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We calculate the one-loop corrections in bispectrum of cosmic microwave background scale
perturbations induced from the small-scale modes undergoing an intermediate phase of ultraslow-roll
(USR) inflation in scenarios employed for primordial black hole formation. Using the formalism of
effective field theory of inflation we calculate the cubic and quartic Hamiltonians and perform the in-in
analysis for a subset of Feynman diagrams comprising both the cubic and the quartic exchange vertices.
We show the one-loop corrections in bispectrum has the local shape with fNL having the same structure as
the one-loop correction in power spectrum in their dependence on the duration of the USR phase and the
sharpness of the transition to the final attractor phase. It is shown that in the models with a sharp transition
the induced loop corrections in bispectrum can quickly violate the observational bounds on fNL.
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I. INTRODUCTION

Models of inflation incorporating an intermediate phase
of ultraslow-roll (USR) inflation have been actively
employed in generating primordial black holes (PBHs)
as a candidate for dark matter [1–4], for a review see [5–7].
More specifically, during the USR phase of inflation with a
flat potential, the curvature perturbation power spectrum
grows on superhorizon scales so it can be enhanced
significantly compared to the long cosmic microwave
background (CMB) scales to source the PBHs formation.
On the other hand, the rapid rise of the curvature pertur-
bation power spectrum during the USR phase may cause
troubles. Indeed, it was argued in [8,9] that the one-loop
corrections1 from small-scale USR modes can significantly
affect the long CMB scale perturbations. It was argued
in [8,9] that the model is not trusted to generate the desired
PBHs abundance as it is not perturbatively under control.
Thereafter, the question of one-loop corrections in power
spectrum in these models has attracted considerable
interests [15–37]. For example, the conclusion in [8,9]
was criticized in [15,16] where it was argued that the
dangerous one-loop corrections can be harmless in a
smooth transition. This question was further studied
in [24] where, employing δN formalism, it was shown
that for a mild transition the one-loop corrections are
suppressed by the slow-roll parameters so the setup is
reliable for PBH formations. This question was also studied

numerically in [38] and using the separate universe
formalism in [39].
To calculate the full one-loop corrections in curvature

perturbation power spectrum, one needs to incorporate
the effects of both cubic and quartic interactions. While the
cubic interactions can be borrowed from [40] but the
situation for the quartic interactions is somewhat difficult
as calculating the quartic action in this setup is nontrivial,
for earlier studies on quartic action see [41,42]. In [22],
employing the formalism of effective field theory (EFT) of
inflation, we have studied this question in which the effects
of both cubic and quartic Hamiltonians were included. In
addition, the effects of the sharpness of the transition from
the intermediate USR phase to the final attractor phase were
studied as well. It was shown in [22] that loop corrections
from the quartic Hamiltonian are comparable to the loop
corrections from the cubic interaction. The analysis of [22]
supports the conclusion of [8] that the loop corrections can
be significant for the setup where the transition from the
USR phase to the final attractor phase is sharp while the
loop corrections can be washed out during a mild transition.
It may look counterintuitive, based on the notion of

decoupling of scales, as how small scales can affect the
long modes. This question was originally reviewed in [16]
and further studied in [36]. The basic idea is that the
nonlinear coupling between the long and short modes
provides the source term for the evolution of the long
mode. On the other hand, the long mode modulates the
spectrum of the short modes. This modulation becomes
significant if the power spectrum of the short modes
experiences a significant scale-dependent enhancement
as in USR setup. The combination of the nonlinear
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1For earlier works on loop corrections in power spectrum

during inflation see for example [10–14].
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coupling between the long and short modes and the
modulation of the short modes by the long mode back-
reacts on the long mode itself and induces the one-loop
correction [15,26,36].
Motivated by the question of one-loop corrections in

power spectrum, it is a natural question to look for the one-
loop corrections in bispectrum on CMB scales. Indeed, in
the single field slow-roll (SR) setups, the non-Gaussianity
parameter fNL is very small [40] so the long modes which
leave the horizon during the early SR phase have negligible
level of non-Gaussianity. On the other hand, if the loop
corrections from small USR scales on large scale power
spectrum are significant, then it is natural that the one-loop
corrections in bispectrum to be significant as well. This is a
nontrivial question as the corresponding analysis requires
the cubic, quartic, and the quintic interaction Hamiltonians
involving more complicated in-in analysis compared to the
case of loop corrections in power spectrum. This is the
main goal of this paper in which, using the EFT formalism
of inflation as in [22], we calculate the one-loop corrections
in bispectrum on CMB scales.

II. THE SETUP

In this section we present our setup. As in [8,9], it is a
single field model of inflation containing three stages
SR → USR → SR. The first and the third stages are SR
phases while the intermediate stage is a USR phase. The
large scale CMB perturbations leave the horizon during the
first stage with an amplitude of curvature perturbation fixed
by the COBE normalization. The second phase is tuned to
generate the PBHs at the desired scale consistent with
various cosmological observations. Typically, the inter-
mediate USR phase starts around 30 e-folds after the long
CMB modes leave the horizon and it lasts for about 2–3
e-folds. The USR phase is followed by the third SR phase
in which the system reaches its final attractor phase.
During the SR phases the curvature perturbation R is

frozen on superhorizon scales and the amplitude of
non-Gaussianity parameter fNL is slow-roll suppressed.
In addition, there is a consistency condition between the
two-point and the three-point correlation functions as
shown by Maldacena [40,43]. On the other hand, the
USR setup is a single field model of inflation in which
the potential is flat [44–47] so the inflaton velocity falls off
exponentially and the curvature perturbations grow on
superhorizon scales [48]. Since the curvature perturbation
is not frozen on superhorizon scales in USR setup, it
provides a counterexample to violate the Maldacena con-
sistency condition [48–62]. The amplitude of the local-type
non-Gaussianity in conventional USR model in which the
USR phase is sharply followed by an attractor SR phase is
fNL ¼ 5

2
[48]. However, it was shown in [63] that the final

amplitude of fNL depends on the sharpness of the transition
from the USR phase to the final SR phase. In particular, for
a mild transition the curvature perturbations evolve after the

USR phase until it reaches to its final attractor value.
Because of this evolution, much of the amplitude of fNL is
washed out towards the end of inflation. The important
lesson from this study is that the sharpness of the transition
from the USR phase to the final SR phase plays important
roles when measuring the cosmological observables at the
time of end of inflation.
Starting with the Friedmann-Lemaître-Robertson-

