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Upcoming surveys will measure the cosmic microwave background (CMB) weak lensing power
spectrum in exquisite detail, allowing for strong constraints on the sum of neutrino masses among other
cosmological parameters. Standard CMB lensing power spectrum estimators aim to extract the connected
non-Gaussian trispectrum of CMB temperature maps. However, they are generically dominated by a large
disconnected, or Gaussian, noise bias, which thus needs to be subtracted at high accuracy. This is currently
done with realistic map simulations of the CMB and noise, whose finite accuracy currently limits our ability
to recover CMB lensing on small scales. In this paper, we propose a novel estimator which instead avoids
this large Gaussian bias. This estimator relies only on the data and avoids the need for bias subtraction with
simulations. Thus, our bias avoidance method is (1) insensitive to misestimates in simulated CMB and
noise models and (2) avoids the large computational cost of standard simulation-based methods like
“realization-dependent Nð0Þ” (RDNð0Þ). We show that our estimator is as robust as standard methods in the
presence of realistic inhomogeneous noise (e.g., from scan strategy) and masking. Moreover, our method
can be combined with split-based methods, making it completely insensitive to mode coupling from
inhomogeneous atmospheric and detector noise. We derive the corresponding expressions for our estimator
when estimating lensing from CMB temperature and polarization. Although we specifically consider CMB
weak lensing power spectrum estimation in this paper, we illuminate the relation between our new
estimator, RDNð0Þ subtraction, and general optimal trispectrum estimation. Through this discussion, we
conclude that our estimator is applicable to analogous problems in other fields that rely on estimating
connected trispectra/four-point functions like large-scale structure.

DOI: 10.1103/PhysRevD.110.043523

I. INTRODUCTION

Cosmic microwave background (CMB) photons are
gravitationally lensed by large-scale structure as they
propagate through the Universe. This lensing distorts our
images of CMB anisotropies and imprints onto the CMB
four-point correlation function1 a distinct non-Gaussian
component [1]. Measurements of this non-Gaussian com-
ponent, the CMB weak lensing power spectrum hκκi,
provide us with a wealth of information on the growth
of structures in our Universe. Thus, a measurement of hκκi
can provide us with some of the strongest constraints on the
properties of neutrinos [2], primordial non-Gaussianity [3],
dark matter [4], and dark energy [5]. The first detection
of CMB lensing was reported with data from the Wilkinson

Microwave Anisotropy Probe in Ref. [6] and CMB lensing
power spectrum in Refs. [5,7]. Since then, many additional
detections of CMB lensing spectra have been reported
[8–17].
In order to robustly and accurately estimate hκκi, we

must navigate the problem of extracting a non-Gaussian
signal, the connected trispectrum, from the four-point
function, which is generically dominated by a Gaussian
bias Nð0Þ that is typically several orders of magnitude larger
than the non-Gaussian signal. In typical analyses, this Nð0Þ
is estimated from realistic map simulations of the CMB and
noise and then subtracted off. However, since Nð0Þ is orders
of magnitude larger than our signal CMB lensing power
spectrum, even a 0.1% misestimate of Nð0Þ can lead to a
10% bias in our estimate of the lensing power spectrum on
small scales. The level of accuracy needed for robust
estimates of hκκi on small scales is difficult to achieve
with traditional methods since any mismodeling of the

*Contact author: delon@stanford.edu
1In what follows, we use n-point correlation function and

n-point function interchangeably.
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maps that are input to traditional methods propagates to
errors in estimates of Nð0Þ. Two particular concerns are
(1) that the complex and inhomogeneous noise structure
arising from ground-based CMB experiments is difficult to
simulate accurately and (2) uncertainties on the cosmo-
logical parameters, both of which can bias our estimates
of hκκi.
In this paper, we propose an estimator of the CMB weak

lensing power spectrum that avoids the large Nð0Þ Gaussian
bias. This is achieved by examining exactly which terms
contribute to the Nð0Þ bias and constructing a scheme that
estimates hκκi while avoiding these terms. It turns out that
this leads to a negligible reduction in signal-to-noise ratio.
In addition, this method relies only on data, completely
avoiding the need for simulations to avoid Nð0Þ making it
(1) insensitive to inaccuracies in the modeling of the CMB
and noise and (2) significantly more computationally
efficient compared to standard realization-dependent
Nð0Þ (RDNð0Þ) methods. We also demonstrate that this
estimator is as robust as standard methods in the presence
of realistic inhomogeneous noise, such as the noise pattern
that may arise from scan strategy, and masking. In addition,
we describe how our estimator may be combined with split-
based methods proposed in Ref. [18] which make it
insensitive to spurious mode couplings from inhomo-
geneous atmospheric and detector noise. This new estima-
tor was hinted at in Ref. [19] but not implemented or
studied there. Instead they focused on an alternative
estimator. Crucially, this estimator can be implemented
efficiently (at least in the flat-sky limit) with the use
of fast Fourier transforms (FFTs), often required in a real
analysis.
The rest of this paper is organized as follows. In Sec. II,

we briefly review how standard CMB lensing and lensing
spectrum estimation is done. In Sec. III, we outline our
proposed estimator for the lensing power spectrum which
avoids Nð0Þ bias. Following this, we compare our method
with the standard RDNð0Þ subtraction method in Sec. IV. In
Sec. V, we comment on the effect of Nð0Þ on the covariance
of CMB lensing spectra, as well as how our method and the
standard RDNð0Þ prescription for handling Nð0Þ removes
covariances introduced by Nð0Þ. We explore an illuminating
toy model for optimal trispectrum estimating first presented
in Ref. [20] in Sec. VI, which allows us to see how our
estimator, the standard RDNð0Þ estimator, and optimal
trispectrum estimation are related and builds intuition for
the various features of each method. In Sec. VII, we study
the robustness of our proposed estimator in the presence of
realistic anisotropic noise which leads to additional com-
plications in CMB weak lensing power spectrum estima-
tion. This motivates a discussion of how one might
combine our method with a split-based method in
Sec. VIII. In Sec. IX, we study the robustness of our
proposed estimator in the presence of masking, which also

leads to additional complications in CMB weak lensing
power spectrum estimation. Throughout this paper, we
focus mostly on estimating CMB lensing using only
temperature anisotropies, but in Sec. X we spell out the
general form of our proposed estimator when estimating
CMB lensing using both temperature and polarization
anisotropies. Finally, we conclude in Sec. XI.

II. STANDARD CMB LENSING POWER
SPECTRUM ESTIMATION

The effect of lensing on the CMB temperature maps at
the position x can be expressed as

TðxÞ¼T0ðxþdðxÞÞ¼T0ðxÞþd ·∇T0ðxÞþOðd2Þ: ð1Þ

One can then do a Helmholtz decomposition of the
displacement field d ¼ ∇ψ , where we have neglected
the field rotation component since it is negligible for
current sensitivities [21]. From this we can also define
the convergence κ ≡ −∇2ψ=2. Throughout this paper, we
will refer to lensing potential ψ and convergence κ
interchangeably but will primarily work with the lensing
convergence κ. With this we can rewrite Eq. (1) in Fourier
space,

Tl ¼ T0
l −

Z
d2l0

ð2πÞ2 l
0 · ðl − l0Þ 2κl−l0

ðl − l0Þ2 T
0
l0 þOðκ2Þ

≡ Tð0Þ
l þ Tð1Þ

l þOðκ2Þ: ð2Þ

From statistical homogeneity and isotropy one can show
that for the unlensed CMB

hT0
l1
T0
l2
i ¼ ð2πÞ2δðDÞðl1 þ l2ÞCTT

l1
: ð3Þ

At fixed realization of the lensing convergence κL, lensing
introduces nontrivial off-diagonal correlations

hTl1
Tl2

i ¼ ð2πÞ2δðl1 þ l2ÞCTT
l1

þ κl1þl2
fκl1;l2

þOðκ2Þ; ð4Þ

where we defined fκl1;l2
in the second line with the relation

fκl1;l2
κl1þl2

≡ hTð0Þ
l1
Tð1Þ
l2
i þ hTð1Þ

l1
Tð0Þ
l2
i

⇒ fκl1;l2
¼ 2ðl1 þ l2Þ

ðl1 þ l2Þ2
· ½l1CTT

l1
þ l2CTT

l2
�: ð5Þ

This means that CMB lensing breaks statistical
homogeneity and isotropy. It is particularly useful to
consider

hTlTL−li ¼ fκl;L−lκL þOðκ2Þ: ð6Þ
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From this we can intuit a quadratic estimator for the lensing
potential

ð7Þ

The normalization for this estimator is derived from
asserting the estimator is unbiased, hκ̂Li ¼ κL, which leads to

ðNκ
LÞ−1 ¼

Z
d2l
ð2πÞ2 F

κ
l;L−lf

κ
l;L−l: ð8Þ

Let C̃TT
l be the “total observed” temperature power spectrum,

i.e., the power spectra of the “lensed” temperature fieldwhich
includes instrument noise and foregrounds. Expanding
Eq. (7) to linear order in κ allows one to derive the
minimum-variance weights at this order,

Fκ
l;L−l ¼ fκl;L−l

2C̃TT
l C̃TT

jL−lj
: ð9Þ

Intuitively, it makes sense that we need two powers of the
temperature field to build an estimator. This is because we
assume the CMB is isotropic and homogeneous when
emitted; therefore, independent modes of T0

l are sta-
tistically independent. However, as we saw in Eq. (4),
weak lensing of CMB introduces correlations between
previously independent modes. Thus, it should be possible
to extract the lensing potential that causes this lensing by
considering pairs of modes Tl; TL−l and seeing what kind
of correlations we have measured.
Using this estimator for the lensing potential κL we can

now study the power spectrum of the lensing potential by
first considering the two-point function of our estimator for
the lensing potential

hκ̂Lκ̂�Li ¼ ðNκ
LÞ2

Z
d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

× hTl1
TL−l1

T−l2
T−Lþl2

i: ð10Þ

This estimate for the lensing power spectrum has several
significant noise biases which can helpfully be denoted by
NðiÞ biases.

A. NðiÞ noise biases

There are several noise biases hindering our estimate of
the true κ power spectrum:

(i) Nð0Þ: large disconnected Gaussian noise bias. This
bias is expected even for a Gaussian unlensed CMB
map or Gaussian noise and foregrounds.

(ii) Nð1Þ: bias arising from an integral over one power of
the lensing power spectrum ∬ hκ2i.

In general, we have
(iii) NðiÞ: bias arising from an integral over the ith power

of the lensing power spectrum.
We spell out biases of these type in more detail within
Appendix B. Moreover, taking into account the non-
Gaussianity of the lensing field, there exists a nonzero
bispectrum that allows contraction that leads to other noise
biases:
(iv) Nði=2Þ: bias arising from intrinsic non-Gaussianity in

the lensing potential, involving the ith power of the
lensing field [22–25].

The standard way to estimate the Gaussian bias Nð0Þ is to
compute what is called a realization-dependent Nð0Þ,
RDNð0Þ, Monte Carlo (MC) correction as described in
Refs. [26,27]. This estimator is constructed to be robust to
misestimates of the underlying total power spectrum in
comparison with a naive method where one subtracts
Ntheory ≡ Nκ from Eq. (8). We expand on RDNð0Þ in
Sec. IV and the Ntheory subtraction in Appendix D.
We can also estimate the first relevant higher order Nð1Þ

noise bias in two ways: analytic computation of the Nð1Þ
bias as described in Refs. [28–31], which we review in
Appendix B, or numerical computation from simulations as
described in Ref. [16], which we will discuss in
Appendix H. In our numerical studies, we utilize both of
these methods to estimate Nð1Þ, as we will discuss in
Appendix H as well.
Higher order biases such as the Nð2Þ bias can still lead to

significant misestimates of the lensing power spectrum at
low L [29]. However, in Ref. [32], it is shown that one can
do a nonperturbative treatment of the lensing potential
power spectrum and derive that replacing CTT

l with CT∇T
l in

Eq. (5) significantly reduces the Nð2Þ bias,

fκl;L−l ¼ 2L
L2

·
h
lCT∇T

l þ ðL − lÞCT∇T
jL−lj

i
: ð11Þ

We make use of these CT∇T
L weights in this paper for our

numerical studies.

