȧ=a is the Hubble parameter. As it was pointed
out in [16–18], one can obtain k-inflation cosmology
solving these equations for the specific form ofG2 function.
The inflation occurs in the slow roll regime, i.e., ϵ ≪ 1
[19], where ϵ is a standard slow-roll parameter which is
given by:

ϵ≡ −
Ḣ
H2

¼ XG2X

M2
PlH

2
: ð4Þ

The condition ϵ ≪ 1 can be satisfied with some specific
choice of G2 form. For instance, one can choose G2

as [5,20]

G2ðϕ; XÞ ¼ KðϕÞX þ LðϕÞX2; ð5Þ

where the dimensions of the functions KðϕÞ, LðϕÞ, and X
are as follows ½K� ¼ 2, ½L� ¼ 0, and ½X� ¼ 2; moreover, we
note that in our setup we have ½ϕ� ¼ 0. This form of G2

indeed admits the slow-roll inflation solution, and a
necessary condition for the accelerated expansion in this
case reads [20]:

XðK þ 2XLÞ
M2

PlH
2

≪ 1:

To obtain the latter we also use an expression for the
Hubble parameter during inflation (up to the leading order
by ϵ) [20]:

H2 ≈ −
G2

3M2
Pl

:

In order to explore the stability of the model, the strong
coupling problem as well as to calculate the primordial
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scalar non-Gaussianities we need to expand the action (1)
up to the second and the third order in the perturbations. In
this paper we concentrate on the scalar sector of perturba-
tions only, since this sector usually provides the strongest
conditions; for instance, see Ref. [21]. Later, when we turn
to the concrete model of k-inflation, we prove that scalar
sector indeed gives the strongest constraints. To this end,
considering the perturbations about some background
solution, we choose the following form of the metric [16]:

ds2 ¼ −½ð1þ αÞ2 − a−2e−2Rð∂βÞ2�dt2
þ 2∂iβdtdxi þ a2e2Rdx2;

where α and β are nondynamical scalar perturbations, while
R is a physical one. We also note, that we work with the
unitary gauge, i.e., δϕ ¼ 0, which fixes the time-compo-
nent of a gauge-transformation vector, see [16,21,22] for
the details. Solving the constraints for α and β, we write the
unconstrained action for scalar perturbation R [16,23]

Sð2Þ
RR ¼

Z
dta3d3xGS

�
Ṙ2 −

c2S
a2

ð∇!RÞ2
�
; ð6Þ

where

GS ¼
XG2X þ 2X2G2XX

H2
¼ Σ

H2
; ð7Þ

where Σ≡ XG2X þ 2X2G2XX; next

c2S ¼
M2

PlH
2ϵ

XG2X þ 2X2G2XX
¼ M2

PlH
2ϵ

Σ
: ð8Þ

Using the expression (8), we can rewrite formula (7) as

GS ¼ M2
Pl

ϵ

c2S
; ð9Þ

where the ratio ϵ
c2S

generally is not small.

Briefly turning to the stability analysis, we require that

GS > 0; c2S > 0; ð10Þ

to avoid ghost and gradient instabilities as well as we
require that the speed of perturbations does not exceed the
speed of light,

c2S ≤ 1:

The latter condition is necessary for the existence of the UV
completion, see [24,25] for the details.

III. STRONG COUPLING REGIME
IN K-INFLATION MODEL

This section is dedicated to the computation of the
unitarity bounds and corresponding constraints on the
parameters of the model. We remind, that we consider
pure scalar sector and we take into account only cubic
order expansion of the action (1) by the scalar perturbation
R. This section consists of two parts: in the first part we
estimate which terms from cubic order action provide the
leading contributions to unitarity bound, while in the
second part we use these leading terms in order to proceed
to the accurate calculation of the corresponding matrix
elements and final conditions for the validity of the
classical description.

A. Preliminary analysis

In order to show, that we indeed face the strong coupling
regime in the considered class of k-inflation model (1), let
us firstly carry out the simple dimensional analysis of noted
problem. To this end we write the full unconstrained cubic
order action for scalar perturbation R [8]:

Sð3Þ
RRR ¼

Z
dta3d3x

�
Λ1Ṙ3 þ Λ2Ṙ2Rþ Λ3Ṙ2 ∂

2R
a2

þ Λ4ṘR
∂
2R
a2

þ Λ5Ṙ
ð∂iRÞ2
a2

þ Λ6R
ð∂iRÞ2
a2

þ Λ7Ṙ
ð∂2RÞ2
a4

þ Λ8R
ð∂2RÞ2
a4

þ Λ9

∂
2Rð∂iRÞ2

a4

þ Λ10Ṙ
ð∂i∂jRÞ2

a4
þ Λ11R

ð∂i∂jRÞ2
a4

þ Λ12Ṙ∂iR∂iψ þ Λ13

∂
2R∂iR∂iψ

a2
þ Λ14Ṙð∂i∂jψÞ2

þ Λ15Rð∂i∂jψÞ2 þ Λ16Ṙ
∂i∂jR∂i∂jψ

a2
þ Λ17R

∂i∂jR∂i∂jψ

a2

�
; ð11Þ

where ∂
2 ¼ ∂i∂i and

ψ ¼ ∂
−2Ṙ: ð12Þ
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Actually, there are nontrivial cancellations in the models
with the Lagrangian (2) among Λ7;…;Λ11 terms from the
action (11). Indeed, substituting the Lagrangian (2), as well
as expressions (7) and (8) into the general formulas for
these coefficients, which are listed in Appendix B,1 we
arrive to

Λ7 ¼
M2

Pl

2H3
; Λ8 ¼ −

3M2
Pl

2H2
; Λ9 ¼ −

2M2
Pl

H2
;

Λ10 ¼ −
M2

Pl

2H3
; Λ11 ¼

3M2
Pl

2H2
; ð13Þ

and after quite simple integration by parts [16] this part of
cubic action significantly simplifies as follows

Sð3Þ
7;8;9;10;11 ¼

Z
dtd3x

1

a
fΛ9∂

2Rð∂iRÞ2

þ ðΛ10Ṙþ Λ11RÞðð∂i∂jRÞ2 − ð∂2RÞ2Þg

¼
Z

dtd3x

�
d
dt

�
Λ10

3a

�
−
Λ11

a
−

2

3a
Λ9

�
×Rðð∂2RÞ2 − ð∂i∂jRÞ2Þ;

where curly brackets read

−
1

a

�
H

�
Λ10

3

�
−

d
dt

�
Λ10

3

�
þ Λ11 þ

2

3
Λ9

�

¼ −
M2

Plϵ

2aH2
; ð14Þ

where nonzero contribution comes from the second term
with the time derivative, i.e., from d

adt ðΛ10

3
Þ, while the

combination of other three terms with Λ9, Λ10, Λ11 gives
zero. After that, we will denote this contribution from
formula (14) as

