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We perform the numerical simulation of primordial black hole (PBH) formation from a nonspherical
profile of the initial curvature perturbation ζ. We consider the background expanding universe filled with
the perfect fluid with the linear equation of state p ¼ wρ (w ¼ 1=3 or 1=5), where p and ρ are the pressure
and the energy density, respectively. The initial condition is set in a way such that the principal directions of
the second derivatives of ζ and Δζ at the central peak are misaligned, where Δ is the Laplacian. In this
setting, since the linearized density is proportional toΔζ, the inertia tensor and deformation tensor ∂i∂jζ are
misaligned. Thus, tidal torque may act, and the spin of a resultant primordial black hole would be nonzero,
in general, although it is estimated to be very small from previous perturbative analyses. As a result, we do
not find a finite value of the spin within our numerical precision, giving support for the negligibly small
value of the black hole spin for 1=5≲ w≲ 1=3. More specifically, our results suggest that the
dimensionless PBH spin s is typically so small that s ≪ 0.1 for w≳ 0.2.

DOI: 10.1103/PhysRevD.110.043526

I. INTRODUCTION

The possibility of black hole formation in the early
Universe was proposed in Refs. [1–3] more than half a
century ago. Since then, it had been a fascinating but
relatively minor possible scenario, until the first detection
of gravitational waves from a binary black hole [4].
However, since the possibility of the binary originating
from primordial black holes (PBHs) was pointed out [5],
the utility of PBHs for many areas in cosmology and
astrophysics was realized.
PBHs are the remnants of primordial inhomogeneity, and

there is no doubt that black holes can be formed if
sufficiently overdense regions exist in the early Universe.
Theymay play the role of darkmatter [6–8], or they could be
the source of microlensing events [9] and/or black hole
binaries observed by the gravitational waves [5,10–12].
In addition, they may be the seeds of supermassive black
holes and cosmic structures [13–19]. Other attractive
observables associated with large primordial perturbations
are gravitational waves induced by primordial curvature
perturbations [20–29]. Since the induced gravitational
waves and PBHs both originate from primordial curvature
perturbations, combinations of these observations are attrac-
tive tools to probe the early universe.
In this paper, we focus on the PBH formation in a

nonspherical setting and possible generation of the black
hole spin. Although spherically symmetric dynamics for

PBH formation has been the focus [30–49] for many years,
there are also several works in which nonspherical PBH
formation is considered [50–59]. References [50,51,53]
focus on the PBH formation in a matter-dominated uni-
verse, in which the nonspherical collapse would be essen-
tial for understanding the criterion of the PBH formation. In
the case of a radiation-dominated universe [52,54–56], the
pressure gradient is the main obstacle to PBH formation,
and a large amplitude of the curvature perturbation is
required. Then, according to the peak theory [60], the
system approaches a spherically symmetric configuration
in the high peak limit, so the deviation from the spherical
configuration becomes relatively ineffective. The situation
would not change much for the case of somewhat softer
equations of state [58].
References [54,55,58] suggest that, for the case of a

perfect fluid with non-negligible pressure, the PBH
spin is negligibly small immediately after the formation.
Nevertheless, the PBH spin has been estimated based on
perturbative analyses, and nonlinear simulation with a
standard initial setting has not been done yet (see
Refs. [57,59] for simulations with massive and massless
scalar fields). The purpose of this work is to check the
validity of the results obtained in Refs. [54,55,58] through
fully nonlinear numerical simulations. Therefore, following
Refs. [54,55,58], we consider only one field variable,
which corresponds to the growing mode solution of the
curvature perturbation in the long-wavelength limit, char-
acterizing the initial condition. Then, we suppose the tidal
torque is the mechanism to generate angular momentum*Contact author: yoo.chulmoon.k6@f.mail.nagoya-u.ac.jp
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transfer. In other words, we do not explicitly introduce the
initial angular momentum in an ad hoc manner, and we
check the efficiency of the tidal torque in the PBH
formation.
Throughout this paper, we use the geometrized units in

which both the speed of light and Newton’s gravitational
constant are set to unity, c ¼ G ¼ 1.