III. EXACT NOISE BIAS AVOIDANCE

Our proposed method to avoid the Gaussian Nð0Þ
noise bias, outlined in Fig. 1, boils down to isolating
and subsequently discarding the set of fl1;l2g in
Eq. (10) which contains the entire Nð0Þ Gaussian noise
bias. Formally, this is a measure zero set and, in practice,
means ignoring Nmodes out of the N2

modes terms
hTl1

TL−l1
Tl2

T−L−l2
i used to estimate the lensing power

spectrum.
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This Nð0Þ noise bias avoidance improves over traditional
methods (1) by circumventing the need for extensive MC
simulations to subtract Nð0Þ and (2) leads to a negligible
fractional reduction in the SNR (of order∼1=Nmodes ∼ 10−6).
Also by nature of (1) our estimator is insensitive to inexact
assumptions about the power spectrumCTT

l , which is a source
of misestimation for traditional MC-based corrections.
To implement this avoidance of the configurations that

source the Nð0Þ bias, we simply keep the usual CMB
lensing power spectrum estimator (which contains all the
configurations) and subtract from it the problematic con-
figurations from the data. As illustrated schematically in
Eq. (7), the CMB lensing quadratic estimator can be
thought of as the sum of ∼Nmodes elementary quadratic
estimators. The noise bias only arises from the auto spectra
of these elementary estimators. By keeping only the
NmodesðNmodes − 1Þ=2 cross spectra, we avoid the noise
bias, while discarding only a fraction ∼1=Nmodes ∼ 10−6 of
the signal-to-noise ratio. Our method thus amounts to
estimating the CMB lensing auto spectrum only from cross
spectra. We denote these problematic configurations N̂L,
defined as2

N̂L ¼ 2ðNκ
LÞ2

Z
d2l
ð2πÞ2 F

κ
l;L−lF

κ
−l;−LþljTlj2jTL−lj2: ð12Þ

Note that due to the structure of the integral, this can be
efficiently implemented with the use of FFTs as shown in

our code LensQuEst. We can thus form a new estimator for
the CMB lensing auto spectrum,

Ĉκκ;ðno biasÞ
L ≡ κ̂Lκ̂

�
L − N̂L: ð13Þ

Crucially, just like the standard lensing quadratic estimator,
this quantity can be computed efficiently with FFT on the
flat sky (respectively, spherical harmonics transforms on
the curved sky). As a result, it does not increase the
complexity or the computation time of the analysis. This
new estimator subtracts the Gaussian noise bias exactly on
average. Indeed, in the absence of lensing signal when

hκ̂Lκ̂�LiGRF ¼ Nð0Þ
L only,3

hκ̂Lκ̂�LiGRF − hN̂LiGRF ¼ 0: ð14Þ

In Fig. 2, we show how our exact noise bias avoidance
works on a lensed CMB temperature map with no masking
and isotropic noise in comparison with the standard
method. In Secs. VII and IX we comment on the robustness
of our estimator in the presence of realistic anisotropic
noise and masking. In this plot we use a hybrid method to
estimate the Nð1Þ term, which we describe in Appendix H.4

We see from this plot that in this case our method is able to

FIG. 1. A visualization of our proposed N̂ subtraction method. One can schematically think of the estimator for the CMB lensing
power spectrum (10) as a sum over quadrilaterals where each side of the quadrilateral corresponds to a mode of the temperature map. All
quadrilaterals contain information about the lensing power spectrum, but only the parallelograms contain information about the
disconnected Gaussian bias. We show this explicitly in Eq. (B28). So if we neglect parallelograms in computing hκ̂ κ̂iwe can remove the
large disconnected Gaussian bias. We expand on this more in Sec. III.

2In Eq. (12) we are suppressing a factor of ½ð2πÞ2δðDÞð0Þ�−1
that turns into a finite area correction when computing this in the
discrete case. Namely, δðDÞð0Þ becomes the area of the map in the
discrete case. See discussion around Eq. (A4).

3In Eqs. (13) and (14), there is actually an additional l ¼ L=2
contraction not included. However, we show in Appendix D
that this additional contraction is smaller, again by a
factor ∼1=Nmodes ∼ 10−6.

4We also show in Appendix B 1 that our proposed N̂
subtraction does not affect Nð1Þ biases, thus allowing us to use
standard methods of computing Nð1Þ.
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estimate theNð0Þ bias to better than 0.1%, doing just as well
as standard methods.

IV. COMPARISON WITH THE STANDARD
REALIZATION-DEPENDENT Nð0Þ SUBTRACTION

Currently, the standard way to estimate the Gaussian bias
is called realization-dependentNð0Þ [26,27]. It makes use of
the actual measured data d, along with two sets of
simulations fsg; fs0g which are Gaussian random fields
with power spectra that are equal to the total lensed CMB
power spectrum C̃TT

l ,

RDNð0Þ
L ≡ < CLðκ̂ds; κ̂dsÞ þ CLðκ̂ds; κ̂sdÞ

þ CLðκ̂sd; κ̂dsÞ þ CLðκ̂sd; κ̂sdÞ
− ðCLðκ̂ss0 ; κ̂ss0 Þ þ CLðκ̂ss0 ; κ̂s0sÞÞ >s;s0 : ð15Þ

This estimator for the disconnected noise bias arises
naturally from an Edgeworth expansion of the CMB
likelihood, which we show explicitly in Appendix G. It
has two advantages over simply evaluating Ntheory [Eq. (8)]
numerically. First, while both methods require modeling
the power spectrum of the observed data d, RDNð0Þ is
parametrically less sensitive to inaccuracies in the power
spectrum model. Second, as we show below in Fig. 4, it
optimally suppresses the covariance of the lensing band
powers.
Our method differs from the usual RDNð0Þ subtraction in

CMB lensing in several important ways. First, it does not
require running the lensing estimator on Gaussian

FIG. 2. When estimating the lensing power spectrum hκκi
(black) as a function of angular multipole for a Simons
Observatory- (SO) like survey, the Nð0Þ Gaussian bias (gray
solid) dominates on small scales. As a result, as the bottom
residual plot shows, even a 0.1% misestimate of Nð0Þ at high L
leads to a 10% bias in hκκi. When the input CMB and
noise power spectra are perfectly known, standard methods like
theory subtraction (hκ̂ κ̂i − Ntheory − Nð1Þ) and RDNð0Þ subtrac-
tion (hκ̂ κ̂i − RDNð0Þ − Nð1Þ) perform equally well as our new
bias avoidance method (hκ̂ κ̂i − N̂ − Nð1Þ). This new method
continues to work when the input models are inaccurate, as
we will see in Secs. VII and IX, and is computationally faster, by
not relying on a set of simulations. In fact, since we computed the
RDNð0Þ correction using common pool of simulations, thus
introducing nontrivial correlations, it is difficult, though not
impossible through semianalytic methods [33,34], to estimate a
meaningful error bar on it. So for the RDNð0Þ subtracted spectra,
we do not include error bars. We expand on how we simulate our
maps in Appendix C.

FIG. 3. There is nontrivial covariance structure between differ-
ent angular multipoles of hκ̂ κ̂i ∼ CMB lensing spectrumþ
Nð0Þ þ � � � as shown in the upper left where we plot the
covariance structure of hκ̂ κ̂i. The dominant contribution to this
covariance is from the Nð0Þ bias. This is shown in the lower right
where we plot the covariance structure of hκ̂ κ̂i run on Gaussian
random fields (GRFs) with the same power spectrum as an
actually lensed map. Since in the bottom right plot we are only
using GRFs, there is only the Gaussian Nð0Þ contribution and no
non-Gaussian lensing signal or higher order NðiÞ within hκ̂ κ̂iGRF.
Because the dominant covariance structure in the upper left also
shows up in the bottom right, we see that the dominant
contribution to the covariance in the CMB lensing spectrum is
from Nð0Þ. We spell out the origin of this covariance structure in
Appendix E. Since the dominant contribution to covariances in
the CMB lensing spectrum are due to Nð0Þ, it should be expected
that any prescription to handle the Nð0Þ bias should also handle
the covariance introduced by the Nð0Þ bias. We shall see in Fig. 4
that both our proposed method and the standard RDNð0Þ do this.
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simulations with the same power spectrum as the data.
Thus, our estimator is insensitive to errors in the modeling
of the total map power spectrum, which is a required input
for those Gaussian simulations. Second, by not requiring to
run our estimator on many simulations we are also able to
significantly reduce the computational run time and
memory cost of estimating the Nð0Þ bias.
However, our method shares several limitations with the

usual RDNð0Þ subtraction. Non-Gaussian foregrounds con-
tribute a non-Gaussian bias to the lensing power spectrum
estimator. This contribution is not subtracted automatically
in our method, similar to the otherNð0Þ subtraction methods
mentioned. Similarly, another bias to the lensing power
spectrum can occur from inhomogeneous atmospheric
noise, detector noise from a nonuniform scan strategy, or
due to mode coupling from the survey mask. We study
these in more detail in Secs. VII and IX.

V. EFFECT ON THE CMB WEAK LENSING
POWER SPECTRUM COVARIANCE

In this section we argue that the bulk of the covariance in
the CMB weak lensing power spectrum is due to the given
Nð0Þ realization. Correspondingly, we should expect the
bulk of the covariance to be removed if we remove the Nð0Þ
noise bias. This is desirable for our measured CMB weak
lensing power spectra: making the covariance matrix more
diagonal simplifies the problem of its estimation.

Indeed, Fig. 3 shows that the correlation structure of Cκ̂ κ̂
L

is almost identical in two cases: (1) κ̂ run on lensed
temperature maps (upper left) and (2) κ̂ run on an unlensed
temperature map (Gaussian random fields) with the same
power spectrum. In (1), the resulting Cκ̂ κ̂

L includes Nð0Þ, the
true lensing power spectrum, and higher order NðiÞ biases.
In (2), Cκ̂ κ̂

L includes only Nð0Þ. Since the dominant
correlation structure in (1) also appears in (2) where there
is only Nð0Þ, we see that the bulk of the covariance in the
CMB weak lensing power spectrum is due to Nð0Þ. We
analytically explain the origin of these off-diagonal cova-
riances in Nð0Þ in Appendix E.
Subtracting the expected Nð0Þ, computed from the

power spectrum of the input maps, would not change
the correlation structure in Fig. 3. Indeed, this Ntheory

subtraction only removes the mean Nð0Þ, not its exact
realization. On the other hand, both our N̂ estimator and the
RDNð0Þ subtraction successfully suppress the off-diagonal
covariances (Fig. 4). While both methods are as effective in
this respect, the N̂ subtraction is dramatically cheaper
computationally, requiring no simulations.

