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Matching gravitational-wave observations of binary neutron stars with theoretical model predictions
reveals important information about the sources, such as the masses and the distance to the stars. The latter
can be used to determine the Hubble constant, the rate at which the Universe expands. One general problem
of all astrophysical measurements is that theoretical models only approximate the real underlying physics,
which can lead to systematic uncertainties introducing biases. However, the extent of this bias for the
distance measurement due to uncertainties of gravitational waveform models is unknown. In this study, we
analyze a synthetic population of 38 binary neutron star sources measured with Advanced LIGO and
Advanced Virgo at design sensitivity. We employ a set of four different waveform models and estimate
model-dependent systematic biases on the extraction of the Hubble constant using the bright siren method.
Our results indicate that systematic biases are below statistical uncertainties for the current generation of
gravitational-wave detectors.
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I. INTRODUCTION

The measurement of the local expansion rate of the
Universe, also known as the Hubble constant, H0, is one of
the most intriguing problems in cosmology. The knowledge
of the cosmological expansion rate at different times, given
through the Hubble-Lemaître parameter, is essential for
understanding the history of the Universe and to infer its
age and composition.
A big puzzle in cosmology is to piece together the

measurements from the early and late Universe. While the
SHOES Collaboration [1], using the cosmic distance ladder
method, constrained the local expansion rate to H0 ¼
74.03� 1.42 km s−1Mpc−1, the Planck Collaboration [2]
estimated H0 ¼ 67.4� 0.5 km s−1Mpc−1 at 68% credibil-
ity from observations of the cosmic microwave background
(CMB) radiation. This leads to the well-known Hubble-
Lemaître tension with a discrepancy at a 4.4 sigma level [1].
This discrepancy has spurred scientific efforts, with

researchers proposing numerous independent studies to
elucidate the underlying cause. The use of acoustic bar-
yonic oscillations [3], the gravitational lensing method [4],
or calibrating the tip of the red giant branch (TRGB) to
Type Ia supernovae [5] exemplify prominent attempts to

resolve this enigma. Meanwhile, the possibility of a need
for new physics is actively debated, suggesting that a new
cosmological model may be necessary to reconcile the
distinct measurements [6–9].
Using gravitational-wave (GW) observations as a probe to

infer the cosmic expansion rate was first proposed by Schutz
in 1986 [10]. The GW emission of compact binary coales-
cences involving black holes or neutron stars can serve as
cosmic distance indicators or so-called standard sirens and
provide a measurement of the luminosity distance of the
source. The landmark detection of GW170817 [11,12], a
binary neutron star (BNS) merger, by the LIGO and Virgo
detectors [13,14] along with its associated electromagnetic
(EM) counterparts, GRB170817A and AT2017gfo ([15] and
refs. therein), marked a pivotal milestone in the field of
cosmology. This event enabled the first direct measurement
of the Hubble constant using a GW standard siren [16,17].
Although current constraints from GWobservations are not
yet able to resolve the Hubble tension, future observations
could place further constraints on this cosmological param-
eter [18–21]. Multimessenger observations especially hold
significant promise for improving the accuracy of Hubble
constant determinations. This advantage arises from being
able to combine the GW measurement of the distance to
the source with an electromagnetic measurement of its
redshift [16,22–27].*Contact author: nkunert@uni-potsdam.de
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While the standard siren methodology offers the advan-
tage of not requiring recalibration, as is common practice in
the distance ladder method, there are different sources of
systematic uncertainties that must be addressed. Previous
studies such as Ref. [28] investigated the impact of
instrumental calibration uncertainties on Hubble constant
measurements. They found that for single BNS events with
a signal-to-noise ratio (SNR) of 50 for a network consisting
of Advanced LIGO and Advanced Virgo operating at
design sensitivity, the introduced bias is smaller than
statistical uncertainties, but could accumulate as more
events are detected. Reference [29] examined the influence
of galaxy redshift uncertainties using different galaxy
redshift uncertainty models, with particular emphasis on
photometric redshifts, which are known to exhibit sub-
stantial errors. Their findings indicate that while there may
exist a potential bias, it remains smaller than statistical
uncertainties. Furthermore, systematic uncertainties arising
from the viewing angle of BNS mergers and EM selection
effects can be major challenges [30–32]. Building on [33],
thiswork explores the systematic biases introduced bybinary
black hole (BBH) waveform models. The analysis reveals
that these biases become more pronounced with increasing
detector-frame total mass, binary asymmetry, and spin-
precession effects. Notably, the study demonstrates on the
basis of three high SNR events (golden events) that current
waveformmodels lead to biased measurement of the Hubble
constant, even for current detectors.
In contrast to Ref. [33], our study delves into the issue of

