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We revisit a class of simple single-field inflation models and demonstrate that they can readily produce a
negligible tensor/scalar ratio r. Motivated by recent work suggesting the need to introduce higher order
operators to stabilize unregulated potentials, as well as by work indicating that such terms can have
significant effects on observable predictions, we explicitly construct corrected versions of the quadratic
hilltop potential that are motivated by an effective field theory expansion. We employ Markov Chain
Monte Carlo methods and optimization techniques to sample viable models and minimize r. We find that
such potentials can readily lower r values below projected CMB-S4 sensitivity, while still remaining within
observable constraints on ns. Furthermore, we find that the minimum r reached for each order of the
expansion considered is well described by a power law rminðqÞ ∝ q−B before asymptoting to a value of
rmin ∼ 10−11, where q is the order to which the expansion of VðϕÞ is carried out.

DOI: 10.1103/PhysRevD.110.043521

I. INTRODUCTION

Inflation is currently the best theory we have to explain
and describe the initial state of the early Universe [1–7]. The
theory of inflation proposes that the early Universe expe-
rienced a period of accelerated, quasiexponential expansion.
During this period, inflationary dynamics produced a nearly
flat and homogeneous Universe, while quantum fluctuations
in the inflaton field itself imprinted the Universe with a
characteristic spectrum of scalar density fluctuations/
inhomogeneities that would seed the large-scale structure
of the late-time Universe. The statistical features of this
spectrum, observed in the Cosmic Microwave Background
(CMB), largely align with generic inflationary predictions
that suggest that these fluctuations should be adiabatic,
Gaussian, and nearly scale invariant [8–10].
While the inflationary paradigm has been a spectacular

success, seen a number of novel predictions confirmed, and
justifiably become the dominant paradigm for modeling
the early Universe [11–16], the enthusiasm for inflation has
been moderately tempered in recent years. This is no doubt
partially due to the failure to detect observable B modes,
which have been long hailed as a “smoking gun” for
inflation (see, e.g., [17,18]; cf. [19]) because they would
inform us about another key prediction of inflation models:
the tensor/scalar ratio r. This observable has been one of the

primary parameters used to constrain inflationary models
because it gives us direct information concerning the
microphysics of inflation, i.e., its energy scale and the
form of its potential. Furthermore, it has traditionally
been held that standard, “simple” single-field inflationary
models typically produce large, or at least observable,
tensor/scalar ratios [20]. Consequently, the null results
have eliminated many of the simplest inflation models
and inspired some to explore alternative approaches with
renewed attention such as bouncing and string gas
cosmologies (although inflation remains the dominant
paradigm) [11,12,15,21–31].
However, the answer to the question of what we can infer

about the status of simple inflation models based on the
detection or nondetection of r is a subtle business. This of
course depends upon one’s definition of “simple,” which,
similarly to [32],we take to roughly be that themodel consists
of a single, canonical scalar field with a potential that can be
approximated by an effective operator expansion (cf. [33,34]
for further discussions on possible definitions of “simple” in
this context). To this point, the authors of [32] provide a
straightforward counterexample to the claim that simple
single-field inflation models cannot produce a small tensor/
scalar ratio: they construct a hilltop model with a potential
described by a leading order quadratic term, and show that
subleading order operators in the potential can induce an
earlier end to inflation, and in doing so, lower r “arbitrarily.”
This result intersects with some more general observa-

tions, especially emphasized by [35] and further explored
in [36,37], that
(1) There are a number of inflation models in the

literature with unregularized potentials that are
unbounded from below.
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(2) Producing a physically viable inflation model
depends upon stabilizing, or “correcting,” the po-
tential. Otherwise, the universe would immediately
recollapse.

(3) The observable predictions of inflation models can
depend sensitively on the nature of the correction
terms that ensure inflation ends smoothly.