Walker metric

ds2 ¼ −dt2 þ aðtÞ2dx2; ð1Þ

the background fields equations for the inflaton field ϕ and
the scale factor aðtÞ are given by

ϕ̈ðtÞ þ 3Hϕ̇ðtÞ ¼ 0; 3M2
PH

2 ≃ V0; ð2Þ

in which MP is the reduced Planck mass, H is the Hubble
expansion rate during inflation and V0 is the value of
the potential during the USR phase which is constant.
Consequently, H is nearly constant while ϕ̇ ∝ a−3 during
the USR phase.
The slow-roll parameters related to H are defined as

usual,

ϵ≡ −
Ḣ
H2

¼ ϕ̇2

2M2
PH

2
; η≡ ϵ̇

Hϵ
: ð3Þ

During the SR phases both ϵ and η are nearly constant
and small but during the USR phase ϵ falls off like a−6

while η ≃ −6. Going to conformal time dτ ¼ dt=aðtÞ with
aHτ ≃ −1, ϵðτÞ scales with time as

ϵðτÞ ¼ ϵi

�
τ

τs

�
6

; ð4Þ

in which ϵi is the value of ϵ during the first SR phase which
is nearly constant. We assume the USR phase is extended
between the interval τs < τ < τe so ϵ at the end of USR
phase is ϵe ¼ ϵiðτeτsÞ6. Defining the number of e-folds as
dN ¼ Hdt, the duration of the USR phase is given by
ΔN ≡ NðτeÞ − NðτsÞ yielding to ϵe ¼ ϵie−6ΔN .
An important question in this study is how the USR

phase is glued to the final attractor phase. As in [63], we
assume the potential in the final SR phase has the following
form:

VðϕÞ ¼ VðϕeÞ þ
ffiffiffiffiffiffiffiffi
2ϵV

p
VðϕeÞðϕ − ϕeÞ

þ ηV
2
VðϕeÞðϕ − ϕeÞ2 þ � � � ; ð5Þ

in which 2ϵV≡M2
PðV 0ðϕeÞ=VðϕeÞÞ2 and ηV ≡M2

PV
00ðϕeÞ=

VðϕeÞ are the slow-roll parameters defined in terms of the
derivatives of the potential. We assume that the potential
is continuous at ϕ ¼ ϕe but its derivative may not be
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continuous with ϵV ≠ 0 so there is a kink in the potential.
To simplify the setup, we assume ηV ¼ 0 and the transition
to the final stage is sharp. However, this is not a restrictive
assumption and our analysis can be extended to the case
where ηV ≠ 0 as well.
Let us set N ¼ 0 to be the time of the transition from the

USR phase to the final SR phase. Solving the background
field equation in the final SR phase, and imposing the
continuity of ϕ and dϕ

dN at the time of transition we
obtain [63] (see also [64,65])

M−1
P ϕðNÞ ¼ C1

3
e−3N þ h

6

ffiffiffiffiffiffiffiffi
2ϵV

p
N þ C2; ð6Þ

with the constants of integration C1 and C2 given by

C1 ¼
ffiffiffiffiffiffiffi
2ϵe

p �
1þ h

6

�
;

C2 ¼ M−1
P ϕe −

ffiffiffiffiffiffiffi
2ϵe

p
3

�
1þ h

6

�
; ð7Þ

in which, following [63], we have defined the sharpness
parameter h via

h≡ 6
ffiffiffiffiffiffiffiffi
2ϵV

p
ϕ̇ðteÞ

MP ¼ −6
ffiffiffiffiffi
ϵV
ϵe

r
: ð8Þ

Since we work with the convention that ϕ is decreasing
monotonically during inflation, then ϕ̇ < 0 and h < 0. As
shown in [63], h is the key parameter of the setup,
controlling the sharpness of the transition from the USR
phase to the final SR phase.
With the background dynamics given as in Eq. (6), the

SR parameters defined in Eq. (3) for the final SR phase
(N > 0) are given by

ϵðτÞ ¼ ϵe

�
h
6
−
�
1þ h

6

��
τ

τe

�
3
�

2

; ð9Þ

and

ηðτÞ ¼ −
6ð6þ hÞ

ð6þ hÞ − hðτeτ Þ3
: ð10Þ

Towards the final stage of inflation when τ → τ0 → 0, ϵ →
ϵeðh6Þ2 and η vanishes like τ3. While ϵ is smooth across the
transition point but it is important to note that η has a jump
at τ ¼ τe. More specifically, just prior to the transition (i.e.,
near the end of USR phase) η ¼ −6 while right after the
transition η ¼ −6 − h. As a result, near the transition point
one can approximate η via [63]

η ¼ −6 − hθðτ − τeÞ; τ−e < τ < τþe : ð11Þ

With this approximation we obtain,

dη
dτ

¼ −hδðτ − τeÞ; τ−e < τ < τþe : ð12Þ

For an infinitely sharp transition h → −∞ so after the
transition ϵ evolves rapidly to a larger value such that ϵ at
the end of inflation is given by ϵðτ0Þ ≃ ϵV ¼ ϵeðh6Þ2. For an
“instant” sharp transition which was assumed in [8,9] we
have h ¼ −6. In this limit ϵ in the final SR phase is frozen
to ϵe fixed at the end of USR phase.
To implement the in-in formalism we need the mode

function for comoving curvature perturbation R during the
USR and the follow up SR phase. Going to Fourier space,
the mode function is written as

Rðx; tÞ ¼
Z

d3k
ð2πÞ3 e

ik·xR̂kðtÞ; ð13Þ

in which the operator R̂kðtÞ is expressed in terms of the
creation and annihilation operators as R̂kðtÞ ¼ RkðtÞakþ
R�

kðtÞa†−k. Note that R̂k is a quantum operator while
Rk is the usual mode function. The creation and annihi-
lation operators satisfy the usual commutation relations
½ak; a†−k0 � ¼ ð2πÞ3δðkþ k0Þ.
Starting with the Bunch-Davies initial condition, the

mode function during the first stage for τ < τi is given by

Rð1Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffi
4ϵik3

p ð1þ ikτÞe−ikτ; ðτ < τsÞ: ð14Þ

During the USR phase, the mode function is given by

Rð2Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffi
4ϵik3

p
�
τs
τ

�
3

½αð2Þk ð1þ ikτÞe−ikτ

þ βð2Þk ð1 − ikτÞeikτ�; ð15Þ

with the coefficients αð2Þk and βð2Þk fixed by imposing the
continuity of the mode function and its time derivative as
follows:

αð2Þk ¼ 1þ 3i
2k3τ3s

ð1þ k2τ2sÞ;

βð2Þk ¼ −
3i

2k3τ3s
ð1þ ikτsÞ2e−2ikτs : ð16Þ

Finally, imposing the matching conditions at τe, the mode
function in the final SR phase is obtained to be [22]

Rð3Þ
k ¼ H

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵðτÞk3

p ½αð3Þk ð1þ ikτÞe−ikτ

þ βð3Þk ð1 − ikτÞeikτ�; ð17Þ
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with ϵðτÞ given by Eq. (9) and the coefficients αð3Þk and βð3Þk
are given by

αð3Þk ¼ 1

8k6τ3sτ3e
½3hð1 − ikτeÞ2ð1þ ikτsÞ2e2ikðτe−τsÞ

− ið2k3τ3s þ 3ik2τ2s þ 3iÞð4ik3τ3e − hk2τ2e − hÞ�;

and

βð3Þk ¼ −1
8k6τ3sτ3e

½3ð1þ ikτsÞ2ðhþ hk2τ2e þ 4ik3τ3eÞe−2ikτs

þ ihð1þ ikτeÞ2ð3iþ 3ik2τ2s þ 2k3τ3sÞe−2ikτe �:

With the above mode functions at hands, we are ready to
calculate the one-loop corrections in bispectrum. To clarify
the notation, the momentum for the CMB modes are
denoted by p1, p2, and p3 while the momentum for the
small-scale modes which run in the loop are denoted by q.
We have the vast hierarchy pi ≪ q. Since we consider the
loop corrections from the amplified modes which leave the
horizon during the USR phase, we cut the loop integrals in
the intervals qs ≤ q < qe in which qs ¼ − 1

τs
and qe ¼ − 1

τe
.

In addition, the duration of the USR phase ΔN ≡ NðτeÞ −
NðτsÞ is related to qs and qe via

e−ΔN ¼ τe
τs

¼ qs
qe

: ð18Þ

To generate PBHs formation with the desired properties,
one typically requires ΔN ∼ 2–3.
Before closing this review about our setup, there is an

important comment in order. In our setup, we consider an
instant transition at τ ¼ τe to the final SR phase. On the
other hand, the mode functions may evolve after the
transition until it reaches its attractor value. This is
controlled by the sharpness parameter h. For example,
for an instant sharp transition with h ¼ −6 as studied
in [8,9], the final value of R at the end of inflation is by a
factor of 1=4 smaller than its value at the end of USR. This
is because the mode function keeps evolving until it reaches
its attractor value. On the other hand, for an extreme sharp
transition with h → −∞, the mode function freezes

immediately after the USR phase. This is the limit which
was studied in [48] yielding to fNL ¼ 5

2
. However, as shown

in [63], for mild transition with jhj ≪ 1, most of non-
Gaussianity is washed out during the subsequent evolution
of USR phase.
With the above discussions in mind, we should distin-

guish between the instant transition and the sharp
transition. In our analysis above, we have assumed an
instant transition but with different values of the sharpness
parameter h. In particular, one can also relax the
assumption of an instant transition and assume the tran-
sition may not happen instantly at τ ¼ τe [26,38]. In this
case, the outgoing mode function will be more complicated
than what is obtained in Eq. (17). This will bring more
complexities in theoretical analysis which is beyond the
scope of our current work.

III. INTERACTION HAMILTONIANS

To calculate the one-loop corrections in bispectrum we
need the interaction Hamiltonians. There are three different
one-particle irreducible Feynman diagrams for the one-loop
corrections in bispectrum as depicted in Fig. 1. The left
panel represents the corrections entirely from cubic
Hamiltonian H3. The middle panel represents a mixed
contributions in which the lower vertex comes from the
quartic interaction Hamiltonian H4 while the upper vertex
comes from H3. Finally, the right panel represents the
contribution from a single vertex containing the quintic
interaction HamiltonianH5. The contributions from the left
diagram in Fig. 1 is more complicated than the other two
diagrams. This is because one has to consider a threefold
time integrals in the in-in integrals. On the other hand, the
in-in analysis associated with the middle diagram is some-
what easier as one deals with a twofold time integrals as we
will demonstrate below. The in-in integral for the right
panel involves only a single time integral so it is the easiest
compared to other two diagrams. However, to calculate the
contribution of the right diagram, we need to calculate the
total H5. Besides the intrinsic quintic Hamiltonian con-
structed directly from the action in the form L5 → −H5,
the cubic and quartic interactions will induce additional
contributions in quintic interaction as well. This will bring

FIG. 1. The one-particle irreducible Feynman diagrams for the one-loop corrections in bispectrum. In the left panel all three vertices
come from H3 while in the middle panel the lower vertex is from H4 and the upper one is from H3. In the right panel there is a single
vertex from H5.
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more complexity into the analysis for the diagram in the
right panel of Fig. 1. In this work, as a first attempt to
calculate the one-loop corrections in bispectrum, we con-
sider the contribution of the middle diagram of Fig. 1. The
results of this analysis will provide useful information
about the behavior of the one-loop corrections. We post-
pone a complete study of the one-loop corrections in
bispectrum involving the contributions of all three dia-
grams of Fig. 1 to a future work.
The interaction Hamiltonians H3 and H4 for the USR

setupwas calculated in [22] employing themethod of EFTof
inflation [66,67] which we briefly review here. The EFT
approach was originally employed in [52] to calculate the
tree-level bispectrum for a general PðX;ϕÞ-type of non-
attractor setup. The EFTof inflation is a powerful tool in the
decoupling limit when one neglects the gravitational back-
reactions and the matter perturbations comprise the dom-
inant contributions. In a near dS background with a
time-dependent inflaton field ϕðtÞ, the four-dimensional
diffeomorphism invariance is spontaneously broken to a
three-dimensional spatial diffeomorphism invariance. In the
unitary gauge where the perturbations of inflaton are turned
off one writes down all terms in the action which are
consistent with the remaining three-dimensional diffeomor-
phism invariance. Correspondingly, the background infla-
tion dynamics is controlled via the knownHubble expansion
rate HðtÞ and its derivative ḢðtÞ. After writing the action
consistent with the three-dimensional diffeomorphism
invariance, one restores the full four-dimensional diffeo-
morphism invariance by introducing a scalar field fluctua-
tions, πðxμÞ, the Goldstone boson representing the breaking
of the time diffeomorphism invariance. As mentioned
before, the advantage of the EFT approach is when one
goes to the decoupling limit where the gravitational back-
reactions are slow-roll suppressed and negligible. To cal-
culate the interaction Hamiltonians, we have to expand
the quantities Hðtþ πÞ and Ḣðtþ πÞ to the corresponding
orders.
With the above discussions in mind the quadratic, cubic

and quartic actions in the decoupling limit were calculated
in [22]. The quadratic action necessary to quantize the free
theory is given by

