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Real-time measurements are becoming feasible in cosmology, where the next generation of telescopes
will detect the temporal change of redshifts and sky positions of individual sources with a precision that
will allow a direct detection of the cosmic expansion rate. These detections of cosmic drifts of redshifts and
positions are likely to become cornerstones in modern cosmology, where one has otherwise relied on the
indirect inference of cosmic expansion by estimation of the slope of the fitted distance–redshift relation.
Because of their ability to directly detect the cosmic time evolution, real-time measurements are powerful
as model-independent probes. We develop a cosmographic framework for analyzing cosmological redshift
drift and position drift signals without knowledge of the space-time geometry. The framework can be
applied to analyze data from surveys such as the Gaia observatory, the Square Kilometer Array, and the
Extremely Large Telescope. The drift effects are distorted by the regional kinematics and tidal effects in the
cosmic neighborhood of the observer, giving rise to nontrivial corrections to the well-known Friedmann-
Lemaître-Robertson-Walker results. We discuss how one may concretely implement the framework in the
statistical analysis of real-time data, along with assumptions and limitations that come with such an
analysis. We also discuss the geometrical information that can ideally be extracted from ideal high-
resolution data of cosmic drifts in combination with distance–redshift data.

DOI: 10.1103/PhysRevD.110.043525

I. INTRODUCTION

Real-time observations hold the potential of directly
measuring space-time kinematics by following astrophysi-
cal sources at cosmic distances over time in the telescope and
registering the corresponding temporal changes in cosmo-
logical observables. The changes in cosmological observ-
ables are also denoted cosmological drift effects. The
cosmological drifts include the redshift drift [1–3], which
will provide an important independent probe of the cosmo-
logical expansion rate by upcoming precise measurements
by the Extremely Large Telescope (ELT) [4] and Square
Kilometer Array (SKA) [5]. The position drift (or cosmic
parallax) canprobe large-scale structures in theUniverse and
peculiar acceleration of the observer [6–8]. These effects are
detectable with the Gaia observatory [9,10]. Other cosmo-
logical drifts of observational interest include the drift of
luminosity or angular diameter distance of the source; see
Ref. [11] and its references for an overview. The direct
measurements of temporal changes of cosmic redshifts,

distances, and positions provide a unique opportunity to
constrain the kinematics of the Universe model independ-
ently. Loosely formulated, the cosmological drift effects
directly probe the slope of the Hubble diagram, whereas the
conventional measurements of cosmic distances and red-
shifts rely on the fitting of a cosmological model in order to
indirectly infer the slope.
There have been efforts in describing cosmological drift

effects while accounting for structures and movements of
the emitting sources and the observer, with some of the
early progress summarized in [8]. In [12], emitter motions
relative to an idealized Friedmann-Lemaître-Robertson-
Walker (FLRW) background were described, while all
first-order effects in FLRW perturbation theory were
included in [13–15]. Drift effects have also been considered
for observers in Bianchi I models [14,16,17], off-center
observers in Lemaître-Tolman-Bondi models [7,18], two-
region models [19], Newtonian N-body simulations [20],
and hydrodynamic relativity simulations [21]. Frameworks
for describing cosmological drift effects in general space-
time geometries have been considered in complementary
formalisms [11,13,22–25] and in the context of the aver-
aging problem in cosmology [26]. A computational tool to
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calculate cosmological drift effects in a given input space-
time was recently developed [27,28]. In [29], cosmography
for analyzing redshift drift at linear order in the distance to
the source in general space-times was formulated. The
work in [29] extends the framework for cosmography for
distance-redshift data developed in previous analyses
(e.g., [30–33]) to include redshift drift, and we further
extend this framework in the present paper.
In this paper, we explore the potential for performing

model-independent constraints based on the cosmological
drift effects. We compute cosmographic series expansions1

of redshift drift and position drift in the geometrical optics
approximation without assuming any model for the space-
time geometry of the Universe. The main aim of the paper
is to arrive at a cosmographic framework that bears much
resemblance to the usual FLRW cosmography, but now
with more degrees of freedom to constrain with data due to
the fact that the metric is left unspecified. The idea is that
this framework can be applied directly to perform model-
independent analyses of the cosmological drift effects by a
simple substitution of the FLRW cosmography with the
cosmography for a general space-time description. Just like
in [29–33], we focus on the multipole decompositions of
the drifts and the generalized Hubble law on the celestial
sphere. This is for two reasons. First, the multipoles can be
extracted from astronomical surveys that contain data on
the redshifts and angular positions of the sources that are
being tracked. Second, from the theoretical perspective, the
multipole moments form a finite set of numbers character-
izing the collective large-scale drift of many sources that
furthermore contain cosmological information about the
kinematics and curvature of the space-time.
We start by outlining the assumptions and limitations of

our setup in Sec. II. After reviewing our congruence
description for the space-time in Sec. III, we formulate
the position drift signal in terms of its cosmographic series
expansion in Sec. IV. In Sec. V we compute the second-
order cosmography for redshift drift, while building on the
first-order results derived in [29]. This allows to consider
sources at greater distances than previously possible with
the same methods. In Sec. VI we discuss the practical
implementations of the formalism to analyze catalogs of
cosmic drift data. We provide some errata to existing results
in the literature in Sec. VII. We discuss our main results on
position drift and redshift drift in Sec. VIII. Based on these
main results, we explore the independent information about
the large-scale kinematics of matter and the space-time
curvature that can be extracted from cosmographic analyses
of redshift drift and position drift measurements in Sec. IX,
where we also examine the additional information about
the space-time that can be extracted in combination with

measurements of luminosity distance and redshift. We
conclude in Sec. X.

A. Notation and conventions

Units are used in which c ¼ 1. Greek letters μ; ν;… label
space-time indices in a general basis, running from 0 to 3.
The signature of the space-time metric gμν is ð−þþþÞ and
the connection ∇μ is the Levi-Civita connection. Rμ

νσρ

denotes the Riemann curvature of the space-time and Cμ
νσρ

is the Weyl curvature tensor. Round brackets ðÞ containing
indices denote symmetrization in the involved indices and
square brackets ½� denote antisymmetrization.
In this paper, we often make use of purely spatial tensors,

i.e., tensors orthogonal to a normalized timelike vector uμ

in all indices, i.e., Tμνuμ ¼ Tνμuμ ¼ 0. We still use standard
four-dimensional greek indices for these objects that are
confined to the three-dimensional space orthogonal to uμ.
We introduce the projector onto this space

hμν ¼ gμν þ uμuν; ð1Þ

which also serves as the spatial 3-metric on the same space.
The traceless symmetric part of the purely spatial tensors
will be denoted by the brackets hi:

Thμνi ¼ TðμνÞ −
1

3
Tσ

σhμν; ð2Þ

with the coefficient 1
3
reflecting the effective dimension

three of the space. This notation is also used for tensors of
higher valence; see Ref. [34] and Appendix A of [32] for
the traceless decomposition for symmetric and spatially
projected tensors.

II. ASSUMPTIONS AND LIMITATIONS

Before we introduce the geometric setup, we spell out the
assumptions of the formalism. Our assumptions are min-
imal, as we do not impose any direct constraints on the
space-time metric. However, there are certain basic regu-
larity assumptions and conventional simplifying assump-
tions that we do make.
(1) We assume a metric theory of space-time and gravity

with a Levi-Civita connection. Our results are thus
applicable to general relativity as well as modified
metric theories of gravity without torsion.