In light of these observations, it remains to be seen whether
and to what extent an arbitrarily small tensor/scalar ratio
can be realized within the construction of [32].
In this paper, we answer this question by explicitly

constructing models of inflation that can realize a vanish-
ingly small r. To do so, we explore corrections to
the quadratic hilltop model as suggested by [32] to show
how a small r can be realized within this construction.
Furthermore, while we find that these models can easily
produce values for r well below even the most optimistic
observational sensitivities, we also find that r can essen-
tially be lowered arbitrarily, at least until its value begins to
asymptote around r ∼ 10−11.
The paper proceeds as follows. Section II describes the

theory of inflation, slow-roll dynamics, and the observables
associated with inflation models. Section III discusses the
necessity of correcting, or regularizing, unbounded infla-
tionary potentials, and explores some of the ways that this
has been done in the literature. This section also shows how
the standard quadratic hilltop model can be corrected by
considering the behavior of terms in the generic Taylor
expansion of the potential. Section IV explores the obser-
vational predictions for r and ns for this general model,
and shows how r can be lowered in a nearly arbitrary way
before hitting a lower bound. Section V concludes.

II. INFLATIONARY SLOW-ROLL DYNAMICS

We begin with a discussion of the basic inflation
scenario: a single, canonical scalar field ϕ minimally
coupled to gravity in a homogeneous and isotropic
Friedmann-Lemaître-Robertson-Walker background. The
scale factor of the Universe aðtÞ evolves according to
the Friedmann equations

H2 ¼ 1

3M2
Pl

�
1

2
ϕ̇2 þ VðϕÞ

�
; ð1Þ

Ḣ ¼ 1

2

ϕ̇2

M2
Pl

; ð2Þ

where H ¼ ȧ=a and MPl is the Planck mass; and the scalar
field ϕ evolves according to the Klein-Gordon equation in a
Friedmann background,

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0; ð3Þ

where V 0 ¼ dV=dϕ.

While these are the full dynamics, in order to produce the
needed accelerated expansion, inflation occurs when the
potential VðϕÞ is the primary driver of the dynamics. This
permits us to work in the slow-roll approximation. In this
approximation, the kinetic term and the field acceleration
are both vanishingly small: ϕ̇2 ¼ ϕ̈ ≃ 0. This leads to the
following system of simpler equations:

H2 ≃
VðϕÞ
3M2

Pl

; ð4Þ

3Hϕ̇ ≃ −V 0ðϕÞ: ð5Þ

The slow-roll approximation can be conveniently para-
metrized in terms of the slow-roll parameters ϵ and η:

ϵ≡M2
Pl

2

�
V 0

V

�
2

; ð6Þ

η≡M2
Pl
V 00

V
: ð7Þ

The accelerated expansion that inflation induces can only
be sustained when these parameters are small, i.e., ϵ ≪ 1
and η ≪ 1, and inflation ends when ϵðϕEÞ ≃ 1.
We can also use this to calculate the number of e-folds

NðϕÞ between the end of inflation E and some earlier initial
time I when the fluctuations exit the horizon and freeze:

NðϕÞ ¼ log

�
aE
aI

�
¼

Z
ϕE

ϕI

dϕ
MPl

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðϕÞp : ð8Þ

Inflation generally needs N ≃ 60 e-folds to successfully
resolve the aforementioned fine-tuning puzzles as well as to
be compatible with observations.
This theory provides an explanatorily satisfying solution

to the fine-tuning puzzles that inspired its development
and elegantly produces a flat, homogenized universe.
Where inflation really shines, however, is that the theory
also explains and predicts how the Universe generates the
tiny inhomogeneities observed in the CMB that would later
grow into the large-scale cosmic structure that we see today.
Tiny quantum fluctuations in the inflaton field itself δϕ
produce density perturbations in the metric that inflationary
dynamics then stretch and amplify over cosmological
scales. Scalar density perturbations are produced with a
power spectrum,

Pϕ ¼ hjδϕðkÞj2i ∝ AsðkÞns−1; ð9Þ

and amplitude

As ¼
1

8π2
1

ϵ

H2

MPl
; ð10Þ
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where k refers to the scale/wave number of the mode and ns
is the so-called scalar spectrum index—a key observable
that characterizes the scale dependence of the fluctuation
power spectrum which is defined as

nsðkÞ − 1 ¼ d lnPϕ

d ln k
: ð11Þ

Additionally, inflation produces primordial gravitational
waves, which are tensor perturbations that produce a
distinctive B-mode polarization pattern. The amplitude
of tensor perturbations is given by

At ¼
2

π2
H2

M2
Pl

; ð12Þ

which allows us to define the scalar/tensor ratio r as

r ¼ As

At
: ð13Þ

The quantities r and ns are the two primary observables
used to constrain inflationary models. Furthermore, they
can be directly calculated from the slow-roll parameters,
leading to

ns − 1 ¼ −6ϵðϕIÞ þ 2ηðϕIÞ; ð14Þ

r ¼ 16ϵðϕIÞ; ð15Þ

where quantities are evaluated when the modes exit the
horizon at ϕI .

