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We study the simultaneous decay of global string loops into scalar particles (massless and massive
modes) and gravitational waves (GWs). Using field-theory simulations in flat space-time of isolated loops
with initial length ∼80–1700 times their core width, we determine the power emitted into scalar particles,
Pφ, and GWs, PGW, and characterize the loop-decay timescale as a function of its initial length, energy, and
angular momentum. We quantify infrared and ultraviolet lattice dependencies of our results. For all type of
loops and initial conditions considered, GW emission is always suppressed compared to particles as
PGW=Pφ ≈Oð10Þðv=mpÞ2 ≪ 1, where v is the vacuum expectation value associated with string formation.
These conclusions are robust for the length-to-width ratios considered, with no indication they should
change if the ratio is increased. The results suggest that the GW background from a global string network,
such as in dark-matter axion scenarios, will be suppressed compared to previous expectations.
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I. INTRODUCTION

Cosmic string networks [1] are predicted by a variety of
field theory and superstring early-Universe scenarios [1–7].
They consist of ‘long’ strings stretching across the observ-
able universe and string loops. The energy scale at which
the network forms determines the string tension μ. As the
network evolves, the long-string density decreases as they
intercommute forming loops. In the Nambu-Goto (NG)
approximation of infinitely thin strings, loops decay mainly
into gravitational waves (GWs), leading to a stochastic GW
background (GWB) [8–10].
Cosmic strings create anisotropies in the cosmic micro-

wave background (CMB) [11–15], and exhibit a variety of
other potentially observable effects, such as non-
Gaussianity in the CMB [16–18], lensing events [19,20],
and cosmic rays from the decay of strings into particle
radiation [21–30]. The stringent constraints on the strings’
tension comes however from direct searches of the cosmic
string gravitational wave background (GWB). As a matter
of fact, while LIGO and VIRGO have placed strong
constraints on the cosmic string GWB at ∼10–100-Hz
frequencies [31,32], pulsar timing-array (PTA) collabora-
tions [33–36] have recently announced the first evidence

for a GWB at the ∼nHz frequency window. Although a
GWB from a population of supermassive black hole
binaries (SMBHBs) is expected at these frequencies
[37,38], cosmological backgrounds also represent a viable
explanation [38–40], in particular, a cosmic (super)string
[5,41] GWB [38–40,42–47]. Fitting the PTA data with a
signal from NG cosmic strings leads to a tight constraint on
the string tension,

ffiffiffi
μ

p ≈ 1.32þ0.20
−0.24 × 1014 GeV [40]; see also

[48] for a weaker constraint when the evolution of Abelian-
Higgs strings is considered. The fit to the data is however not
as good as for realistic population of SMBHBs or other
cosmological signals, such as cosmic superstrings [38–40].
The potential detection of a signal from string networks in the
mHz–kHz window by next-generation GW detectors like
LISA [49] and others [50,51], with string tensions down toffiffiffi
μ

p ≳ 1010 GeV [52], is also an exciting prospect.
Given these developments, revisiting the GW-signal

calculation from cosmic strings seems in order. A crucial
aspect which remains to be resolved is to understand
whether GWs are in fact the key decay channel of cosmic
strings. Being primarily field-theory objects, a natural
decay route is particle production, which has been argued
to be the primary decay route for Abelian-Higgs strings
[53,54]. Recently, [55] set up and evolved Abelian-Higgs
loop configurations, comparing the observed particle pro-
duction with the traditional GW result from NG loops. For
loops below a critical length, they found decay primarily
through particle production, while for larger loops GW
emission dominates. In [56] they extended their work to
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global strings, considering the decay into massless and
massive modes.
In this work we further extend the approach in [56] with

one important addition: a true comparison of the relative
decay into particles and GWs requires both processes to
happen simultaneously. Here we do just that, using lattice
simulations of global loops created from networks as in
[57,58] or following the methodology of [56]. Our main
result is that the power emitted into GWs by isolated loops,
PGW, is in all cases suppressed compared to that of particle
production, Pφ, as PGW=Pφ ≈Oð10Þðv=mpÞ2 ≪ 1, with v
the vacuum expectation value (VEV)-associated string
formation and mp ≈ 2.44 × 1018 GeV the reduced Planck
mass. This result is found to hold independently of the
initial length, energy, and angular momentum of the loops,
and is robust for the length-to-width ratios considered,
which range as ∼80–1700, with no indication it should
change if the ratio is increased. While we focus on global
string loops here, an analogous study for Abelian-Higgs
strings will appear shortly.
This paper is organized as follows. In Sec. II we describe

the model of study, how the different types of loops are
generated, and explain the main observables we measure.
The results for the decay into particles and GWs is
presented in Sec. III. We finalize with some conclusions
in Sec. IV. The paper also contains one appendix, which
summarizes the parameters of the simulations presented.