VI. TOY MODEL OF OPTIMAL TRISPECTRUM
ESTIMATION

Reference [20] presents an illuminating toy model for
optimal trispectrum estimation, which we connect to our
method of Nð0Þ subtraction, the standard realization-de-
pendent Nð0Þ subtraction, and the naive Ntheory subtraction
methods discussed in this paper. Consider a weakly non-
Gaussian random variable X with zero mean, known
variance σ2, and a small kurtosis K we wish to estimate,

hX2i ¼ σ2; ð16Þ
hX4i ¼ 3σ4 þK: ð17Þ

Let x1;…; xN be independent realization of this random
variable X,

hxixji ¼ δijσ
2; ð18Þ

hxixjxkxli¼σ4ðδijδklþδikδjlþδilδjkÞþKδijδjkδkl: ð19Þ

In this toy model, xi is analogous to a specific Fourier mode
of the CMB temperature anisotropy field Tl and knowing
σ2 is analogous to knowing the total power spectrum of the
temperature field.
From Eqs. (17) and (19) one might write down the naive

estimator for K,

K̂naive ¼
1

N

�XN
i¼1

x4i

�
− 3σ4: ð20Þ

However, if we are searching for a minimum-variance
estimator, this is suboptimal. Indeed, one can compute that

FIG. 4. The nontrivial covariance between different angular
multipoles of hκ̂ κ̂i ∼ CMB lensing spectrumþ Nð0Þ þ � � �
shown in Fig. 3, which we argue is mostly due to Nð0Þ, is
removed by both the standard RDNð0Þ subtraction (upper left) and
our proposed method of Nð0Þ bias avoidance (lower right). Note
that doing the naive Ntheory subtraction would not remove the
covariance since Ntheory is a constant that cannot affect the
covariance.
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VarðK̂naiveÞ ¼
96σ8

N
: ð21Þ

Furthermore, it suffers from a strong parametric dependence
on our estimate of σ2. Suppose we estimate σ2 with some
error,

σ2est ¼ σ2true − Δσ2: ð22Þ

Then the estimate of K̂naive is biased as

hK̂naivei ¼ K − 6σ2ðΔσ2Þ þOðΔσ2Þ2: ð23Þ

Thismakes the naive estimator fragile tomisestimates ofσ2 in
comparison to other methods we will discuss shortly.
This naive method is analogous to the naive Nð0Þ

subtraction method we described earlier in this paper of
subtracting off Ntheory. So we can glean that the naive
Ntheory subtraction suffers the same problems as this naive
kurtosis estimator. It is not the optimal minimum-variance
estimator of Cκκ

L and is vulnerable to misestimates of the
total CMB temperature power spectrum (“σ2”).
K̂opt, the minimum-variance unbiased estimator of this

kurtosis given that σ2 is known, can be shown to be
(Ref. [20] and Appendix F)

K̂opt ¼
1

N

XN
i¼1

x4i −
6σ2

N

XN
i¼1

x2i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðAÞ

þ 3σ4|{z}
ðBÞ

: ð24Þ

Another computation will lead to the variance of this
estimator,

VarðK̂optÞ ¼
24σ8

N
: ð25Þ

Comparing this to Eq. (21) we see that the naive estimator is
significantly suboptimal. We can also perform a similar
robustness analysis as inEq. (22) to find that ifwemisestimate
σ2 then

hK̂opti ¼ Kþ 3ðΔσ2Þ2 þ…: ð26Þ

In comparison to Eq. (23) we see that the optimal estimator is
also much more robust to misestimates of σ2 by one power in
the error. This is extremely attractive for problemswhere σ2 is
difficult to estimate.
The optimal kurtosis estimator K̂opt is exactly analogous

to the standard realization-dependent Nð0Þ subtraction
method. We show this rigorously in Appendixes F
and G by demonstrating that the derivation of RDNð0Þ is
the multivariate generalization of K̂opt. But this can also be
seen schematically. Indeed, terms (A) and (B) in Eq. (24) can

be related to the corresponding terms in RDNð0Þ
L , Eq. (15),

ð27Þ

Namely:
(i) The (A) terms of the form CLðκ̂dsκ̂dsÞ are the same

as being a product of the sample variance
P

i x
2
i =N

from the dd contractions and the assumed “true”
input variance σ2 from the ss contractions.

(ii) The (B) terms of the form CLðκ̂ss0 ; κ̂ss0 Þ only contain
information about the assumed “true” variance σ2

from the ss and s0s0 contractions.
We put “true” in quotation marks since, in reality, the
underlying power spectra is not known, making the optimal
kurtosis (and thus trispectrum) estimator sensitive to howwell
we understand the underlying power spectrum as discussed in
Eq. (26). Thus, from this toy model and correspondence
between K̂opt and RDNð0Þ we can gleam the fact that RDNð0Þ

is more robust to misestimates of “σ2” compared to the naive
method ofNtheory as it was designed to be and can be thought
of as a generalization of the optimal minimum-variance
kurtosis estimator given that σ2 is known perfectly.
In addition to the optimal estimator, Ref. [20] presents an

alternative near-optimal kurtosis estimator K̂alt of the form

K̂alt ¼
1

N

X
i

x4i −
3

NðN − 1Þ
X
i≠j

x2i x
2
j

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðCÞ

: ð28Þ

As before, you can compute the variance of this estimator,

VarðK̂altÞ ¼
24σ8

N

�
1þ 3

N − 1

�
ð29Þ

¼ VarðK̂optÞ þO

�
1

N

�
2

: ð30Þ

From the last line where we compare to the variance of the
optimal minimum-variance estimator (25), we see that this
estimator is nearly optimal. But a key difference is that this
alternative estimator has no dependence on an assumed σ2.
This means that, unlike the optimal estimator K̂opt, this

alternative estimator K̂alt is completely insensitive to
misestimates in σ2.
We can show that this alternative kurtosis estimator K̂alt

is analogous to our proposed method of subtracting theNð0Þ
bias. Indeed, the (C) term in Eq. (28) can be identified with
the terms in our N̂ subtraction scheme in Eq. (12),
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N̂L ¼ 2ðNκ
LÞ2

Z
l
Fκ
l;L−lF

κ
−l;−LþljTlj2jTL−lj2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ðCÞ

: ð31Þ

We can understand the term
P

i≠j x
2
i x

2
j as all the contractions

where we get information only about the disconnected
Gaussian bias from the ðiiÞðjjÞ contraction, but never about
the connected non-Gaussian kurtosis since xi and xj are
independent for i ≠ j. This is analogous to

R
l jTlj2jTL−lj2

since these terms are the terms where we get all our
contribution to the disconnected Gaussian bias.5 Thus, from
this toy model and correspondence between K̂alt and N̂ we
can intuit the fact that N̂ is completely insensitive to
misestimates of “σ2,” as we established earlier, but is still a
nearly optimal estimator for the connected trispectrum
(“kurtosis”).

VII. INHOMOGENEOUS NOISE/DEPTH

The complex scan strategy of CMB experiments pro-
duces maps with inhomogeneous noise levels. These are
difficult to model, resulting in inaccurate simulations,
which can bias the standard Nð0Þ subtraction techniques.
While the RDNð0Þ is somewhat robust to this inaccurate
modeling, a very small bias of only ∼0.1% on Nð0Þ can
result in a large bias of ∼10% on the small-scale lensing
power spectrum (Fig. 2).
The N̂ estimator is insensitive to any mismodeling of the

observed power spectrum, since it does not rely on
simulations. However, our estimator implicitly assumes
statistical isotropy which only approximately holds once
noise inhomogeneities arise. This can be put in contrast to
the standard RDNð0Þ method which is sensitive to mis-
modeling but does not assume statistical isotropy and
instead utilizes the full two-point function when estimating
Nð0Þ. So it is important to understand the trade-off between
(1) approximating maps with noise inhomogeneities as
statistically isotropic and (2) the sensitivity of RDNð0Þ to
mismodeling of noise inhomogeneities. This trade-off
will determine the relative performance between our
method and the standard RDNð0Þ in the presence of
inhomogeneous instrument noise. In this section we study

the robustness of our method to (1) typical or (2) extreme
anisotropic detector noise. For this, we use the actual depth
maps from ACT data release 5 (DR5; see Fig. 5). We
perform a simulated analysis of the performance of our
method and RDNð0Þ. Specifically, we generate anisotropic
Gaussian noise realizations by multiplying white
noise maps with the typical or extreme inhomogeneous
depth maps shown in Fig. 5. We then add an independent
lensed CMB realization to each of these and a Gaussian
random field representing the level of foregrounds
at 150 GHz (neglecting their non-Gaussianity) resulting
in 500 simulated maps. Figure 6 shows that our noise
bias avoidance method (hκ̂ κ̂i − N̂ − Nð1Þ) is at least as
robust to typical noise inhomogeneities as the RDNð0Þ

(hκ̂ κ̂i − RDNð0Þ − Nð1Þ) and Ntheory (hκ̂ κ̂i − Ntheory − Nð1Þ)
subtractions.6 While the RDNð0Þ appears to fail at a lower
multipole L, this might be improved with more simulations.
However, this comes at an increased computational cost
which was prohibitive for us. This highlights the benefit of
the much lower computing cost of N̂.

FIG. 5. To test our proposed N̂ subtraction method in the
presence realistic anisotropic detector noise, we take two cutouts
of the ACT DR5 IVar map: (1) a typical anisotropic noise
scenario expected for SO and (2) an extreme anisotropic noise
scenario. Both of these anisotropic noise maps are applied
multiplicatively to a GRF with the expected noise power
spectrum for SO such that NanisotropicðxÞ ≥ NisotropicðxÞ. See
Appendix C for more details. Note that in the typical noise
scenario plot, we have enhanced the colors in order to emphasize
that inhomogenous instrument noise can arise due to scan
pattern.

5You might notice a slight subtlety to this correspondence
between our N̂ and this toy model. The jTlj2jTL−lj2 terms in our
N̂ also contain information about the connected non-Gaussian
contribution since hTlT�

lTL−lT�
L−lic ≠ 0 due to mode couplings

from lensing, whereas hxixixjxjic ¼ 0 by assumption of the xi
being independent identically distributed (IID) in this toy model.
However, the analogy still holds. This is because computing
hκ̂ κ̂i − N̂ removes onlyNmodes of the total N2

modes contributions to
the connected non-Gaussian contribution when we subtract N̂.
So, to roughly first order in Oð1=NmodesÞ, we can draw the
connection between our N̂ method and this K̂alt despite the IID
assumption in the toy model that is not present in the general case.

6Note that in a real analysis one may use optimal anisotropic
Wiener filtering [35] as opposed to the naive quadratic estimator
with isotropic weights as we do here. However, we do not believe
the use of optimal anisotropic Wiener filtering would change the
qualitative picture shown in this section.
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In this typical noise inhomogeneity scenario, RDNð0Þ and
N̂ both continue to suppress the off-diagonal covariances on
the lensing power spectrum (Fig. 7). Indeed, the residual
correlation structure is very similar to Fig. 4.
In the extreme noise inhomogeneity scenario, Fig. 8 shows

that RDNð0Þ works best if accurate noise simulations can be
obtained. However, we shall see in the next section that our N̂
estimator canbe combinedwith a split-basedmethod [18] that
is insensitive to the noise properties and does not rely on
detailed understanding of the noise model.While this level of
anisotropy was present in some parts of the ACT data, due to
the coaddition of maps from multiple seasons with different

footprints, we do not expect this level of inhomogeneity in
current and upcoming wide-field CMB surveys.

VIII. COMPARISON WITH THE MAP
SPLIT-BASED Nð0Þ SUBTRACTION

As we saw in Fig. 8, once detector and atmospheric noise
inhomogeneities become large, our method fails to remove
the Nð0Þ bias. However, one can combine our proposed
method with split-based methods, proposed in Ref. [18], to
handle these extreme noise anisotropies. Reference [18]
proposed an estimator for the CMB lensing power spectrum
with no detector noise bias Ĉκκ;×

L . This estimator makes use

of m splits of the CMB map TðiÞ
l with independent instru-

ment noise. One can then cross-correlate these splits to
make an estimator for the lensing potential that is insensi-
tive to modeling of detector noise,

κ̂ðijÞL ≡ 1

2
Nκ

L

Z
d2l
ð2πÞ2 F

κ
l;L−l

�
TðiÞ
l TðjÞ

L−l þ TðjÞ
l TðiÞ

L−l
�
; ð32Þ

Ĉκκ;×
L ≡ 1

mðm − 1Þðm − 2Þðm − 3Þ
X
ijkl

γijklCLðκ̂ðijÞL ; ðκ̂ðklÞL ÞÞ:

ð33Þ

For the case of temperature, since Fκ
l;L−l is symmetric, this

symmetrization in Eq. (32) is trivial, but we use this
notation since in general, e.g., when estimating κ from

FIG. 7. In the presence of typical anisotropic detector noise, the
nontrivial covariance structure between different angular multi-
poles of hκ̂ κ̂i ∼ CMB lensing spectrumþ Nð0Þ þ � � � shown in
Fig. 3 may be modified. However, this does not spoil the removal
of the dominant contributor to these covariances by the standard
RDNð0Þ (upper left) subtraction and our proposed method of Nð0Þ
bias avoidance (lower right).