Λ� ≡ −
M2

Plϵ

2H2
: ð15Þ

To find the conditions of the validity of the classical
description, we turn to the generalized unitarity bound and
use the method which was described in [13]. According to
this method, firstly we need to rewrite the quadratic action
(6) in the following canonical form:

Sð2Þ
RR ¼ 1

2

Z
d3xdη½R̃02 − c2Sð∇!R̃Þ2�; ð16Þ

where we use quite familiar notation of Mukhanov-Sasaki
variable R̃ ¼ zR with z ¼ a

ffiffiffiffiffiffiffiffi
2GS

p
. Here we also have

dη ¼ dt
a as a conformal time, which we will use in the

calculations below; the prime means the derivative with
respect to the conformal time 0 ≡ d

dη. In Appendix A we
show, how we obtain the canonical form (16). We also
note, that in this work we study only such models, which
involves cS being a constant in the leading order by slow-
roll parameter ϵ. Thus, Eq. (16) is a standard time-
independent oscillator action. Next, in Appendix B we
write down the cubic order action (11) in terms of R̃, see
formula (B1). Having the latter, we can proceed to the
analysis of the potential strong coupling problem. To this
end, making use of all terms in the cubic action (B1), with
Λi replaced by Λi;ðjÞ ∝

Λi

G3=2
S

, it is straightforward to estimate

2 → 2 scattering amplitude, while in the Sec. III B we
calculate this amplitude accurately.2 First, the dimensional
analysis leads us to the schematic formula for the tree
2 → 2 matrix element3 [21]

Mi;ðjÞ ∼
1

E2

�
Λi;ðjÞEa

�
E
cS

�
b
�

2

; ð17Þ

where a and b are the number of time and spatial
derivatives for each term in (B1). We consider the
center-of-mass frame for our purposes. The conservation
laws for the latter are as follows

p⃗1 þ p⃗2 ¼ p⃗3 þ p⃗4 ¼ 0; ð18aÞ

E1 þ E2 ¼ E3 þ E4 ¼ E; ð18bÞ

jp⃗1j ¼ jp⃗2j; jp⃗3j ¼ jp⃗4j; ð18cÞ

where p⃗1;2, E1;2, and p⃗3;4, E3;4 are the incoming and
outgoing particles momenta and energies, respectively.
Surely, the use of such conservation laws at the considered
early times are legitimate, since the action for perturbations
has the form of (16). Next, we find

E1;2;3;4 ¼
E
2
; ð18dÞ

where E is the center-of-mass energy and we note that E is
a conformal energy. Due to (16), the dispersion relation
reads

E1;2;3;4 ¼ cSp1;2;3;4; ð18eÞ

thus

1All other couplings Λ1–Λ6, Λ12–Λ17 expressions are listed in
Appendix B as well.

2New index (j) can be explained by the replacement of R to
R̃=z, where z depends on conformal time, so taking the derivative
with respect to conformal time provide several terms with
different Λi;ðjÞ, see Appendix B for details.

3For this kind of estimation we consider the s-channel matrix
element only.
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p1;2;3;4 ¼
E
2cS

: ð18fÞ

Coming back to the formula (17), the factor 1
E2 presents the

s-channel propagator. Next, since the energy and momen-
tum of the scalar are related by ω ¼ cSp (note, that we
reserve the notation E for the center-of-mass energy),
spatial momentum of an incoming or outgoing scalar is of
order p ∼ E=cS. This clarifies the factor ðEcSÞb, coming from
the Fourier of spatial derivative. Moreover, in the case of
center-of-mass frame the energies of incoming (noted as
ω1;2) and outgoing (noted as ω3;4) scalars are ω1;2;3;4 ∼ E,
thus we count the possible factor Ea from the Fourier of
time derivative. We square the expression in curve brackets
in Eq. (17) since for our naive estimations we consider
the easier case when both vertices are the same. The
corresponding partial wave amplitude (PWA) is given
by [13,14,21]

ãl ¼
1

2c3S

1

32π

Z
dðcos xÞPlðcos xÞM; ð19Þ

so, omitting all numerical coefficients we can write for
l ¼ 0 and for each Mi;ðjÞ

ðã0Þi;ðjÞ ∼
Mi;ðjÞ
c3S

: ð20Þ

It is known from Refs. [13,14,21] that the amplitudes at
classical energy scales saturate the unitarity bound. The
classical energy scale is given by Hubble parameterH, and
the latter was obtained in cosmic time t, see Eqs. (3).
However, the amplitudes (20) are given in conformal time
η, thus, if we are supposed to compare strong coupling
energy scales with classic one, we must use E ¼ E=a,
where E is corresponding energy in cosmic time t. Finally,
the unitarity bound jã0j ¼ 1=2 provides the set of different
scales E from each matrix elementMi;ðjÞ, and the condition
of the strong coupling absence E ≫ H provides the set of
the following constraints4:

1

ϵ3=2
≪

H3M7
Pl

Σ5=2 ; ð21aÞ

ϵ1=2 ≪
Σ3=2

H5MPl
; ð21bÞ

1

ϵ3=2
≪

M3
PlΣ3=2

Hλ21
; ð21cÞ

1

ϵ3=2
≪

M3
Pl

HΣ1=2 ; ð21dÞ

1

ϵ7=2
≪

H3M7
Pl

Σ5=2 ; ð21eÞ

1

ϵ7=2
≪

M3
Pl

HΣ1=2 ; ð21fÞ

where λ1 ≡ X2G2XX þ X3G2XXX=3 and we put all related
calculations in Appendix B. Since ϵ−1 is an enhancement
factor, the strongest conditions are (21e) and (21f), coming
from Λ3 − Λ6;Λ�;Λ13;Λ16;Λ17 terms. We will not con-
sider the terms with other couplings in our more accurate
analysis of the amplitudes since they provide suppressed
contribution.

B. Strong coupling problem: Accurate analysis

In this subsection we go ahead to precisely calculate tree
matrix elements—s-, t-, and u-channels—and find more
accurate constraints on model parameters from the strong
coupling problem analysis. We mention once again, that
we work with the center-of-mass frame. We start with
s-channel, corresponding diagram is shown in Fig. 1 (left
one) and corresponding conservation laws are given by
Eqs. (18). Thus, the s-channel matrix element is

iMs ¼ −
iðE6Σ2 þ E4Σð−8H2M2

Pl þ 5ΣÞa2H2 þ 4E2ð−2H2M2
Pl þ ΣÞ2a4H4Þ

128ϵ2ΣM4
Pla

6H6
: ð22Þ

Next, the expression for the t-channel matrix element (corresponding diagram is given in Fig. 1, central one) reads

FIG. 1. Tree level diagrams for 2 → 2 process: s-, t-, and u-
channels, respectively.