systematic uncertainties originating from BNS waveform
models potentially influencing the determination of the
distance to the source and, hence, the Hubble constant.
Until now, this question remains, up to the best of our
knowledge, unanswered. We analyze a synthetic population
of 38 BNS sources, previously published in Ref. [34], with
a set of four different waveform models and study model-
dependent systematic errors. We employ the most recent
Planck CMB measurement [2] as a benchmark and inves-
tigate whether estimating H0 using different models than
the one used to generate the data introduces a systematic
bias. As our results will demonstrate, GW model-depen-
dent biases have a minimal influence on the inferred value
of the Hubble constant for current detector networks.
This paper is organized as follows. Section II provides

details on modeling GW standard sirens, the simulated
BNS source population, and on the Bayesian framework
employed to extract estimates of H0. Our results of
combined H0 estimates are presented in Sec. III and
Sec. IV summarizes the key takeaways.

II. METHODOLOGY

The standard siren method utilizes the detection of GW
signals and their correlation with EM observations of the
same astrophysical events to infer the Hubble constant.
When a source’s redshift can be measured directly or

through an association with its host galaxy, it is denoted as
a bright siren. When an EM counterpart is absent, statistical
methods can be used to ascertain possible redshifts of the
source. Notable examples of these techniques include the
galaxy catalog method [18,35–42], the cross correlation
method [43–45], and the spectral siren technique [46–49].
In our study, we will employ the bright siren technique to

infer a joint estimate of the local expansion rate of the
Universe, assuming the standard Lambda cold dark matter
cosmology. In accordance, we utilize the latest Planck
CMB measurement [2] as a reference value for our
Bayesian analysis.

A. Modeling standard sirens

Gravitational waveform models describe the amplitude Ã
and the phase ϕ of standard sirens emitted from coalescing
compact objects like neutron stars and black holes. The
evolution of a gravitational waveform h̃ðfÞ over frequency
can be written as

h̃ðfÞ ¼ ÃðfÞ expð−iϕðfÞÞ; ð1Þ

in which both the amplitude as well as the phase carry
information about the intrinsic source properties. GW detec-
tors measure a linear combination of two polarizations of the
GW signal. At leading order, these can be written as [37]

h̃þðfÞ ∝
M5=6

z

DL

1þ cos2ðιÞ
2

f−7=6 expðiϕðMz; fÞÞ; ð2Þ

h̃×ðfÞ ∝
M5=6

z

DL
cos ιf−7=6 expðiϕðMz; fÞ þ iπ=2Þ; ð3Þ

whereMz ≡Mð1þ zÞ denotes the detector-frame (or “red-
shifted”) chirp mass, which is better constrained by the
signal’s phase as compared its amplitude. It can be seen that
the amplitude of a GW signal decreases in proportion to the
luminosity distance DL of its source. This inverse relation-
ship is a fundamental property of GWs and plays a crucial
role in their detection and interpretation. On the other hand,
gravitational waveform models including only the quadru-
pole mode show a limited capability to accurately infer the
luminosity distance to an astrophysical source due to its
interdependencewith the inclination angle ι. This degeneracy
fundamentally limits our ability to measure both parameters
so that the dominant uncertainty in the signal’s amplitude
arises from the uncertainties on the luminosity distance and
the inclination angle. The inclusion of higher-order modes
can be a way to break this degeneracy, as shown in Ref. [50].

B. Population of synthetic BNS sources

In this study, we use the large set of mock data obtained
in Ref. [34] and exploit the inferred posterior on the
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luminosity distance to study the impact of model uncer-
tainties on the estimation of the Hubble constant. Below,
we recap the key elements of the study.
The population of 38 synthetic binary neutron star sources

was simulatedwith stationaryGaussian noise into a network
of interferometers assuming Advanced LIGO [51] and
Advanced Virgo [52] design sensitivity. In light of current
observations suggesting a uniform distribution for neutron
star masses in gravitational-wave binaries [53], we adopt a
uniform prior sampled within m1;2 ∈ ½1; 2�M⊙. All sources
were uniformly sampled in comoving volume with an
optimal network SNR, ρ, ranging within ρ∈ ½7; 100� and
lie within a maximum or threshold luminosity distance of
Dthr