III. UNREGULARIZED INFLATION MODELS
AND STABILIZING CORRECTIONS

A. Observables are sensitive to corrections

There are many models of inflation that have been
considered which have potentials that are unbounded from
below. Hilltop models are among these and will be the
primary focus of this paper. This class of models has been
investigated in a wide variety of contexts including inflation
and dark energy (see, e.g., [32,36,38–48]), and is described
by a potential of the following form:

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
n
�
; ð16Þ

where V0 is the energy scale at the height of the potential, μ
is a mass scale, and n is an integer. While the region near
the top of the potential clearly satisfies the basic criteria for
a successful inflationary model, one can also easily see
from Fig. 1 that such potentials are unbounded from below.
This is problematic because once V < 0, the universe will
stop expanding, eventually begin to collapse, and fail to
produce a viable cosmology [35,49]. Other potentials with

this feature include D-brane inflation, radiatively corrected
Higgs inflation, and exponential supersymmetric inflation
(see, e.g., [14]). Owing to these considerations, [35]
persuasively argues that any model with this feature cannot
be considered as a viable inflationary model, and further-
more, that for any of them to be valid they must be
corrected such that they form stable minima that can secure
a smooth exit from inflation.
As it turns out, the nature of this stabilization at the

minima can dramatically affect observable predictions for r
and ns [14,35,37]. Thus, we cannot naively assume the
oft-cited r − ns predictions derived from Eq. (16) or others
like it are representative of the predictions for viable
versions of these models; rather, we need to actually
construct stable models and compute the predictions.

B. Stabilizing the quadratic hilltop model

Inspired by the results of [32], we would like to explore
constructing a stable version of the quadratic hilltop model
(n ¼ 2), with the goal of seeing what freedom lies in higher
order terms to lower r “arbitrarily.”
How do we go about doing this? There are a few options.

As [35] notes, one can somewhat trivially stabilize the
potential by introducing a finely tuned correction term
that very closely approximates the form of Eq. (16) for
ϕ < ϕmin, but then at ϕmin becomes constant and turns
sharply upward for ϕ > ϕmin. This preserves the predic-
tions of Eq. (16), but in an obviously ad hoc and
unsatisfying manner. However, we want to explore how
to lower r while remaining viable in ns, rather than merely
retain the same predictions.
An arguably more natural option would be to square

Eq. (16). This has been pursued for the n ¼ 2 quadratic
hilltop squared inflation (also known as double-well
inflation) [12,14] and n ¼ 4 quartic hilltop inflation [36].

FIG. 1. Potentials VðϕÞ for quadratic (n ¼ 2) and quartic
(n ¼ 4) hilltop models normalized to Vð0Þ ¼ V0 ¼ 1 with
μ ¼ 1. While the top of the hill is suitable for inflation, these
potentials eventually become negative. These results are unphys-
ical and would lead the postinflationary universe to immediately
recollapse [35,49].
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Yet, in both cases, squaring the potential has the effect of
raising, rather than lowering, r. For double-well inflation,
r lies almost entirely outside data constraints, while quartic
hilltop squared inflation remains viable, although its
predictions for r are pushed up notably.
Yet another option, which has been pursued in [37] for

the quartic hilltop model, is to add a polynomial term to
stabilize the potential. For instance, one could stabilize the
quadratic hilltop potential in the following way:

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
2

þ αp

�
ϕ

μ

�
p
�
; p > 2; ð17Þ

where one can analytically work out the value of αp
to ensure that the potential reaches its minimum at zero.
That is,