4Some of the amplitudes provide the same constraint. Moreover, the terms in cubic action with the dimension of coupling ½Λi;ðjÞ� ≥ 0
do not provide any conditions of strong coupling absence.
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iMt ¼ −
i

�
E3ðx2 − 1Þ þ 8Ea2H2

�
3þ 2x − 4x2 þ 2H2M2

Plðx−2Þ
Σ

��
2

1024ϵM2
Pla

6H4ðx − 1Þ ; ð23Þ

where x≡ cos θ, where θ is an angle between p⃗1 and p⃗3. Changing x → −x, one obtains the u-channel amplitude:

iMu ¼
i

�
E3ðx2 − 1Þ þ 8Ea2H2

�
3 − 2x − 4x2 − 2H2M2

Plðxþ2Þ
Σ

��
2

1024ϵM2
Pla

6H4ð1þ xÞ ; ð24Þ

and the diagram for this process is the right one in Fig. 1.

The matrix elements for t- and u-channels can be
obtained straightforwardly (though the calculations are
quite cumbersome; we present some clarifications about
the corresponding calculations in Appendix C), while the
s-channel element calculation involves some subtlety,
which is related to the terms with ψ factor (12) in the
cubic order action (11). We discuss this subtlety and clarify

how to deal with it in Appendix D. Before turning to the
partial wave amplitude, we note that Mt and Mu are
suppressed by ϵ as compared to Ms, so we will use
M ≈Ms, where initially M is the full matrix element,
given by the sum of all channels amplitudes. Finally, we
find the PWA (19) with l ¼ 0, which provides the lowest
bound on the amplitude

ã0 ¼ −E2
ffiffiffi
Σ

p ðE4Σ2 þ E2a2H2Σð−8H2M2
Pl þ 5ΣÞ þ 4a4H4ð−2H2M2

Pl þ ΣÞ2Þ
8192πϵ7=2M7

Pla
6H9

; ð25Þ

and corresponding strong coupling energy scale can be
found from the unitarity bound

jã0j ¼
1

2
: ð26Þ

In Sec. V we will choose a specific model of k-inflation
and obtain the concrete constraint on model parameters. If
the parameters of the model satisfy these constraint then
the classical description is valid.

IV. PRIMORDIAL NON-GAUSSIANITIES

Another conditions on the parameters of the model of
k-inflation with the Lagrangian (2) comes from the obser-
vational constraints on primordial scalar non-Gaussianities.
The extent of non-Gaussianity can be quantified by
evaluating the bispectrum of curvature perturbations R, as

hRðk⃗1ÞRðk⃗2ÞRðk⃗3Þi
¼ ð2πÞ3δð3Þðk⃗1 þ k⃗2 þ k⃗3ÞBRðk1; k2; k3Þ;

where Rðk⃗Þ is a Fourier component of R with a wave
number k⃗ and the bispectrum is

BRðk1; k2; k3Þ ¼
ð2πÞ4ðPRÞ2Q

3
i¼1 k

3
i

ARðk1; k2; k3Þ;

which translates into a nonlinear parameter fNL as

fNL ¼ 10

3

ARP
3
i¼1 k

3
i
;

where PR is a power spectrum and AR being its
amplitude. The bispectrum can be of different forms
depending on the relation between the k⃗1; k⃗2; k⃗3. In this
paper, we stick to the well-known equilateral configura-
tion fequilNL with k1 ¼ k2 ¼ k3. The corresponding calcu-
lations of the scalar non-Gaussianities for the k-inflation
with the Lagrangian (2) are given in Ref. [16]. The
nonlinear parameter fequilNL for the equilateral form is given
by [16]

fequilNL ¼ 85

324

�
1 −

1

c2S

�
−
10

81

λ

Σ

þ 55

36

ϵ

c2S
þ 5

12

η

c2S
−
85

54

s
c2S

; ð27Þ

where the following notations were used:

η≡ ϵ̇=ðHϵÞ;
s≡ ċS=ðHcSÞ;
λ≡ X2G2XX þ 2X3G2XXX=3;
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and η ≪ 1, s ≪ 1, while λ is generally not small. In the
next section we choose a concrete model of k-inflation and
find the specific form of conditions of model parameters
coming from primordial scalar non-Gaussianities.

V. CONSTRAINTS ON THE MODEL
PARAMETERS FROM STRONG COUPLING

PROBLEM AND SCALAR NON-GAUSSIANITIES

In this section we choose a concrete model of k-inflation
and show that some nontrivial condition on the parameter
of the model indeed arises from the requirement of the
classical description validity. To this end, we take the
Lagrangian (2) with

G2ðϕ; XÞ ¼ −
16M2

Pl

9γ2ϕ2
X þ 16M2

Pl

9γ2ϕ2M2
X2; ð28Þ

where γ is a parameter with ½γ� ¼ 0, and M is another
dimensional parameter, ½M� ¼ 1; the setup with Eq. (28) is
similar to the one from Ref. [18]. For this model equations
of motion (3) provide

H ¼ 2M

3
ffiffiffi
3

p
γϕ

; X ¼ M2

2
; ð29Þ

and for the scalar field we obtain

ϕ ¼ Mtþ c; ð30Þ

choosing ϕ > 0 during 0 < t < þ∞, without the loss of
generality. Here c is a dimensionless constant. After that we
find all other functions and they read:

Σ ¼ 16M2M2
Pl

9γ2ϕ2
;

GS ¼ 12M2
Pl; c2S ¼

ffiffiffi
3

p

8
γ; ð31Þ

so γ > 0 due to the stability requirement (10). Also, the
slow roll parameter (4) for the model (28) is

ϵ ¼ 3
ffiffiffi
3

p
γ

2
≪ 1; ð32Þ

which provides that γ ≪ 1 as well as c2S ≪ 1. This situation
is similar to Ref. [21], so this justifies that scalar sector
provides the strongest conditions of classical description
validity.
In the considered model of k-inflation the cosmological

perturbations with a slightly red-tilted power spectrum may
be generated [18]. The power spectrum of R perturbations
is given by [16]:

PR ¼ AR

�
k
k�

�
nS−1 ¼ H2

8π2GSc3S
; ð33Þ

whereAR is an amplitude, k� is a pivot momentum, nS is a
spectral tilt. Surely, we require that the exit beyond
effective horizon must occur in the weak coupling regime.
To this end we turn to unitarity bound to see whether this
condition can be satisfied at the times when the relevant
modes of perturbations exit the effective horizon. The
corresponding PWA (25) in the chosen model (28) reads

ã0 ¼ −
E2

�
400þ 4212γ2

�
E
M

�
2ðMtþ cÞ2 þ 6561γ4

�
E
M

�
4ðMtþ cÞ4

�
20736

ffiffiffi
2

p
× 33=4πγ7=2M2

Pl

; ð34Þ

where we substitute Eqs. (29)–(31) and we also turn to
E ¼ E=a, i.e. the energy in cosmic time t. Introducing the
change of variables Ẽ ≡ γ2ð EMÞ2ðMtþ cÞ2, one can suffi-
ciently simplify (34):