S2 ¼ M2
P

Z
dτd3xa2ϵH2ðπ02 − ð∂iπÞ2Þ; ð19Þ

in which a prime denotes the derivative with respect to the
conformal time.
The cubic action is obtained to be

Sπ3 ¼ M2
PH

3

Z
dτd3xηϵa2½ππ02 − πð∂πÞ2�; ð20Þ

leading to the following cubic interaction Hamiltonian,

H3 ¼ −M2
PH

3ηϵa2
Z

d3x

�
ππ02 þ 1

2
π2∂2π

�
: ð21Þ

The above cubic Hamiltonian agrees with that of [52] when
cs ¼ 1. Note that the gradient term can not be ignored
a priori since its effects can be important [34,52].
Similarly, the quartic action is obtained to be

Sπ4 ¼
M2

P

2

Z
dτd3xϵaH3ðη2aH þ η0Þ½π2π02 − π2ð∂πÞ2�:

ð22Þ

Note the important contribution from the term η0 which
induces a delta contribution in the interaction Hamiltonian
when η undergoes a jump from the USR phase to the third
slow-roll phase as seen in Eq. (12).
As observed in [22], to calculate the quartic Hamiltonian

we have to be careful as the time derivative interaction π0π2 in
H3 induces a new term in the quartic Hamiltonian [68,69] so
one can not simply concludeH4 ¼ −L4. More specifically,
the quartic Hamiltonian receives additional contribution
þM2

PH
4η2ϵa2π2π02 from the cubic action, so the total quartic

Hamiltonian is obtained to be

H4 ¼
M2

P

2
ϵaH3

Z
d3x½ðη2aH − η0Þπ2π02

þ ðη2aH þ η0Þπ2ð∂πÞ2�: ð23Þ

The interaction Hamiltonians (21) and (23) will be used in
our analysis in the next section to calculate the one-loop
corrections in bispectrum for the middle diagram in Fig. 1.
As discussed in [22] note that we are interested in

curvature perturbation on comoving surface R while the
above interaction Hamiltonians are written in terms of
the variable π. There are additional contributions from the
nonlinear relations between π andR. For example, to cubic
order in π, the nonlinear relation betweenR and π is given
by [41,42]

R ¼ −Hπ þ
�
Hππ̇ þ Ḣ

2
π2
�

þ
�
−Hππ̇2 −

H
2
π̈π2 − Ḣ π̇ π2 −

Ḧ
6
π3
�
: ð24Þ

However, we calculate the three-point correlation function
at the time of end of inflation τ ¼ τ0 → 0 when the system
is in the slow-roll regime and the perturbations are frozen
on superhorizon scales, π̇ ¼ π̈ ¼ 0. Fortunately, in this
limit all the nonlinear corrections in R in Eq. (24) are
suppressed so one can simply assume the linear relation
between R and π,

R ¼ −Hπ; ðτ → τ0Þ: ð25Þ
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Because of this linear relation between π and R, one can
use π andR interchangeably in the following in-in integrals
with the mode function of R from the free theory (in the
interaction picture).
Before closing this section we comment about the roles

of the total time derivative terms which caused controver-
sies in recent literature, see for example [34,35]. In
obtaining our cubic and quartic Hamiltonians presented
above, we have discarded the total time derivative terms.
These total time derivative terms are specifically presented
in [22] which are shown to have the form d

dt ðfðτÞπ3Þ and
d
dt ðgðτÞπ4Þ in which fðτÞ and gðτÞ are functions of back-
ground parameters like ϵ. It turns out that when we
calculate the correlations in power spectrum hππi or
bispectrum hπππi, involving only the fields and not their
derivatives π̇, then these total time derivative terms do not
contribute. This is because the fields commute at the final
point (end of inflation). However, this would not be the case
if the total time derivative terms involve terms with

derivative of fields. The roles of total time derivative terms
are more closely investigated recently in [70].

IV. LOOP CORRECTIONS IN BISPECTRUM

We are interested in loop corrections in bispectrum
hRp1

Rp2
Rp3

i in which we assume all three modes pi

are on the CMB scales. For simplicity, we assume p1 ≃
p2 ≃ p3 and they are considered soft momenta compared to
mode q which leaves the horizon during the USR phase;
pi ≪ q. We neglect the tree-level non-Gaussianity in
hRp1

Rp2
Rp3

i which are induced from the gravitational
backreactions and are negligible in the limit of slow-roll
approximation [40].
To calculate the loop corrections in bispectrum we

employ the perturbative in-in formalism [71] in which
the expectation value of the operator Ô½τ0� at the end of
inflation τ0 is given by

hÔðτ0Þi ¼
��

T̄ exp

�
i
Z

τ0

−∞
dτ0Hinðτ0Þ

��
Ôðτ0Þ

�
T exp

�
−i

Z
τ0

−∞
dτ0Hinðτ0Þ

���
; ð26Þ

in which T and T̄ represent the time ordering and antitime
ordering respectively while HinðtÞ is the interaction Ham-
iltonian. In our case with Ôðτ0Þ ¼ Rp1