ϕvev ¼ μ

�
2

pαp

� 1
p−2
; ð18Þ

and requiring that VðϕvevÞ ¼ 0 allows us to solve for

αp ¼
�
p
2
− 1

�ðp
2
−1Þ�p

2

�
−p

2

: ð19Þ

However, just as [37] found in the case of the quartic
hilltop model, this has the effect of raising the predictions
for r and generally shifts curves in the r − ns plane up and
toward the left, rather than down and toward the right. The
higher order the single polynomial correction is, the closer
that the inflationary observables will match the uncorrected
model because the correction term will have less of an
effect on the potential during the stages at which inflation is
occurring; consequently though, adding a single polyno-
mial stabilizing term will not lower r. This is partially
because simply adding a single correcting term will have
the effect of making inflation end later, whereas the results
of [32] indicate that the freedom to lower r is at least
somewhat tied to the ability to reduce ϕE. See Fig. 2 where
this potential is depicted for p ¼ 4.
How then do we lower r? Taking our cue from the

suggestive results in [32], we will need to construct higher
order terms that induce an earlier end to inflation. Let us
briefly consider an ad hoc example to explicitly see how
one of such potential could produce a lower r:

VðϕÞ ¼ V0

�
1 − β2

�
ϕ

μ

�
2

− β4

�
ϕ

μ

�
4

þ β6

�
ϕ

μ

�
6
�
; ð20Þ

with ϕvev ¼ μ=
ffiffiffi
3

p
and the coefficients β2 ¼ 3, β4 ¼ 9, and

β6 ¼ 27 chosen to ensure VðϕvevÞ ¼ 0. As one can see in
Fig. 2, the introduction of an additional negative term
causes the potential to dip more steeply and end inflation

before either the quadratic hilltop model of Eq. (16) or the
potential with the polynomial correction at p ¼ 4 in
Eq. (17). However, the final correction term is positive
and successfully provides a smooth end to inflation. See
Fig. 3 for the r − ns curves resulting from these different
hilltop potentials.

IV. RESULTS

While the above options are straightforward ways
one could think of to stabilize the potential, they are all
somewhat ad hoc. As any analytic potential admits of a
Taylor expansion,

V ¼ V0 þ
dV
dϕ

����
ϕ¼0

ϕþ 1

2

d2V
dϕ2

����
ϕ¼0

ϕ2 þ 1

6

d3V
dϕ3

����
ϕ¼0

ϕ3 þ � � � ;

ð21Þ

there are a huge number of possibilities that could show
up at higher orders. Thinking of this as an effective field
theory [51], the relevant symmetries and energy scale cutoff
will determine which of the terms show up and at what
order the expansion terminates. There are many potentials
whose leading order terms are quadratic and thus would be
well represented at leading order by the quadratic hilltop
model, but with a number of higher order terms that could
perhaps serve our purposes to both stabilize the potential,
as well as modify observable predictions for r or ns.
Thus, given our ignorance regarding inflationary energy

scales and a lack of any especially compelling theoretical
motivations to consider stabilizing correction terms of any

FIG. 2. The potentials VðϕÞ for the quadratic hilltop model
[Eq. (16) for n ¼ 2], a polynomial correction to the hilltop
quadratic model [Eq. (17) for p ¼ 4], and a more involved
potential involving a series of multiple polynomial terms [given
by Eq. (20)]. For visualization purposes, all potentials have been
normalized to Vð0Þ ¼ V0 ¼ 1 and the mass scale chosen as
μ ¼ 1. One can easily see from these potentials that the nature of
the correction terms involved will have an impact on when
inflation ends and the resulting observable predictions.

WILLIAM J. WOLF PHYS. REV. D 110, 043521 (2024)

043521-4



particular type, we will work very generally and consider
models given by a polynomial expansion

VðϕÞ ¼ V0 þ
Xn¼q

n¼2

an
n!

�
ϕ

μ

�
n
; ð22Þ

where the various an’s represent expansion coefficients of
approximately Oð1Þ, and from now on we choose μ ¼ MPl
so that ϕ is scaled as ϕ → ϕ=MPl. As depicted in Eq. (23),
we restrict a2 < 0 in order to ensure that our leading order
term is described by the quadratic hilltop model, while an,
where 2 < n < q, can take positive or negative values, and
aq is the order at which the expansion terminates and must
be positive to ensure that the potential stabilizes.