ã0 ¼ −
ẼM2ð400þ 4212Ẽ þ 6561Ẽ2Þ

20736
ffiffiffi
2

p
× 33=4πγ11=2M2

PlðMtþ cÞ2 : ð35Þ

To obtain a rough estimate, we find the exit time tf at
k ¼ k�, keeping in mind the smallness of jnS − 1j:

ðMtf þ cÞ2 ¼ h20
8π2GSc3SAR

; h0 ¼
2M

3
ffiffiffi
3

p
γ
;

where we use Eqs. (29)–(31) and (33).
At tf Eq. (35) takes quite simple form

ã0 ¼ −
πARẼ
1024γ2

ð400þ 4212Ẽ þ 6561Ẽ2Þ;

where the observational value of AR ¼ 2 × 10−9 [15]. The
boundary value of Ẽ at the classical scale E ¼ H is given by
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ẼjH ¼ γ2
�
H
M

�
2

ðMtþ cÞ2 ¼ 4

27
;

where we use Eqs. (29) and (30). The classical description
is valid when Ẽ ≫ 4

27
as well as jã0j ≤ 1

2
, so these two

conditions lead to the constraint for γ

γ ≫ 4.6 × 10−5: ð36Þ

Next, one can obtain an additional condition on the
k-inflation model parameter based on the current exper-
imental bounds for scalar non-Gaussianities, i.e. fequilNL ¼
−26� 47 [15]. The leading term from Eq. (27) is

fequilNL ≈ −
85

324c2S
;

and in the model with (28) and c2S given by Eq. (31)
we obtain

fequilNL ≈ −
1.2
γ

;

where the behavior ∼1=γ coincides with Ref. [18]. The
observational value of fequilNL has an error larger than the
value itself, i.e., fequilNL ¼ −26� 47, for 68% CL [15].
Thus, let us choose the biggest confidence region, for
example, 99.7% CL from Ref. [15] (see Fig. 19 therein).
Roughly, this confidence region provides the constraint
jfequilNL j < 180, so:

γ > 0.0067: ð37Þ

The result is as follows: in the considered model of
k-inflation the absence of strong coupling problem (36)
is guaranteed in the presence of the observational bound
for scalar non-Gaussianities (37).
Finally, let us find other constraints coming from the

calculations of the spectral tilt nS and r-ratio. We start with
the spectral tilt, which reads [16]

nS − 1 ≈ −2ϵ ¼ −3
ffiffiffi
3

p
γ;

where for the second equality we have substituted ϵ from
Eq. (32). For the observational values nS ¼ 0.9649�
0.0042 [26] the corresponding γ satisfies

0.0060 < γ < 0.0075: ð38Þ

Next and final constraint comes from the observational
upper bound on r-ratio [16,26,27]:

r≡ PT

PR
¼ 4GSc3S

GTc3T
; ð39Þ

where GT is a coupling from second order action for tensor
perturbations

ST ¼
X
λ

Z
dtd3xa3GT

	
ḣλ −

c2T
a2

ð∂hλÞ2


;

and cT is a tensor perturbation sound speed; λ means two
polarization of tensor perturbation. The corresponding
experimental upper bound is [26–28]

r < 0.032: ð40Þ

For the model (28) we have

GT ¼ 1

4
M2

Pl;

and so r-ratio (39) is

r ¼ 6 × 33=4
ffiffiffi
2

p
γ3=2;

where we also substitute Eq. (31). Finally, applying
Eq. (40) we arrive to

γ < 0.014: ð41Þ

Thus we conclude, that the strongest conditions coming
both from the observational bounds on nS and fequilNL are

0.0067 < γ < 0.0075:

However, if one takes another confidence region when
calculating fequilNL , for example 68% CL, see Ref. [15], then
the model of k-inflation with (28) will be ruled out due to
the inconsistency among the conditions from nS, r-ratio
and non-Gaussianities.

VI. CONCLUSION

This paper demonstrates that the specific model of
k-inflation (2) with G2 given by Eq. (28) meets strong
coupling problem. However, it is possible to find such
parameters of the model that the approach of classic field
theory is legitimate during considered k-inflation. We prove
this statement with the proceeding to the accurate analysis
of 2 → 2 processes and corresponding matrix elements, and
then apply unitarity bound in order to obtain a nontrivial
condition of the model parameter γ. Another constraint
comes from the recent observational data for scalar non-
Gaussianities from Planck [15]. We find out that the latter is
much stronger than the condition from strong coupling
absence. Thus, we conclude that the model of k-inflation
with (28) is healthy: choosing γ parameter from the
permitted area, one obtains a stable theory, where the
classical description is valid, and corresponding fequilNL is
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allowed by the current experimental bounds. The calcu-
lations of scattering amplitudes with the use of conservation
laws for energy and momentum are reasonable, since the
action for scalar has the canonical form (16) at the
considered times. The latter statement is proved in
Appendix A. We should also note, that for simplicity we
make our calculations for the scalar sector of primordial
perturbations only, however, there are mixed and tensor
sectors as well. We expect that, as usual (see, for instance
Ref. [21]), these sectors give even weaker constraints than
the scalar one. There remains another important question:
does the same result hold for each known (and phenom-
enologically interesting) model of inflation or maybe it is
not the case? For example, models of G-inflation contain
higher order partial derivatives in the cubic action for
scalars, thus, it potentially can strengthen strong coupling
absence condition.
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APPENDIX A: THE CANONICAL SECOND
ORDER ACTION FOR SCALAR PERTURBATION

In this appendix we comment why we indeed can use
second order action in the canonical form (16) at the early
times (where we study the strong coupling issue) and thus
consider the energy conservation laws (which we require to
calculate the scattering amplitudes) for the mode or for the
pair of modes.
We begin with the second order action for R, which is

given by (6). However, it is more clear to work in terms of

conformal time dt ¼ adη, thus

Sð2Þ
RR ¼

Z
a2d3xdηGSðR02 − c2Sð∇!RÞ2Þ: ðA1Þ

Another convenient change of variables is R̃ ¼ zR with
z ¼ a

ffiffiffiffiffiffiffiffi
2GS

p
, so the action (A1) has the form

Sð2Þ
R̃ R̃

¼ 1

2

Z
d3xdη

�
R̃02 −

2z0R̃R̃0

z

þ z02R̃2

z2
− c2Sð∇!R̃Þ2

�
:

After some integration by parts for the second term in the
latter formula we arrive to

Sð2Þ
R̃ R̃

¼ 1

2

Z
d3xdη

�
R̃02 þ z00R̃2

z
− c2Sð∇!R̃Þ2

�
: ðA2Þ

The coefficient in the second term is z00
z ≈ 2H2a2, where we

neglect with aH0 contribution due to ϵ ≪ 1 (and we also
suppose that GS is slowly varying with time). Indeed, using
ϵ ¼ −H0=aH2 one can obtain

z00

z
¼ 2a0H þ aH0 ¼ 2a2H2 − ϵa2H2; ðA3Þ

where the last term surely can be omitted. We also assume
that we work at such energies that much bigger than
classical energy scale (i.e., Hubble parameter), thus we
can omit the second term in (A2) and finally arrive to the
canonical form (16).