L ¼ 100 Mpc. Hence, the population lies within a vol-
ume in which cosmology can be well modeled under the
linear Hubble relation (for redshifts z ≪ 1) given as

DLðzÞ ≈
cz
H0

; ð4Þ

in which c is the speed of light. For all BNS signals in our
population, we employed IMRPhenomD_NRTidalv2
(PhenDNRTv2) [54] as our reference model that we use
for the creation of the simulated data. We performed
parameter estimation runs using PARALLEL BILBY [55] for
all sources in the population with four different models,
whichwere TaylorF2 (TF2) [56–61,61–68], IMRPhenomD_

NRTidal (PhenDNRT) [69–75], IMRPhenomD_NRTidalv2
(PhenDNRTv2), and SEOBNRv4_ROM_NRTidalv2
(SEOBNRTv2) [54,76,77] resulting in a total of 152 sim-
ulations. For further details on our simulation setup, we refer
the interested reader to Ref. [34].

C. Bayesian framework

In this section, we outline our method for estimating the
Hubble constant by utilizing the posterior distributions on
luminosity distance obtained for the discussed BNS pop-
ulation. In order to compute the posterior probability
distribution of the Hubble constant for a set of GW events
fxGWg, we employ Bayes’ theorem

pðH0jfxGWgÞ ∝ pðH0ÞpðfxGWgjH0Þ ð5Þ

where pðH0Þ is the prior on H0 and pðfxGWgjH0Þ is the
likelihood of the measured GW data given a certain value
of H0.
Our analysis follows the bright siren approach, which

utilizes the joint information from GW detections fxGWg
and electromagnetic observations providing information on
the redshift fẑg [16]. Consequently, we determine the joint
posterior, pðH0jfxGW; ẑgÞ, for Nobs events in our popula-
tion as follows:

pðH0jfxGW; ẑgÞ ∝
pðH0Þ

NsðH0ÞNobs

YNobs

i¼1

Z
λ⃗

Z
DL

pðxiGWjDL;H0; λ⃗ÞpðẑijDL;H0ÞpðDLÞpðλ⃗ÞdDLdλ⃗; ð6Þ

where pðDLÞ is the prior on the luminosity distance, and
other waveform parameters are denoted by λ⃗, similar to the
notation employed in Ref. [16]. Hence, pðλ⃗Þ relates to
priors for other GW parameters. Analogous to the approach
used in Ref. [16], NsðH0Þ incorporates the selection effect
imposed by the finite sensitivity of GW detectors and is

NsðH0Þ ¼
Z
det

pðxGWjDL;H0; λ⃗ÞpðDLÞpðλ⃗ÞdDLdλ⃗dxGW;

ð7Þ

integrated over the prior probability distributions of the
parameters DL; λ⃗ and over “detectable” GW datasets. This
factor is constructed on the assumption that the choice of
whether or not an event is included in the analysis is a
property purely of the observed data, xGW. In this analysis
(as in [16]) we assume that selection effects are dominated
by the GW data; i.e., there are no selection effects for
the EM counterpart. Additionally, we assume that GW

detection is based on the observed SNR of the source.1 At
the distances to which BNS events can be observed with
current GW detectors, such a selection becomes a threshold
in the luminosity distance of the source, which is what the
GW detectors measure. As a consequence, the selection
function has no dependence on the unknown cosmological
parameters and so can be set to unity.
Since our dataset lacks direct redshift measurements for

each BNSmerger event, we need to model this information.
We consider all EM observations as securely detected and,
hence, neglect a correction for EM selection effects. In the
absence of actual electromagnetic observational data for
redshifts, we simulate a redshift measurement ẑ for the ith
BNS merger event using a Gaussian probability density
function

1In practice, we impose selection on the true, rather than the
observed, luminosity distance of the source. This is the approach
used widely in the literature. Selection on source parameters
rather than observed data should really be treated differently [78],
but in practice this approximation does not change the results.
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pðẑijDL;H0Þ ¼
1ffiffiffiffiffiffi
2π

p
σz

exp

�
−
1

2

�
ẑ − z
σz

�
2
�
: ð8Þ

This allows us to associate each BNS source with a
simulated measured redshift sampled from a Gaussian
distribution centered on its true redshift value. We use
the same Gaussian likelihood in Eq. (6) to obtain our
Hubble constant posteriors. We examine the dependence of
our analysis on the choice of the fractional error term, C,
which contributes to the overall redshift uncertainty, σz,
defined by the linear relationship σz ¼ z · C. This aims to
quantify the sensitivity of our results to variations in the
assumed fractional error value and, hence, in the precision
of the EM measurement of the redshift. To infer joint
constraints on H0, we convert the measured redshift values
to luminosity distances using Eq. (4). In our study, we do
not explore different redshift uncertainty models as dem-
onstrated in [29]. Their work showed that the impact of
different uncertainty models is much smaller than the
current statistical errors. Hence, we expect that different
redshift uncertainty models will not alter our results, which
we will present in the next section.