FIG. 6. When CMB temperature anisotropy maps exhibit a
typical level of anisotropic noise such as what is displayed in Fig. 5,
there are additional mode couplings that one must address when
estimating the lensing power spectrum hκκi (black) as a function of
angular multipole L. The standard method RDN0 subtraction
(hκ̂ κ̂i − RDNð0Þ − Nð1Þ) and our new bias avoidance method
(hκ̂ κ̂i − N̂ − Nð1Þ) both perform equally well in the presence of
typical anisotropic noise levels, whereas the naive Ntheory subtrac-
tion (hκ̂ κ̂i − Ntheory − Nð1Þ) fails at small scales. Dashed lines
correspond to the same colored curve when that curve becomes
negative. For similar reasons described in Fig. 2 we do not include
error bars for the RDNð0Þ subtraction. The biased estimate for hκκi
from RDNð0Þ subtraction at small scales may be chalked up to both
convergence of the MC correction as well as small errors in the
assumed total temperature power spectrum including anisotropic
noise needed for MC simulations. Even minor mismodeling can be
magnified to percent level biases due to the fact thatNð0Þ is orders of
magnitude larger than the lensing signal hκκi at small scales.
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temperature-polarization cross-spectra, F is not symmetric.
Following Ref. [18], we have defined γijkl as

γijkl ¼
�
1 if ði; j; k; lÞ all distinct
0 otherwise

: ð34Þ

By ignoring contributions to the four-point function that
repeat a split, this method avoids the noise bias from

atmospheric and detector noise, even if they are spatially
inhomogeneous (e.g., due to the scan strategy). This is
otherwise a limiting factor for current analyses, even when
temperature maps are dominated by the lensed CMB and
foregrounds on the relevant scales. This makes the split-
based method very attractive.
It is also possible to define a version of our N̂ subtraction

method for this split-based lensing power spectrum. We can
define

N̂ij;kl
L ¼ 2ðNκ

LÞ2
Z

d2l
ð2πÞ2 F

κ
l;L−lF

κ
−l;−Lþl

×
��TðiÞ

l TðjÞ
−l

����TðkÞ
L−lT

ðlÞ
−Lþl

��: ð35Þ

Our estimate for the Nð0Þ bias can be written as

N̂×
L ¼ 1

mðm − 1Þðm − 2Þðm − 3Þ ×
X
ijkl

γijklN̂
ij;kl
L : ð36Þ

Thus, we can remove our estimated Nð0Þ bias

Ĉκκ;ðno biasÞ;×
L ¼ Ĉκκ;×

L − N̂×
L : ð37Þ

Naively this is an Oðm4Þ computation. However, analo-
gous to the fast algorithm proposed by Ref. [18], we can
construct a fastOðm2Þ algorithm to compute this N̂×

L which
is described in Appendix I.

IX. IMPACT OF THE MASK

The presence of a mask leads to additional complications
in the analysis of the CMB lensing power spectrum by
inducing additional difficult-to-model mode couplings and
a mean field that must be removed.

A. Biases from the mask mode coupling

To illustrate these additional mode couplings, consider a
temperature field with a masking function applied to it,

TmðxÞ ¼ MðxÞTðxÞ: ð38Þ

Thus, in Fourier space we have a convolution

Tm
l ¼

Z
d2l0

ð2πÞ2 Tl0Ml−l0 ; ð39Þ

where we have introduced the Fourier transform of the
mask. Now consider the mask

MðxÞ ¼ 1 −mðxÞ ð40Þ

⇒ Ml ¼ δðDÞðlÞ −ml: ð41Þ

This tells us that

FIG. 8. When CMB temperature anisotropy maps exhibit an
extreme level of anisotropic noise such as what is displayed in
Fig. 5, there are additional strong mode couplings which make it
difficult to estimate the lensing power spectrum hκκi (black) as a
function of angular multipole L. At this level of extreme noise
anisotropy, the naive Ntheory subtraction (hκ̂ κ̂i − Ntheory − Nð1Þ)
and our new bias avoidance method (hκ̂ κ̂i − N̂ − Nð1Þ) fail, while
the standard RDNð0Þ subtraction (hκ̂ κ̂i − RDNð0Þ − Nð1Þ), contin-
ues to work. Dashed lines correspond to the same colored curve
when that curve becomes negative. For similar reasons described
in Fig. 2 we do not include error bars for the RDNð0Þ subtraction. It
should be noted that this level of noise anisotropy is exactly what
split-based methods described in Sec. VIII and Ref. [18] are
designed to handle. We also showed in that section how one might
combine split-based methods with our proposed noise bias
avoidance method. Thus, if one encounters such extreme aniso-
tropic noise in analysis, we prescribe using split-based methods in
combination with our proposed noise bias avoidance for split-
based lensing power spectrum. In the presence of such extreme
anisotropic noise there will also be a mean field that we estimate
and subtract off. The origin of this mean field is discussed more in
Sec. IX A for the comparable case of masking.
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Tm
l ¼ Tl −

Z
d2l0

ð2πÞ2 Tl0ml−l0 : ð42Þ

To leading order, this modifies the mode couplings from
Eq. (6),

hTm
lT

m
L−li ≈ hTlTL−li −mLðCTT

l þ CTT
jL−ljÞ

≡ hTlTL−li þmLfml;L; ð43Þ

where in the last line we implicitly defined

fml;L ¼ −CTT
l − CTT

jL−lj: ð44Þ

Namely, we get additional mode couplings due to masking.
There are several methods to account for these mode
couplings such as the pseudo-Cl algorithm described in
Refs. [36,37] with modifications such as those done in
Ref. [16] or, alternatively, the mask can be propagated
through the quadratic estimator as shown in Ref. [38]. We
refer the reader to Ref. [16] for details on how the latest
measurement of the CMB lensing power spectrum by ACT
accounts for mode couplings due to masking. Masking also
leads to a mean-field bias in our quadratic estimator for κ,
Eq. (7),

hκ̂mL i ≈ hκ̂Li þ Nκ
L

�Z
d2l
ð2πÞ2 F

κ
l;L−lf

m
l;L

�
mL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mean-field bias

: ð45Þ

Typically this mean field from a fixed mask is estimated
from many simulations with independent CMB and lensing
realizations and subtracted off,

Mean-field subtraction∶κ̂ → κ̂ − hκ̂i: ð46Þ
In this section we make use of this mean-field subtraction.
Since our N̂ [Eq. (12)] is also derived from data, we must
apply a mean-field correction ΔN̂mf to it as well

Mean-field subtraction∶N̂ → N̂=f2sky − ΔN̂mf : ð47Þ

This correction can be computed from the same simulations
used to compute the mean field bias hκ̂i by averaging the
difference between N̂ run on masked and unmasked maps,

ΔN̂mf ¼hN̂ðMaskedT’sÞ=f2sky−N̂ðUnmaskedT’sÞi; ð48Þ

where we discuss the origin of the f2sky factor in Sec. IX B.
In this section we also make use of this mean-field
correction to N̂.
For a lensed CMB temperature map with the mask

shown in Fig. 9, we show how our exact noise bias
avoidance performs in comparison to the standard method
in Fig. 10. We see from this plot that our proposed method

is able to match the performance of the standard RDNð0Þ
method.
In practice, the mask induces additional coupling

between the observed Fourier modes of the temperature
maps. The full treatment of these mode coupling effects is
beyond the scope of this paper (see Ref. [16] for a thorough
treatment of the effect of masking on CMB lensing
reconstruction).
In Fig. 11 we plot the correlation structure if we apply our

N̂ subtraction in comparison to the standard RDNð0Þ sub-
traction in the presence of a mask. This is analogous to
Figs. 4 and 7 where we plotted the same thing for isotropic
and typical anisotropic noise, respectively. We can see that,
in this case, we are still able to remove covariances as before.

B. f sky corrections for masking

In the presence of a mask, the lensing power spectrum
from hκ̂ κ̂iwill be underestimated by approximately fsky and
our N̂ will underestimate the Nð0Þ bias by approximately
f2sky. In this paper, we adopt the simple approximate
correction in the presence ofmasking bymodifyingEq. (13),

Ĉκκ;ðno biasÞ
L ¼ κ̂Lκ̂

�
L

fsky
−

N̂L

f2sky
: ð49Þ

We note that a Monte Carlo normalization or the use of
pseudo-Cl will automatically include this correction which
will not need to be applied separately.We now illustratewhy
this is with the same toy model we considered in Sec. VI.

FIG. 9. In our numerical studies in Sec. IX we use the above
apodized 20° × 20° mask which includes point sources of radius
∼10 arc min to roughly match SPT [39]. Apodization is done
using a Gaussian filter where the standard deviation for the
Gaussian kernel is 3 pixels. The unapodized mask and point
sources were lovingly hand drawn.
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As in Sec. VI, consider N independent measurements of a
random variable X: fx1;…; xNg. This X is again the 1D
analog of the Tl maps. The 1D analog of the lensing power
spectrum and our N̂ estimator may be written as we did
before in Eq. (28),

	
1

N

X
i

x4i



¼ hX4i; ð50Þ

	
3

NðN − 1Þ
X
i≠j

x2i x
2
j



¼ 3hX2i2: ð51Þ

Nowsuppose thatwe apply amask that selects a fractionf of
our measurements xi. Namely, our masked dataset will have
xi ¼ 0 for i > Nf. This f is analogous to fsky.

7 Then
Eq. (50) would be modified as

	
1

N

X
i

x4i



¼ fhX4i: ð52Þ

Similarly, if we approximate NðN − 1Þ ≈ N2 then Eq. (51)
would be modified as

	
3

NðN − 1Þ
X
i≠j

x2i x
2
j



≈ f2 × 3hX2i2: ð53Þ

Thus, to properly normalize our estimator we must
include appropriate factors of f2. For the general case of
hκ̂ κ̂i this of course is only an approximation, but we believe
errors due to this approximation are subdominant to errors
from unaccounted for mask induced mode couplings in
our numerical studies and so made use of Eq. (49) in this
section.

FIG. 11. In the presence of masking, the nontrivial covariance
structure between different angular multipoles of hκ̂ κ̂i ∼
CMB lensing spectrumþ Nð0Þ þ � � � shown in Fig. 3 may be
modified. However, this does not completely spoil the removal of
the dominant contributor to these covariances by the standard
RDNð0Þ (upper left) subtraction and our proposed method of Nð0Þ
bias avoidance (lower right).

FIG. 10. When masks such as the one shown in Fig. 9 are
applied to CMB temperature anisotropy maps, there are addi-
tional mode couplings that one must address when estimating the
lensing power spectrum hκκi (black) as a function of angular
multipole L. We spell out roughly how these appear in Sec. IX.
The standard method RDN0 subtraction (hκ̂ κ̂i − RDNð0Þ − Nð1Þ),
the naive Ntheory subtraction (hκ̂ κ̂i − Ntheory − Nð1Þ), and our new
bias avoidance method (hκ̂ κ̂i − N̂ − Nð1Þ) all perform compa-
rably in the presence of masking. Dashed lines correspond to the
same colored curve when that curve becomes negative. For
similar reasons described in Fig. 2 we do not include error bars
for the RDNð0Þ subtraction. Since handling additional mask
induced mode couplings are beyond the scope of this paper,
we do not apply any corrections to account for these mask
induced mode couplings. Instead the key result here is that our
proposed method has comparable performance to the standard
RDNð0Þ subtraction in the presence of masking.