II. MODEL AND LOOP CONFIGURATIONS

We consider a model with a complex scalar field φ ¼
ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
and action

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂μφ

�
∂
μφþ λ

�
φφ� −

v2

2

�
2
�
; ð1Þ

with parameters λ and v of mass dimension 0 and 1,
respectively. This model exhibits two phases: a symmetric
phase with hφi ¼ 0, and a broken phase with hφ�φi ¼
v2=2, where both massless (θ) and massive (χ) excitations
of massmχ ¼

ffiffiffiffiffi
2λ

p
v are present. When a transition from the

unbroken to the broken phase takes place, global cosmic
strings form. These are linelike topological defects with
long-range interactions and a core of radius rc ∼ 1=mχ

trapped in the symmetric phase.
In this work, we study the decay of global string loops in

flat space-time using lattice simulations performed with
CosmoLattice [59,60]. The GW emission is obtained with
the GW module of CosmoLattice [61], based on the
algorithm introduced in [62]. We use lattices with periodic
boundary conditions, side length L, N sites per dimension,
and lattice spacing δx ¼ L=N. We consider two types of
loops, network and artificial loops, which are generated
using different procedures that we now describe.

A. Network loops

Network loops originate from the decay of string net-
works which are close to the scaling regime [63–65]. These
networks are generated following the procedure detailed in
[58]. Namely, we start simulations with a realization of a
random Gaussian field, φ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
, in Fourier

space, with power spectrum for each field component

Pϕi
ðkÞ ¼ k3v2l3

strffiffiffiffiffiffi
2π

p exp

�
−
1

2
k2l2

str

�
; i ¼ 1; 2; ð2Þ

normalized such that hϕ2
1 þ ϕ2

2i ¼ v2, where h� � �i denotes
expectation value. Here, lstr is a correlation length that
controls the initial string density of the network. The
resulting field configuration is initially too energetic, so
we remove the excess energy by evolving the fields through
a diffusion process, modeled via the equation

ϕ̇i −∇2ϕi ¼ −λðϕ2
1 þ ϕ2

2 − v2Þϕi; ð3Þ

where i ¼ 1, 2 and ϕ̇i ≡ dϕi=dt. We diffuse the field for 20
units of program time (defined below), which is enough to
leave a smooth string configuration. An example of the
resulting string network is represented in the left panel
of Fig. 1.
Following the diffusion period, the string network is

evolved in a radiation-dominated (RD) background, with
equation of motion

ϕ̈i þ 2
ȧ
a
ϕ̇i −∇2ϕi ¼ −a2λðϕ2

1 þ ϕ2
2 − v2Þϕi; ð4Þ

where i ¼ 1, 2, t denotes now the conformal time with t0
the value when evolution begins, and a≡ aðtÞ ¼ t=t0 is
the scale factor in RD. In our simulations, we use
t0 ¼ 70=

ffiffiffi
λ

p
v. The background expansion is maintained

for a half light-crossing time of the lattice, ΔtHL ¼ L=2. To
avoid losing resolution of the string cores due to the
expansion of the universe, the string-core resolution-
preserving approach from [66] is adopted, also known as
extra fattening, in which the coupling parameter is promoted
to a time-dependent constant, λ → a4λ. This extra-fattening
phase lasts for a total time Δtef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0ðt0 þ ΔtHLÞ

p
, so that

at time t0 þ ΔtHL the string-core width is equal to the one at
the end of diffusion. The middle panel of Fig. 1 shows
an example of the network at the end of the extra-
fattening phase.
After evolving the network in an expanding background

for a time ΔtHL that includes the extra-fattening phase,
networks are close to the scaling regime, with the mean
string separation growing almost linearly in conformal time
and the mean-square velocity being constant. However, the
networks have not yet decayed into an isolated loop. We
then evolve the field configuration in a Minkowski back-
ground (a ¼ 1; ȧ ¼ 0) for a maximum time of ΔtHL=2,
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which we find to be long enough for the networks to decay
into a single loop. An example of such a loop is shown in
the right panel of Fig. 1. We find that ∼35% of the
simulations have decayed into single loops after this time,
with the remaining forming multiple loops or infinite
strings, and hence not being suitable for our study.
After finding an isolated loop, we turn on the emission of

GWs and study the evolution of the loop, still in Minkowski
space-time, until it completely decays. It turns out that only
∼40% of the isolated loops could be used for this study. We
discarded those for which the loop either self-intersected
forming multiple loops of comparable size, or became
infinite strings which wrapped itself around the box
(thereby preventing its decay), or was initially much longer
than the box size.