II. BASIC SETUPS

First, let us introduce the characteristic comoving length
scale 1=k for the initial perturbation. Since we are interested
in the perturbations which are initially superhorizon scale,
we assume ϵ ≔ k=ðaiHiÞ ≪ 1, with ai and Hi being the
scale factor and the Hubble expansion rate at the initial time,
respectively. For simplicity, hereafter we assume that the
matter field is given by the perfect fluid with the linear
equation of statep ¼ wρ, wherep and ρ are the pressure and
the energy density of the fluid. In this paper, we consider the
two specific values 1=3 and 1=5 for w. Growing mode
solutions for superhorizon scale perturbations can be
obtained by performing the gradient expansion [32,38],
and it turns out that, at leading order, the solution can be
characterized by the conformal factor of the spatial metric
given as an arbitrary function of spatial coordinates xi.
Following convention, we write the spatial metric of the
initial condition as e−2ζðxÞa2i ηij, where ηij is the reference flat
metric and ζ is an arbitrary function of the spatial coordinates
x. We simply call ζ the curvature perturbation hereafter.
In practice, setting the functional form of ζ, we calculate

all geometrical variables following Ref. [38] with the
uniform Hubble (constant-mean-curvature) slicing and
the normal coordinates (vanishing shift vectors). Then,
the fluid variables are calculated by using the exact form of
the Hamiltonian and momentum constraint equations. In
other words, the fluid configuration is set in a way such that
the constraint equations are satisfied within the machine’s
precision. The configuration is also consistent with the
long-wavelength approximation as long as the typical
length scale ai=k of the perturbation is sufficiently large
compared to the Hubble length 1=Hi.
For the numerical simulation, we only consider the

numerical domain given by −L ≤ X ≤ L, 0 ≤ Y ≤ L and
0 ≤ Z ≤ L, where X, Y, and Z are the reference Cartesian
coordinates. We note that the Cartesian coordinates can be
different from the reference spatial coordinates xi, in
general. Indeed, we introduce scale-up coordinates as xi

later. We identify the boundary surface ð0<X≤L;Y ¼ 0;
0≤Z≤LÞ as ð−L ≤ X < 0; Y ¼ 0; 0 ≤ Z ≤ LÞ, with the π
rotation around the Z axis (see Fig. 1). The reflection
symmetries are assumed for other boundary surfaces. The
numerical region and the boundary conditions are summa-
rized in Fig. 1.
In this paper, we use the following specific functional

form of ζ:

ζ ¼ −μ
�
1þ 1

2
ðk21ðX þ YÞ2=2þ k22ðX − YÞ2=2þ k23Z
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with

k2 ¼
X

i¼1;2;3

k2i ¼ ξ̂1 ¼
X
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κ2i ¼ ξ̃1 ¼ 100=L2;

ξ̂2 ¼ 10=L2; ξ̃2 ¼ 15=L2; ξ̂3 ¼ ξ̃3 ¼ 0: ð9Þ

There are a few reasons for using this specific form of the
curvature perturbation ζ.
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FIG. 1. Numerical region and boundary conditions.
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First, by expanding ζ around the origin, we find

ζ

μ
≃ −1þ 1

2

�
k21ðX þ YÞ2=2þ k22ðX − YÞ2=2þ k23Z

2
�

þOðR4Þ; ð10Þ
Δζ
μk2

≃ 1 −
1

2
ðκ21X2 þ κ22Y

2 þ κ23Z
2Þ þOðR4Þ; ð11Þ

whereΔ is the Laplacian for the reference flat metric. Since
the linear density perturbation δ is proportional to Δζ, the
principal directions of the deformation tensor ∂i∂jζ and the
inertia tensor are misaligned with each other with π=4.
Because of this misalignment, we may expect the tidal
torque to be active, and the gravitational collapse is
accompanied by the rotation [54,55]. The last factor
exp ½− 1