APPENDIX B: EXPRESSIONS FOR Λi;ðjÞ
The purpose of this appendix is to list the cubic order

action coefficients from Eq. (11). The general expressions
for Λi, with i ¼ 1;…; 17 are given in Ref. [8], and the
formulas for the specific model (2) read:

Λ1½Ṙ3� ¼ 3Σ2 − 2M2
PlH

2Xð3G2X þ 4Xð3G2XX þ XG2XXXÞÞ
6M2

PlH
5

;

Λ2½Ṙ2R� ¼ −
3Σð−2M2

PlH
2 þ ΣÞ

2M2
PlH

4
;

Λ3½ðṘ2=a2Þ∂2R� ¼ −
Σ
H4

;

Λ4½ðṘ=a2ÞR∂
2R� ¼ −2M2

PlH
2 þ 3Σ

H3
;

Λ5½ðṘ=a2Þð∂iRÞ2� ¼ −M2
PlH

2 þ 2Σ
H3

;
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Λ6½ðR=a2Þð∂iRÞ2� ¼ M2
Pl; Λ7½ðṘ=a4Þð∂2RÞ2� ¼ M2

Pl

2H3
;

Λ8½ðR=a4Þð∂2RÞ2� ¼ −
3M2

Pl

2H2
; Λ9½ð∂2R=a4Þð∂iRÞ2� ¼ −

2M2
Pl

H2
;

Λ10½ðṘ=a4Þð∂i∂jRÞ2� ¼ −
M2

Pl

2H3
; Λ11½ðR=a4Þð∂i∂jRÞ2� ¼ 3M2

Pl

2H2
;

Λ12½Ṙ∂iR∂
iψ � ¼ −

2Σ2

M2
PlH

4
; Λ13½ð∂2R=a2Þ∂iR∂

iψ � ¼ 2Σ
H3

;

Λ14½Ṙð∂i∂jψÞ2� ¼ −
Σ2

2M2
PlH

5
; Λ15½Rð∂i∂jψÞ2� ¼

3Σ2

2M2
PlH

4
;

Λ16½ðṘ=a2Þ∂i∂jR∂
i
∂
jψ � ¼ Σ

H4
; Λ17½ðR=a2Þ∂i∂jR∂

i
∂
jψ � ¼ −

3Σ
H3

:

One can rewrite the expressions above, using Eq. (8) and introducing

λ1 ≡ X2G2XX þ X3G2XXX=3;

thus, we arrive to

Λ1½Ṙ3� ¼

�
3M2

Pl

�
H2ϵ
c2S

�
2
− 2H2½3ϵM2

PlH
2 þ 12λ1�

�
6H5

;

Λ2½Ṙ2R� ¼ −
3M2

Plϵ

2c2S

�
−2þ ϵ

c2S

�
;

Λ3½ðṘ2=a2Þ∂2R� ¼ −
M2

Plϵ

c2SH
2
;

Λ4½ðṘ=a2ÞR∂
2R� ¼

−2M2
Pl þ 3M2

Plϵ

c2S

H
;

Λ5½ðṘ=a2Þð∂iRÞ2� ¼
−M2

Pl þ 2M2
Plϵ

c2S

H
;

Λ6½ðR=a2Þð∂iRÞ2� ¼ M2
Pl; Λ7½ðṘ=a4Þð∂2RÞ2� ¼ M2

Pl

2H3
;

Λ8½ðR=a4Þð∂2RÞ2� ¼ −
3M2

Pl

2H2
; Λ9½ð∂2R=a4Þð∂iRÞ2� ¼ −

2M2
Pl

H2
;

Λ10½ðṘ=a4Þð∂i∂jRÞ2� ¼ −
M2

Pl

2H3
; Λ11½ðR=a4Þð∂i∂jRÞ2� ¼ 3M2

Pl

2H2
;

Λ12½Ṙ∂iR∂
iψ � ¼ −2M2

Pl

� ϵ

c2S

�
2
; Λ13½ð∂2R=a2Þ∂iR∂

iψ � ¼ 2M2
Plϵ

c2SH
;

Λ14½Ṙð∂i∂jψÞ2� ¼ −
M2

Pl

�
ϵ
c2S

�
2

2H
; Λ15½Rð∂i∂jψÞ2� ¼

3M2
Pl

�
ϵ
c2S

�
2

2
;

Λ16½ðṘ=a2Þ∂i∂jR∂
i
∂
jψ � ¼

M2
Pl

�
ϵ
c2S

�
H2

; Λ17½ðR=a2Þ∂i∂jR∂
i
∂
jψ � ¼ −

3M2
Pl

�
ϵ
c2S

�
H

:

Using these expressions, as well as keeping in mind the discussion about Λ7 − Λ11, see Eqs. (13)–(15), we substitute field
R ¼ R̃=z into Eq. (11) and obtain
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Sð3Þ
RRR ¼

Z
dηd3xfΛ1ð1ÞR̃03 þ Λ1ð2ÞR̃R̃02 þ Λ1ð3ÞR̃2R̃0 þ Λ1ð4ÞR̃3 þ Λ2ð1ÞR̃R̃02 þ Λ2ð2ÞR̃2R̃0 þ Λ2ð3ÞR̃3

þ Λ3ð1ÞR̃2
∂
2R̃þ Λ3ð2ÞR̃R̃0

∂
2R̃þ Λ3ð3ÞR̃02

∂
2R̃þ Λ4ð1ÞR̃2

∂
2R̃þ Λ4ð2ÞR̃R̃0

∂
2R̃þ Λ5ð1ÞR̃ð∂iR̃Þ2

þ Λ5ð2ÞR̃0ð∂iR̃Þ2 þ Λ6ð1ÞR̃ð∂iR̃Þ2 þ Λ�ð1ÞR̃ðð∂2R̃Þ2 − ð∂i∂jR̃Þ2Þ þ Λ12ð1Þ∂iR̃R̃0
∂i∂

−2R̃0 þ Λ12ð2ÞR̃0
∂iR̃∂i∂

−2R̃

þ Λ12ð3ÞR̃∂iR̃∂i∂
−2R̃0 þ Λ12ð4ÞR̃∂iR̃∂i∂

−2R̃þ Λ13ð1Þ∂2R̃∂iR̃∂i∂
−2R̃þ Λ13ð2Þ∂2R̃∂iR̃∂iψ̃

þ Λ14ð1ÞR̃0ð∂i∂j∂−2R̃0Þ2 þ Λ14ð2ÞR̃0
∂i∂j∂

−2R̃∂i∂j∂
−2R̃0 þ Λ14ð3ÞR̃ð∂i∂j∂−2R̃0Þ2 þ Λ14ð4ÞR̃0ð∂i∂j∂−2R̃Þ2

þ Λ14ð5ÞR̃∂i∂j∂
−2R̃∂i∂j∂

−2R̃0 þ Λ14ð6ÞR̃ð∂i∂j∂−2R̃Þ2 þ Λ15ð1ÞR̃ð∂i∂j∂−2R̃0Þ2 þ Λ15ð2ÞR̃∂i∂j∂
−2R̃∂i∂j∂

−2R̃0

þ Λ15ð3ÞR̃ð∂i∂j∂−2R̃Þ2 þ Λ16ð1ÞR̃∂i∂jR̃∂i∂j∂
−2R̃þ Λ16ð2ÞR̃∂i∂jR̃∂i∂jψ̃ þ Λ16ð3ÞR̃0