B. Artificial loops

Artificial loops are generated from the intersection of
two pairs of boosted parallel infinite strings, following the
procedure proposed in [56]. We consider lattice coordinates
varying from 0 to L, where L is the lattice length side, and
take the two pairs to be parallel to the z- and x axes,
respectively. Quantities associated with the pair parallel to
the z axis will be denoted with a “1” subscript, and those
with the pair parallel to the x axis with a “2” subscript.
We first describe how the pair parallel to the z axis is

produced. To generate each of the strings, we consider the
Nielsen-Olsen (NO) vortex solution for an infinite string,

φðwÞ
NOðx; yÞ ¼ fðrÞ expðwiθÞ= ffiffiffi

2
p

, where ðr; θÞ are cylindrical
coordinates around the z axis, fðrÞ represents the radial
profile of the vortex, and w ¼ þ or w ¼ − is just a sign that
specifies the winding orientation. A static string solution
(of either winding) can be boosted with velocity v⃗1 ¼
v1ðsin α1; cos α1Þ in the ðx; yÞ plane, as φð�Þ

v⃗1
ðx; y; tÞ ¼

φð�Þ
NO ðx0; y0Þ, where

x0 ¼ −γ1v1s1tþ ½1þ ðγ1 − 1Þs21�xþ ðγ1 − 1Þs1c1y; ð5Þ

y0 ¼ −γ1v1c1tþ ðγ1 − 1Þs1c1xþ ½1þ ðγ1 − 1Þc21�y; ð6Þ

with c1 ¼ cosα1, s1 ¼ sin α1, and γ1 ¼ ð1 − v21Þ1=2.
This allows us to obtain the field and its time derivative.

A pair of strings parallel to the z axis is then constructed
using the product Ansatz [56] on two displaced strings with
opposite windings and boosted with opposite velocities, v⃗1
and −v⃗1, as

φ1ðx;y; tÞ¼
1

v
φðþÞ
v⃗1

�
x−

�
L
2
þa1

�
;y−

�
L
2
þb1

�
; t

�

×φð−Þ
−v⃗1

�
x−

�
L
2
−a1

�
;y−

�
L
2
−b1

�
; t

�
; ð7Þ

where a1 and b1 refer to the displacement of the strings in
the x- and y axes with respect to the center of the box,
respectively; see the left panel of Fig. 2. Note that we
consider equal velocity magnitudes and displacements for
both of the strings of each pair.
The resulting field and its time derivative, evaluated at

t ¼ 0, are modified following [56] to incorporate them in a
periodic lattice. Finally, the complete initial configuration is
obtained by multiplying two pairs of Ansätze, each parallel
to the z and x axis, respectively,

φðx; y; zÞ≡ φ1ðx; y; t ¼ 0Þ × φ2ðz; y; t ¼ 0Þ: ð8Þ
An example of the resulting field configuration is shown in
the left panel of Fig. 3.
In this work, we consider each of the string pairs to have,

in general, different velocity magnitudes, v1 ≠ v2 with
v2 ≥ v1, but the same angle with respect to the normal to
the plane where the strings intersect, i.e., α1 ¼ α2 ¼ α. We
also consider all strings to initially lie almost in that same
plane. We let a1 ¼ a2 be a significant fraction of the lattice
size, typically L=4 or L=6, while b1 ¼ 0 and b2 ¼ 2=

ffiffiffi
λ

p
v.

This choice ensures strings are enough separated so that the
product Ansatz remains valid, while the two pairs are close
enough so that the intersection happens very early in the

FIG. 1. Three-dimensional snapshots of jφj2 ¼ 0.1v2 surfaces from a network simulation with L̃ ¼ 64 and δx̃ ¼ 0.25. The snapshots
correspond to the end of diffusion at τ ¼ τ0 ¼ 70 (left), the end of the extra-fattening phase at τ ¼ 84.5 (center), and the detection of a
single isolated loop at τ ¼ 96 (right), with τ ¼ ffiffiffi

λ
p

vt the program time.