ðτ0ÞRp2
ðτ0ÞRp3

ðτ0Þ,
we have the contributions from the cubic, quartic, and
quintic interactions so Hin ¼ H3 þH4 þH5.
As mentioned before, there are three Feynman diagrams

at the one-loop level as shown in Fig. 1. Since the
interaction vertices in the left panel of this figure all involve
H3, then this diagram requires three factors ofH3 inside the
in-in integrals. Correspondingly, one would deal with a
threefold time integrals over τ1, τ2, τ3 which make the
analysis complicated, see [72] for recent progress in dealing
with the nested time integrals. On the other hand, the
middle panel in Fig. 1 involves one factor of H3 and one
factor of H4 so it contains a twofold time integrals over τ1
and τ2 and the analysis for this diagram would be easier.
Finally, the diagram in the right panel of this figure contains
only one vertex ofH5 so it would involve only a single time
integral. However, for this diagram one has to calculate
totalH5. In this work, to obtain a first estimation of the one-
loop corrections in bispectrum, we consider the diagram in
the middle panel of Fig. 1 in which the interaction
Hamiltonians are already known and the in-in integrals
are easier compared to the diagram in the left panel. Of
course, to find the total loop corrections one has to calculate
the contribution of all diagrams in Fig. 1.
To calculate the loop corrections, we need to expand the

in-in formula Eq. (26) to desired order in powers ofHin. For
the diagram in middle panel of Fig. 1, we have to expand to
second order in Hin. It turns out to be more convenient to

employ the Weinberg method of commutator series of
master equation (26) which, to second order in interaction,
yields [71],

hÔðτ0Þi ¼ i2
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1h½Hinðτ1Þ; ½Hinðτ2Þ; Ôðτ0Þ��i;

ð27Þ

in which, excluding the quintic Hamiltonian, Hin ¼
H3 þH4. To proceed further, note that since R is a free
Gaussian field, the expectation value hRni vanishes for
odd values of n. Correspondingly, the above formula is
cast into

hRp1
ðτ0ÞRp2

ðτ0ÞRp3
ðτ0Þi ¼ B þ C; ð28Þ

where the two contributions B and C are given as follows:

B≡
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1h½H4ðτ1Þ; ½Ôðτ0Þ;H3ðτ2Þ��i

¼ 2

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1Re½hH4ðτ1ÞÔðτ0ÞH3ðτ2Þi

− hH4ðτ1ÞH3ðτ2ÞÔðτ0Þi�; ð29Þ

and
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C≡
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1h½H3ðτ1Þ; ½Ôðτ0Þ;H4ðτ2Þ��i

¼ 2

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1Re½hH3ðτ1ÞÔðτ0ÞH4ðτ2Þi

− hH3ðτ1ÞH4ðτ2ÞÔðτ0Þi�; ð30Þ

with Ôðτ0Þ≡Rp1
ðτ0ÞRp2

ðτ0ÞRp3
ðτ0Þ. Note that the

contributions ½H4ðτ1Þ; ½H4ðτ2Þ; Ôðτ0Þ�� and ½H3ðτ1Þ;
½H3ðτ2Þ;Ôðτ0Þ�� which lead to odd powers of R vanish
as just mentioned above. Also we note that the time integral
is nested with −∞ < τ1 ≤ τ2 ≤ τ0. Finally, as noted before,
the relation between π and R can be considered linear
inside the in-in integral [see discussions after Eq. (25)] so
we replace π in H3 and H4 by R.
Looking at the form of H3 and H4 we observe that both

are divided to two different forms: either having time
derivatives like π02 or having gradient like ∂2π. Therefore,
to keep track of their contributions inside the in-in integrals
we decompose them as follows:

H3 ¼ A3ðτÞ
Z

d3xRR02 þ B3ðτÞ
Z

d3xR2
∂
2R; ð31Þ

and

H4 ¼ A4ðτÞ
Z

d3xR2R02 þ B4ðτÞ
Z

d3xR2ð∂RÞ2; ð32Þ

in which the time-dependent coefficients Ai and Bi are
defined via,

A3ðτÞ ¼ 2B3ðτÞ≡M2
Pηϵa

2; ð33Þ

and

A4ðτÞ≡ 1

2
M2

Pη
2ϵa2

�
1 −

h
η2

δðτ − τeÞτe
�
;

B4ðτÞ≡ 1

2
M2

Pη
2ϵa2

�
1þ h

η2
δðτ − τeÞτe

�
: ð34Þ

Note that the term δðτ − τeÞ above comes from the term η0
in H4 as given in Eq. (12).
Depending on which terms from the above two catego-

ries in H3 and H4 are contracted with each other, we will
have four different contributions in each component B and
C of bispectrum as follows:

B ¼ BA4A3
þ BA4B3

þ BB4A3
þ BB4B3

; ð35Þ

and

C ¼ CA3A4
þ CA3B4

þ CB3A4
þ CB3B4

: ð36Þ

For example, for BA4A3
we have

BA4A3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A4ðτ1ÞA3ðτ2Þ

Z
d3x

×
Z

d3yh½R2R02ðx; τ1Þ; ½Ôðτ0Þ;RR02ðy; τ2Þ��i:

ð37Þ

Going to the Fourier space, this is cast into

BA4A3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A4ðτ1ÞA3ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

× h½ðR̂q1R̂q2R̂
0
q3R̂

0
q4
Þðτ1Þ; ½ðR̂p1

R̂p2
R̂p3

Þðτ0Þ; ðR̂k1
R̂0

k2
R̂0

k3
Þðτ2Þ��i: ð38Þ

We present the details of the analysis for the in-in integrals in the Appendix. After a tedious and long calculations, we
obtain

B0 ¼ −16PRðp1ÞPRðp2Þ
Z

d3q
ð2πÞ3

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1fIm½Rpðτ0ÞR�

pðτ2Þ�Im½I4ðq; τ1ÞI3ðq; τ2Þ�

þ 2Im½Rpðτ0ÞR0�
p ðτ2Þ�Im½I4ðq; τ1ÞR�

qðτ2ÞR0�
q ðτ2Þ�A3ðτ2Þg þ 2 c:p:; ð39Þ

in which the prime over B and similar expressions below means that we have pulled out the factor ð2πÞ3δ3ðp1 þ p2 þ p3Þ
and c.p. means cyclic permutations over pi. In addition, the quantities I4ðq; τÞ and I3ðq; τÞ are defined as follows:

I4ðq; τÞ≡ ½A4ðτÞR0
qðτÞ2 þ q2B4ðτÞRqðτÞ2�; ð40Þ

and
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I3ðq; τÞ≡ ½A3ðτÞR0�
q ðτÞ2 − 2q2B3ðτÞR�

qðτÞ2�: ð41Þ

Similarly, for the remaining part in bispectrum we obtain (see Appendix for further details),