(2) We assume that both the observer and the observed
sources (i.e., the stars/galaxies) can be described
using a timelike congruence. This means that to each
point of the space-time we assign a single 4-velocity
vector describing the cosmic flow of emitters and
observers. This assumption obviously involves a
coarse-graining step of the complicated small-scale
motion of matter. The merging of stars or galaxies or
emergence of small-scale virialized structures in the

1Note that the series expansion is in the distance to the source;
the space-time metric itself is not assumed to be perturbative
around any specified background geometry
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matter distribution thus cannot be accounted for in
this formalism. Our formalism applies to scales
where the multivaluedness of the 4-velocity is absent
or rare, or situations where the effect of this is small
enough to be ignored.

(3) We assume that the geometrical optics approxima-
tion is valid, i.e., light rays propagate along null
geodesics of the space-time metric.

(4) We further assume that photon number is con-
served along the null beams (no loss of photons
through particle scattering processes). The Ether-
ington distance duality relation between the angular
diameter distance dA and luminosity distance dL
then follows:

dL ¼ ð1þ zÞ2dA; ð3Þ
with z being the redshift.

(5) In order to make the definition of the drifts well
defined for sources in all possible directions on the
observer’s sky, we must require the null geodesics
emanating from the observer to not intersect. In
other words, we are neglecting the caustic behavior
of light. This eliminates any kind of strong gravi-
tational lensing effects from the description.

(6) Finally, the applicability of the cosmographic frame-
work relies on the convergence of the Taylor series
of the drifts. The framework must be applied in a
regime where the series converge and the truncated
Taylor series provide good approximations of the
relevant observables, such that any remainder term is
reasonably bounded.

III. SPACE-TIME DESCRIPTION

We consider a general space-time with the observer and
sources belonging to a single timelike congruence (hence-
forth the “observer congruence”) with 4-velocity field uμ;
see Fig. 1. Without loss of generality, we can make the
following kinematic decomposition:

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ≡∇μuμ; σμν ≡ hhνβhμiα∇βuα;

ωμν ≡ hνβhμα∇½βuα�; aμ ≡ u̇μ; ð4Þ

where the operator ˙≡ uμ∇μ is the covariant derivative
along the worldlines of the observer congruence.
We leave the kinematic variables θ, σμν, and ωμν

completely free in the analysis below. We also keep a
general 4-acceleration in this section and in our results in
the Appendices, but we neglect aμ in the main results of our
paper. This is reasonable since nongravitational interactions
are negligible on cosmological scales.
Let γ denote the worldline of the observer and the point

O on γ the point of observation. In order to study drift

effects of the astrophysical sources, we must consider a
segment2 of γ around the point O and the light rays
emanating from this section. We thus consider a four-
dimensional geodesic congruence of null rays (henceforth
the “photon congruence”) passing from the worldline
section of the observer and forming a one-parameter family
of null cones, one for each instant on the observer’s
worldline. We let the future-pointing null vector field kμ

be the photon 4-momentum of the photon congruence
forming the family of light cones with vertices along the
observer worldline, and let λ be the affine parameter along
the null geodesic related to kμ, i.e., d

dλ ¼ kμ∂μ. Moreover, let

E≡ −uμkμ ð5Þ
be the photon energy as measured by a member of the
observer congruence with evolution along the null rays:

dE
dλ

¼ −E2H; H≡ 1

3
θ − eμaμ þ eμeνσμν: ð6Þ

The spatial unit vector eμ ≡ uμ − 1
E k

μ is the direction of
propagation of the photon as seen in the observer con-
gruence frame, and it is by definition orthogonal to uμ. At
an event of observation, O, the direction vector eμO is
multivalued and denotes any direction on the observer’s
sky. However, note that eμO is fixed once we fix a null
geodesic (or, alternatively, fix a source of observation). In
fact, we may parametrize all null geodesics emanating from
the observer’s worldline by the direction eμO and the
moment of observation defined by the observers’ proper
time τ.

FIG. 1. The geometrical setup of the paper: congruence of
observers, with tangent vector uμ, and the family of null
geodesics crossing at the observer’s worldline γ, with the
tangent vector kμ. The moment of observation is denoted
by O.

2In practice, the proper time interval of this segment can be
thought of as the observation time in the observer’s telescope.
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From the photon energy in (5), we define the redshift as
measured by the observer at O as

z≡ E
EO

− 1: ð7Þ

IV. POSITION DRIFT SIGNAL

We might consider the drift of the photon propagation
direction of a given source

κμ ≡ hμνėνjγ; ð8Þ
where the source is kept fixed under the time derivative. In
other words, when evaluated at the observer worldline γ,
eμðτÞ in the equation above traces a single light source from
the observer congruence for all τ (moments in observer’s
proper time), and its covariant derivative gives the momen-
tary drift rate of the source as it appears on the observer’s
sky; see Fig. 2. The drift is measured with respect to a
nonrotating frame defined by the Fermi-Walker transport
along the observer’s geodesic [11,35]. Note that for an
observer following a geodesic (aμ ¼ 0) the Fermi-Walker
transport actually coincides with the parallel transport.
For real measurements that are corrected for the Earth’s

motion within the Solar System, this geodesic represents
the worldline of the Solar System. The Solar System, on the
other hand, exhibits local motion inside of our Galaxy
which again is in motion relative to the center of mass of the
Local Group of galaxies. These motions are typically
thought of as being noncosmological and thus it is often
desirable to separate the effects of the motions within
gravitationally bound structures, happening on relatively
small scales, from the cosmological effects; see

Refs. [14,36] for such efforts. We will return to this point
of separation of scales in Sec. VI.
When evaluated at an event at the observer’s worldline,

κμO is also multivalued and denotes the position drift of the
set of astrophysical sources over the observer’s sky.
However, it is single valued for a given source [11], under
the assumption of no caustics and hence no multiple
imaging. Since we have assumed that all sources belong
to the observer congruence, their 4-velocity uμ is uniquely
determined by the source’s position. Therefore, κμO is
unique at a given moment as a function of the position
on the sky given by eμO, defining a single geodesic, and the
distance along the geodesic λ: κμO ≡ κμOðeνO; λÞ.
Let us now consider the case where the observer and the

astrophysical source are close to each other as compared to
characteristic curvature scales of the space-time metric. The
position drift of the source on the observer’s sky can then be
expanded in terms of the affine distance Δλ≡ λE − λO to
the source located at the event E, as detailed in Appendix C
using Riemann normal coordinates. We write the series
expansion of the position drift signal between the source
and the observer given in (C10) for a nonaccelerating
observer congruence aμ ¼ 0 as

κσjO ¼ ð0ÞκσjO þ ð1ÞκσjOEOΔλþOðΔλ2Þ

¼ ð0ÞκσjO −
ð1Þκσ

H

����
O
zþOðz2Þ; ð9Þ

where it turns out that the Taylor series coefficients ð0Þκσ

and ð1Þκσ can be written as finite-order multipole decom-
positions in the direction vector eμ:

ð0Þκσ¼pσ
μeαð0Þκμα;