GRAVITATIONAL WAVE EMISSION FROM A COSMIC STRING … PHYS. REV. D 110, 043522 (2024)

043522-3



simulation. The (approximate) separation of two parallel
strings within each pair is denoted L1=4 ¼ 2a.
The initial configuration is evolved using Eq. (4) in a flat

Minkowski background (a ¼ 1; ȧ ¼ 0). The four straight
strings rapidly intersect forming two square-shaped con-
figurations, an inner loop of initial length L0 ≈ 4L1=4, and
an outer loop. Shortly after, the two loops start to shrink
(due to particle emission) and separate from each other. As
we expect the inner loop to be less affected by the initial
condition than the outer loop, we have developed a
procedure to isolate the inner loop once both loops are
sufficiently away from each other. The procedure is based
on the fact that both loops are almost planar and the center
of the inner loop is close to the center of the box; see the
right panel of Fig. 2.
The isolation procedure consists of the following. After

formation, we let the two loops evolve until their separation

is a small fraction (we choose a factor 0.15) of the radius of
the inner loop. At this point, we consider a cylinder of
radius R and axis parallel to the y axis, such that it
encompasses the inner loop and its surface lies halfway
between the two loops. The field outside of the cylinder and
its time derivative are substituted with a smooth configu-
ration, removing the outer loop. The substitution is per-
formed in two steps, repeated for each fixed value of the
coordinate y ¼ y⋆. First, we consider the points ðx; y⋆; zÞ
outside the cylinder with jL=2 − xj < R (red area in the
right panel of Fig. 2). Each possible value of x ¼ x⋆ defines
a line that intersects the cylinder at zI and zII > zI. The field
and its time derivative outside the cylinder in this line are
substituted with a smooth configuration. The phases are
linearly interpolated using the phase values at zI;II, while for
the modulus an Ansatz based on the long-distance behavior
of the NO solution is used,

FIG. 3. Three-dimensional snapshots of the jφj2 ¼ 0.06v2 surfaces from an artificial loop simulation with initial conditions v1 ¼ 0.8,
v2 ¼ 0.6, sin α ¼ 0.5, and simulation parameters L̃ ¼ 64, L1=4 ¼ 32, and δx̃ ¼ 0.25. The snapshots correspond to the start of the
simulation at τ ¼ 0 (left), and to times immediately before (center) and after (right) the application of the isolation procedure at τ ¼ 2.5,
with τ ¼ ffiffiffi

λ
p

vt the program time.

FIG. 2. Schematic representation of the relevant variables used for the creation of a pair of parallel strings (left) and for isolating the
inner loop (right). In the left panel, b has been exaggerated compared to the actual simulations, which use rc ≲ b ≪ a ¼ L1=4=2. In the
right panel, red and blue regions are substituted by a smooth field configuration in two separate steps of the isolation procedure.
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jφðx⋆;y⋆;zÞj ¼
8<
:

ξI
ðΔ−zþzIÞ2þ

ξII
ðLþzþΔ−zIIÞ2þ

vffiffi
2

p ; 0≤ z< zI;

ξI
ðL−zþΔþzIÞ2þ

ξII
ðΔþz−zIIÞ2þ

vffiffi
2

p ; zII <z<L;

ð9Þ

jφ̇ðx⋆; y⋆; zÞj ¼
8<
:

πI
ðΔ−zþzIÞ3 þ

πII
ðLþzþΔ−zIIÞ3 ; 0 ≤ z < zI;

πI
ðL−zþΔþzIÞ3 þ

πII
ðΔþz−zIIÞ3 ; zII < z < L;

ð10Þ
where ξI;II and πI;II are normalization constants that ensure
the configuration is periodic and matches in the surface of
the cylinder, and Δ is a length parameter we set to
Δ ¼ 2=

ffiffiffi
λ

p
v. In a second step, we consider points with

jL=2 − xj ≥ R, and proceed analogously working with
fixed z ¼ z⋆ (blue regions in the right panel of Fig. 2).
Both steps are finally repeated for all values of y⋆. The
central and right panels of Fig. 3 show an example of a field
configuration just before and after isolating the inner loop.
Once the isolation procedure is complete, we turn on GWs
and study the loop until it decays.
We have checked the effect of varying Δ, as well as the

isolation time and the size of the cylinder, finding that the
results are insensitive to these changes as long as (a) both
strings are sufficiently separated from each other, and (b) the
cylinder surface is not too close to any of the two loops.