7A subtlety in this claim is that the number of measurements in
the toy model N is analogous to Nmodes. Since Nmodes ∝ Area, the
analogy between f and fsky holds.
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X. POLARIZATION-BASED LENSING

One can estimate lensing statistics from other CMB
random fields, such as polarization. Indeed, for fX; Yg∈
fT; E; Bg one can write a generalization of Eq. (6),

hXlYL−li ¼ fXYl;L−lκL þOðκ2LÞ: ð54Þ

We refer readers to Refs. [40,41] for the explicit form of
these fXY and subsequent FXY which are generalizations of
Eq. (9). Because of lensing’s imprint on these correlations
one may define a quadratic estimator using any pair of
fT; E; Bg. Thus, one may write an estimator for the lensing
power spectrum using X; Y;W; Z∈ fT; E; Bg which we
will call CXY;WZ

L .
The lensing power spectrum estimated from

X; Y;W; Z∈ fT; E; Bg will also have its own Nð0Þ bias
that our proposed N̂ subtraction can be generalized to
remove. Namely, we can write as a generalization of
Eq. (12),

N̂XY;WZ
L ¼ ðNκ

LÞ2
Z

d2l
ð2πÞ2 F

XY
l;L−lF

WZ
−l;−Lþl

×
�
jXlW−ljjYL−lZ−Lþlj

þ jXlZ−ljjYL−lW−Lþlj
�
: ð55Þ

Correspondingly, Eq. (13) becomes

ĈXY;WZðno biasÞ
L ≡ ĈXY;WZ

L − N̂XY;WZ
L : ð56Þ

We leave the numerical exploration of the performance of
N̂XY;WZ subtraction to future work.

XI. CONCLUSIONS

In this paper, we have presented an estimator of the CMB
lensing power spectrum that avoids the GaussianNð0Þ noise
bias. This is done by isolating which terms contribute to the
Nð0Þ bias when estimating the lensing power spectrum hκκi
and avoiding these terms. We showed that avoiding these
terms is computationally efficient and negligibly reduces
the signal-to-noise ratio. This estimator is run only on data,
thus avoiding the need for bias subtraction using simu-
lations. Since our estimator avoids simulations, we avoid
(1) sensitivity to misestimates in simulated CMB and noise
models and (2) the large computational cost that current
simulation-based methods like RDNð0Þ require.
Our estimator is as robust as the standard RDNð0Þ to

(1) masking of the CMB map and (2) the level of noise
inhomogeneity expected for current and upcoming wide-
field CMB surveys. To handle extreme levels of noise
inhomogeneity, we also show how our estimator may be
combined with split-based methods (Ref. [18]) which make

it insensitive to any assumptions made in modeling or
simulating the instrument noise. In addition, even though
we focused mostly on estimating lensing with CMB
temperature, we show how our estimator can be generalized
to include polarization information as well.
We also discuss the connection between our estimator

RDNð0Þ and optimal trispectrum/four-point function esti-
mation in the context of an illuminating toymodel presented
in Ref. [20]. This toy model allowed us to argue that our
proposed estimator has the same variance as the optimal
minimum-variance unbiased estimator of the connected
trispectrum/four-point function to first order in 1=Nmodes,
but with no parametric dependence on an assumed power
spectrum/two-point function. Thus, we believe our estima-
tor is applicable to analogous problems in other fields where
estimation of connected trispectra/four-point functions are
of interest, such as in large-scale structure.
There are several key directions for further explorations

of our proposed method. First, for the use of our method in
a full-sky analysis of CMB lensing power spectra, a
generalization of this method to curved sky must be worked
out. Additionally, though we presented the theoretical
framework for how our method may be naturally combined
with split-based methods such as those presented in
Ref. [18], numerical studies of combining our proposed
estimator and split-based methods are needed to verify their
compatibility. The use of bias hardening techniques
[26,42], optimal anisotropic Wiener filtering [35], and
global-minimum-variance lensing quadratic estimators
[43] are also often employed to enhance CMB weak
lensing analyses. We do not explore how our proposed
method may be combined with such techniques and leave
this to future work. Finally, there is the interesting work of
considering how our proposed estimator, which, in general,
may be thought of as an estimator for the connected
trispectrum/four-point function, could feed into analysis
of large-scale structure data where higher order statistics
have been an area of recent interest.
The code implementing our proposed estimator and

numerical experiments can be found in Ref. [44].
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APPENDIX A: CONVENTION

Throughout this paper we use the convention

fðxÞ ¼
Z

d2l
ð2πÞ2 e

il·xfl; ðA1Þ

fl ¼
Z

d2xe−il·xfðxÞ; ðA2Þ

⇒ δDðlÞ ¼
Z

d2x
ð2πÞ2 e

il·x: ðA3Þ

Our square CMB maps have finite area A and resolution.
When Fourier transforming these maps, there is a discrete
set of modes we can resolve. These modes are integer
multiples of the smallest fundamental mode kF ¼ 2π=

ffiffiffiffi
A

p
that we can measure. We may rewrite the Dirac δ for these
discrete set of modes. For two modes ki ¼ kFi and
kj ¼ kFj, where i and j are a vector of integers,

δðDÞðki − kjÞ ¼ δðDÞðkFði − jÞÞ ¼ A
ð2πÞ2 δ

ðKÞ
i;j ; ðA4Þ

where δðKÞ is the Kronecker δ.

APPENDIX B: NðiÞ BIASES

In this appendix, we will spell out explicitly the origin of
the NðiÞ biases. These noise biases fall out when using
Eq. (2) to expand the four-point function within the integral
of Eq. (10) and applying Wick’s theorem to the Gaussian
fields that fall out. First let us expand Eq. (1) out to another

order,

TðxÞ ¼ T0ðxþ dðxÞÞ ¼ T0ðxÞ þ ð∂iψðxÞÞð∂iT0ðxÞÞ

þ 1

2
ð∂iψðxÞÞð∂jψðxÞÞð∂i∂jT0ðxÞÞ þOðd3Þ: ðB1Þ

From here we can rewrite Eq. (2) as

Tl ¼ Tð0Þ
l þ Tð1Þ

l þ Tð2Þ
l þOðκ3Þ; ðB2Þ

where we have defined

Tð0Þ
l ≡ T0

l; ðB3Þ

Tð1Þ
l ≡ −

Z
d2l0

ð2πÞ2 l
0 · ðl − l0Þ 2κl−l0

ðl − l0Þ2 T
0
l0 ; ðB4Þ

which is the same as in Eq. (2) and

Tð2Þ
l ≡ −

1

2

Z
d2l1

ð2πÞ2
d2l2

ð2πÞ2 T
0
l1

2κl2

l2
2

2κ�l1þl2−l

ðl1 þ l2 − lÞ2
× ½l1 · l2�½l1 · ðl1 þ l2 − lÞ�: ðB5Þ

Now, instead of keeping κL fixed as we did in Sec. II, let us
promote κL to a Gaussian random field with power
spectrum Cκκ,

κL ∼N ð0; Cκκ
l Þ: ðB6Þ

We will be computing hTTTTi, which at each order has
terms like

hTl1
Tl2

Tl3
Tl4

i ≈ hTð0Þ
l1
Tð0Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oðκ0Þ

þ hTð1Þ
l1
Tð0Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i þ 3 perms|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oðκ1Þ

þ hTð2Þ
l1
Tð0Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i þ 3 perms

þ hTð1Þ
l1
Tð1Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i þ hTð0Þ

l1
Tð0Þ
l2
Tð1Þ
l3
Tð1Þ
l4
i þ hTð1Þ

l1
Tð0Þ
l2
Tð1Þ
l3
Tð0Þ
l4
i þ hTð0Þ

l1
Tð1Þ
l2
Tð0Þ
l3
Tð1Þ
l4
i

þ hTð0Þ
l1
Tð1Þ
l2
Tð1Þ
l3
Tð0Þ
l4
i þ hTð1Þ

l1
Tð0Þ
l2
Tð0Þ
l3
Tð1Þ
l4
i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oðκ2Þ

: ðB7Þ

We could use Wick contractions to compute each of these
terms. For example, for the Oðκ0Þ term,

hTð0Þ
l1
Tð0Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i

¼ ð2πÞ4½δðDÞðl1 þ l2ÞδðDÞðl3 þ l4ÞCTT
l1
CTT
l3

þ δðDÞðl1 þ l3ÞδðDÞðl2 þ l4ÞCTT
l1
CTT
l2

þ δðDÞðl1 þ l4ÞδðDÞðl2 þ l3ÞCTT
l1
CTT
l2
�: ðB8Þ

These terms are what will lead to the Nð0Þ bias once
plugged into Eq. (10) as we shall see shortly. Since hκi ¼ 0

and hTð1ÞTð0ÞTð0ÞTð0Þi will generically be of the formR hκihTð0ÞTð0ÞTð0ÞTð0Þi, we have

hTð1Þ
l1
Tð0Þ
l2
Tð0Þ
l3
Tð0Þ
l4
i ¼ 0: ðB9Þ

At Oðκ2Þ the Wick contraction machinery alone becomes
unwieldy. There is a much more conceptually transparent
method to understand higher order terms and consequently
NðiÞ biases through the use of Feynman diagrams. We will
connect our Wick contraction machinery stated so far to
this diagrammatic language. This diagrammatic approach
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was derived in Refs. [30,31] and used to understand the
CMB lensing bispectrum in Ref. [45]. To start, we will
restate the Feynman rules derived in Refs. [30,31] here:

(i) Each lensedCMB temperature fieldTl corresponds to
a vertex with a momentum l flowing into that vertex.

(ii) Two vertices connected by a solid or dashed line
with momentum l come with a factor of CTT

l or Cκκ
l ,

respectively. These are our propagators,

ðB10Þ

ðB11Þ

(iii) Uncontracted external legs come with a factor of
their corresponding field,

ðB12Þ

ðB13Þ

(iv) Coming out of each vertex Tl we can draw one solid
line corresponding to the unlensed CMB temper-
ature field Tl0 and an arbitrary number n of dashed
lines with momentum ki where i ¼ 1;…; n. These
dashed lines correspond to the order κn to which we
are expanding. For such a vertex we must assert
momentum conservation

P
k ki þ l0 ¼ l. Each ver-

tex also comes with a factor
Q

n
i¼1 −2ki · l0=k2i . Such

a factor can be seen for the n ¼ 1 case in Eq. (B4)
and n ¼ 2 in Eq. (B5),

ðB14Þ

(v) Unconstrained momenta k are integrated over with
R
d2k=ð2πÞ2.

We can now understand the terms in Eq. (B7) in a more transparent way:
To start, we can consider the contraction of purely Gaussian random field, Eq. (B8),

ðB15Þ

which recovers exactly what is expected. Similarly, the hTð1ÞTð0ÞTð0ÞTð0Þi term, which we know evaluates to 0 after taking
average hκi,

ðB16Þ

Here we get to the real meat of the usefulness of this diagrammatic approach. First the hTð2ÞTð0ÞTð0ÞTð0Þi terms, which
include a single loop,
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ðB17Þ

Through working out the Wick contraction or from looking at these diagrams, one can see that these terms go like
hTð2ÞTð0ÞTð0ÞTð0Þi ∼ hTð0ÞTð0ÞTð0ÞTð0Þi × R

Cκκ. As stated in Sec. II A, the Nð1Þ bias arises from integrals of the lensing
power spectrum. So, naively, one might think this term and its permutations would contribute to Nð1Þ. However, it turns out
that, if one replaces the unlensed CMB temperature power spectrum CTT

l with the lensed spectrum C̃TT
l in Eqs. (4) and

(B15), terms like hTð2ÞTð0ÞTð0ÞTð0Þi are automatically taken care of and do not contribute to Nð1Þ. Roughly, this is because
the lensed spectra C̃TT

l , which we will denote with a double line, expanded to Oðκ2Þ looks like

ðB18Þ

Terms like Eq. (B17) are accounted for by contributions coming from the second line of Eq. (B18) if we reorganize our
expansion with C̃TT

l . We again refer the reader to Refs. [30,31] for more details on this point. Given this point, we will
neglect these hTð2ÞTð0ÞTð0ÞTð0Þi terms going forward.
The diagrams contributing to the final terms at Oðκ2Þ in Eq. (B7) are8

ðB19Þ

ðB20Þ

8Here, we neglect some diagrams that contain a loop like the diagram contributing to hTð1Þ
l1
Tð0Þ
l2
Tð1Þ
l3
Tð0Þ
l4
i. We neglect these

diagrams for the same reason we neglect Eq. (B17). The neglected diagrams are handled by the second term in the first line of
Eq. (B18) when replacing the unlensed with the lensed temperature power spectrum.