ð1Þκσ¼pσ
μ

h
ð1Þκμ0þeαð1Þκμαþeαeβð1Þκμαβþeαeβeγð1Þκμαβγ

i
:

ð10Þ
Here, pμ

ν denotes the direction-dependent projection tensor
to the screen space, i.e.,

pμν ≡ pμνðeαÞ ¼ hμν − eμeν ¼ gμν þ uμuν − eμeν: ð11Þ
The coefficient might be computed using (C10) and the
kinematic decomposition (4):

ð0Þκμα ¼ σμα þ ωμ
α;

ð1Þκμ0 ¼
1

6
hαβDαðσμβ þ ωμ

βÞ −
1

4
Rμ

νuν;

ð1Þκμα ¼ −θðσμα þ ωμ
αÞ − ðσβα þ ωβ

αÞðσμβ þ ωμ
βÞ

þ 1

2
Rμ

α þ Eμ
α −

4

15
hγβðσμγ þ ωμ

γÞσαβ;

ð1Þκμαβ ¼
1

2
Dhαðσμβi þ ωμ

βiÞ −
1

2
Cμ

αβνuν;

ð1Þκμαβγ ¼ −ðσμhγ þ ωμhγÞσαβi; ð12Þ

FIG. 2. Position drift for a selected source (broader worldline) is
the change of its apparent position vector eμðτÞ as recorded over a
period of the observer’s proper time τ, defined via the covariant
derivative along γ. Measurement of the drift requires repeated
observations of a single source, related tomore than one light cone.
The position drift κμ atO depends on themomentary velocity of the
source, uμ, as well as the 4-velocity of the observer, uμO.
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where Eμ
α ≡ Cμ

ναβuνuβ is the electric Weyl curvature
tensor of the space-time. The second line of (9) applies
when H ≠ 0 on the null ray from the emitter to the
observer, and follows from the transformation of affine
distance to redshift given in Appendix B.
The multipole (equivalent to spherical harmonics) repre-

sentation of the position drift signal (9) and (10) in the
direction of the source eμ (angular position) on the observer’s
sky is useful in practice because eμ, z constitute the usual
observational coordinate basis for sources of electromagnetic
radiation. For a data set with sufficiently many objects with
known angular position, redshift, and position drift, one may
thus constrain the coefficients in (12) by fitting the cosmog-
raphy (9) and (10) to the data set.
In the FLRW limit with the observers comoving with the

homogeneous and isotropic foliation, we have σμν ¼ 0 and
ωμν ¼ 0. Furthermore, we have that the Weyl tensor
vanishes identically, and that the Ricci tensor Rμν has an
eigenvector uμ along with three degenerate spatial eigen-
vectors in the plane orthogonal to uμ. This makes the
coefficients (10) vanish and, in fact, the position drift (9) is
identically zero at all orders. This is expected due to the
isotropy around the observer in the FLRW model. Any
deviation from isotropy around the observer will generally
produce nonzero drifts, and this effect has been calculated
for off-center observers in certain Lemaître-Tolman-Bondi
models [7,18].

V. REDSHIFT DRIFT SIGNAL

The drift of the redshift of an astrophysical source,
measured with respect to the observer’s proper time at the
event O, is denoted as ξO ≡ dz

dτ jO. It can be represented by
the integral (cf. [29])

ξjO ≡ dz
dτ

����
O
¼ EE

Z
λO

λE

dλΠ; z≡ EE

EO
− 1; ð13Þ

where the affine parameter λ of the noncaustic (i.e., non-
self-intersecting, except at the observer’s worldline) photon
congruence satisfies kμ∇μλ ¼ 1, and where subscripts E
and O indicate evaluation at the points of emission and
observation. In the absence of 4-acceleration, such that
aμ ¼ 0, the integrand of (13) can be expressed as the series
(see Ref. [29] for details of the derivation)

Π ¼ −κμκμ þ Σo þ eμeνΣee
μν þ eμκνΣeκ

μν; ð14Þ

with coefficients

Σo ≡ −
1

3
uμuνRμν;

Σee
μν ≡ −Eμν −

1

2
hαhμhβνiRαβ;

Σeκ
μν ≡ 2ðσμν − ωμνÞ ð15Þ

that are defined over the entire observer congruence and
evaluated at the null ray passing from E to O for the
purpose of calculating the integrand (14). The expression
for redshift drift reduces to the well-known FLRW expres-
sion ð1þ zÞHO −HE in the comoving FLRW scenario,
with H being the Hubble parameter. Apart from being
much more general, the geometrical expression in (13) is
fundamentally different from the FLRW expression in the
sense that it generally cannot be represented as an evalu-
ation of kinematical properties of the space-time at the end
points of emission and observation. In linear perturbation
theory around an FLRW space-time, the failure of repre-
senting the redshift drift signal as such an end-point
evaluation is due to the integrated Sachs-Wolfe effect as
well as time changes of vector and tensor potentials along
the null ray; cf. Eq. (4.16) in [14].
For sources located close to the observer, we might

formally expand the redshift drift signal (13) in the
separation between the emitter and the observer, measured
by the affine parameter difference Δλ along the null
geodesic. For the purpose of computing the redshift drift
cosmography, it is useful to expand Π into its first- and
second-order terms3 in Δλ,

ΠjO ¼ ð0ÞΠjO þ ð1ÞΠjOEOΔλþOðΔλ2Þ; ð16Þ

and similarly for the derivative of Π,

dΠ
dλ

����
O
¼

ð0Þ�dΠ
dλ

�
O
þOðΔλÞ: ð17Þ

We may now provide the cosmography for redshift drift
in terms of the above-defined expansion coefficients:

ξjO¼ð1ÞξjOEOΔλþð2ÞξjOE2
OΔλ

2þOðΔλ3Þ ð1Þξ≡−ð0ÞΠ;

ð2Þξ≡−
�
−Hð0ÞΠþ 1

2E

ð0Þ�dΠ
dλ

�
þð1ÞΠ

�
;

¼ð1Þξ̂jOzþð2Þξ̂jOz2þOðz3Þ; ð1Þξ̂≡
ð0ÞΠ
H

;

ð2Þξ̂≡−
�
1

2

ð0ÞΠ
H

þ 1

2E

ð0ÞðdΠdλÞ
H2

þ
ð1ÞΠ
H2

�
; ð18Þ

where we recall the definition of the operator d
dλ ≡ kμ∇μ as

the derivative along the null bundle. In order to arrive at a
cosmography that can be constrained with data, just as for
the position drift signal, we decompose the terms of (18)
into multipole representations in the direction eμ of the
source. The result is

3Π as evaluated at the observer is itself dependent on the affine
distance to the source through the position drift κ
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ð0ÞΠ¼ Σo þ eμeνðΣee
μν þ ð0ÞκσνΣeκ

μσ − ð0Þκσνð0ÞκσμÞ þ eμeνeσeρð−ð0ÞκμνΣeκ
σρ þ ð0Þκμνð0ÞκσρÞ;