C. Measures and observables

In order to describe the loop dynamics and energy
transfer(s) we monitor several quantities. For the loop
dynamics and decay characterization, we follow the loop’s
length, energy [58], and angular momentum [56]. The
loop’s length in the lattice frame is determined from
counting the number of pierced plaquettes (taking into
account theManhattan effect [67–69]), while its energy and
angular momentum are defined, respectively, by

Estr ¼
Z

d3xWðφÞ½φ̇φ̇� þ ∇⃗φ · ∇⃗φ� þ VðφÞ�; ð11Þ

J⃗ ¼ −
1

2

Z
d3xWðφÞ½x⃗ × ðφ̇ ∇⃗φ� þ φ̇�∇⃗φÞ�; ð12Þ

where WðφÞ ¼ ðVðφÞ=W0Þ × Θðv2=2 − jφj2Þ is a weight
function, with W0 ¼ λv4=4 and ΘðxÞ the step function.
We additionally measure the energy and spectra of the

massless (θ) and massive (χ) modes [56,70,71]. For a real
field ϕ, its discrete power spectrum is

ΔϕðkÞ ¼
k3

2π2

�
δx
N

�
3

hjϕðkÞj2iΩ̂k
; ð13Þ

with ϕðkÞ the Fourier transform of ϕ and h� � �iΩ̂k
an angular

averaging in k space. For comparison with [56] we also

measure the energy spectrum per linear intervals of the
massless radiation, defined as

EθðkÞ ¼
v2

2
½jθ̇ðk⃗Þj2 þ k2jθðk⃗Þj2�: ð14Þ

III. RESULTS

In this section, we present our results for the decay of
both types of loops into particles and GWs. From now on,
we express physical quantities in terms of dimensionless
program variables: φ̃ ¼ φ=v, ˜x⃗ ¼ ffiffiffi

λ
p

vx⃗, τ ¼ ffiffiffi
λ

p
vt,

κ ¼ k=
ffiffiffi
λ

p
v, Ẽstr ¼ ð ffiffiffi

λ
p

=vÞEstr and J̃ ¼ λjJ⃗j.

A. Loop decay

Wecharacterize the decay of loops into scalar particles and
their decay time, Δτdec, as a function of their initial length,
L̃0, and other physical observables.We report on the lifetime
of 23 network loops with 80≲ L̃0=r̃c ≲ 1700, where
r̃c ¼ 1=

ffiffiffi
2

p
, and of 49 artificial loops divided into 7 sets

according to their boost velocities, with 100≲ L̃0=r̃c ≲ 800.
The simulation parameters are summarized in Tables II
and III in the Appendix.
In Fig. 4(a) we show Δτdec for network loops versus L̃0,

the latter measured from the pierced plaquettes. Although
the points show some scatter, Δτdec scales roughly linearly
with L̃0, indicating a scale-invariant mechanism driving
the decay of the loop. A linear fit, Δτdec ¼ AL̃0 þ B, is
presented (solid line and band). We find a similar fit against
the initial string energy, Δτdec ¼ CẼstr;0 þD, allowing us
to estimate the particle-emission power, Pφ ≡ v2P̃φ, as
P̃φ ≡ dẼstr;0=dτ ¼ 1=C ¼ 11.2� 1.6.
In Figs. 4(b) and 4(c) we presentΔτdec for artificial loops

versus L̃0 (≃4L̃1=4), and the initial angular momentum, J̃0,
respectively, with each color representing a different set of
velocities. Figure 4(b) shows that artificial loops live longer
than network loops of the same length, for the range of
lengths that can be compared. Once again, linear relations
are observed, although the data show a clear dependence on
the velocities, indicating that no linear scaling can fit all
cases simultaneously. The particle emission power ranges
between P̃φ ≡ dẼstr=dτ ¼ 1=C ≈ 3–8, depending on the
velocity pairs. Results of all fits discussed so far, both for
network and artificial loops, can be found summarized in
Table I. We note that the case v1 ¼ v2 ¼ 0.6 corresponds to
the same setup used in [56], which found the linear fit
coefficient A to be ∼40% larger than ours.
Figure 4(c) shows a power-law fit to all artificial loops

that roughly scales as Δτdec ∝ J̃3=50 , highlighting angular
momentum as a major ingredient affecting loop decay.
Retrospectively, this might also explain the scatter of points
in Fig. 4(a), since we cannot control J̃0 for network loops.
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Several consistency checks have been performed to
ensure robustness of our results. We observe negligible
variations of Δτdec when changing α or reducing the lattice
spacing, and changes of less than 10% in Δτdec of artificial
loops when increasing the ratio L̃=L̃1=4.

1. Particle emission

To complement our results, we comment also on the
distribution of particles produced in the decays, corre-
sponding to both massless (θ) and massive (χ) field
excitations. These are identified, respectively, with the
angular and radial perturbations from the true vacuum of
the theory, φ ¼ 1ffiffi

2
p ðvþ χÞ expðiθÞ.