C0 ¼ −32PRðp1ÞPRðp2Þ
Z

d3q
ð2πÞ3

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1fIm½Rpðτ0ÞR�

pðτ2Þ�Im½I�4ðq; τ2ÞI�3ðq; τ1Þ�

þ 2Im½Rpðτ0ÞR0�
p ðτ2Þ�Im½I�3ðq; τ1ÞR�

qðτ2ÞR0�
q ðτ2Þ�A4ðτ2Þg þ 2 c:p:: ð42Þ

In the expressions of B0 and C0 the imaginary fac-
tors Im½Rpðτ0ÞR�

pðτ2Þ� and Im½Rpðτ0ÞR0�
p ðτ2Þ� are given

by [22]

Im½Rpðτ0ÞR�
pðτÞ� ¼

−H2τ6s
12M2

Pϵihτ
3
eτ

3
ðhτ3eþð6−hÞτ3Þ; ð43Þ

and

Im½Rpðτ0ÞR0�
p ðτÞ� ¼

H2τ6s
4M2

Pϵiτ
4
: ð44Þ

Note that the above imaginary components are independent
of p. This played important roles in simplifying the
analysis in obtaining the results for B and C in Eqs. (39)
and (42).
Looking at the momentum dependence of B0 and C0 we

observe that the loop correction in bispectrum has the local

shape in its dependence on pi. This is an interesting result,
as it is expected usually that the local shape bispectrum to
occur in multiple fields scenarios [73]. In this view the loop
correction in the current single field model provides a
counter example for this general expectation.
Now defining the fNL parameter via,

hRp1
ðτ0ÞRp2

ðτ0ÞRp3
ðτ0Þi

≡ 6

5
fNLðPRðp1; τ0ÞPRðp2; τ0Þ þ 2 c:p:Þ; ð45Þ

from our expressions for B0 and C0 given above, we obtain

floopNL ¼ −
40

3

Z
d3q
ð2πÞ3

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1F qðτ2; τ1Þ; ð46Þ

in which the kernel function F qðτ2; τ1Þ is defined via

F qðτ2; τ1Þ≡ Im½Rpðτ0ÞR�
pðτ2Þ�fIm½I4ðq; τ1ÞI3ðq; τ2Þ� þ 2Im½I�4ðq; τ2ÞI�3ðq; τ1Þ�g

þ 2Im½Rpðτ0ÞR0�
p ðτ2Þ�fA3ðτ2ÞIm½I4ðq; τ1ÞR�

qðτ2ÞR0�
q ðτ2Þ� þ 2A4ðτ2ÞIm½I�3ðq; τ1ÞR�

qðτ2ÞR0�
q ðτ2Þ�g: ð47Þ

To estimate floopNL we consider the contributions of the
USR mode with qs ≤ q ≤ qe. In addition, we only count
the modes which become superhorizon during the USR
phase with −qτ < 1. In performing the integral over time,
we consider the contributions from the interval τs ≤ τ ≤ τe,
including the contribution from the local source term
δðτ − τeÞ. However, as shown in [22], the contributions
from the final stage of inflation τe < τ < τ0 in the time
integrals are negligible. This is because in our approxima-
tion of a sharp transition, the mode function quickly
approaches its final attractor phase and their contributions
in the time integral is not significant.
Performing the in-in integrals2 we obtain the following

result for floopNL ,

floopNL ¼ 45fðhÞΔNPCMBe6ΔN; ð48Þ

in which PCMB ≃ 2 × 10−9 is the power spectrum on the
CMB scales and the function fðhÞ is given by

fðhÞ ≃ 3 − 5.9hþ 0.36h2

h
: ð49Þ

In particular, we note that for ΔN ¼ 0, the loop correc-
tion in bispectrum vanishes. This is expected since
when ΔN ¼ 0 there is no intermediate USR phase so all
interactions disappear and we obtain the tree level results
that fNL → 0 in the slow-roll limit.
The expression (48) for the loop correction in bispectrum

has the same structure as the loop corrections in power
spectrum with the factor ΔNPCMBe6ΔN appearing in both
analysis. The nonlinear dependence on the sharpness
parameter h in fðhÞ is similar but with different numerical
factors. More specifically, the fractional loop correction in
power spectrum is calculated in [22] to be

2We use the Maple computational software to calculate the
integrals semianalytically.

HASSAN FIROUZJAHI PHYS. REV. D 110, 043519 (2024)

043519-8



Δloop≡ΔPloop

PCMB
¼ 6ΔN

h
ðh2þ24hþ180Þe6ΔNPCMB: ð50Þ

Combining this result with our loop correction in bispec-
trum, we can eliminate the common factor ΔNPCMBe6ΔN

and obtain the following relation between the loop correc-
tions in power spectrum and bispectrum:

floopNL ≃
15ð0.36h2 − 5.9hþ 3Þ
2ðh2 þ 24hþ 180Þ Δloop: ð51Þ

For the perturbative analysis to be under control we need
that jΔloopj < 1. This in turn imposes a theoretical bound on
floopNL and the sharpness parameter h. We comment that
in [74] the authors used the one-loop corrections in power
spectrum to put a bound on the tree-level fNL in standard
single field models of inflation.
In the left panel of Fig. 2 we have plotted floopNL for

various values of h as a function of the duration of USR
phase ΔN. We see the dependence on h is moderate, but
jfNLj increases linearly for jhj ≫ 1. Furthermore, floopNL
increases quickly beyond the observational bound [75]
jfNLj≲ 10 for N ≳ 2.5. The conclusion is that to satisfy the
observational bound on fNL the duration of USR phase
should be limited to ΔN ≲ 2.5 for sharp transitions with
jhj > 1. In addition, our analysis suggests that floopNL < 0.
This may relax the PBHs formation with a negative local-
type non-Gaussianity [60,62,76–78]. On the other hand, in
the right panel of Fig. 2 we have presented the bound on
jfloopNL j for different theoretical upper bounds on Δloop

based on Eq. (51). For moderate large value of jhj the
theoretical bound (51) is similar to the observational bound
jfNLj≲ 10. However, for extreme sharp transition with
h → −∞, the theoretical bound is stronger, requiring
jfloopNL j≲ 1. Curiously, for relatively mild transition with