ð1ÞΠ¼ −eμðð1ÞΣeκ
αμ þ 2ð0ÞκαμÞð1Þκα0 − eμeνðΣeκ

αμ þ 2ð0ÞκαμÞð1Þκαν
− eμeνeσðΣeκ

αμ þ 2ð0ÞκαμÞðð1Þκανσ þ δαν
ð1Þκ0σÞ þ eμeνeσeρðΣeκ

αμ þ 2ð0ÞκαμÞðδανð1Þκσρ − ð1ÞκανσρÞ
þ eμeνeσeρeγðΣeκ

νμ þ 2ð0ÞκνμÞð1Þκσργ þ eμeνeσeρeγeκðΣeκ
νμ þ 2ð0ÞκνμÞð1Þκσργκ;

1

E

ð0Þ�dΠ
dλ

�
¼ Σ̇o þ eμ

�
−DμΣo − ðΣeκ

αμ − 2ð0ÞκαμÞ
1

2
Rα

γuγ
�

þ eμeν
�
Σ̇ee
μν þ ð0ÞκανΣ̇eκ

μα − 2ð0ÞκαμΣee
αν − ð0Þκαμð0ÞκβνΣeκ

αβ þ ðΣeκ
αμ − 2ð0ÞκαμÞ

�
1

2
Rα

ν þEα
ν

��

þ eμeνeσ
�
−DσΣee

μν − ð0ÞκανDσΣeκ
μα þ ðΣeκ

μν − 2ð0ÞκμνÞ
1

2
Rσγuγ − ðΣeκ

αμ − 2ð0ÞκαμÞCα
νσγuγ

�

þ eμeνeσeρ
�
2σμνΣee

σρ − ð0ÞκμνΣ̇eκ
σρ þ ðσμν þ ð0ÞκμνÞð0ÞκασΣeκ

ρα − ðΣeκ
μν − 2ð0ÞκμνÞ

�
1

2
Rσρ þEσρ

�
−Σeκ

μν
ð0Þκασð0Þκαρ

�

þ eμeνeσeρeκ
�
ð0ÞκμνDσΣeκ

ρκ

�
þ eμeνeσeρeκeγ

�
−σμνð0ÞκσρΣeκ

κγ þΣeκ
μν

ð0Þκσρð0Þκκγ
�
: ð19Þ

The expressions for ð0ÞΠ and ð1ÞΠ can be found by using (14) and the series expansion (9). For the purpose of deriving
1
E
ð0ÞdΠ

dλ , we have written Π in its multipole decomposition (14) before computing its derivative,

dΠ
dλ

¼ dΣo

dλ
þ eμeν

dΣee
μν

dλ
þ eμκν

dΣeκ
μν

dλ
þ 2

deμ

dλ
eνΣee

μν þ
deμ

dλ
κνΣeκ

μν − 2
dκμ

dλ
κμ þ eμ

dκν

dλ
Σeκ
μν: ð20Þ

For each of the terms in (20) we compute their multipole expansions with evaluation at O,

1

E
dΣo

dλ
¼ Σ̇o − eμDμΣo;

1

E
eμeν

dΣee
μν

dλ
¼ eμeνΣ̇ee

μν − eμeνeσDσΣee
μν;

1

E
deμ

dλ
eνΣee

μν ¼ −eμeνð0ÞκαμΣee
αν þ eμeνeσeρσμνΣee

σρ;

1

E
deμ

dλ
ð0ÞκνΣeκ

μν ¼ −eμeνð0Þκαμð0ÞκβνΣeκ
αβ þ eμeνeσeρðσμν þ ð0ÞκμνÞð0ÞκασΣeκ

ρα − eμeνeσeρeκeγσμνð0ÞκσρΣeκ
κγ ;

1

E

ð0Þ�dκμ
dλ

�
ð0Þκμ ¼ −eμð0Þκαμ

1

2
Rα

γuγ þ eμeνð0Þκαμ

�
1

2
Rα

ν þ Eα
ν

�

þ eμeνeσ
�

ð0Þκμν
1

2
Rσγuγ − ð0ÞκαμCα

νσγuγ
�
− eμeνeσeρð0Þκμν

�
1

2
Rσρ þ Eσρ

�
;

1

E
eμ

ð0Þ�dκν
dλ

�
Σeκ
μν ¼ −eμΣeκ

αμ
1

2
Rα

γuγ þ eμeνΣeκ
αμ

�
1

2
Rα

ν þ Eα
ν

�
þ eμeνeσ

�
Σeκ
μν
1

2
Rσγuγ − Σeκ

αμCα
νσγuγ

�

− eμeνeσeρΣeκ
μν

�
1

2
Rσρ þ Eσρ þ ð0Þκασð0Þκαρ

�
þ eμeνeσeρeκeγΣeκ

μν
ð0Þκσρð0Þκκγ; ð21Þ

where all terms involving κ and its gradient are evaluated at zeroth order inΔλ. In deriving the coefficients, we have used (9)
and the result in (D3) for aμ ¼ 0, which yields

dκμ

dλ

����
O
¼

ð0Þ�dκμ
dλ

�����
O
þOðΔλÞ; ð22Þ
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with

ð0Þ�dκμ
dλ

�
¼ kμeαeβpσνð0Þκσαð0Þκνβ

þ Epμ
ν

�
−
1

2
Rν

γuγ þ eα
�
1

2
Rν

α þ Eν
α

�

− eαeβCν
αβγuγ

�
; ð23Þ

together with the identity

deμ

dλ
¼ Eðeμ − uμÞH − Eeν

�
1

3
θhμν þ σμν þ ωμ

ν

�
: ð24Þ

We can finally add the contributions in (21) to arrive at the
result for 1

E
ð0ÞðdΠdλÞ in (19).

The expression for the redshift drift at second order given
above may appear complicated. However, we should keep
in mind that we are considering a completely general space-
time geometry. In light of this, it is remarkable that a
cosmographic expression does exist that one can in
principle constrain without a priori assumptions on the
geometry, given a data set of sufficient quality. At leading
order in distance from the source, the redshift drift reduces
to the rather compact expression

ξjO ¼ ð1Þξ̂jOzþOðz2Þ ¼
ð0ÞΠjO
HO

zþOðz2Þ; ð25Þ

with

ð0ÞΠ ¼ −
1

3
Rαβuαuβ þ

1

5
σαβσ

αβ þ 1

3
ωαβω

αβ

þ eαeβ
�
−Eαβ −

1

2
hμhαhνβiRμν þ

3

7
σhαγσβiγ

− 2σhαγωβiγ þ ωhαγωβiγ

�
− eαeβeγeσσhασσβγi: ð26Þ

The expression in (18), with the multipole decomposi-
tions (6) and (19) inserted, gives the final cosmographic
expression for the redshift drift to second order. Note that it
begins with a linear term, with no constant offset terms
present. In the FLRW limit, the redshift drift cosmography
reduces to the result in Eq. (1.3) of [37]. Both of the

variables −
ð0ÞΠjO
H2

O
and Q reduce to the FLRW deceleration

parameter in the FLRW limit, which can be seen by
noticing that H ¼ H in this limit, where H is the
Hubble parameter and Π ¼ Σo ¼ −äa. The combination
ð0ÞΠjO
H2

O
þ ð0ÞðdΠdλÞO=ðEOH3

OÞ entering the second-order con-

tribution to the redshift drift signal reduces to the FLRW
jerk parameter j≡ ⃛aa2=ȧ3, which can be checked by
evaluating this combination while noting that only the
monopoles Σo and Σ̇o can be nonzero.