III. RESULTS

In accordance with the methodology detailed in Sec. II C,
we obtained combinedH0 estimates for each GWmodel. As
described, we aim to investigate the sensitivity of our results
to variations in the fractional redshift error valueC, whichwe
explore for C ¼ 0.5% and 3%. Our choice of the fractional
error is driven by the inherent differences in redshift
measurement techniques. Spectroscopic redshifts offer
increased precision compared to photometric redshifts.
Typical uncertainties for spectroscopic redshifts can be as
low 0.01% [79], while photometric redshift uncertainties can
range up to 10% or more [29]. Hence, we intend to mimic a
more precise spectroscopic and a less precise photometric
measurement of the redshift.
First of all, we study how our estimate on H0 changes

with the number of successively combined GW signals for
each BNS event for C ¼ 0.03, i.e., a 3% fractional error in
the modeling of the observed redshift. The result is shown
in Fig. 1 and shows that all models recover the Planck
measurement at H0 ¼ 67.4 km s−1Mpc−1 within their
uncertainty bands at 95% credible interval. Consistent with
theoretical expectations, incorporating more GW events
gradually decreases the uncertainties associated with
the H0 estimates. Among 38 combined GW events,
PhenDNRTv2 (the “true” model) and PhenDNRT align
best with the Planck value, while SEOBNRTv2 and TF2
show slightly larger deviations. From Fig. 1, we find that
systematic biases in the extraction of the Hubble constant
are below statistical uncertainties.
Second, we show the results for a 0.5% fractional error in

Fig. 2, i.e., assuming more precise EMmeasurements of the
observed redshift. We find that our reference model,

PhenDNRTv2, recovers the Planck measurement within
95% credible interval. Likewise, analyses employing the
GW models, PhenDNRT and TF2, recover this value when
considering the combined data from all BNS events. The
only exception is the model SEOBNRTv2 which does not
recover the reference value when data from roughly 30
BNS events have been combined. Moreover, we find that
there is a slight overestimation for all models when
comparing with the Planck measurement. This is most
likely due to a combination of statistical fluctuations
and GW model-dependent differences in estimating the

FIG. 1. H0 results versus the number of successively combined
GWevents for theGWmodels PhenDNRT (yellow), TF2 (purple),
SEOBNRTv2 (orange), and the reference model PhenDNRTv2
(blue). Constraints on H0 are reported at 95% credible interval.
The reference value of the Planck measurement [2] is shown as a
black dashed line. For this result, we modeled a 3% uncertainty on
the true redshift as described in Sec. II C.

FIG. 2. H0 results versus the number of successively combined
GW events for the GW models PhenDNRT (yellow), TF2
(purple), SEOBNRTv2 (orange), and the reference model
PhenDNRTv2 (blue). Constraints on H0 are reported at 95%
credible interval. The Planck measurement [2] is shown as a black
dashed line. For this result, we modeled a 0.5% uncertainty on the
true redshift as described in Sec. II C.
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luminosity distance (as seen for TF2 in Fig. 1). The initial
selection of GW events within our sample introduces
another source of statistical fluctuation. However, the
present bias is not significant for our conclusions as the
true value lies within the posterior uncertainty.
At this point, it is crucial to acknowledge that our

recovered H0 values presented in Fig. 2 depend upon
the specific random realization of observed redshifts
generated through Eq. (8). This implies that any variation
in the random realization of redshift measurements for each
event would lead to a corresponding change in the inferred
H0 posterior. While we present a single realization in Fig. 2,
we investigated the dependence of our results concerning
different random realizations of the redshift measurement.
Notably, while maintaining a fixed fractional error of 0.5%,
we observed that the final, combinedH0 estimates exhibit a
tendency to converge closer to the reference value of the
Planck measurement under certain realizations (not shown
in Fig. 2).
In order to minimize the impact of stochastic redshift

realizations and of specific BNS event orderings in our

sample, we implement a double randomization procedure.2

In this procedure, we draw 100 random redshift values
assuming a Gaussian distribution with a 0.5% uncertainty
for each BNS event within the sample. Equation (6) is then
used to compute the combined H0 value for 100 times. In
each iteration, the order of the BNS events is randomized,
and a different drawn redshift value is used for each event.
This procedure yields 100 independent realizations of the
combined H0 posterior distribution. Finally, we compute
the median of the distribution to extract the final results of
H0. The results are shown in Fig. 3, for which we modeled
a 0.5% uncertainty on the true redshift. Our result depicts a
convergence towards the Planck value for all GW models.
Consistent with prior findings, it also reveals a progressive
uncertainty reduction and that all GW models recover the
Planck measurement.