2880
k6R6� is multiplied to realize ζ ≃ 0 around the

outer boundary. In practice, we also introduce a window
function as in Ref. [61] to regularize ζ in the vicinity of the
outer boundary [see Eq. (24) in Ref. [61] for the specific
form of the window function].
The eigenvalues of the inertia and deformation tensors ki

and κi are characterized by ξ̂i and ξ̃i. We use this expression
because of the probability distribution based on the peak
theory for those parameters [60]. Let us introduce the
nth order gradient moment σn [60]. According to the
peak theory, the values of −ζjpeak=σ0, Δζjpeak=σ2, and
−ΔΔζjpeak=σ4 are significantly correlated with each other
[see Eq. (A7) in Ref. [62] for the probability distribution
function], where jpeak indicates the value at the peak. From
these correlations, we expect that the orders of magnitude
for those variables are similar to each other. Here, we
simply assume −ζk2κ2 ¼ Δζκ2 ¼ −ΔΔζ ¼ μk2κ2 at the
peak with k2 ¼ ξ̂1 ¼ κ2 ¼ ξ̃1. The probability distributions
of ξ2 ≔ ξ̂2=σ2 and ξ3 ≔ ξ̂3=σ2 are given by

Pðξ2; ξ3Þ ¼
55=232ffiffiffiffiffiffi

2π
p ξ2ðξ22 − ξ23Þ exp

�
−
5

2
ð3ξ22 þ ξ23Þ

�
; ð12Þ

without correlation with −ζjpeak=σ0 and Δζjpeak=σ2 [see,
e.g., Eqs. (2)–(6) in Ref. [56], with λ2 ↔ λ3]. The param-
eter regions of ξ2 and ξ3 are restricted to −ξ2 ≤ ξ3 ≤ −ξ2
and 0 ≤ ξ2. Then, we choose the most probable value for
ξ3, namely, ξ3 ¼ 0. We can make a similar argument for ξ̃3,
assigning Δζ to the role of ζ in the above discussion. Thus,
we set ξ̂3 ¼ ξ̃3 ¼ 0. Then, the probability distribution for ξ2
takes the maximum value at ξ2 ¼ 1=

ffiffiffi
5

p
≃ 0.45. Therefore,

we can roughly estimate the typical value of ξ̂2 as
ξ̂2 ¼ ξ2σ2 ∼ k2σ=

ffiffiffi
5

p ¼ 100σ=ð ffiffiffi
5

p
L2Þ, with σ2 being the

typical amplitude of the curvature power spectrum.
Since, for the PBH formation scenario, the value of σ is
typically given by σ < 0.1, we may evaluate the value of ξ̂2
as ξ̂2 ≲ 5=L2. Therefore, the values of ξ̂2 ¼ 10=L2 and
ξ̃2 ¼ 15=L2 are unexpectedly large. These large values of

ξ̂2 and ξ̃2, together with the finely tuned misalignment
angle π=4, are assumed to make the tidal torque more
effective. In other words, the setting is optimized for the
generation of the PBH spin, and the value of the PBH spin
is expected to be larger than the typical value.

III. TIME EVOLUTION

Our simulation code is based on the COSMOS code
developed in Refs. [63,64]. For the simulation, we follow
the numerical schemes adopted in Ref. [56], newly imple-
menting a mesh-refinement procedure in the central region.
The 4th-order Runge-Kutta method with the Baumgarte-
Shapiro-Shibata-Nakamura formalism is used for solving
the Einstein equations [65,66]. For the spatial coordinates,
we employ the scale-up coordinates introduced in Ref. [61]
with the parameter η ¼ 10, where the ratio between the
scale-up coordinate interval Δx and the Cartesian coor-
dinate interval ΔX is given by Δx=ΔX ¼ 1þ η at the
center. For the mesh refinement, we introduce two upper
layers to resolve the gravitational collapse around the
center. Therefore, 4 times finer resolution is realized near
the center when they are introduced. We start the calcu-
lation with the single layer, and the upper layers are
introduced when the value of the lapse function gets
smaller than 0.1 and 0.05 at the origin.1 For the initial
condition, we set ai ¼ 1 and Hi ¼ 50=L ¼ 5k. The
horizon entry time tent, which gives the scale of the
collapsing region, is given by Eq. (A5). On the other hand,
the horizon entry time tLent of the box size L is given by

tLent ¼ tentðkLÞ
3ð1þwÞ
1þ3w . Since tLent ¼ 102tent and 109=4tent for

w ¼ 1=3 and 1=5, respectively, the collapsing region is
much smaller than the scale of the box size at the horizon
entry of the numerical box. Therefore, the boundary effect
is expected to be insignificant in our settings. The number
of grids for each side is taken as 60, 70, and 80 for the initial
lowest layer, and the convergence is checked.
First, let us show the existence of the threshold value of

the amplitude μ for the black hole formation. In order to
explicitly show the existence of the threshold value, we
show the time evolution of the value of the lapse function at
the origin. In our gauge condition for the numerical
simulation, the value of the lapse function significantly