VI. OBSERVATIONS

The cosmographic expressions for position drift (9) and
(10) and redshift drift (18) and (19) [alternatively, the
simplified expression (25) and (26) for leading-order red-
shift drift cosmography] can be used to fit data sets of the
drift effects with complimentary data of redshift (alter-
natively, angular diameter distance or luminosity distance)
and angular position of the sources.
For redshift drift, this can in practice be done by replacing

the FLRW cosmography with the general cosmography (18)
and (19) and otherwise carrying out the likelihood function
construction as usual. The only difference from the FLRW
case in terms of implementation is that the data on the angular
position of the individual sources eμ need to be incorporated.
This is a consequence of abandoning the isotropy ansatz of
the FLRW geometry, which naturally leads to higher-order
multipoles than the monopole coming into play. However,
wenote that the order of themultipoles to be constrained only
go as high as sixth order in eμ [cf. (19)], thus giving a finite
number of degrees of freedom that can in principle be
constrained without further reduction by assumptions, given
a sufficient quality of data and sky coverage.
The principle is the same for position drift, where the

multipoles entering the cosmography run to third order in
eμ, cf. (10). However, there is a slight complication in that
the position drift signal is a vector quantity that is
effectively two-dimensional due to the screen space pro-
jection with pσ

μ, cf. (10). Thus, a vector field with three
spatial components is projected to a field orthogonal to the
radial direction, with two independent components at each
point of the celestial sphere. Since the projection involves
loss of information, it is not obvious which combination of
terms in the coefficients in (12) can be recovered from the
data. A possible way of establishing the degrees of freedom
that can be recovered from whole-sky position drift
measurements is to make use of the vector spherical
harmonic decomposition of κμ; see, for example, [38,39]
for the mathematical details and [14] for application to the
position drift signal.4 In this context, it can be shown that
the shear σμν can in fact be recovered completely from the
poloidal quadrupole, while the vorticity ωμν is contained in
the toroidal dipole; see Appendix E.
As in all cosmological analyses, there is the difficulty in

separating physics coming from small and intermediate
scales from the large-scale cosmological imprints in the
signal. This is true in the cosmographic analysis as well,
where the scale of the data set under consideration and the
truncation of the Taylor series expansion of the observable
(position drift and redshift drift in our case) implicitly

4Vector fields transverse to the radial directions can be
decomposed into poloidal and toroidal vector spherical harmon-
ics. This decomposition is equivalent to expressing the total drift
vector as a sum of a gradient term (poloidal) and a curl term
(toroidal), both given by scalar functions on the celestial sphere.
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imposes a choice of smoothing scale. When the objective is
to infer cosmological information from data sets probing
scales well above scales of the largest gravitationally
bound structures, it becomes crucial to account for sys-
tematic imprints from peculiar motion within bound struc-
tures, including the Newtonian 3-acceleration, of the
observer [14,36]. This can be done in a separation-of-
scales approach. To leading order, the peculiar imprints on
the signal will add to the above-derived results for a large-
scale congruence in exactly the same way as described for
the FLRW scenario [14,36]. This means that there will be a
peculiar poloidal dipole signal in the position drift (the
aberration drift signal due to the Galactic and extragalactic
accelerations, measured in [40–42]) and an associated
peculiar dipole in the redshift drift, both pointing in the
same direction. Due to their dipolar signatures, these effects
will not mix with the cosmological signal from σμν and ωμν,
contained in different multipole moments. We leave a full
treatment of peculiar small-scale effects to future work.
We should keep in mind that for the position drift signal,

one must account for rotational degrees of freedom relating
to the Sun’s motion within our Galaxy and our Galaxy’s
motion within the Local Group in order to make reliable
inferences of ωμν at larger scales. This amounts to deter-
mining an appropriate irrotational coordinate frame along
the observer’s geodesic, valid on larger scales.
A nonrotating frame for the purpose of astronomy can be

operationally defined with the help of distant quasars,
whose positions are treated as fixed [9]. However, this does
not necessarily correspond to the desired reference frame
for analyzing the measured position drift. Recall that the
drift in (8) is defined with respect to the Fermi-Walker-
transported frame, defined at the scale of the observer
congruence. While this type of frame is easy to consider
theoretically for a given fixed observer congruence, it is
fairly difficult to give it an operational definition in the real
Universe. This is in part because the scale that one
considers “cosmological,” i.e., the border between “local”
astrophysics and “global” cosmology is not a priori defined
and must be specified for the problem at hand. For most
cosmological data analyses, the scale of interest is above
that of the largest bound structures, and one therefore needs
to correct for any motion/geometrical effects below such
scales. One might attempt to model the mechanics of the
Solar System within the Galaxy, the motion of the Galaxy
within the Local Group, etc. However, this adds an addi-
tional layer of complication to the problem. In practice, the
coarse-graining scale for the cosmological congruence that
is probed in a given cosmographic analysis is set by the
survey geometry and the order of truncation of the series
expansion of the observable. As a general rule, the deeper
the survey is in terms of radial coverage, and the lower
order of truncation of the Taylor series for the observable,
the larger is the effective coarse-graining scale for the
cosmological congruence that can be inferred.

A simple way out of the problem of determining the
irrotational reference frame would be to postulate ωμν to be
negligible on the cosmological distances probed. This is
usually assumed, since the vector mode in ΛCDM cosmol-
ogy decreases quickly with scale. However, assumptions of
this kind always come with a price; namely, we must
sacrifice some of the generality of the cosmographic
approach. In particular, this assumption is obviously
incompatible with metric models such as the Gödel uni-
verse. Still, the resulting space of irrotational congruence
descriptions would be much larger than those of the FLRW
class of models.

VII. ERRATA TO PREVIOUS PAPERS

Here we list a number of errors/typos that appeared in
previous papers by A. H. on cosmography. Equation (2.7)
in [32] has a wrong sign for the term − 1

2
Rhμνi ≔

− 1
2
hαhμhvνiRαβ, where “−” should be replaced by “þ.”

This error propagates to Eq. (B.2) of the same paper, where
þ 1

2
Rhμνi should be replaced by − 1

2
Rhμνi. The same error is

present in [29], where − 1
2
hαhμhβνiRαβ should be replaced

by þ 1
2
hαhμhβνiRαβ in the equation for Σee

μν in Eqs. (10)
and (17).
There is an additional sign error in Eq. (4.3) of [32],

where the term þaνωμν should be replaced by −aνωμν in

the formula for q
1

μ.
The sign errors do not have consequences for the results

of the application studies carried out so far in, for
instance, [43–48], where anisotropic stress and vorticity
were assumed to be zero/subdominant in the numerical
simulations and observational schemes employed in the
respective works.