FIG. 3. H0 results versus the number of successively combined GW events for the GW models PhenDNRT (yellow), TF2 (purple),
SEOBNRTv2 (orange), and the reference model PhenDNRTv2 (blue) for both, using the SHOES measurement of H0 ¼ 74.03�
1.42 km s−1 Mpc−1 (top panel) [1] and the Planck measurement of H0 ¼ 67.4� 0.5 km s−1 Mpc−1 (bottom panel) [2] as reference
values. We use the same credible interval and fractional error on the redshift uncertainty as in Fig. 2, but randomly shuffled the order of
BNS events in our sample for 100 times, while employing 100 random realizations of redshift measurements.

2Despite this procedure, our GW posteriors are not random-
ized, which can lead to slight offsets or biases as we can see in our
study.
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From Figs. 2 and 3, we find that PhenDNRT tends to
yield smallerH0 values as compared to PhenDNRTv2. This
could result from the fact that the PhenDNRTv2 includes an
amplitude tidal correction term [54], while this is not the
case for PhenDNRT. Because of this correction, the
amplitude for PhenDNRT waveforms will be larger as
compared to PhenDNRTv2. In order to compensate,
PhenDNRT needs to go to higher luminosity distances
and, hence, will predict smaller values for the Hubble
constant. Another distinctive feature is that the uncertainty
is smallest for TF2 when all data has been taken into
account. To investigate this observation, we computed the
Fisher information matrix (FIM) for both TF2 and
PhenDNRTv2 across all events using GWFAST [80,81].
The FIM analysis revealed that 55% of the events exhibited
a lower distance error for TF2 as compared to
PhenDNRTv2. This finding suggests that TF2 can achieve
a narrower posterior width or lower variance. However, we
would still expect it to have a larger bias, which would
eventually dominate the uncertainty once sufficiently many
events have been combined. Moreover, we repeat the
analysis employing the Hubble constant measurement
reported by the SHOES Collaboration [1] as the reference
value, H0 ¼ 74.03� 1.42 km s−1Mpc−1. Figure 3 shows
that we obtain consistent results compared to the scenario
where we utilize the Planck measurement. Consequently,
our primary conclusions remain unchanged.
Overall, our results indicate that waveform model-

dependent biases on the extraction of the Hubble constant
are small for current detectors. Ascribing the subtle
discrepancies observed in the combined H0 estimates
solely to specific model descriptions or assumptions
presents a significant challenge. First, GW models only
possess a limited capability to accurately infer the distance
and, consequently, the Hubble constant, so we are domi-
nated by statistical rather than systematic uncertainties.
Second, our employed GW models exhibit interdependen-
cies within specific regimes, which hamper an unambigu-
ous explanation attributable to individual models.
Finally, we use our results compared to the Planck

measurement shown in Fig. 3 to estimate how many
cumulative BNS events will be required to achieve a
statistical uncertainty that falls below the waveform model
systematics. To understand howmuch the final measurement
of the Hubble constant might be affected by the choice of a
certain model, we calculate the difference between the final
H0 value obtained using our reference model PhenDNRTv2
and the final values obtained using all the other models. The
largest systematic shift of ΔH0 ¼ 0.18 km s−1Mpc−1 is
present when comparing to PhenDNRT, while the final
result of TF2 has the smallest shift with ΔH0 ¼
0.08 km s−1Mpc−1. As the statistical uncertainty drops as

∼1=
ffiffiffiffiffiffiffiffiffi
Nobs

p
, we can estimate the number of BNS events

required to fall below the above-reported values. For our
reference model PhenDNRTv2 to possess statistical uncer-
tainties smaller than the systematic shift of ΔH0 ¼
0.18ð0.08Þ km s−1Mpc−1 roughly 3500 (16,500) BNS
observations would be required with the current generation
of GW detectors.