In Fig. 5 we plot as an example the power spectra of θ
(left) and χ (right) [cf. Eq. (13)] at the end of the decay of an
artificial loop, generated with v1 ¼ v2 ¼ 0.6, sin α ¼ 0.4,
and L̃1=4 ¼ L̃=2 ≈ 141. We note how the spectrum of the
massless field is power-law suppressed at high modes,
while the spectrum of the massive field peaks around κ ∼ 1,
albeit with an amplitude much smaller than the massless
field spectrum at the same scale. The spectrum of θ reflects

that soft modes (κ ≪ 1) of (massless) radiation can be
easily emitted, while the spectrum of χ reflects that massive
mode emission is possible but it is very suppressed
compared to the massless emission.
We note that [56] showed a peak emerging in the

spectrum of θ for artificial loops, at a scale half the mass
of the massive mode, k ¼ mχ=2 (κ ≃

ffiffiffi
2

p
=2 ≈ 0.7 in our

units). In Fig. 6, we present in red our results for the same
energy spectrum (after the loop decayed), as defined in
Eq. (14). Performing a power-law fit we observe that the
spectrum scales roughly as ∝ k−1, as observed in [56].
However, we detect no presence of a peak. Interestingly, if
we set the initial radius of the string to be larger than the
physical one by modifying the NO vortex solution as
fðrÞ → fð2rÞ, we observe a peak appearing at the same
scale scale as in [56]. In our case it looks like this peak is
related to an excess energy in the radial mode of the string
due to an excessively large core width set in the initial
strings’ configuration. Furthermore, we only observe
“bulges” in the three-dimensional representation of the
field, as those discussed in [56], when considering this
extra-large initial radius.

FIG. 4. Lifetime as a functions of initial length for network (a) and artificial loops with different boost velocities (b), and as a function
of initial angular momentum for the artificial loops (c), in a logarithmic scale. Lines and shaded regions in (a) and (b) correspond to
linear-fit results, and to a power-law fit in (c).

TABLE I. Results of linear fits Δτdec ¼ AL̃0 þ B and Δτdec ¼ CẼstr;0 þD, for network and artificial loops. All
artificial loops are simulated with sin α ¼ 0.4.

Type of loop A × 103 B C × 103 D

Network 185� 22 5� 14 89� 13 −1� 17
Artificial, v1 ¼ 0.9, v2 ¼ 0.9 571� 10 −26� 3 270� 9 −22� 6
Artificial, v1 ¼ 0.9, v2 ¼ 0.6 430� 30 −13� 11 223� 14 −14� 9
Artificial, v1 ¼ 0.9, v2 ¼ 0.3 534� 14 −23� 5 269� 9 −20� 6
Artificial, v1 ¼ 0.9, v2 ¼ 0.0 706� 19 −45� 6 348� 9 −40� 6
Artificial, v1 ¼ 0.6, v2 ¼ 0.6 227� 11 −3� 4 125� 5 −1� 3
Artificial, v1 ¼ 0.6, v2 ¼ 0.3 260� 15 −9� 5 140� 8 −6� 5
Artificial, v1 ¼ 0.3, v2 ¼ 0.3 280� 30 −1� 9 154� 15 2� 9
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B. GW emission

The GW emission from a string loop is obtained by
solving

ḧij − ∇⃗2hij ¼ 4m−2
p ½Reð∂iφ∂jφ�Þ�TT; ð15Þ

where hij are tensor metric perturbations that represent
GWs and obey the tranversality and tracelessness condi-
tions, ∂ihij ¼ hii ¼ 0. Here, ½� � ��TT implies transverse-
traceless projection and mp ≈ 2.44 × 1018 GeV is the
reduced Planck mass. We work in the linear gravity regime
and neglect backreaction of the GWs onto the loop
dynamics, something we justify self-consistently later.

The GW energy-density spectrum, normalized to the total
scalar-field energy density, ρφ, is [50]

ΩGWðk; tÞ≡ 1

ρφ

dρGW
d log k

¼ k3m2
p

8π2L3ρφ
hḣijðk; tÞḣ�ijðk; tÞiΩ̂k

;

where h� � �iΩ̂k
represents angular averaging in k space. The

total GW energy emitted by a loop is obtained via

EGWðtÞ ¼ ρφL3

Z
ΩGWðk; tÞd log k: ð16Þ

In terms of program variables, we write these expressions
as ẼGW¼ð ffiffiffi

λ
p

=vÞEGW=ðv=mpÞ2, and Ω̃GWðκ; τÞ ¼ ΩGWðk;
tÞ=ðv=mpÞ2.
We first analyze lattice discretization effects on the GW