Coefficient Range

a2 ∈ ½−1.0;−:01�
a2<n<q ∈ ½−1.0; 1.0�
aq ∈ ½:01; 1.0�

ð23Þ

So, for example, going out to q ¼ 6 would be given by the
following:

VðϕÞ¼V0þ
a2
2!
ϕ2þa3

3!
ϕ3þa4

4!
ϕ4þa5

5!
ϕ5þa6

6!
ϕ6; ð24Þ

where a6 is required to be positive, a2 is required to be
negative, and all the an’s in between are bounded as
indicated above in Eq. (23). Of course, there is a tremen-
dous amount of freedom in an expansion of this type, and
the resulting potentials can take on a number of shapes,
possibly having multiple minima. Thus, when we generate
a potential, we then span a wide range of ϕ to find the
global minimum and adjust V0 such that VðϕvevÞ ¼ 0 at
this point (see [52] for a similar setup with more general
polynomials that include linear terms). Here we choose to
span from ϕ∈ ½0; 20MPl� in search of stabilizing minima.
Given the high dimensionality of the parameter space

and potential degeneracies between the parameters, we
will pursue two strategies to explore it and assess the
observational predictions of a single-field model given by
an expansion of the form in Eqs. (22)–(23). In Sec. IVA,
we will pursue a Markov Chain Monte Carlo (MCMC)
strategy to sample values from the parameter space to
ascertain some generic features of this model. In Sec. IV B,
we will pursue minimization strategies to see how far we
truly can push r with this general setup.

A. Covering the r−ns plane
We begin by exploring MCMC simulations to sample the

parameter space described in Eq. (23) for the potential
given in Eq. (22). There are a number of ways to go about
this, but here we found that sampling the parameters from
Eq. (23) in a Latin hypercube while uniformly sampling
e-fold values in the range N ∈ ½50; 70� was effective for
probing the observable parameter space. Furthermore, we
restricted ourselves to viable models that have a scalar
spectral index within the Planck allowed regions, which is
approximately :955 ≥ ns ≤ :975. While we could extend
out to any order in the expansion given by Eq. (22), we
found that the r − ns plane rapidly becomes saturated well
beyond sensitivity forecasts for future CMB experiments
by the time we get to q ¼ 6. So, in this section, we focus on
orders q ¼ 4, 5, 6.
Beginning with q ¼ 4, we sampled until we had

obtained ∼10;000 viable models, finding that at this order
the observable predictions for this model have a relatively
tight structure that, for the most part, predict higher r values
than the uncorrected quadratic hilltop model. In light of the
discussion of Sec. III B and the results of [37], this is not
terribly surprising. The stabilizing correction term occurs at
a4 (a relatively high order), meaning that it will have a more
significant impact on the potential trajectory during infla-
tion than it would if it were a higher order term. Meanwhile,

FIG. 3. Observable predictions in the r − ns plane for the
potentials depicted in Fig. (2) at N ¼ 60 e-folds of inflation. The
contours are from Planck 2018 [9], and the improved Bicep/Keck
2018 constraints [50]. The blue dotted line corresponds to the
uncorrected quadratic hilltop model (cf. Fig. 1 in [32] or Fig. 4 here
for the same predictions plotted on a log scale), while the yellow line
corresponds to the potential with a single polynomial correction
and the green lines corresponds to the potential with a series of
polynomial corrections. We can see that for the potential that
received a single polynomial correction the predictions for r are
raised, while for the potential that received a series of polynomial
corrections the predictions for r are lowered in part of the plane
before turning sharply upward. There is a tremendous amount of
freedom in higher order terms to affect inflationary observables.
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there is not that much freedom in a2 or a3 to induce an
earlier end to inflation.
Moving to orders q ¼ 5 and q ¼ 6, we sampled in a

Latin hypercube until we obtained ∼50; 000 viable models
for both q ¼ 5 and q ¼ 6 because the parameter space is
significantly larger and more varied than in the q ¼ 4 case.
We find that the predictions begin to rapidly saturate the
r − ns plane, and that the r values can be pushed signifi-
cantly lower.1 Again, considering the results of [37], this
more varied behavior makes sense. The fact that the
stabilizing correction term is higher order means that it
has less of an impact on the actual period of inflation, only
coming into play at the very end where it sharply corrects
and stabilizes the potential. At the same time, there is more

freedom in the other orders to carve out an inflationary
history that lowers r.
These results are also significant for another reason.