1The values at newly introduced grid points are evaluated by
the Lagrange interpolation. In the upper layer, seven grid points
on the boundary are regarded as buffer points, and three of them
(every two) are shared with the lower layer. In an iteration step of
the time evolution, first, the values on the buffer grid points are
evaluated by the interpolation from the values on the lower layer.
Then, the values at the inner four buffer points are evaluated by
solving the evolution equations, while the values at the outer three
points are evaluated by the interpolation from the values on the
lower layer. In the inside bulk region, the values obtained by the
time evolution are kept and taken to the lower layer grid points,
while for the buffer grid points, they are discarded just before the
next evolution step of the lower layer.
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decreases and approaches zero before the horizon forma-
tion. On the other hand, if the value of the amplitude μ is
not sufficiently large, the value of the lapse function at the
origin bounces back and no horizon formation is observed.
In Fig. 2, we show the value of the lapse function at the
origin as a function of the coordinate time. From the
behavior of the lapse function, we can see that there are
threshold values of μ between 0.91 and 0.92 for w ¼ 1=3
and between 0.72 and 0.73 for the w ¼ 1=5 case.

Hereafter, we show the results for case I [ðw; μÞ ¼
ð1=3; 0.92Þ] and case II [ðw; μÞ ¼ ð1=5; 0.73Þ], that is,
the cases slightly above the threshold values. First, let us
show the violation of the Hamiltonian constraint in Fig. 3.
The violation of the Hamiltonian constraint is evaluated at
each grid point with an appropriate normalization, and the
maximum value Hmax is taken, including the grid points on
the higher layers if they exist. We excluded the grid points
well inside the horizon for the evaluation of the constraint

FIG. 2. Time evolution of the lapse function at the origin. The
detection of the horizon triggers the excision procedure inside the
horizon, and the lapse function at the origin is fixed after that.

FIG. 3. Time evolution of the normalized max-norm of the
Hamiltonian constraint violation.

FIG. 4. Snapshots of the contour map of the fluid comoving density on the z ¼ Z ¼ 0 plane for case I, ðw; μÞ ¼ ð1=3; 0.92Þ. The
figures are described by the Cartesian coordinates X and Y. The green meshes in the last two panels describe the apparent horizon. The
horizon is first found at time t ¼ 91.7L.
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violation. A discontinuous change can happen when a
higher layer is introduced or the horizon is formed. In
addition, depending on how the grid points inside the
horizon are excluded, the value of Hmax slightly changes.
Due to this dependence, a discontinuous change may also
be observed when the calculation is terminated once and
the data continue at the termination (which can be seen at
around t ¼ 210L for the red solid line in Fig. 3). Overall,
the constraint violation is acceptably small outside the
horizon, and reasonable convergent behaviors with differ-
ent resolutions can be found.
Let us show the snapshots of the contour map of the fluid

comoving density on the z ¼ Z ¼ 0 plane in Figs. 4 and 5.
It can be seen that the system is highly nonspherical until
the apparent horizon forms. The time evolutions in the
contour map show oscillating behaviors rather than rota-
tion. The two cases (I and II) are qualitatively similar to
each other if the timescale is appropriately tuned.