VIII. DISCUSSION OF THE RESULTS

The main results of our paper are the cosmographic
expressions for position drift and redshift drift. The cosmo-
graphic Taylor series expansions of redshift drift and
position drift, constituting the main result of this paper,
have been calculated by hand independently by both
authors and verified by a Mathematica-based computer
code with the computer tensor algebra packages xTensor and
xPerm, part of the xAct package [49–51].
The results for position drift are given in (9), together

with the multipole decompositions of ð0Þκσ and ð1Þκσ ,
obtained by combining (10) and (12), which provides
the expression for position drift in any geometry with
the assumptions discussed in Sec. II. The result for redshift
drift is given by (18), together with the multipole decom-
positions of H, ð0ÞΠ, ð1ÞΠ, and ð0ÞdΠ

dλ given in (6) and (19),
which provides the general geometrical expression of
redshift drift to second order in the redshift (or,
alternatively, the affine distance). If we consider only the
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leading-order term in redshift, the results greatly simplify
and can be written more compactly, as in (25) and (26).
These results, although complicated looking with all of

their terms, are remarkable: they show that it is possible to
predict the position and redshift drift signals in a given
direction on the observer’s sky for a nearby object in terms
of a finite number of physically interpretable geometric
variables. Assuming that certain combinations of kinematic
variables of the observer congruence and curvature varia-
bles of the space-time are known, the drift signal and
position drift for a sufficiently nearby source in a given
direction can be predicted. Conversely, it is possible to
extract information of these combined space-time variables
given a sufficient amount of measurements of redshift drift
and position drift over the observer’s sky. This in turn
allows us to obtain important information about the
Universe model independently.
In this paper, we focused on the applications to cosmol-

ogy of our results. While there is nothing that a priori
prevents applying the cosmographic expressions of the drift
effects at small scales, as long as one uses the versions of
the cosmographic expressions that are written in terms of
the affine distance Δλ as the expansion variable,5 caution
must be taken when applying cosmographic expressions
to systems with a spiked matter distribution. This is
because the Taylor series as truncated at low orders is
expected to perform relatively poorly at approximating
such systems. Thus, the final assumption listed in Sec. II on
the convergence and goodness of approximation of the
Taylor series requires special caution on small scales, and
we believe that the results of this paper will have their main
applicability on cosmological scales larger than galaxy
clusters.
One of the important implications of this paper is that it

will be possible to constrain more kinematic and curvature
degrees of freedom than what is possible with cosmo-
graphic analysis of distance-redshift data alone. We present
details of the possibilities for deriving combined constraints
using conventional distance-redshift data and the novel
cosmic drift measurements in Sec. IX. Before that, we
recall the cosmography results for the generalized Hubble
law. The second-order cosmography for luminosity dis-
tance dL reads6 [30,32]

dLðz; eÞ ¼
1

HoðeÞ
zþ 1 −QoðeÞ

2HoðeÞ
ðeÞz2 þOðz3Þ; ð27Þ

where the effective deceleration parameter can be written
in terms of the multipole decomposition

QðeÞ ¼ −1 −
1

H2ðeÞ
�
q
0 þ eμq

1

μ þ eμeνq
2

μν

þ eμeνeρq
3

μνρ þ eμeνeρeκq
4

μνρκ

�
; ð28Þ

with coefficients

q
0 ≡ 1

3

dθ
dτ

þ 1

3
Dμaμ −

2

3
aμaμ −

2

5
σμνσ

μν;

q
1

μ ≡ −
1

3
Dμθ −

2

5
Dνσ

ν
μ −

daμ
dτ

þ aνωμν þ
9

5
aνσμν;

q
2

μν ≡ dσμν
dτ

þDhμaνi þ ahμaνi − 2σαðμωα
νÞ −

6

7
σαhμσανi;

q
3

μνρ ≡ −Dhμσνρi − 3ahμσνρi;

q
4

μνρκ ≡ 2σhμνσρκi: ð29Þ

Together with the multipole decomposition ofH in (6), this
provides the full multipole decomposition of the general-
ized Hubble law at second order.

IX. METHODS OF DIRECT MEASUREMENTS
OF KINEMATICAL QUANTITIES

AND CURVATURE

Assumewe managed to perform the measurements of the
multipoles of the leading-order generalized Hubble law,
i.e., dLðz; eiÞ [Eq. (27)], the position drift (9), and the
redshift drift (18). The monopole and quadrupole parts of
the Hubble law give θ and σμν, respectively; see Eq. (27)
and the definition of H in (6). Additionally, the dipole
component of H gives the large-scale, 4-acceleration aμ, if
we allow for acceleration of this kind.
From (9)–(12), we see that the measurement of the

leading-order position drift pσ
μ
ð0Þκμαeα gives σμν as well as

ωμν. The measurement of the latter, as we mentioned in
Sec. VI, is possible provided that we have a nonrotating
reference frame at our disposal.
On top of that, as we mentioned in Sec. VI, the three

components of the large-scale nongravitational acceleration
aμ are contained in the dipole, although we dropped this
term in our results for the coefficients (12).
Since the shear σμν can be obtained from both the

position drift and the generalized Hubble law, it is in
principle possible to perform a consistency check of the
results, since data sets probing the same scales of an
underlying cosmological congruence should yield the same
results. In practice, it requires some care to compare
kinematic quantities extracted with cosmographic methods
from different surveys. This is because the survey geometry
and the order of the cosmographic expressions (i.e., the
order of truncation of the series expansion applied) will

5Redshift as an expansion variable generally leads to divergent
Taylor series on scales below the largest bound astrophysical
structures. This is because redshift is not a monotonic function
along the light ray when virialized or collapsing structures are
encountered by the ray.

6See Ref. [32] for the expression for the third-order term in the
cosmography and [52] for the angular diameter distance and its
inverse series with redshift as parametrized in terms of distance.

EXPLORING THE RICH GEOMETRICAL INFORMATION IN … PHYS. REV. D 110, 043525 (2024)

043525-9



implicitly impose a coarse-graining scale on the derived
kinematic quantities. For instance, it is obvious that the
effective Hubble law as truncated at linear order and
applied to data points with redshifts of≳0.1 will effectively
coarse grain over shear and differential expansion at scales
corresponding to redshifts≪0.1, i.e., the θ and σμν inferred
would have the interpretation of being variables in a
congruence description applying at scales with z ∼ 0.1.
Such results would therefore not be quantitatively compa-
rable with other cosmography results for surveys probing
scales of z ≪ 0.1 or z ≫ 0.1.
With the above caveats in mind, let us assume that we

have performed complementary measurements of position
drift, redshift drift, and the distance-redshift relation on
scales that are comparable, and that we have applied the
leading-order cosmographic expressions to these measure-
ments. This means that, in particular, we have measured the
direction-dependent Hubble parameter HO at the probed
scale. We can subsequently consider what kind of new
information can be obtained from the measurement of
redshift drift at leading order, given by ð1Þξ̂jO from (25)
and (26).
The monopole part of the product ð1Þξ̂jOHO contains a

combination of the vorticity ωμν, shear σμν, and Ricci tensor
component Rαβuαuβ. Therefore, assuming that we have
already measured or constrainedωαβ and σαβ, we can obtain
the first curvature component Rαβuαuβ from the monopole

part of the product ð1Þξ̂jOHO. In a similar way, the
quadrupole of the product yields the combination curvature
components Eαβ þ 1

2
Rμνhμhαhνβi. Finally, the highest

spherical harmonic l ¼ 4 yields the product of two shears.
This provides another opportunity for a consistency test of
the shear measurement.