SHEN, SCHAAN, and FERRARO PHYS. REV. D 110, 043523 (2024)

043523-16



ðB21Þ

Adding all these diagrams together allows us to make a very nifty simplification. We follow Refs. [30,31] in defining a
composite vertex which restates Eq. (5) diagrammatically,

ðB22Þ

The slashes on the line denote the fact that these lines do not produce a temperature power spectrum when translated into
equations. Now note that all of the diagrams in Eqs. (B19)–(B21) can better organized in three diagrams that utilize this
composite vertex,

ðB23Þ

ðB24Þ
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ðB25Þ

The sum of Eqs. (B19)–(B21) can be written as

ðB26Þ

¼ ð2πÞ2δðDÞðl1 þ l2 þ l3 þ l4Þ

0
BB@

fκl1;l2
Cκκ
l1þl2

fκl3;l4

þfκl1;l3
Cκκ
l1þl3

fκl2;l4

þfκl1;l4
Cκκ
l1þl4

fκl2;l3

1
CCA: ðB27Þ

With all of this in hand, we can now compute the Nð0Þ and Nð1Þ bias. As stated earlier, the NðiÞ come out when we plug
Eq. (B7) into Eq. (10). At Oðκ0Þ when we plug Eq. (B8) [equivalently, Eq. (B15)] we will get the Nð0Þ bias,

Nð0Þ
L ¼ ðNκ

LÞ2
Z

d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

× hTð0Þ
l1
Tð0Þ
L−l1

Tð0Þ
−l2

Tð0Þ
−Lþl2

i

¼ ð2πÞ4ðNκ
LÞ2

Z
d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

�
δðDÞðLÞ2Cl1

Cl2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼0 since L≠0

þ 2δðDÞðl1 − l2ÞδðDÞðl2 − l1ÞCTT
l1
CTT
L−l1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l1¼l2ðparallelogramsÞ

�

¼ ð2πÞ2δðDÞð0Þ × 2ðNκ
LÞ2

Z
d2l1

ð2πÞ2 ðF
κ
l1;L−l1

Þ2CTT
l1
CTT
L−l1

; ðB28Þ

where in the second line we used the l2 → L − l2 symmetry of the integral. A key point of this calculation is that, of all the
fl1;l2g used to compute hκ̂ κ̂i, only the l1 ¼ l2 contribute to the Nð0Þ noise bias. This explicitly shows the motivation for
our Nð0Þ noise bias avoidance principle outlined in Fig. 1 and Sec. III.
Since we have only vanishing terms atOðκ1Þwe go straight toOðκ2Þ, which gives us bothCκκ

L and theNð1Þ bias. Plugging
Eq. (B27) into Eq. (10) yields

ð2πÞ2δðDÞð0Þ × ðNκ
LÞ2

�
Cκκ
L

Z
d2l1

ð2πÞ2 F
κ
l1;L−l1

fκl1;L−l1
×
Z

d2l2

ð2πÞ2 F
κ
−l2;−Lþl2

fκ−l2;−Lþl2

þ
Z

d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

× ½fκl1;−l2
Cκκ
l1−l2

fκL−l1;−Lþl2
þ fκl1;l2−LC

κκ
l1þl2−Lf

κ
L−l1;−l2

�
�
: ðB29Þ

From here we see two things. The first line when combined with Eq. (8) gives us ð2πÞ2δðDÞð0ÞCκκ
L , the CMB lensing power

spectrum, as promised. The second line gives us the Nð1Þ bias,
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Nð1Þ
L ¼ ð2πÞ2δðDÞð0Þ × ðNκ

LÞ2
Z

d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

×
�
fκl1;−l2

Cκκ
l1−l2

fκL−l1;−Lþl2
þ fκl1;l2−LC

κκ
l1þl2−Lf

κ
L−l1;−l2

�
¼ ð2πÞ2δðDÞð0Þ × ðNκ

LÞ2
Z

d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

× 2
�
fκl1;−l2

Cκκ
l1;−l2

fκL−l1;−Lþl2

�
; ðB30Þ

where in the final linewe used thel2 → L − l2 symmetry of
the integral to combine the two terms in the brackets. This
result is known in the literature and first computed by
Ref. [28] and also reproduced via the use of Feynman dia-
grams in Refs. [30,31]. From this equation, we can explicitly
see the fact that Nð1Þ ∼ ∬ hκκi as stated in Sec. II A. Higher

order biases such as Nð2Þ are also computed in Refs. [30,31]
and we refer the interested reader to these sources.

1. Why N̂ subtraction has no effect on Nð1Þ

Our N̂’s effect on Nð1Þ
L , ΔNð1Þ

L can be computed by
inserting a δðDÞðl1 − l2Þ into the integrand,

ΔNð1Þ
L ¼ ð2πÞ2δðDÞð0Þ × 2ðNκ

LÞ2

×
Z

d2l1

ð2πÞ2 ðF
κ
l1;L−l1

Þ2�fκl1;−l1
Cκκ
0 f

κ
L−l1;−Lþl1

�
¼ 0; ðB31Þ

where in the second linewe usedEq. (5) to see thatfκl;−l ¼ 0.

This means that N̂ does not affect the Nð1Þ biases. In general,
when our proposed noise bias avoidance method removes a
small subset of terms in any integration, that results in aNði≥1Þ
bias. So, we believe that our proposed bias avoidance method
will also have a negligible effect onNði>1Þ biases similar to its
effect on the Nð1Þ. Thus, standard methods of avoiding or
estimating higher order noise bias such as the use of T∇T
weights and Monte Carlo computations of Nð1Þ can be
naturally combined with our proposed method.

APPENDIX C: DETAILS ON MAP SIMULATIONS

In this appendix, we describe how we generate our
simulated maps used for our numerical studies in this paper.
All of our maps span 20° × 20° on the sky and have
1200 × 1200 pixels. We start by computing the unlensed,
lensed, and lensed gradient CMB temperature power spec-
trum CTT

l , CTT;L
l , and CT∇T

l as well as the lensing potential
spectrum Cκκ

l with CAMB (Refs. [32,46–48]). Then using
LensQuEst (Ref. [49]) we compute the expected foreground
CF
l and noise spectrum CN

l for a SO-like survey.9

With these spectra in hand, our recipe to generate a
lensed temperature map is:

(1) Generate a Gaussian random field with the unlensed
temperature field power spectra CTT

l ,

T0
l ∼N ð0; CTT

l Þ: ðC1Þ
(2) Generate a Gaussian random field with the lensing

potential power spectra Cκκ
l ,

κl ∼N ð0; Cκκ
l Þ: ðC2Þ

(3) Generate the lensed temperature map Tl by first
computing the deflection field dðxÞ due to the
lensing potential κl with

dl ¼ −
2il
l2

κl: ðC3Þ

Then generate the lensed temperature TL
l by com-

puting TLðxÞ as in Eq. (1),

TLðxÞ ¼ T0ðxþ dðxÞÞ: ðC4Þ

(4) Generate two Gaussian random fields corresponding
to foregrounds and detector noise with the corre-
sponding spectra CF

l and CN
l ,

Fl ∼N ð0; CF
lÞ; ðC5Þ

Nl ∼N ð0; CN
l Þ: ðC6Þ

(5) Generate the total lensed CMB temperature map Tl
by adding all these maps together,

Tl ¼ TL
l þ Fl þ Nl: ðC7Þ

This is the recipe we used to generate 500 lensed CMB
temperature maps used in the numerical studies for
Figs. 2–4. Note that the above recipe implies that the total
CMB temperature power spectrum is

C̃TT
l ¼ CTT;L

l þ CF
l þ CN

l : ðC8Þ
In Eq. (14) we claimed that N̂GRF ¼ hκ̂κ̂�iGRF ∼ Ntheory

[see Eq. (D4)]. With Eq. (C8) we are able to confirm this
numerically by generating 500 Gaussian random fields
TGRF
l ∼N ð0; C̃TT

l Þ and computing N̂ on these fields. We
plot the results in Fig. 12 and find that indeed Eq. (14)
holds. Something to note is that, as we will argue in

9Gaussian beam with full width at half maximum of 1.4 arc
min and white noise levels of 7 μKarc min.
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Appendix E, N̂ is highly correlated between different L, L0,
which makes doing χ2 by eye tests deceptive for this
plot.
In Sec. VII we study the effect of anisotropic instrument

noise on our proposed CMB lensing spectrum estimator. To
generate CMB maps with realistic anisotropic detector
noise, we use cutouts from the ACT DR5 IVar map as
shown in Fig. 5. Let the anisotropic noise pattern we extract
from the ACT DR5 maps be called AðxÞ. Using this, we
modify our noise map computed in Eq. (C6) as

NanisoðxÞ ¼ NðxÞ × AðxÞ
min½AðxÞ� : ðC9Þ

In this way NanisoðxÞ ≥ NðxÞ. From here Eq. (C7) is then
modified as

Taniso
l ¼ TL

l þ Fl þ Naniso
l : ðC10Þ

Note that this means Eq. (C8) is no longer true. Instead, we
estimate C̃TT;aniso

l by generating 500 maps using Eq. (C10)
and averaging the power spectra of these maps.
In Sec. IX we study the effect of masking on our

proposed CMB lensing spectrum estimator. To generate
CMB maps with masking we use the mask shown in Fig. 9.
Let this mask be called MðxÞ. After Eq. (C7) we apply this
mask,

TmaskedðxÞ ¼ MðxÞ × TðxÞ: ðC11Þ

We perform our numerical studies in Sec. IX using these
maps.

APPENDIX D: NEGLECTED ADDITIONAL
CONTRACTIONS IN N̂ ARE NEGLIGIBLE

In footnote 3 we commented that Eq. (14) is not exact
since we do not include a l ¼ L=2 term, but that this term
is suppressed like 1=Nmodes. In this appendix, we shall
show this suppression, thus concluding that the neglected
additional contraction is negligible.
Recall from Eq. (10)

hκ̂Lκ̂�Li ¼ ðNκ
LÞ2

Z
d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

× hTl1
TL−l1

T−l2
T−Lþl2

i: ðD1Þ

For a Gaussian random field with no lensing, but with a
power spectrum equal to the total CMB power spectrum
TG
l ∼N ð0; C̃TT

l Þ, we can evaluate the four-point function in
the integral above,

hTG
l1
TG
L−l1

TG
−l2

TG
−Lþl2

i ¼ hTG
l1
TG
L−l1

ihTG
−l2

TG
−Lþl2

i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 since we assumeL≠0

þ hTG
l1
TG
−l2

ihTG
L−l1

TG
−Lþl2

i þ hTG
l1
TG
−Lþl2

ihTG
L−l1

TG
−l2

i

þ hTG
l1
TG
L−l1

TG
−l2

TG
−Lþl2

ic|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 for a GRF

: ðD2Þ

We know from Eq. (3) that this then evaluates to

hTG
l1
TG
L−l1

TG
−l2

TG
−Lþl2

i ¼ ð2πÞ4C̃TT
l1
C̃TT
L−l1

½ðδðDÞðl1 − l2ÞÞ2 þ ðδðDÞðl1 − Lþ l2ÞÞ2�: ðD3Þ

Plugging this into Eq. (10) to get

hκ̂Lκ̂�LiGRF ¼ ðNκ
LÞ2

Z
d2l1

ð2πÞ2
Z

d2l2

ð2πÞ2 F
κ
l1;L−l1

Fκ
−l2;−Lþl2

ð2πÞ4C̃TT
l1
C̃TT
L−l1

× 2ðδðDÞðl1 − l2ÞÞ2

¼ ð2πÞ2δðDÞð0Þ × ðNκ
LÞ2

Z
d2l1

ð2πÞ2 F
κ
l1;L−l1

fκl1;L−l1

FIG. 12. In Eq. (14) we claimed that our estimator N̂ when run
on a Gaussian random field N̂GRF would equal hκ̂κ̂�iGRF ∼ Ntheory