Sensitivity forecasts for the next generation CMB-S4
experiment project a sensitivity of r ∼ 10−3 [53]. Here,
the observable predictions for the model given by the
expansion we are considering covers essentially the entire
viable ns range and many orders of magnitude below the
sensitivity forecasts in r. This is yet another suggestion, in
alignment with both [32] and [35], that “simple” single-
field inflationary models can never be ruled out with a
nondetection of r.2 These results are explored and sum-
marized in Figs. 4 and 5.

B. Optimizing a minimum value for r

While it is clear that models described by the expansion
in Eq. (22) can cover the observable parameter space in the

FIG. 4. Results of MCMC sampling the inflation model
described by the expansion and parameters in Eqs. (22)–(23).
The red outline contains the results for q ¼ 4, the green outline
contains the results for q ¼ 5, the blue outline contains the results
for q ¼ 6, the blue dotted line represents the predictions for the
uncorrected quadratic hilltop model atN ¼ 60 e-folds of inflation
(cf. Fig. 1 in [32] or Fig. 3 here), the black dashed line represents
the observational forecasts for the next generation CMB-S4
experiment which project a sensitivity of r ∼ 10−3 [53], and
the contours representing the allowed regions of parameter space
are from Planck and Bicep/Keck respectively [9,50]. While the
sampled space for the q ¼ 4 model is relatively tight, we see in
going to orders q ¼ 5 and q ¼ 6 that these models rapidly begin
to saturate the r − ns plane all the way down to r ∼ 10−5 (and
below)—roughly 2 orders of magnitude below the projected
sensitivity of CMB-S4.

FIG. 5. Scatter plot results of MCMC sampling the
inflation model described by the expansion and parameters in
Eqs. (22)–(23). As before the red represents q ¼ 4, the green
represents q ¼ 5, and the blue represents q ¼ 6. While Fig. 4
only depicted the regions that encompassed the parameter space
for the various q orders in the expansion that were explored, this
figure gives some insight into how the points are distributed. We
see that while both q ¼ 5 and q ¼ 6 span similar areas in ns and
seem to reach arbitrarily low values of r, q ¼ 6 distributes the
points more evenly across the r − ns plane and contains more
very small values of r. This is not surprising considering that
having the stabilizing term at a higher order will make for a
sharper correction at the end that has less of an effect on the
dynamics throughout the range of the potential, while also
allowing for more freedom in the other parameters to lower r.

1See [41] for similar results and discussions in the context of
quintessence driven dark energy, where the quadratic hilltop
model can be shown to sweep the w0 − wa plane that para-
metrizes dark energy phenomenology.

2See [35,54] for discussions of single-field α-attractor and
modified D-brane models which the authors show can also cover
huge swaths of the r − ns plane.
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r − ns plane arbitrarily as far as foreseeable experimental
sensitivity is concerned, there is still the question of how
low r can possibly go. To explore an answer to this question
we will go order by order in Eq. (22), and optimize the
potential VðϕÞ to minimize the value of r given the
parameter constraints described by Eq. (23).
There are a variety of tools one could utilize here. One of

the more obvious strategies to pursue is to deploy some-
thing like SciPy’s minimize function. This tool takes an
“objective function” that can receive a number of variables
as an input and outputs a scalar value, and then finds a
minimum value for the objective function. In our case,
the objective function takes the potential in Eq. (22) and
parameter bounds in Eq. (23) as inputs, and then outputs the
calculated values of r and ns. While this minimization tool
has a number of methods available, including both gradient-
based and derivative-free methods, we found that utilizing
this approach tended to frequently get stuck in local minima
that would not always produce r values as low as some of the
ones we would find in the MCMC simulations. We attribute
this to the inherent structural complexity of the function and
the vast size of the parameter space. Gradient-based methods
would quite naturally get stuck because they are based on
first derivatives, and this function clearly has a vast land-
scape of local minima. However, even the derivative-free
methods would also seem to find themselves eventually
getting stuck in local minima.
After exploring this option, we then deployed more