X. CONCLUSION

We examined cosmographic frameworks relevant for
deriving kinematic and curvature variables directly from
cosmological data, without making assumptions about the
metric of the Universe beforehand. These frameworks have
the potential to be applied to real data in much the same
way as FLRW cosmography, but with additional variables
to be constrained. The prospects of doing so with distance-
redshift data has already been demonstrated with numerical
simulations [52] and a few first applications to data from
type Ia supernovae [45,48].
In this paper, we focused on measurements of cosmo-

logical position drifts and redshift drifts by, for instance, the
Gaia observatory and the upcoming ELT and SKA facili-
ties. The cosmological constraints derivable from such
measurements will complement constraints coming from
the distance-redshift data. In particular, applying the
cosmographic formalism of this paper will allow to con-
strain new kinematic and curvature variables. In a strict
FLRW universe, the only multipoles that remain are the

monopole components of the observational signals. In
perturbed scenarios, the higher-order multipoles can how-
ever be important, particularly when the distances to the
observed sources are modest. The expected anisotropy in
the redshift drift signal over the redshift range probed by
SKA may be substantial [21]. The results in this paper
allow for a consistent observational treatment of such
anisotropies, while at the same time allowing to remain
rather agnostic about the space-time geometry (in ΛCDM
cosmology we may think of this as remaining agnostic
towards the types and amplitudes of the perturbations). As
we have detailed in Sec. VI, the general cosmographic
expressions derived in this paper can be applied to data
much in the same way that the special case of the FLRW
cosmography is currently applied, by simply substituting
the geometrical prediction of the FLRW cosmography (for
instance, for redshift drift) with the generalized cosmog-
raphy provided in this paper.
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APPENDIX A: GENERAL RESULTS IN RIEMANN
NORMAL COORDINATES

In Riemann normal coordinates adapted to the point O,
we have the following results:

gαβ ¼ ηαβ −
1

3
RαμβνjOxμxν þOðx3Þ; ðA1Þ

with xμO ≡ 0 and where ηαβ is the Minkowski metric. The
Christoffel symbols read

Γα
βγ ¼ −

1

2
ðRα

βγμ þ Rα
γβμÞjOxμ þOðx2Þ: ðA2Þ

For any geodesic as generated by kμ with affine parameter λ
and passing through the point O, we have

xμ ¼ kμjOΔλþOðΔλ3Þ; ðA3Þ

where Δλ≡ λ − λO, with λ defined through the transport
rule kμ∇μλ ¼ 1. For any vector field Vμ expanded around
the point O, we have

ASTA HEINESEN and MIKOŁAJ KORZYŃSKI PHYS. REV. D 110, 043525 (2024)

043525-10



Vμ ¼ VμjO þ∇αVμjOxα þ
1

2
ð∇α∇βVμ þ Rμ

αβνVνÞjOxαxβ

¼ VμjO þ kα∇αVμjOΔλ

þ 1

2
kαkβð∇α∇βVμ þ Rμ

αβνVνÞjOΔλ2

þOðΔλ3Þ; ðA4Þ

where the last equality follows from (A3).

APPENDIX B: TRANSFORMATION FROM
AFFINE DISTANCE TO REDSHIFT

When the energy function is monotonic along the null
rays, i.e., H ≠ 0 on the null ray from the emitter to the
observer, we can change the expansion variable from the
affine distance λ to redshift z by using

Δλ ¼ ∂

∂z

����
k
λjOzþ

1

2

∂
2

∂z2

����
k
λjOz2 þOðz3Þ; ðB1Þ

where jk after the differential operator denotes differentia-
tion along the null geodesic with tangent vector kμ. The
coefficients yield [32]

∂

∂z

����
k
λjO ¼−

1

EOHO
;

∂
2

∂z2

����
k
λjO ¼ 1

EOHO
ð3þQOÞ; Q≡−1−

1

E

dH
dλ

H2
: ðB2Þ

Furthermore, it follows from the Sachs optical equations for
the angular diameter distance dA that

Δλ ¼ −
1

EO
dA þOðd3AÞ; ðB3Þ

which makes the substitution of the affine distance for the
angular diameter distance trivial up to second order.

APPENDIX C: SERIES EXPANSION
OF POSITION DRIFT

The method of obtaining the position drift is based on the
geodesic deviation equation for null geodesics and was
described in [11,35]. The gist of the method is to derive the
deviation vector Xμ along a null geodesic connecting the
observer and the source, corresponding to the null geodesic
connecting them at a slightly later moment. Here we
employ this method to derive the first-order Taylor series
expansion of position drift as a function of the affine
distance to the source.
Let us consider a one-parameter null congruence con-

necting the observer worldline γo and the worldline of an
emitter γe, with the intersection with the emitter’s worldline
γe lying in the past of the intersection with the observer’s

worldline. Let kμ be the 4-momentum of the photon
congruence with a central null ray γk connecting the points
O on γo and E on γe, respectively. Let uμ be a twice-
differentiable vector field such that uμjγo is the observer
4-velocity, uμjγe is the emitter 4-velocity, and uμjγk is any
smooth extension of these 4-velocities along the central
null ray; see Fig. 3. We define the position drift of the
emitter as viewed by the observer as

κμjO ≡ pμ
νuα∇αeνjO ¼ pμ

νaνjO −
1

E
pμ

νuα∇αkνjO

¼ pμ
νaνjO −

1

E
pμ

νkα∇αXνjO; ðC1Þ

where eμjγo is pointing towards the spatial direction of the
incoming photon as viewed by the observer and is defined
through the decomposition kμ ¼ Eðuμ − eμÞ as evaluated
on the observer worldline. Recall that the projector pμ

ν ¼
uμuν − eμeν þ δμν as defined on the observer worldline
gives the projection of tensors onto the angular plane
transverse to the incoming photon. The deviation vector Xμ

is defined from a vanishing Lie derivative along kμ, such
that kμ∇μXν ¼ Xμ∇μkν. Furthermore, we require

XμjO ¼ uμjO; XμjE ¼ EOuμjE=EE ; ðC2Þ

such that Xμ is tangent to the emitter and observer world-
lines, thus producing the congruence between them of
interest. Note that the prefactor EO=EE ¼ 1

1þz in front of
uμjE is necessary to ensure consistency with the require-
ment that kμ is a parallel-transported null vector; see
Refs. [11,35]. For an emitter that is close to the observer,

FIG. 3. Congruence of null geodesic connecting the worldlines
γo and γe. The central null ray connects E andO and its tangent is
kμ. The deviation vector Xμ, corresponding to a geodesic
infinitesimally close to the central one, coincides with uμ at O
and is proportional to uμ at E. aμ denotes the acceleration vector
of both the emitter and the observer.
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we have