[see Eq. (D4)]. In this plot, we numerically check this claim. We
also point out that N̂ is highly correlated between different L, L0.
This is explicitly shown in Fig. 13. This off-diagonal correlation
makes χ2 by eye hard to do here. We explain this correlation
structure in Appendix E.
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¼ ð2πÞ2δðDÞð0Þ × Nκ
L ½using Eq: ð8Þ�

≡ ð2πÞ2δðDÞð0Þ × Ntheory; ðD4Þ

where in the second line we have a factor of 2 by exploiting the l2 → L − l2 symmetry of the integral, allowing us to
combine both Dirac δ’s. Now, recall our definition of N̂,

N̂L ¼ 2ðNκ
LÞ2

ð2πÞ2δðDÞð0Þ
Z

d2l
ð2πÞ2 F

κ
l;L−lF

κ
−l;−LþljTlj2jTL−lj2; ðD5Þ

where in the numerator of the prefactor we include the additional finite area correction we suppressed in Eq. (12) as pointed
out in footnote 2. Let us also evaluate hN̂Li on the same Gaussian random field TG

l ∼N ð0; C̃TT
l Þ. To start, we can evaluate

the four-point function in the integral,

hTG
lT

G
−lT

G
L−lT

G
−Lþli ¼ ð2πÞ4C̃TT

l C̃TT
L−l

�ðδðDÞð0ÞÞ2 þ ðδðDÞð2l − LÞÞ2�: ðD6Þ

Plugging this into Eq. (12) gives us

hN̂LiGRF ¼
ðNκ

LÞ2
ð2πÞ2δðDÞð0Þ

Z
d2l
ð2πÞ2 F

κ
l;L−lf

κ
−l;−Lþlð2πÞ4½ðδðDÞð0ÞÞ2 þ ðδðDÞð2l − LÞÞ2�

¼ ð2πÞ2 × ðNκ
LÞ2

δðDÞð0Þ ½ðN
κ
LÞ−1ðδðDÞð0ÞÞ2 ðD7Þ

þ 1

4ð2πÞ2 δ
ðDÞð0ÞFκ

L=2;L=2f
κ
−L=2;−L=2� ðD8Þ

≡ð2πÞ2δðDÞð0Þ × NtheoryðLÞð1þ CÞ: ðD9Þ

So we see that there is an extra L=2 contraction that leads to
an extra term C which makes Eq. (14) not exact. However,
note that C ∼ Ntheory ∼ ½R ðCl=C̃lÞ2�−1. If we approximate
Cl ≈ C̃l then the integral evaluates to Nmodes, meaning C is
suppressed by a factor of 1=Nmodes ∼ 10−6,

C ∼ Ntheory ∼
1

Nmodes
≪ 1: ðD10Þ

Thus, we neglect this extra contraction coming from
δðDÞð2l − LÞ.

APPENDIX E: ORIGIN OF OFF-DIAGONAL
COVARIANCES OF THE LENSING POWER

SPECTRUM

In Sec. V we point out the fact that the Nð0Þ bias and,
correspondingly, our N̂ has significant off-diagonal correla-
tion cov½N̂L; N̂L0 �. We explicitly plot this strong off-diagonal
correlation structure in Fig. 13. In this appendix, we shall
explain the reason for this strong off-diagonal correlation.
Let us consider the covariance between N̂L and N̂L0 .

Recall the language of summing over quadrilaterals to
estimate the lensing potential spectrum that we introduced
in Eq. (7) and Fig. 1. In this language, as we stated in Fig. 1,
N̂ can be thought of summing over only parallelograms,

FIG. 13. We saw in Sec. V that there is strong correlation
between N̂L and N̂L0 . Here we explicitly show this off-diagonal
correlation for N̂ run on lensed maps (upper left) and N̂ run on
Gaussian random fields with the same total power spectrum as a
lensed map (lower right). We analytically explain the origin of
this correlation structure in Appendix E.
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ðE1Þ

In this language, we can write cov½N̂L; N̂L0 � as

ðE2Þ

where we implicitly take expectation values over each disjoint diagram. Since we argued in Fig. 3 the dominant contribution
to the covariance is Nð0Þ, we will approximate Tl to be a Gaussian random field since this approximation still captures the
Nð0Þ’s effect on the covariance structure. The only time the term we are summing over in Eq. (E2) is nonzero10 is when both
parallelograms share a leg: l ¼ l0 (or symmetrically l ¼ L0 − l0). All other fl;l0g force the parallelograms to be
statistically independent and thus do not contribute to the covariance. So we have

ðE3Þ

Since for a fixed L, there is a unique parallelogram
associated with having a leg of length l, we see that each
diagram contributing to N̂L is correlated with exactly one
diagram contributing to N̂L0 and vice versa.11 This is the
origin of the strong off-diagonal covariance due to Nð0Þ and
consequently removed by our N̂ as well as RDNð0Þ.

APPENDIX F: DERIVING THE OPTIMAL
KURTOSIS ESTIMATOR

In Sec. VI we were considering how to estimate the small
kurtosis of a weakly non-Gaussian random variable. This
was used as a toy model to understand optimal trispectrum
estimation. During this discussion we recalled a result from
Ref. [20] that stated the optimal unbiased and minimum-
variance estimator for the kurtosis in this toy model is

K̂opt ¼
1

N

X
i

x4i −
6σ2

N

X
i

x2i þ 3σ4: ðF1Þ

In this appendix, we will spell out how to arrive at this
result. Obtaining the form of RDNð0Þ described in Eq. (15)

10Once again neglecting additional contributions that are
similar to l ¼ L=2 in the eight-point function, since we believe
they are negligible just like they were in the four-point function as
we argued for in Appendix D.

11This is true if we had access to all modes. Some modes we
cannot see due to finite resolution/size measurements, but for the
bulk of the modes this is a negligible effect.
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requires a similar argument and we will spell this out in
Appendix G. Our derivation in this appendix is directly
inspired by a similar discussion for a skewness estimator
in Ref. [50].
The optimal kurtosis estimator K̂opt stated in Eq. (24) is

derived via Edgeworth expansion. Let us add a small
kurtosis K to a normal random variable and call this
perturbed random variable X. Then its moment generating
function is

MXðJÞ ¼ exp

�
−
1

2
J2σ2 þ 1

4!
J4K

�
ðF2Þ

≈ exp
�
−
1

2
J2σ2

��
1þ 1

4!
J4Kþ 1

2 × 4!4!
J8K2

�
: ðF3Þ

This reconstructs the random variable we were considering
in Sec. VI,

hX2i ¼ σ2; ðF4Þ

hX4i ¼ 3σ4 þK: ðF5Þ

Before we continue, recall the definition of the Hermite
polynomials,

hnðxÞ ¼ ð−1Þnp−1
N ðxÞ ∂

n

∂xn
pN ðxÞ: ðF6Þ

Here, pN ðxÞ is the probability density function of the
Gaussian random variable with zero mean and variance σ2,

pN ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
1

2

x2

σ2

�
: ðF7Þ

Inverse transforming the moment generating function
(F3) gives us the PDF

pXðxÞ
pN ðxÞ ¼ 1þ K

4!
h4ðxÞ þ

K2

2 × 4!4!
h8ðxÞ; ðF8Þ

where we have

h4ðxÞ ¼
x4 − 6σ2x2 þ 3σ4

σ8
; ðF9Þ

h8ðxÞ ¼
x8 − 28σ2x6 þ 210σ4x4 − 420σ6x2 þ 105σ8

σ16
:

ðF10Þ

If we have N independent realization of this random
variable fxig, where each xi ∼ X, then the log likelihood
L ¼ P

logpXðxiÞ becomes

L − LN ¼
X
i

�
log

�
1þ K

4!
h4ðxiÞ þ

K2

2 × 4!4!
h8ðxiÞ

��

≈
X
i

�
K
4!
h4ðxiÞ þ

K2

2 × 4!4!
ðh8ðxiÞ − h24ðxiÞÞ

�
:

ðF11Þ

Asserting ∂L=∂K ¼ 0 we find the maximum likelihood
estimate for K is

K̂opt ¼ −
4!
P

ih4ðxiÞP
i½h8ðxiÞ − h24ðxiÞ�

: ðF12Þ

Now let us approximate

XN
i¼1

xni ¼ Nσn × ðn − 1Þ!! ðF13Þ

for even n to derive a relation between h4 and h8.
Essentially, we are saying we know the variance exactly
and so can replace anything where we are estimating the
variance with the true variance. Non-Gaussian corrections
will be subleading for the purpose of deriving this relation
between h4 and h8. With this approximation we get

XN
i¼1

h8ðxiÞ ¼ 0; ðF14Þ

XN
i¼1

h24ðxiÞ ¼
4! × N
σ8

; ðF15Þ

⇒
X
i

½h8ðxiÞ − h24ðxiÞ� ¼ −
4! × N
σ8

: ðF16Þ

Plugging this into Eq. (F12) gives us the optimal estimator
asserted by Ref. [20],

K̂opt ¼
1

N

X
i

x4i −
6σ2

N

X
i

x2i þ 3σ4: ðF17Þ

A slight curiosity is that this estimator looks very similar to
h4ðxÞ written in Eq. (F9).

APPENDIX G: DERIVING RDNð0Þ

The derivation of RDNð0Þ in Eq. (15) follows from a
multivariate Edgeworth expansion of the CMB likelihood
(Refs. [26,51,52]). In this appendix, we shall spell out this
calculation. This derivation contains the multivariate gen-
eralization of the derivation we performed in Appendix F
for the optimal kurtosis estimator, Eq. (24). Because of this,
we shall parallel the structure of Appendix F in this
appendix for clarity.
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For discrete data, we can write an arbitrary Fourier mode
li as a vector of integers times the fundamental lF,

li ¼ ilF; ðG1Þ

so in this appendix for brevity we shall use the notation
Tli

≡ T i. Suppose our lensed temperature map Tl is
approximately described by a Gaussian random field
N ð0; C̃ijÞ but perturbed such that it has small connected
four-point function T ,

T ijkl ¼ hTli
Tlj

Tlk
Tll

ic: ðG2Þ

In this case, the moment generating function M of Tl is

MðJÞ ¼ exp

�
−
1

2
JiC̃ijJj þ

1

4!
JiJjJkJlT ijkl

�

≈ exp

�
−
1

2
JiC̃ijJj

��
1þ 1

4!
JiJjJkJlT ijkl

þ 1

2 × 4!4!
JiJjJkJlT ijkl × JaJbJcJdT abcd

�
; ðG3Þ

where repeated indices are summed over. Before we
continue, we can define the multivariate generalization
of the Hermite polynomial (F8), the Hermite tensor hij…
which has r subscripts,

hij… ¼ ð−1Þrp−1
N ðTlÞ

�
∂

∂T i

∂

∂T j
…

�
pN ðTlÞ: ðG4Þ

Here pN ðTlÞ is the probability density function of a
Gaussian random field with zero mean and covariance
matrix C̃ij,

pN ðTlÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN det½C̃ij�
q exp

�
−
1

2
T iD̃ijT j

�
; ðG5Þ

where N is the number of Tl we have and we have defined
the inverse covariance matrix D̃≡ ðC̃Þ−1.
Inverse transforming the moment generating function

(G3) gives us the PDF

pðTlÞ
pN ðTlÞ

¼ 1þ T ijkl

4!
hijkl þ T ijklT abcd

2 × 4!4!
hijklabcd; ðG6Þ

where we have

hi ¼ TaD̃ai; ðG7Þ

hijkl ¼ hihjhkhl − ½hihjD̃kl þ ð5 permsÞ�
þ ½D̃ijD̃kl þ ð2 permsÞ�; ðG8Þ

hijklabcd ¼ hihjhkhlhahbhchd

− ½hihjhkhlhahbD̃cd þ ð27 permsÞ�
þ ½hihjhkhlD̃abD̃cd þ ð209 permsÞ�
− ½hihjD̃klD̃abD̃cd þ ð419 permsÞ�
þ ½D̃ijD̃klD̃abD̃cd þ ð104 permsÞ�: ðG9Þ