1≲ jhj≲ 6 the upper bound on jfloopNL j becomes strong as
well while we may not trust our analysis for jhj ≪ 1 where
the assumption of a sharp transition is violated.
Large values of floopNL can be constrained by their

implications for gravitational anisotropies and dark matter
isocurvature perturbations [77,79]. More specifically, con-
sider a constant and scale invariant fNL. The modulation of
large CMB scale perturbations on PBHs induces isocurva-
ture perturbations of amplitude [77] Piso ∼ f2NLf

2
PBHPCMB

in which fPBH is the fraction of PBHs in dark matter
energy density. From the Planck constraints on
isocurvature perturbations [75] one typically requires that
jfNLfPBHj≲ 10−2. An immediate conclusion is that for
large value of fNL, the PBHs can not furnish a significant
fraction of the dark matter energy density. In addition,
a large value of fNL induces anisotropies and non-
Gaussianities in stochastic GWs spectra generated from
the second-order scalar perturbations which can be con-
strained as well [79].

V. SUMMARY AND DISCUSSIONS

Motivated by the analysis of [8,9], in this work we have
studied the one-loop corrections in bispectrum for the CMB
scale perturbations induced from the small-scale modes
which undergo an intermediate phase of USR inflation. To
simplify the analysis we have assumed a sharp transition to
the final attractor phase. These setups with an intermediate
USR phase have been employed to amplify the small-scale
perturbations for the PBHs formation during inflation.
There are three distinct one-particle irreducible Feynman

diagrams for the one-loop corrections in bispectrum as
depicted in Fig. 1. For simplicity, we have considered the
Feynman diagram with two exchange vertices, one from the
cubic interaction and one from the quartic interactions. We
have employed the formalismof EFTof inflation to calculate
the cubic and quartic Hamiltonians. After performing the in-

FIG. 2. Left: The plot of −floopNL vs. ΔN for different values of h. From bottom to top: h ¼ −6, h ¼ −60 and h ¼ −120. Right: The
upper bound on −floopNL from Eq. (51) for different upper bounds on the fractional loop corrections in power spectrum Δloop: jΔloopj < 1

5

(solid) and jΔloopj < 1
10

(dot).
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in analysis, we have shown that the bispectrum has the local
shape with the magnitude floopNL ∝ fðhÞPCMBe6ΔN . The
dependence on PCMBe6ΔN is the same as in the loop
corrections for power spectrum Δloop. In addition, the
function fðhÞ increases linearly with the sharpness param-
eter h for jhj ≫ 1 which is similar to the one-loop correc-
tions in power spectrum [22]. Our analysis suggests that
floopNL associated to this Feynman diagram is universally
negative. This can help the bounds on the PBHs formation.
We have found that for sharp transitions the loop

corrections in bispectrum can quickly violate the observa-
tional bounds on fNL requiring jfNLj≲ 10 on CMB
scales [75]. This imposes an upper bound on the duration
of USR phase, requiring ΔN ≲ 2.5 or so. On the other
hand, one can also put a theoretical bound on floopNL by
requiting that the loop corrections in power spectrum to be
under perturbative control with jΔloopj < 1. For moderate
large values of jhj this theoretical bound is similar to the
observational bound jfNLj≲ 10 but for extreme sharp
transition with jhj ≫ 10, one obtains the strong theoretical
bound jfloopNL j≲ 1.
For a complete understanding of the overall sign and

magnitude of floopNL we need to calculate the contribution
from the remaining two diagrams of Fig. 1 as well. The
analysis from [22] for the case of power spectrum suggests
that the three diagrams in Fig. 1 can have similar magni-
tudes. Having said this, one expects that the contributions
from the three diagrams show different properties as well.
For example, the interaction Hamiltonian H4 contains
η0 ∝ h while the interaction H3 does not. As such, the
dependence on the sharpness parameter h would be some-
what different for the one-loop corrections induced by these
two interactions. We leave it for future work to calculate
the one-loop corrections from all three diagrams in Fig. 1.
As part of this analysis, we need the quintic interaction
Hamiltonian H5 which is not calculated previously.
There are a number of directions in which the current

study can be extended. In this work we only considered the
effects of USR modes inside the loop integrals but did not
take into account the UV scales corresponding to the modes
which are deep inside the horizon during the USR phase.
This brings the important question of renormalization and
regularization as in any QFT analysis. However, we believe
the result given in Eq. (48) provides a useful and reliable
estimation of the one-loop corrections in bispectrum. We
leave the question of regularization and renormalization for
future studies. Another question of interest is to look for the
one-loop corrections in trispectrum. There are various
Feynman diagrams corresponding for the one-loop correc-
tions in trispectrum, including the contributions from the
sixth-order Hamiltonian H6. It would be interesting to
examine if the one-loop correction in the trispectrum has
the same structure as what is obtained for power spectrum
and bispectrum.
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APPENDIX: IN-IN INTEGRALS

In this Appendix we present the in-in analysis in more
details.
As mentioned in the main text, there are two different

contributions for the one-loop corrections in bispectrum
associated to the diagram in the middle panel of Fig. 1 as
follows:

hRp1
ðτ0ÞRp2

ðτ0ÞRp3
ðτ0Þi ¼ B þ C; ðA1Þ

with

B≡
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1h½H4ðτ1Þ; ½Ôðτ0Þ;H3ðτ2Þ��i

¼ 2

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1Re½hH4ðτ1ÞÔðτ0ÞH3ðτ2Þi

− hH4ðτ1ÞH3ðτ2ÞÔðτ0Þi�; ðA2Þ

and

C≡
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1h½H3ðτ1Þ; ½Ôðτ0Þ;H4ðτ2Þ��i

¼ 2

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1Re½hH3ðτ1ÞÔðτ0ÞH4ðτ2Þi

− hH3ðτ1ÞH4ðτ2ÞÔðτ0Þi�; ðA3Þ

with Ôðτ0Þ≡Rp1
ðτ0ÞRp2

ðτ0ÞRp3
ðτ0Þ. Note that B and C

are mirror to each other concerning the positions of H3
and H4.
To proceed further, it is very convenient to decompose

the expectation values in terms of subcomponent Wick
contractions. For example, consider the expression
hH4ðτ1ÞÔðτ0ÞH3ðτ2Þi in the second line for B. It has three

types of Wick contractions: H4ðτ1ÞH3ðτ2Þ, H4ðτ1ÞÔðτ0Þ
and Ôðτ0ÞH3ðτ2Þ. Let us define