∂i∂jR̃∂i∂j∂
−2R̃

þ Λ16ð4ÞR̃0
∂i∂jR̃∂i∂jψ̃ þ Λ17ð1ÞR̃∂i∂jR̃∂i∂j∂

−2R̃þ Λ17ð2ÞR̃∂i∂jR̃∂i∂jψ̃g; ðB1Þ

where

Λ1ð1Þ ¼
Λ1

2
ffiffiffi
2

p
G3=2
S a2

; Λ1ð2Þ ¼ −
3Λ1H

2
ffiffiffi
2

p
G3=2
S a

; Λ1ð3Þ ¼
3Λ1H2

2
ffiffiffi
2

p
G3=2
S

; Λ1ð4Þ ¼ −
Λ1aH3

2
ffiffiffi
2

p
G3=2
S

;

Λ2ð1Þ ¼
Λ2

2
ffiffiffi
2

p
G3=2
S a

; Λ2ð2Þ ¼ −
Λ2Hffiffiffi
2

p
G3=2
S

; Λ2ð3Þ ¼
Λ2aH2

2
ffiffiffi
2

p
G3=2
S

;

Λ3ð1Þ ¼
Λ3H2

2
ffiffiffi
2

p
G3=2
S a

; Λ3ð2Þ ¼ −
Λ3Hffiffiffi
2

p
G3=2
S a2

; Λ3ð3Þ ¼
Λ3

2
ffiffiffi
2

p
G3=2
S a3

;

Λ4ð1Þ ¼ −
Λ4H

2
ffiffiffi
2

p
G3=2
S a

; Λ4ð2Þ ¼
Λ4

2
ffiffiffi
2

p
G3=2
S a2

;

Λ5ð1Þ ¼ −
Λ5H

2
ffiffiffi
2

p
G3=2
S a

; Λ5ð2Þ ¼
Λ5

2
ffiffiffi
2

p
G3=2
S a2

;

Λ6ð1Þ ¼
Λ6

2
ffiffiffi
2

p
G3=2
S a

;

Λ�ð1Þ ¼
Λ�

2
ffiffiffi
2

p
G3=2
S a3

:

Λ12ð1Þ ¼
Λ12

2
ffiffiffi
2

p
G3=2
S a

; Λ12ð2Þ ¼ −
Λ12H

2
ffiffiffi
2

p
G3=2
S

; Λ12ð3Þ ¼ −
Λ12H

2
ffiffiffi
2

p
G3=2
S

; Λ12ð4Þ ¼
Λ12aH2

2
ffiffiffi
2

p
G3=2
S

;

Λ13ð1Þ ¼ −
Λ13H

2
ffiffiffi
2

p
G3=2
S a

; Λ13ð2Þ ¼
Λ13

2
ffiffiffi
2

p
G3=2
S a2

;

Λ14ð1Þ ¼
Λ14

2
ffiffiffi
2

p
G3=2
S a2

; Λ14ð2Þ ¼ −
Λ14Hffiffiffi
2

p
G3=2
S a

; Λ14ð3Þ ¼ −
Λ14H

2
ffiffiffi
2

p
G3=2
S a

; Λ14ð4Þ ¼
Λ14H2

2
ffiffiffi
2

p
G3=2
S

;

Λ14ð5Þ ¼
Λ14H2ffiffiffi
2

p
G3=2
S

; Λ14ð6Þ ¼ −
Λ14aH3

2
ffiffiffi
2

p
G3=2
S

Λ15ð1Þ ¼
Λ15

2
ffiffiffi
2

p
G3=2
S a

; Λ15ð2Þ ¼ −
Λ15Hffiffiffi
2

p
G3=2
S

; Λ15ð3Þ ¼
Λ15aH2

2
ffiffiffi
2

p
G3=2
S

;

Λ16ð1Þ ¼
Λ16H2

2
ffiffiffi
2

p
G3=2
S a

; Λ16ð2Þ ¼ −
Λ16H

2
ffiffiffi
2

p
G3=2
S a2

; Λ16ð3Þ ¼ −
Λ16H

2
ffiffiffi
2

p
G3=2
S a2

; Λ16ð4Þ ¼
Λ16

2
ffiffiffi
2

p
G3=2
S a3

;

Λ17ð1Þ ¼ −
Λ17H

2
ffiffiffi
2

p
G3=2
S a

; Λ17ð2Þ ¼
Λ17

2
ffiffiffi
2

p
G3=2
S a2

:
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We use these Λi;ðjÞ to naively estimate the matrix elements
Mi;ðjÞ (17). Finally, unitarity bound and the condition of
strong coupling absence for each ðã0Þi;ðjÞ (20) provide the
constraints on the slow roll parameter ϵ (21).

APPENDIX C: CALCULATIONS OF MATRIX
ELEMENTS

In this appendix we show explicitly how to obtain the
accurate expressions for t- and u-matrix elements from

Sec. III B. The subtlety of the calculation of s-matrix
element is shown in Appendix D.
First of all, we remind that we consider only Λ3 −

Λ6;Λ�;Λ13;Λ16;Λ17 terms in further calculations, since
other ones provide suppressed contribution to final matrix
elements, see the discussion in Sec. III A.
Begin with the calculation of t-channel matrix element.

Consider the upper vertex (with p⃗1 and p⃗3 momenta) from
the center panel in Fig. 1.

(1) Λ3ð1ÞR̃2
∂
2R̃þ Λ3ð2ÞR̃R̃0

∂
2R̃þ Λ3ð3ÞR̃02

∂
2R̃ terms give:

V3 ¼ 2iΛ3ð1Þðip⃗1Þ2 þ 2iΛ3ð1Þð−ip⃗3Þ2 þ 2iΛ3ð1Þð−ip⃗hÞ2 þ iΛ3ð2ÞðiE3Þðip⃗1Þ2 þ iΛ3ð2Þð−iE1Þð−ip⃗3Þ2
þ iΛ3ð2Þð−iE1Þð−ip⃗hÞ2 þ iΛ3ð2ÞðiE3Þð−ip⃗hÞ2 þ 2iΛ3ð3Þð−iE1ÞðiE3Þð−ip⃗hÞ2;

where p⃗h ¼ p⃗1 − p⃗3 and we also keep in mind that Eh ¼ E1 − E3 ¼ 0 in this and further calculations.
(2) Λ4ð1ÞR̃2