IV. EVALUATION OF SPIN AND
ASPHERICITY OF THE HORIZON

In this section, we try to estimate the spin and asphericity
of the black hole by using geometrical quantities of the
horizon. If we can perform the numerical simulation for a

sufficiently long time, the black hole would approach a
stationary asymptotically flat black hole, namely, a Kerr
black hole, because the size of the cosmological horizon
becomes much larger than the black hole horizon scale and
the effect of accretion becomes negligible. First, let us
check the accretion effect by plotting the time evolution of
the horizon area A. We plot the value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð4πÞp

=ð2MHÞ
rather than A in Fig. 6, noting that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð4πÞp

has the mass
dimension, where MH is the horizon mass defined in
Eq. (A6). For case I, the mass accretion almost ends
around t ¼ 150L. For case II, although the area of the
horizon is gradually increasing even around t ¼ 400L, the
contribution of the accreting mass is expected to be
subdominant for the black hole.
In order to evaluate the spin of the black hole, let us refer

to the Kerr black hole with mass M and spin parameter a.
The area of the horizon AKerr is given by

AKerr ¼ 8π
�
M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 − a2M2

p �
: ð13Þ

The equatorial circumference dKerr and meridional circum-
ference lKerr of the Kerr black hole can be calculated as

dKerr ¼ 4πM; ð14Þ

FIG. 5. Snapshots of the contour map of the fluid comoving density on the z ¼ Z ¼ 0 plane for case II, ðw; μÞ ¼ ð1=5; 0.73Þ. The
figures are described by the Cartesian coordinates X and Y. The green meshes in the last two panels describe the apparent horizon. The
horizon is first found at time t ¼ 201.4L.
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lKerr ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p
E

	
a2

2Mrþ



; ð15Þ

where rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and EðÞ is the complete

elliptic integral of the second kind. Combining Eqs. (13)
and (14), we find

a2

M2
¼ 4πAKerrðd2Kerr − πAKerrÞ

d4Kerr
: ð16Þ

Therefore, by using the horizon area A and the equatorial
circumference d, we define the effective dimensionless spin
parameter s as

s2 ≔
4πAðd2 − πAÞ

d4
: ð17Þ

We also define the following indicators for the asphericity
of the horizon:

α ≔
lx¼0

d
; ð18Þ

β ≔
ly¼0

d
; ð19Þ

where lX¼0 and lY¼0 are the meridional circumference
measured on the X ¼ 0 and Y ¼ 0 planes, respectively. The
deviation of α or β from 1 indicates that the horizon is
nonspherical.
In Fig. 7, we plot the effective dimensionless spin

parameter s2 as a function of the time t for each parameter
set. It can be found that the value of s2 seems to converge to
a negatively small value at a late time. The absolute value of
s2 tends to be a smaller value for a finer resolution and
seems to converge to a very small value js2j≲ 10−3 for a
sufficiently fine resolution. Therefore, we conclude that

our result is consistent with s2 ¼ 0 within the numerical
precision.
Since our setting is not exactly a vacuum and not

asymptotically flat, the value of s2, which is defined in
analogy to the Kerr black hole solution, may not be
perfectly suitable for our purpose. Thus, we also check
the values of α and β, which are the indicators of the
asphericity of the horizon. If the horizon is highly spheri-
cally symmetric, we may not expect the large value of the
spin parameter. As is shown in Fig. 8, the horizon is highly
spherically symmetric at late times. We also show the value
of lKerr=dKerr for the case s2Kerr ≔ a2=M2 ¼ 10−2 in Fig. 8.
We can see that the dimensionless spin parameter is
expected to be much smaller than 10−2. The horizon shape
of the Kerr black hole is oblate in the sense that the
equatorial circumference d is larger than the meridional
one. In contrast, our results imply that the horizon shape in
the simulation is prolate. Then, the relatively small value of
the equatorial circumference causes the slightly negative
value of s2.

FIG. 6. Time evolution of the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð4πÞp

=ð2MHÞ,
where MH is the horizon mass defined in Eq. (A6).

FIG. 7. Time evolution of the effective dimensionless spin s2.