spectrum emitted by a loop. For network loops, we run a
high-resolution simulation with δx̃ ¼ 0.125, and create new
lattices with lower resolution, δx̃ðpÞ ¼ pδx̃ (p ¼ 2, 3, 4), by
eliminating p − 1 sites (per dimension) of every p consecu-
tive points of the original lattice. For artificial loops, we run
simulations with different δx̃ and fixed L̃ ¼ 192, L̃1=4 ¼ 96,
v1 ¼ 0.6, v2 ¼ 0.7, and sin α ¼ 0.5. Figures 7(a) and 7(b)
show the evolution of the GW spectrum for these network
and artificial loops, respectively. In all cases, GW emission
peaks at IR scale κ ∼ ð2–6Þκ0, with κ0 ¼ 2π=L̃0 the scale of
the initial string length, and there is good agreement between
spectra up to a scale κ ∼ 0.1κc, with κc ≡ 2π=r̃c the scale of
the core radius (black dashed line). A second peak emerges at
higher modes, but its height is suppressed as the UV
resolution is improved, indicating it is a lattice artifact arising
when the string core is not well resolved. We thus compute
the total energy emitted in GWs by integrating the spectrum
up to κcut, guaranteeing independence from δx̃. Note that the
GW power is completely suppressed for scales smaller than
the core radius, κ > κc.

FIG. 5. Power spectra of massless (left) and massive (right) particles just after the decay of an artificial loop with v1 ¼ v2 ¼ 0.6 and
sin α ¼ 0.4. Dashed vertical lines indicate the scale of the string width, κc ¼ 2π=r̃c ≈ 9.

FIG. 6. Energy power spectrum per linear interval of massless
radiation at the end of the decay of an artificial loop initialized
with v1 ¼ v2 ¼ 0.6 and sin α ¼ 0.4, both in the case of initial
core radius rini equal to the physical one (red) and twice as big
(blue). We observe a consistent scaling with that in [56], but
only find the sharp peak for the physically unrealistic initial
conditions.
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We also study the effect of varying the IR coverage for
artificial loops. Fixing L̃1=4 ¼ 64, δx̃ ¼ 0.25, v1 ¼ 0.6,
v2 ¼ 0.7, and sin α ¼ 0.5, we vary the box size. The
resulting GW spectra are shown in Fig. 7(c), multiplied
by a factor that accounts for lattice-size dependencies.
While large discrepancies are observed for the smallest
box, the spectra converge as the box size increases. GW
emission is suppressed for scales larger than the initial loop
length κ < κ0 (black dotted line). A zoomed-in version of
the spectra from the largest box is shown in Fig. 8(a), where
we note the presence of various peaks in the spectrum.
Although the peak structure resembles the harmonic pattern
expected in NG strings, peak frequencies here are not in
harmonic proportions, and their absolute and relative
location actually varies between early (blue) and late

(red) times. We have fitted the high-frequency tail of the
spectrum (dotted-dashed line), which approximately scales
as ∝ k−3=2, representing a steeper fall than the standard NG
tail, ∝ k−4=3, for cusp-dominated GW emission.
We determine a (rolling-average) measurement of the

total GW power emitted by a loop as

PGWðtÞ≡ L3ρφ
2T

Z
tþT

t−T
dt0

Z
kcut

0

Ω̇GWðk; t0Þd log k; ð17Þ

which in terms of program variables can be written as
P̃GW ¼ ðPGW=v2Þ=ðv=mpÞ2. This is shown in Fig. 8(b) for

T̃ ≡ T=
ffiffiffi
λ

p
v ¼ 15 and κcut ¼ 1. The latter is chosen to

prevent inadvertently capturing the artificial UV peak.

FIG. 7. GW energy-density spectra evolution for network (a) and artificial loops (b) with varying UV resolution, δx̃, and fixed lattice
size, L̃, and for artificial loops with varying the L̃ and fixed δx̃ (c). Dashed and dotted vertical lines indicate the scale of the string width,
κc ¼ 2π=r̃c, and of the initial length of the string, κ0 ¼ 2π=L̃0, respectively. Spectra go from early to late times from bottom to top, with
lines separated by two units of program time.