IV. CONCLUSIONS

In this study, we investigated the impact of gravitational
waveform systematics on the extraction of the Hubble
constant. Employing the bright siren approach, we obtained
combined estimates on the Hubble constant by using
previous simulated GW data from a population containing
38 BNS sources published in [34] and by modeling a
corresponding EM observation to provide information on
the redshift. Overall, our analysis reveals that the uncertainty
in the luminosity distance arising from GW models exerts a
negligible influence on the determination of the Hubble
constant for the current generation of GW detectors.
However, our analysis is limited because our employed
GW models are based on the quadrupolar mode and do not
include any higher-order modes. While current systematic
biases on the Hubble constant are below statistical uncer-
tainties, this picture will change with upcoming third gen-
eration detectors like the Einstein Telescope (ET) [82–84] or
the Cosmic Explorer (CE) [85,86]. Projected BNS detection
rates of 104 BNS=year for ET [84,87,88] or 105 BNS=year
for a network consisting of ETand CE [89] imply diminish-
ing statistical uncertainties, necessitating an increased focus
on reducing systematic biases in the future.
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044006
(2016).

[70] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X.
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[77] A. Bohé et al., Phys. Rev. D 95, 044028 (2017).
[78] J. R. Gair et al., Astron. J. 166, 22 (2023).
[79] C. L. Steinhardt, A. Sneppen, and B. Sen, Astrophys. J. 902,

14 (2020).
[80] F. Iacovelli, M. Mancarella, S. Foffa, and M. Maggiore,

Astrophys. J. 941, 208 (2022).
[81] F. Iacovelli, M. Mancarella, S. Foffa, and M. Maggiore,

Astrophys. J. Suppl. Ser. 263, 2 (2022).
[82] M. Punturo et al., Classical Quantum Gravity 27, 194002

(2010).
[83] M. Maggiore et al., J. Cosmol. Astropart. Phys. 03 (2020)

050.
[84] M. Branchesi et al., J. Cosmol. Astropart. Phys. 07 (2023)

068.
[85] D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019).
[86] M. Evans et al., arXiv:2109.09882.
[87] T. Regimbau et al., Phys. Rev. D 86, 122001 (2012).
[88] N. Singh, T. Bulik, K. Belczynski, and A. Askar, Astron.

Astrophys. 667, A2 (2022).
[89] K. Walker, R. Smith, E. Thrane, and D. J. Reardon, arXiv:

2401.02604.

KUNERT, GAIR, PANG, and DIETRICH PHYS. REV. D 110, 043520 (2024)

043520-8

https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1093/mnras/staa2483
https://doi.org/10.1093/mnras/staa2483
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1016/S0370-2693(01)00642-6
https://doi.org/10.1016/S0370-2693(01)00642-6
https://doi.org/10.1103/PhysRevLett.93.091101
https://doi.org/10.1103/PhysRevD.71.124004
https://doi.org/10.1103/PhysRevD.93.084054
https://doi.org/10.1103/PhysRevD.93.084054
https://doi.org/10.1103/PhysRevD.71.124043
https://doi.org/10.1103/PhysRevD.71.124043
https://doi.org/10.1103/PhysRevD.79.104023
https://doi.org/10.1103/PhysRevD.79.104023
https://doi.org/10.1103/PhysRevD.84.049901
https://doi.org/10.1088/0264-9381/32/19/195010
https://doi.org/10.1088/0264-9381/32/19/195010
https://doi.org/10.1103/PhysRevD.81.084016
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.85.124034
https://doi.org/10.1103/PhysRevD.85.124034
https://doi.org/10.1103/PhysRevD.85.123007
https://doi.org/10.1103/PhysRevD.85.123007
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.96.121501
https://doi.org/10.1103/PhysRevD.96.121501
https://doi.org/10.1103/PhysRevD.99.024029
https://doi.org/10.1103/PhysRevD.98.104052
https://doi.org/10.1103/PhysRevLett.114.161103
https://doi.org/10.1103/PhysRevLett.114.161103
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.3847/1538-3881/acca78
https://doi.org/10.3847/1538-4357/abb140
https://doi.org/10.3847/1538-4357/abb140
https://doi.org/10.3847/1538-4357/ac9cd4
https://doi.org/10.3847/1538-4365/ac9129
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://arXiv.org/abs/2109.09882
https://doi.org/10.1103/PhysRevD.86.122001
https://doi.org/10.1051/0004-6361/202142856
https://doi.org/10.1051/0004-6361/202142856
https://arXiv.org/abs/2401.02604
https://arXiv.org/abs/2401.02604