sophisticated optimization techniques, settling on SciPy’s
differential evolution algorithm, which is specifically
designed to find the global minima of nonconvex functions
with possibly many local minima. Like minimizing, it
optimizes some object function with input variables and a
scalar output; however, it is also a population-based
approach that maintains a number of candidate solutions
which iteratively evolve through population crossover,
mutation, and selection. This allows the optimization to

more effectively explore the parameter space even if the
objective function contains many local minima. Here, we
found that population sizes of around 25–50 (initialized
from a Latin hypercube) along with relatively high muta-
tion (∼1–2) and recombination/crossover rates (∼1) was
effective for exploring the parameter space.
In the following results, for reasons that will soon become

apparent, we went even further out in terms of the order of
the potential’s expansion than we did in the MCMC
sampling. We found that the higher the order one caries
out the expansion in Eq. (22) to, the lower the minimum r,
but that by q ¼ 8 the r values seem to asymptote. We then
carried out the expansion all the way to order q ¼ 10 to
confirm that this is the case. As one can see from examining
Fig. 6 or Table I, the optimization procedure we employed
produces a smooth curve that shows the minimum tensor/
scalar ration rmin obtained from the potential VðϕÞ as a
function of the order q at which the expansion in Eq. (22)
was carried out to. The functional relationship is well
described by a power law rmin ∝ q−B, before it asymptotes
at a lower bound of rmin ∼ 10−11. The exact functional form
is given by

rminðqÞ ¼ A · ðqþDÞ−B þ C; ð25Þ

where A ≈ 17.77, B ≈ 19.78,C ≈ 2.13 × 10−11,D ≈ −2.58.
Taken together, it does indeed seem that for all intents and
purposes, higher order terms in the expansion given by
Eq. (22) effectively have the freedom to lower r arbitrarily as
suggested by [32].

V. CONCLUSION

Throughout the literature on inflation there has been
much discussion concerning what the inflationary para-
digm generically predicts for crucial observables such as r
and ns. While many of the simplest and most commonly
explored models do predict a relatively high r (and some
have been eliminated as a result), there are now a number of
counterexamples that show that single-field inflation can
also produce an undetectably negligible tensor/scalar
ratio [32,35,54]. Even going beyond our most optimistic
scenarios for observational sensitivities though, studies

FIG. 6. Results of the optimization procedure to minimize r
order by order in q. As one can see by inspection or by Eq. (25),
the relationship is well described by a power law that asymptotes
at r ∼ 10−11. See Table I for exact rmin values.

TABLE I. Table of q, r, and ns values corresponding to the
results depicted in Fig. 6.

q r ns

4 1.62 × 10−2 0.9550
5 4.378 × 10−7 0.9552
6 1.116 × 10−9 0.9606
7 6.456 × 10−11 0.9675
8 2.718 × 10−11 0.9551
9 2.469 × 10−11 0.9555
10 2.222 × 10−11 0.9570
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such as this one which suggests that single-field inflation
can produce tensor/scalar ratios as low as r ∼ 10−11, [55]
which investigates a two-field model of natural inflation
that can produce tensor/scalar ratios as low as r ∼ 10−15,
or [56] which studies the mechanisms by which additional
fields can suppress r, underscore the almost infinite
flexibility of the inflation paradigm.
Here, we explored modifications to the quadratic hilltop

model and explicitly showed that introducing possible
correction terms can radically alter the observable predic-
tions, where the form of the correction terms we considered
was motivated by a widely applicable effective field theory
operator expansion. Such higher order correction terms are
both necessary to stabilize the potential in order to ensure a
smooth end to inflation, and also represent additional
degrees of freedom that can lower r significantly. We
showed this to be the case both by randomly sampling
many possible viable models described by such an expan-
sion, as well as by optimizing to find the minimum allowed
values of r.

Where does this leave us? A null detection of r
seemingly will never totally rule out single-field inflation.
Yet, as these examples suggest, the further down r goes
the more structurally complicated the models need to
become [33,34]. While such models may indeed be simple
in the sense that they can be described by a single canonical
scalar field minimally coupled to gravity, pushing r lower
does indeed seem to require more structural complexity.
Like dark energy [41], early universe models suffer from
surprisingly stubborn underdetermination problems; how-
ever, future observations will no doubt continue to offer
valuable information concerning the physical processes
underlying cosmological phenomena.
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