FIG. 8. (a) Evolution of the GWenergy-density spectrum of an artificial loop generated with v1 ¼ 0.6, v2 ¼ 0.7 and sin α ¼ 0.5. Each
colored line corresponds to a different time, going from purple to red, with separations of two units of program time. The vertical dotted
line indicates the scale of the initial string length and the dotted-dashed line is a fit to the high-frequency tail of the final-time spectrum.
(b) Rolling-averaged GW power emitted by network loops of different length (left) and artificial loops with distinct boost velocities
(right), computed using Eq. (17). For comparison the typical Nambu-Goto result (for μ ¼ πv2 and Γ ¼ 50) is also shown.
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The left panel of Fig. 8(b) corresponds to network loops
of different L̃0, simulated in lattices with varying L̃ and δx̃.
In all cases theGWpower emitted does not depend on L̃0 and
is roughly constant in time, with fluctuations that depend on
the specific details of the dynamics of each loop.At late times
P̃GW drops off as the loops finally disappear. Remarkably,
there is no evidence of any systematic variation of the GW
power emitted due to the shrinking of the loops. Between
τ ¼ 30–100, the average emission of all loops is P̃GW ¼
240� 80 (gray dashed line and band). Although there is no
a priori reason to expect this to be similar to the NG
prediction, PNG ¼ ðΓ=8πÞμ2=m2

p, it is still instructive to
make the comparison. Using μ ¼ πv2 and Γ ¼ 50 [72], one
gets P̃NG ¼ πΓ=8 ≈ 20, roughly an order of magnitude
smaller than our result (horizontal dashed line).
Results for artificial loops with different boost velocities

are presented in the right panel of Fig. 8(b). All simulations
are performedusing L̃¼ 450=

ffiffiffi
2

p
≈319 and δx̃¼0.25=

ffiffiffi
2

p
≈

0.177, with initial string separation L̃1=4 ¼ L̃=3, chosen to
reduce IR effects. For all choices of fv1; v2g, the GW power
emission is of a similar order as for network loops, againwith
an amplitude that does not show large variations as the loops
shrink. Fluctuations are observed, which we believe are in
part related to superposition of different GW fronts arising
from thevery peculiar symmetryof the squared configuration
of the loops. Between τ ¼ 30–100 the average emission is of
the order P̃GW ¼ 190� 80 (gray dashed line and band),
again an order of magnitude larger than the NG result.
Comparing the GW and particle emission rates for both

types of loops leads to

PGW

Pφ
≈

8<
:

ð240�80Þ
ð11.2�1.6Þ

�
v
mp

�
2
; Network loops;

ð190�80Þ
ð5.2�2.5Þ

�
v
mp

�
2
; Artificial loops;

ð18Þ

where Pφ for artificial loops is taken as an average over all
studied families. As the string scale cannot be arbitrarily
large, e.g., CMB constraints require v=mp ≲ 10−6–10−3

[15,73], we conclude that PGW=Pφ ≪ 1, indicating that
loop decay into GWs is completely subdominant compared
to particle emission. This justifies a posteriori neglecting
backreaction of GWs onto the loops.

IV. DISCUSSION AND CONCLUSIONS

In this work, we study the decay of global string loops
into scalar particles and GWs. We find the former totally
dominates the decay for any acceptable vacuum expect-
ation value of the strings, v, independently of their shape
and initial conditions, with a universal suppression as

PGW

Pφ
≈Oð10Þ

�
v
mp

�
2

≪ 1: ð19Þ

Our lattice study shows that the above conclusion is robust
for length-to-width ratios 80≲ L̃0=r̃c ≲ 1700, with no
indication that this would change for larger ratios.
Extrapolating our results to cosmological scales provides a

new approach to calculate the GWB spectrum from a global
string network. While current attempts are based on lattice
simulations of entire networks [74–76], or on a combination
of field theory and NG ingredients [51,77–79], we suggest
obtaining theGWB spectrum from a convolution of the loop-
number density at cosmological scales (see, e.g., [80–85])
with our newly calibratedGWpower emission. Crucially, we
have determined the GW emission of individual loops
without having to resolve the separation ds between strings
in the network, and without losing resolution of the string
core as field evolution progresses. Taking into account
that the GW power emission we obtain is independent
of the string length and scales as ∝ v2ðv=mpÞ2—and
not proportional to a logarithmically growing tension as
∝ v2ðv=mpÞ2 log2ðds=rcÞ—together with the fact that global
string loops are short-lived, we anticipate that our results
point to a suppression of the overall amplitude of the GWB
from global cosmic string networks. We will present the
details of this in a separate publication.
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APPENDIX: SIMULATION PARAMETERS

This appendix summarizes the parameters used in the
simulations. Table II refers to network loops, characterized
by fL̃; δx̃; elstrg, while Table III presents the initial conditions
(upper table) and simulation parameters fL̃; L̃1=4; δx̃g (lower
table) used for artificial loops. Note that in this case all sets of
parameters are used for each family of initial conditions.
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