XμjE ¼ XμjO þ kα∇αXμjOΔλþ Rμ
αβνkαkβXνjOΔλ2

þOðΔλ3Þ; ðC3Þ

where we have used (A4) and the geodesic deviation
equation

kαkβ∇α∇βXμ ¼ Rμ
αβνkαkβXν: ðC4Þ

Thus, we have

kα∇αXμjO ¼ XμjE − XμjO
Δλ

− Rμ
αβνkαkβXνjOΔλ

þOðΔλ2Þ; ðC5Þ

which we might project onto the screen space while using
the boundary conditions (C2) to give

pσ
μkα∇αXμjO ¼ pσ

μjO
EOuμjE
EEΔλ

− pσ
μRμ

αβνkαkβuνjOΔλ

þOðΔλ2Þ: ðC6Þ

Using (A4), we write

uμ=EjE ¼ uμ=EjO þ 1

E
kα∇αuμjOΔλþ uμkα∇αð1=EÞjOΔλ

þ
�

1

2E
kαkβð∇α∇βuμ þ Rμ

αβνuνÞ þ kα∇αðuμÞkβ∇βð1=EÞ þ
1

2
uμkαkβ∇α∇βð1=EÞ

�����
O
Δλ2 þOðΔλ3Þ; ðC7Þ

which can be inserted into (C6) to read

pσ
μkα∇αXμjO ¼ pσ

μkα∇αuμjO þ
�
Epσ

μkα∇αðuμÞkβ∇βð1=EÞ þ
1

2
pσ

μkαkβð∇α∇βuμ − Rμ
αβνuνÞ

�����
O
ΔλþOðΔλ2Þ: ðC8Þ

We note that all terms but the first in (C8) consistently vanish when uμ is itself a deviation vector. We now use (C8) and the
identity

kβ∇β
1

E

����
O
¼ 1

E2
kαkβ∇αuβjO ¼ eαeβ∇αuβjO − eβaβjO ðC9Þ

in (8) to obtain

κσjO ¼ eρpσ
μ∇ρuμjO þ Δr

�
1

2
pσ

μuαuβ∇α∇βuμ þ eαð−pσ
μaμaα − pσ

μuβ∇α∇βuμ þ pσ
μRμ

βανuβuνÞ

þ eαeβ
�
pσ

μaμ∇αuβ þ aβpσ
μ∇αuμ þ

1

2
pσ

μ∇α∇βuμ −
1

2
pσ

μRμ
βανuν

�
þ eαeβeγð−pσ

μ∇γðuμÞ∇αuβÞ
�
O

þOðΔr2Þ; ðC10Þ

with Δr≡ −EOΔλ.

APPENDIX D: SERIES EXPANSION OF THE DERIVATIVE OF POSITION DRIFT

Consider now the derivative of the position drift: kα∇ακ
μjO. This quantity appears in higher-order cosmography of the

redshift drift signal and is therefore convenient to express in terms of a multipole series expansion in eμ. We have

kα∇ακ
μjO ¼ κμjE − κμjO

Δλ
þOðΔλÞ

¼
− 1

EO
ðpμ

νkα∇αXνjE − pμ
νkα∇αXνjOÞ

Δλ
þ pμ

νaνjE − pμ
νaνjO

Δλ
þOðΔλÞ

¼
− 1

EO
½pμ

νjOðkα∇αXνjE − kα∇αXνjOÞ þ kα∇αXνjOΔpμ
ν�

Δλ
þ pμ

νjOðaνjE − aνjOÞ þ aνOΔp
μ
ν

Δλ
þOðΔλÞ; ðD1Þ
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with

Δpμ
ν

Δλ
≡

�
−kμkνkα∇α

�
1

E2

�
þ kμkα∇α

�
uν
E

�
þ kνkα∇α

�
uμ

E

��
O
: ðD2Þ

Using (D2) and the geodesic deviation equation (C4), we have

kα∇ακ
μjO ¼ −

1

EO

�
pμ

νRν
αβγkαkβXγ þ kμpσ

νkα∇α

�
uσ
E

�
kα∇αXν

�
O

þ pμ
νkα∇αaνjO þ kμaνkα∇α

�
uν
E

�����
O
þ aνkνkα∇α

�
uμ

E

�����
O
− kμaνkνkα∇α

�
1

E2

�����
O
þOðΔλÞ

¼ −
1

EO

�
pμ

νRν
αβγkαkβuγ þ

1

E
kμpσ

νkα∇αðuσÞkα∇αuν
�
O

þ pμ
νkα∇αaνjO þ 1

E
kμaνkα∇αuνjO þ aνkνkα∇α

�
uμ

E

�����
O
− kμaνkνkα∇α

�
1

E2

�����
O
þOðΔλÞ: ðD3Þ

APPENDIX E: PROOF THAT σμν, ωμν AND THE
OBSERVER’S NEWTONIAN ACCELERATION
CAN BE OBTAINED FROM THE MULTIPOLE

DECOMPOSITION OF κμ

For the purpose of this appendix, we consider the
celestial sphere as a unit sphere embedded in R3, with
the components of vectors inR3 denoted by lowercase latin
letters i; j; k;…∈ f1; 2; 3g. Recall that the three spatial
components of the vector ei, expressed in terms of the
angular coordinates θ and φ, read

e1 ¼ sin θ cosφ;

e2 ¼ sin θ sinφ;

e3 ¼ cos θ: ðE1Þ

Functions fðθ;φÞ defined on the celestial sphere r ¼ 1 can
be identified with functions on the embedding space
R3nf0g if we simply interpret them in spherical coordi-
nates ðr; θ;φÞ. In this case, fðθ;φÞ can be interpreted as a
function constant on lines passing through the origin,
given by θ ¼ const, φ ¼ const. We note that the three-
dimensional gradient f;iðθ;φÞ of such a function, evaluated
at a point of the celestial sphere (r ¼ 1), is a vector tangent
to this sphere and corresponds to the two-dimensional
gradient of that function on the celestial sphere.
One can verify the following formula for the derivatives

of the three functions ej:

∂jei ¼ δij − eiej ≡ pi
j: ðE2Þ

Any vector field tangent to a 2-sphere can be uniquely
expanded in terms of the poloidal and toroidal spherical

harmonics. The former corresponds to the gradient of a
function on the sphere and the latter to the rotation of the
gradient of a function, i.e.,

κi ¼ F;i þ ϵijkG;jek; ðE3Þ

with F and G denoting the functions, ϵijk being the
antisymmetric tensor, and ϵijkek representing the area
2-form on a sphere. If we have the multipole decomposi-
tions of F and it G, we can explore this identity to get the
multipole decomposition of κi.
We now show that the acceleration term v̇μ corresponds

to the dipole of F, σμν to the quadrupole of F, and ωμν to the
dipole of G. Assume that we have

F ¼ Fiei þ
1

2
Fhijieiej;

G ¼ Giei: ðE4Þ

We calculate their gradients with the help of (E2),

Fk ¼ Fipik þ Fhijiejpik;

G;k ¼ Gipi
k; ðE5Þ

and it follows that

κk ¼ Fipik þ Fhijiejpik þ ϵklmGbpb
lem: ðE6Þ

Note that ϵklmpb
lem ¼ ϵkbmem ¼ pk

cϵ
cb

mem because
ϵkbmem is orthogonal to ei in both k and b indices. We
can therefore rewrite (E6) as

κk ¼ Fipik þ Fhijiejpik þ pk
cϵ

cl
mGlem: ðE7Þ
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Comparing this expressionwith (9)–(12), we see that we can
identify Fhiji ¼ σij and ϵclmGl ¼ ωc

m. Note that the second
relation is perfectly invertible, i.e.,Gl ¼ − 1

2
ϵijlω

ij. Since all
components ofFhiji andGi can be recovered from the vector
field κiðejÞ, it follows that all components of both σij andωij

can be recovered from the all-sky measurements of κi.

Moreover, the local Newtonian 3-acceleration v̇j, not
taken into account in this paper, enters the position drift κk

via the aberration drift term v̇jpkj [14]. This allows us to
identify the acceleration with the poloidal dipole: Fi ¼ v̇i.
Again, it follows that all of its components can be recovered
from κi independently of the shear and vorticity.
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