This then yields a log likelihood L ¼ logpðTlÞ of

L − LN ¼ log

�
1þ 1

4!
T ijklhijkl þ T ijklT abcd

2 × 4!4!
hijklabcd

�

≈
1

4!
T ijklhijkl þ T ijklT abcd

2 × 4!4!
hijkl;abcd; ðG10Þ

where we defined

hijkl;abcd ≡ hijklabcd − hijklhabcd: ðG11Þ

Asserting ∂L=∂T ijkl ¼ 0 to get the ML estimate for the
connected trispectrum yields

T̂ ijkl ¼ −4!habcd × ðh−1Þabcd;ijkl: ðG12Þ

From here, to find a useful form of hijkl;abcd, the gener-
alization of Eq. (F16), we make the generalization of the
approximation we made in Eq. (F13) and replace products
of T with the appropriate Wick contracted power spectra,

T iT j…TkTl ¼
X
Wick

C̃ab ×… × C̃cd; ðG13Þ

where fa; b;…; c; dg is a permutation of fi; j;…; k;lg and
the summation in Eq. (G13) is over all permutations. This
approximation allows us to derive12 a generalization of the
relation found in Eq. (F16),

habcd;ijkl ¼ −½D̃aiD̃bjD̃ckD̃dl þ ð23 permsÞ�; ðG14Þ

where the permutations come from pairings of fa; b; c; dg
with fi; j; k;lg. Now note in the context of a summation,
such as in Eq. (G12), all the terms in Eq. (G14) are the same
under relabeling of dummy indices. So Eq. (G12) turns into

T̂ ijkl ¼ −4!habcd × ½−24D̃aiD̃bjD̃ckD̃dl�−1
¼ habcd × C̃aiC̃bjC̃ckC̃dl: ðG15Þ

Plugging in Eq. (G8) then leads to the connected four-point
function estimator,

12With the heavy reliance on Mathematica to make this a
tractable calculation.
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T̂ ijkl ¼ T iT jTkTl − ½T iT jC̃kl þ ð5 permsÞ� þ ½C̃ijC̃jk þ ð3 permsÞ�: ðG16Þ

This is the generalization of Eq. (24).
Now we can specialize this to CMB lensing power spectrum estimation to derive RDNð0Þ. Note from Eq. (10) that our

estimate of the CMB lensing power spectrum is not from a general connected four-point function but specifically the
combination

R hTl1
TL−l1

T−l2
T−Lþl2

ic ¼
R
T l1;L−l1;−l2;−Lþl2

. So our estimator, Eq. (G16), for this specific combination
yields

T̂ l1;L−l1;−l2;−Lþl2
¼ Tl1

TL−l1
T−l2

T−Lþl2
−
�
Tl1

TL−l1
C̃−l2;−Lþl2

þ Tl1
T−l2

C̃L−l1;−Lþl2
þ Tl1

T−Lþl2
C̃L−l1;−l2

þ TL−l1
T−l2

C̃l1;−Lþl2
þ TL−l1

T−Lþl2
C̃l1;−l2

þ T−l2
T−Lþl2

C̃l1;L−l1

�
þ C̃l1;L−l1

C̃−l2;−Lþl2
þ C̃l1;−l2

CL−l1;−Lþl2
þ C̃l1;−Lþl2

C̃L−l1;−l2
: ðG17Þ

Each temperature map T corresponds to the actual
measured data d, whereas the C̃ come from the two sets
of simulations fsg; fs0g needed to compute RDNð0Þ that we
discussed in Sec. IV. Note that the covariance matrix C̃ij is
defined in terms of the two-point function of Gaussian
random fields that have the same total power spectrum as
the lensed CMB, C̃TT

l , not a lensed temperature map. In this
case, we can rewrite the covariance matrix in terms of the
power spectrum,

C̃ij ¼ hTli
Tlj

i ¼ ð2πÞ2δðDÞðli þ ljÞC̃TT
li
: ðG18Þ

So if we assume L ≠ 0, then

C̃l1;L−l1
¼ C̃−l2;−Lþl2

∝ δðDÞðLÞ ¼ 0: ðG19Þ

So, the connected four-point function estimator (G16)
specialized to CMB lensing power spectrum estimation,
Eq. (G17), reduces to

T̂ l1;L−l1;−l2;−Lþl2
¼ Tl1

TL−l1
T−l2

T−Lþl2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊂CLðκ̂L;κ̂LÞ;Eq: ð10Þ

−
�
Tl1

T−l2
C̃L−l1;−Lþl2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

⊂CLðκ̂ds;κ̂dsÞ

þ Tl1
T−Lþl2

C̃L−l1;−l2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊂CLðκ̂ds;κ̂sdÞ

þ TL−l1
T−l2

C̃l1;−Lþl2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊂CLðκ̂sd;κ̂dsÞ

þ TL−l1
T−Lþl2

C̃l1;−l2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
⊂CLðκ̂sd;κ̂sdÞ

�þ C̃l1;−l2
CL−l1;−Lþl2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

⊂CLðκ̂ss0 ;κ̂ss0 Þ

þ C̃l1;−Lþl2
C̃L−l1;−l2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

⊂CLðκ̂ss0 ;κ̂s0sÞ

: ðG20Þ

From this we can read off the terms in Eq. (15) that define
RDNð0Þ. So we have shown how RDNð0Þ naturally arises
from a Edgeworth expansion of the CMB likelihood that
we claimed in Sec. IV. We have also established the
correspondence between RDNð0Þ and the optimal Kurtosis
estimator (24) for the toy model discussed in Sec. VI and
derived in Appendix F.

APPENDIX H: COMPUTING Nð1Þ FROM
SIMULATIONS

In addition to the analytic expression for Nð1Þ we
derived in Eq. (B30), one can also compute Nð1Þ from
simulation as we mentioned in Sec. II A. This makes use of
four sets of simulations. First, we have two sets of
simulations fsϕg and fs0ϕg that share a common lensing
potential ϕ but different realizations of the unlensed
Gaussian CMB. The last two sets of simulations
fsg; fs0g have different realizations of both unlensed
Gaussian CMB and lensing potential. From these sets of

simulations, one can form an estimator based on simulation
for Nð1Þ (Refs. [10,16]),

Nð1Þ;MC
L ¼< CLðκ̂sϕs

0
ϕ ; κ̂sϕs

0
ϕÞ þ CLðκ̂sϕs

0
ϕ ; κ̂s

0
ϕsϕÞ

− CLðκ̂ss0 ; κ̂ss0 Þ − CLðκ̂ss0 ; κ̂s0sÞ >s;s0;sϕ;s0ϕ
: ðH1Þ

To show why this works, let us recall the language of
Feynman diagrams that we introduced in Appendix B.
Because of how we construct fsϕg and fs0ϕg, the only
diagrams contributing to the four-point functions in the first
line are the diagrams that contribute to Nð0Þ and Nð1Þ,

ðH2Þ
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We have no diagrams that contribute to hκκi since those
diagrams would require the unlensed temperature map in sϕ
to be correlated with the unlensed temperature map in s0ϕ. So,
toOðκ2Þ the first line yields an estimate for Nð0Þ þ Nð1Þ. The
terms on the second line yield only diagrams13 contributing
Nð0Þ at OðκÞ and no diagrams at Oðκ2Þ since the lensing
potential κ is no longer shared. So, the second line shares only
a Nð0Þ contribution with the first line. Thus, the difference of
the two lines yields an simulation-based estimate of Nð1Þ.
We make use of a hybrid approach to estimate Nð1Þ in our

numerical studies throughout this paper. For a full-sky
analysis, Eq. (H1) is sufficient to estimate Nð1Þ for all scales.
However, in our numerical studies we work on small patches
where the flat-sky approximation holds. In this case,
Eq. (H1) cannot easily converge to an estimate of Nð1Þ
for very large scales where the number of modes is small.
However, one can see from, e.g., Fig. 2 that large scales are
also the regime where the Nð1Þ is order of magnitudes
smaller than the signal hκκi. So, our estimate of Nð1Þ does
not need to be perfect for these regimes. Because of this, we

use the analytical result, Eq. (B30), to compute Nð1Þ
L for

L < 512. For L > 512, we use the simulation-based com-

putation (H1) to computeNð1Þ
L , since on small scales we have

sufficient statistics to estimate Nð1Þ from simulations.

APPENDIX I: FAST ALGORITHM
TO COMPUTE N̂×

In Sec. VIII, Eqs. (35)–(37) we described how our
proposed estimator could be combined with split-based
methods recently proposed in Ref. [18] to build estimators
insensitive to modeling of instrument noise. Suppose we
havem splits of the CMBmap with independent instrument
noise. To combine our proposed noise avoidance with the
split-based method, we must compute Eq. (36). However,
Eq. (36) is naively a Oðm4Þ computation. In this appendix,
we will construct a fast Oðm2Þ algorithm to compute the
N̂×

L described in Eq. (36) similar to the fast algorithm
discussed in Ref. [18].
To start, we use an identity stated by Ref. [18],

γijkl ¼ γiγjγkγl − ½δðKÞij γkγl þ ð5 permsÞ�
þ 2½δðKÞijk γl þ ð3 permsÞ�
þ ½δðKÞij δðKÞkl þ ð2 permsÞ� − 6δðKÞijkl: ðI1Þ

Here δðKÞ is a Kronecker δ,

δðKÞi1���in ¼
�
1 i1 ¼ … ¼ in
0 otherwise

: ðI2Þ

For future convenience, let us define several things,

Qij
l ¼ jTðiÞ

l TðjÞ
−lj; ðI3Þ

Qiþ ¼ 1

m

Xm
j¼1

Qij; ðI4Þ

Qi× ¼ Qiþ −
1

m
Qii; ðI5Þ

Qþþ ¼ 1

m2

Xm
i;j¼1

Qij; ðI6Þ

Q×× ¼ Qþþ −
1

m2

X
i

Qii: ðI7Þ

This allows us to define

N̂α;β
L ¼ 2ðNκ

LÞ2
Z
l
Fκ
l;L−lF

κ
−l;−Lþl ×Qα

lQ
β
L−l: ðI8Þ

Here, α and β can be any pair of the superscripts i;þ;×
appearing in Eqs. (I3)–(I7). Note that we already intro-
duced a special case of this, N̂ij;kl, in Eq. (35).
To create a fast algorithm to compute Eq. (36) we can

apply the identity in Eq. (I1),

X
ijkl

γiγjγkγlN̂
ij;kl
L ¼ m4N̂þþ;þþ

L

−
X
ijkl

�
δðKÞij γkγl

þð5 permÞ
�
N̂ij;kl

L ¼ −2m2
X
i

�
2N̂iþ;iþ

L þ N̂ii;þþ
L

�

2
X
ijkl

�
δðKÞijk γl

þð3 permÞ
�
N̂ij;kl

L ¼ 8m
X
i

N̂þi;ii
L

X
ijkl

�
δðKÞij δðKÞkl

þð2 permÞ
�
N̂ij;kl

L ¼
X
ij

�
N̂ii;jj

L þ 2N̂ij;ij
�

−6
X
ijkl

δðKÞijklN̂
ik;jl ¼ −6

X
i

N̂ii;ii: ðI9Þ

We can simplify things tremendously by combining
terms,

N̂×
L ¼ 1

mðm − 1Þðm − 2Þðm − 3Þ

×

�
m4N̂××;××

L − 4m2
X
i

N̂i×;i×
L þ 4

X
i<j

N̂ij;ij
L

�
: ðI10Þ

Using this, we are able to compute N̂×
L [Eq. (36)] inOðm2Þ.

13Neglecting the same diagrams we neglected in footnote 8 for
the same reasons.
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