FIG. 8. Time evolution of the values of α and β for each
parameter set. The solid black line shows the value of lKerr=dKerr
for the case s2Kerr ≔ a2=M2 ¼ 10−2. The results for the highest
resolution (80 grid points for each side in the lowest layer) are
used for this figure.
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V. SUMMARY AND DISCUSSIONS

We performed numerical simulations of primordial black
hole formation from a nonspherical initial density profile
with a misaligned deformation tensor. The equation of state
is assumed to be the linear relation between the energy
density ρ and the pressure p, namely, p ¼ wρ (w ¼ 1=3 or
1=5). We have optimized the initial profile for the gen-
eration of PBH spin due to the tidal torque, taking the
probability estimation based on the peak theory into
account. In other words, the initial setting is finely tuned
to make the tidal torque more effective. Then, the prob-
ability of obtaining such a situation is highly suppressed
based on the peak theory for PBH formation, and the PBH
spin is expected to be larger than the typical value.
Nevertheless, our results are consistent with nonrotating
PBH formation; that is, the spin parameter of the resultant
PBH is so small that we cannot detect the nonzero value of
the spin within our numerical precision. This result is
qualitatively consistent with the prediction provided by the
analyses based on perturbative approaches [54,55,58].
It should be mentioned that there are several caveats to

our results. First, we only performed the numerical sim-
ulation for a specific initial inhomogeneity. Other initial
profiles could give different results. Due to the limitation of
the computer resources, the support of the initial inhomo-
geneity cannot be much smaller than the numerical domain
in order to keep a sufficient resolution. Therefore, essen-
tially, in our simulation, the system has been characterized
by only one scale of 1=k. The contribution of multiple
scales or environmental effects might promote angular
momentum transfer.
Even if we restrict ourselves to the initial configuration

treated in this paper, for a value of the amplitude μ very
close to the threshold for the black hole formation, we
would get a very small black hole associated with the
critical behavior [67,68]. Since a larger spin parameter has
been predicted in this critical scaling regime from the
perturbative analyses [54,55,58], we may expect to detect a
nonzero spin in the case near the threshold.
Our results suggest that, for p=ρ ¼ w≳ 0.2, the dimen-

sionless PBH spin s is typically so small that s ≪ 0.1. Since
the softening due to the QCD crossover is expected to satisfy
w > 0.2, the spins of the PBHs formed during the QCD
crossover are also expected to bemuch smaller than 0.1. One
interesting possibility is to consider amuch softer equation of
state, w ≪ 0.2, with a beyond-standard model in the
Universe before the electroweak phase transition [69,70].
PBH formation from scalar condensate objects is also an
interesting possibility for highly spinning PBHs (see, e.g.,
Refs. [71,72]). For the PBH formation in amatter-dominated

universe, since the pressure gradient force is absent, aspher-
icity is essential in the consideration of the PBH formation
criterion [53,55]. Then, we can expect highly spinning PBH
formation [55]. The simulations of the spinning PBH
formation in the earlyUniversewith extremely soft equations
of state and an early matter-dominated universe would be
interesting future works.
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APPENDIX: HORIZON ENTRY TIME
AND HORIZON MASS

We calculate the horizon entry time for the inhomoge-
neity whose length scale is given by 1=k in the universe
filled with perfect fluid, with the equation of state given by
p ¼ wρ. The scale factor and the Hubble parameter behave
as functions of the cosmological time t as

a ¼ ai

	
t
ti


 2
3ð1þwÞ

; ðA1Þ

H ¼ 2

3ð1þ wÞ
1

t
; ðA2Þ

where ti and ai are the initial time and the scale factor,
respectively. The value of aH is given by

aH ¼ aiHi

	
3

2
ð1þ wÞHit



− 1þ3w
3ð1þwÞ

; ðA3Þ

where Hi is the initial Hubble parameter. Then, the horizon
entry condition aentHent ¼ k can be rewritten as

aentHent ¼ aiHi

	
3

2
ð1þ wÞHitent



− 1þ3w
3ð1þwÞ ¼ k: ðA4Þ

The horizon entry time tent is given by

tent ¼
	

k
aiHi



−3ð1þwÞ

1þ3w 2

3ð1þ wÞHi
: ðA5Þ

The horizon mass MH can be estimated as follows:

MH ¼ 1

2
H−1

ent ¼
3

4
ð1þ wÞtent ¼

1

2Hi

	
k

aiHi



−3ð1þwÞ

1þ3w

: ðA6Þ
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[48] A. Escrivà and C.-M. Yoo, Primordial black hole formation
from overlapping cosmological fluctuations, J. Cosmol.
Astropart. Phys. 04 (2024) 048.
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