∂
2R̃þ Λ4ð2ÞR̃R̃0

∂
2R̃ terms give

V4 ¼ 2iΛ4ð1Þð−ip⃗hÞ2 þ 2iΛ4ð1Þðip⃗1Þ2 þ 2iΛ4ð1Þð−ip⃗3Þ2
þ iΛ4ð2ÞðiE3Þðip⃗1Þ2 þ iΛ4ð2Þð−iE1Þð−ip⃗3Þ2 þ iΛ4ð2Þð−iE1Þð−ip⃗hÞ2 þ iΛ4ð2ÞðiE3Þð−ip⃗hÞ2:

(3) Λ5ð1ÞR̃ð∂iR̃Þ2 þ Λ5ð2ÞR̃0ð∂iR̃Þ2 terms give

V5 ¼ 2iΛ5ð1Þðip⃗1;−ip⃗3Þ þ 2iΛ5ð1Þðip⃗1;−ip⃗hÞ þ 2iΛ5ð1Þð−ip⃗h;−ip⃗3Þ
þ 2iΛ5ð2Þðip⃗1;−ip⃗hÞðiE3Þ þ 2iΛ5ð2Þð−ip⃗h;−ip⃗3Þð−iE1Þ:

(4) Λ6ð1ÞR̃ð∂iR̃Þ2 term gives

V6 ¼ 2iΛ6ð1Þðip⃗1;−ip⃗3Þ þ 2iΛ6ð1Þðip⃗1;−ip⃗hÞ þ 2iΛ6ð1Þð−ip⃗h;−ip⃗3Þ:

(5) Λ13ð1Þ∂2R̃∂iR̃∂i∂
−2R̃þ Λ13ð2Þ∂2R̃∂iR̃∂iψ̃ terms give

V13 ¼ iΛ13ð1Þðip⃗1Þ2
ð−ip⃗3;−ip⃗hÞ

ð−ip⃗hÞ2
þ iΛ13ð1Þð−ip⃗3Þ2

ð−ip⃗h; ip⃗1Þ
ðip⃗1Þ2

þ iΛ13ð1Þð−ip⃗hÞ2
ðip⃗1;−ip⃗3Þ
ð−ip⃗3Þ2

þ iΛ13ð1Þð−ip⃗3Þ2
ðip⃗1;−ip⃗hÞ
ð−ip⃗hÞ2

þ iΛ13ð1Þðip⃗1Þ2
ð−ip⃗h;−ip⃗3Þ

ð−ip⃗3Þ2
þ iΛ13ð1Þð−ip⃗hÞ2

ð−ip⃗3; ip⃗1Þ
ðip⃗1Þ2

þ iΛ13ð2Þð−ip⃗3Þ2
ð−ip⃗h; ip⃗1Þ

ðip⃗1Þ2
ð−iE1Þ þ iΛ13ð2Þð−ip⃗hÞ2

ðip⃗1;−ip⃗3Þ
ð−ip⃗3Þ2

ðiE3Þ þ iΛ13ð2Þðip⃗1Þ2
ð−ip⃗h;−ip⃗3Þ

ð−ip⃗3Þ2
ðiE3Þ

þ iΛ13ð2Þð−ip⃗hÞ2
ð−ip⃗3; ip⃗1Þ

ðip⃗1Þ2
ð−iE1Þ:
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(6) Λ16ð1ÞR̃∂i∂jR̃∂i∂j∂
−2R̃þ Λ16ð2ÞR̃∂i∂jR̃∂i∂jψ̃ þ Λ16ð3ÞR̃0

∂i∂jR̃∂i∂j∂
−2R̃þ Λ16ð4ÞR̃0

∂i∂jR̃∂i∂jψ̃ terms give

V16 ¼ iΛ16ð1Þ
ð−ip⃗3;−ip⃗hÞ2

ð−ip⃗hÞ2
þ iΛ16ð1Þ

ð−ip⃗h; ip⃗1Þ2
ðip⃗1Þ2

þ iΛ16ð1Þ
ðip⃗1;−ip⃗3Þ2
ð−ip⃗3Þ2

þ iΛ16ð1Þ
ðip⃗1;−ip⃗hÞ2
ð−ip⃗hÞ2

þ iΛ16ð1Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
þ iΛ16ð1Þ

ð−ip⃗3; ip⃗1Þ2
ðip⃗1Þ2

þ iΛ16ð2Þ
ð−ip⃗h; ip⃗1Þ2

ðip⃗1Þ2
ð−iE1Þ þ iΛ16ð2Þ

ð−ip⃗3; ip⃗1Þ2
ðip⃗1Þ2

ð−iE1Þ

þ iΛ16ð2Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
ðiE3Þ þ iΛ16ð2Þ

ðip⃗1;−ip⃗3Þ2
ð−ip⃗3Þ2

ðiE3Þ

þ iΛ16ð3Þð−iE1Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
þ iΛ16ð3Þð−iE1Þ

ð−ip⃗3;−ip⃗hÞ2
ð−ip⃗hÞ2

þ iΛ16ð3ÞðiE3Þ
ð−ip⃗h; ip⃗1Þ2

ðip⃗1Þ2
þ iΛ16ð3ÞðiE3Þ

ðip⃗1;−ip⃗hÞ2
ð−ip⃗hÞ2

þ iΛ16ð4Þð−iE1Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
ðiE3Þ þ iΛ16ð4ÞðiE3Þ

ð−ip⃗h; ip⃗1Þ2
ðip⃗1Þ2

ð−iE1Þ:

(7) Terms Λ17ð1ÞR̃∂i∂jR̃∂i∂j∂
−2R̃þ Λ17ð2ÞR̃∂i∂jR̃∂i∂jψ̃ give

V17 ¼ iΛ17ð1Þ
ð−ip⃗3;−ip⃗hÞ2

ð−ip⃗hÞ2
þ iΛ17ð1Þ

ð−ip⃗h; ip⃗1Þ2
ðip⃗1Þ2

þ iΛ17ð1Þ
ðip⃗1;−ip⃗3Þ2
ð−ip⃗3Þ2

þ iΛ17ð1Þ
ðip⃗1;−ip⃗hÞ2
ð−ip⃗hÞ2

þ iΛ17ð1Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
þ iΛ17ð1Þ

ð−ip⃗3; ip⃗1Þ2
ðip⃗1Þ2

þ iΛ17ð2Þ
ð−ip⃗h; ip⃗1Þ2

ðip⃗1Þ2
ð−iE1Þ þ iΛ17ð2Þ

ð−ip⃗3; ip⃗1Þ2
ðip⃗1Þ2

ð−iE1Þ

þ iΛ17ð2Þ
ð−ip⃗h;−ip⃗3Þ2

ð−ip⃗3Þ2
ðiE3Þ þ iΛ17ð2Þ

ðip⃗1;−ip⃗3Þ2
ð−ip⃗3Þ2

ðiE3Þ:

(8) Λ�ð1ÞR̃ðð∂2R̃Þ2 − ð∂i∂jR̃Þ2Þ terms give

V� ¼ 2iΛ�ð1Þðip⃗1Þ2ð−ip⃗3Þ2 þ 2iΛ�ð1Þð−ip⃗3Þ2ð−ip⃗hÞ2 þ 2iΛ�ð1Þðip⃗1Þ2ð−ip⃗hÞ2
− 2iΛ�ð1Þðip⃗1;−ip⃗3Þ2 − 2iΛ�ð1Þðip⃗1;−ip⃗hÞ2 − 2iΛ�ð1Þð−ip⃗3;−ip⃗hÞ2:

Finally, the full expression for the first vertex with p⃗1 and
p⃗3 momenta from Fig. 1 is given by

Vp1;p3
¼ V3 þ V4 þ V5 þ V6 þ V13 þ V16 þ V17 þ V�;

and all corresponding substitutions were made in Wolfram
Mathematica. The intermediate formula for Vp1;p3

is quite
cumbersome, so we do not write the explicit expres-
sion here.
In the same manner one can obtain the expressions for

the second vertex Vp2;p4
(bottom vertex with p⃗2 and p⃗4

momenta) from the center diagram in Fig. 1. Actually, this
Vp2;p4

vertex can be easily obtained with the use of the
following change of variables in final expression for Vp1;p3

together with the conservation laws (18): p⃗1 → p⃗2 → −p⃗1,
p⃗3 → p⃗4 → −p⃗3, as well as p⃗h → −p⃗h.
Both Vp1;p3

and Vp2;p4
contains Λ3 − Λ6;Λ�;Λ13;

Λ16;Λ17 coefficients, which are listed in Appendix B
and different combinations of energies E1 and E3, momenta
p⃗1 and p⃗3, and their scalar products together with p⃗h. The
needed combinations can be found with the use of con-
servation laws (18) and given by
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ðp⃗1; p⃗3Þ ¼
E2

4c2S
cos θ;

where θ is the angle between p⃗1 and p⃗3 vectors; next

p2
h ¼ p2

1 þ p2
3 − 2p1p3 cos θ ¼ E2

2c2S
ð1 − cos θÞ;

and

ðp⃗1; p⃗hÞ ¼ p2
1 − p1p3 cos θ ¼ E2

4c2S
ð1 − cos θÞ:

Substituting all these expressions together with (8) and (9)
into the formula for t-channel matrix element

iMt ¼
i

−p2
h

Vp1;p3
Vp2;p4

one can arrive to (23).
Finally, as it was mentioned in the Sec. III B, one

can obtain u-channel element (24) using the expression
for t-channel (23) and performing the change cos θ →
− cos θ there.

APPENDIX D: SUBTLETY IN THE
CALCULATION OF s-MATRIX ELEMENT

In this appendix we discuss a subtlety, which arises in
calculations for s-channel matrix element (22). Formulas for
t- and u-channels can be obtained in a quite straightforward
way and it was discussed in the previous appendix. We
remind, that we consider only such vertices in the matrix
element which involve only Λ3 − Λ6;Λ�;Λ13;Λ16;Λ17

couplings, since these terms provide the strongest naive
constraints (21e) and (21f), i.e. contributions from other
terms are suppressed with ϵ.
The mentioned subtlety in s-channel is related to the

terms with Λ13, Λ16, and Λ17 couplings which involve
ψ ¼ ∂

−2Ṙ in the cubic action (11). Recalling that the
momentum of propagator equals to zero for the s-channel
[see conservation law for momenta (18a)], we consider the
following terms first

Λ13ð1Þ∂2R̃∂iR̃∂i∂
−2R̃þ Λ13ð2Þ∂2R̃∂iR̃∂iψ̃ : ðD1Þ

One can easily see, that we get a 1
02
factor as ∂−2 acting on

the propagator. To deal with such contributions, let us
introduce a new parameter η⃗ → 0, which satisfies p⃗1;2⊥η⃗,
so we change the center-of-mass frame to a new frame with

p⃗1
0 þ p⃗2

0 ¼ η⃗;

where

p⃗0
1;2 → p⃗1;2 þ

η⃗

2
: ðD2aÞ

Next, we find

ðp0
1;2Þ2 ¼ p2

1;2 þ
ðη⃗Þ2
4

;

ðp⃗1
0; p⃗2

0Þ ¼ ðp⃗1; p⃗2Þ þ
ðη⃗Þ2
4

;

as well as

E0
1 ¼ E1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2Sðη⃗Þ2

4E2
1

s
≈ E1

�
1þ c2Sðη⃗Þ2

8E2
1

�
: ðD2bÞ

Thus, considering the left vertex from the diagram in
Fig. 2 wewrite a related expression for the vertex connected
with (D1) terms

iΛ13ð1Þðip⃗0
1Þ2

ðip⃗0
2;−iη⃗Þ

ð−iη⃗Þ2 þ iΛ13ð1Þðip⃗0
2Þ2

ðip⃗0
1;−iη⃗Þ

ð−iη⃗Þ2 þ iΛ13ð2Þðip⃗0
1Þ2

ðip⃗0
2;−iη⃗Þ

ð−iη⃗Þ2 ðiE0Þ þ iΛ13ð2Þðip⃗0
2Þ2

ðip⃗0
1;−iη⃗Þ

ð−iη⃗Þ2 ðiE0Þ:

The same “trick” should be done forΛ16 andΛ17 terms. The final result with all contributions fromΛ13,Λ16, andΛ17 for the
left vertex in Fig. 2 reads

FIG. 2. Tree level diagram for 2 → 2 process: s-channel.
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V1 ¼
1

2
ðiΛ13ð1Þp⃗1

2 − Λ13ð2Þp⃗1
2Eþ iΛ13ð1Þp⃗2

2 − Λ13ð2Þp⃗2
2EÞ

þ jη⃗j2
2

�
−iΛ16ð1Þ þ Λ16ð2ÞE −

1

2
Λ16ð3ÞE1 −

1

2
Λ16ð3ÞE2 −

i
2
Λ16ð4ÞE1E −

i
2
Λ16ð4ÞE2E − iΛ17ð1Þ þ Λ17ð2ÞE

�

¼ 1

2
ðiΛ13ð1Þp⃗1

2 − Λ13ð2Þp⃗1
2Eþ iΛ13ð1Þp⃗2

2 − Λ13ð2Þp⃗2
2EÞ; ðD3Þ

where in the last equality we take η⃗ ¼ 0 and also we

substitute (D2). Here we use ðip⃗0
1;−iη⃗Þ ¼ ðp⃗1 þ η⃗

2
; η⃗Þ ¼

jη⃗j2
2

as well. Using the same logic one can consider the
second right vertex with outgoing particles in Fig. 2 and
find out that similar contribution proportional to η⃗ vanishes
in the same way as in (D3).

This concludes our discussion related to a subtlety
coming from ψ factor. We note once again, that t- and
u-channels do not suffer from this problem, since the
propagator’s momentum is not zero in these cases.
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