H4ðτ1ÞH3ðτ2Þ≡ ĥðτ1; τ2Þ H4ðτ1ÞÔðτ0Þ≡ f̂ðτ1Þ
Ôðτ0ÞH3ðτ2Þ≡ ĝðτ2Þ ðA4Þ

Then, considering both terms in the second line of
Eq. (A2), the expression for B is simplified to

B¼−4
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1Im½ĝðτ2Þ�Im½f̂ðτ1Þĥðτ1;τ2Þ�: ðA5Þ
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Our job would be to calculate the functions ĝðτ2Þ; f̂ðτ1Þ,
and ĥðτ1; τ2Þ for each case and plug them into Eq. (A5).
Depending on the relative positions of Ai and Bi terms in

H3 and H4 interactions, B and C are decomposed in four
different contributions,

B ¼ BA4A3
þ BA4B3

þ BB4A3
þ BB4B3

; ðA6Þ

and

C ¼ CA3A4
þ CA3B4

þ CB3A4
þ CB3B4

: ðA7Þ

For example, for BA4A3
we have

BA4A3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A4ðτ1ÞA3ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

× h½ðR̂q1R̂q2R̂
0
q3R̂

0
q4
Þðτ1Þ; ½ðR̂p1

R̂p2
R̂p3

Þðτ0Þ; ðR̂k1
R̂0

k2
R̂0

k3
Þðτ2Þ��i: ðA8Þ

Let us concentrate on the second line above which involves the contractions after performing the integrals over the delta
functions in the soft limit pi ≪ qi; ki. After constructing the functions ĝðτ2Þ; f̂ðτ1Þ and ĥðτ1; τ2Þ for each case, we obtain 8
different terms for these contractions as follows:

ðaÞ∶ − 16Im½Rp3
ðτ0ÞR�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞRp1

ðτ1ÞRp2
ðτ1ÞR0

qðτ1Þ2R0�
q ðτ2Þ2� þ 2 c:p:

ðbÞ∶ − 32Im½Rp3
ðτ0ÞR�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞR0

p1
ðτ1ÞRp2

ðτ1ÞR0
qðτ1ÞRqðτ1ÞR0�

q ðτ2Þ2� þ 2 c:p:

ðcÞ∶ − 32Im½Rp3
ðτ0ÞR�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞRp1

ðτ1ÞR0
p2
ðτ1ÞR0

qðτ1ÞRqðτ1ÞR0�
q ðτ2Þ2� þ 2 c:p:

ðdÞ∶ − 16Im½Rp3
ðτ0ÞR�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞR0

p1
ðτ1ÞR0

p2
ðτ1ÞRqðτ1Þ2R0�

q ðτ2Þ2� þ 2 c:p:

ðeÞ∶ − 32Im½Rp3
ðτ0ÞR0�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞRp1

ðτ1ÞRp2
ðτ1ÞR0

qðτ1Þ2R0�
q ðτ2ÞR�

qðτ2Þ� þ 2 c:p:

ðfÞ∶ − 32Im½Rp3
ðτ0ÞR0�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞR0

p1
ðτ1ÞRp2

ðτ1ÞR0
qðτ1ÞRqðτ1ÞR0�

q ðτ2ÞR�
qðτ2Þ� þ 2 c:p:

ðgÞ∶ − 32Im½Rp3
ðτ0ÞR0�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞRp1

ðτ1ÞR0
p2
ðτ1ÞR0

qðτ1ÞRqðτ1ÞR0�
q ðτ2ÞR�

qðτ2Þ� þ 2 c:p:

ðhÞ∶ − 32Im½Rp3
ðτ0ÞR0�

p3
ðτ2Þ�Im½R�

p1
ðτ0ÞR�

p2
ðτ0ÞR0

p1
ðτ1ÞR0

p2
ðτ1ÞRqðτ1Þ2R0�

q ðτ2ÞR�
qðτ2Þ� þ 2 c:p:

The terms ðaÞ; ðbÞ; ðcÞ and (d) share a common form of
function ĝðτ2Þ while the remaining terms ðeÞ; ðfÞ; ðgÞ, and
(h) share a different form of function ĝðτ2Þ. In the soft limit
where pi → 0, the term (a) from the first four terms and the
term (e) from the remaining four terms have the leading
contributions. For example, one can check that ðbÞ ∼ ðcÞ ∼
p2τ × ðaÞ so these terms are suppressed compared to the (a)
term.
The above expressions for (a) and (b) can be further

simplified noting that [22]

Im½Rpðτ0ÞR�
pðτÞ�¼

−H2τ6s
12M2

Pϵihτ
3
eτ

3
ðhτ3eþð6−hÞτ3Þ; ðA9Þ

and

Im½Rpðτ0ÞR0�
p ðτÞ� ¼

H2τ6s
4M2

Pϵiτ
4
: ðA10Þ

In particular, we observe that the above imaginary compo-
nents are independent of p.
On the other hand, for the remaining imaginary compo-

nents in (a) and (e), the most dominant contribution scales
like p−6 in the limit p → 0. This corresponds to the case
where all factors of mode functions Rpi

are real and equal
to its value at the end of inflation Rpi

ðτ0Þ:

RpðτÞ ≃Rpi
ðτ0Þ ≃

H

2ϵiMPp
3
2

: ðA11Þ

This yields,

ðaÞ∶ − 16PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR�
pðτ2Þ�

× Im½R0
qðτ1Þ2R0�

q ðτ2Þ2� þ 2 c:p: ðA12Þ
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and similarly for (e) term:

ðeÞ∶ − 32PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR0�
p ðτ2Þ�Im½R0

qðτ1Þ2R�
qðτ2ÞR0�

q ðτ2Þ� þ 2 c:p: ðA13Þ

Now we calculate BA4B3
which is obtained from the contraction of the term with A4 inH4 with the term containing B3 in

H3, yielding

BA4B3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A4ðτ1ÞB3ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

×
Dh

ðR̂q1
R̂q2R̂

0
q3R̂

0
q4Þðτ1Þ; ½ðR̂p1

R̂p2
R̂p3

Þðτ0Þ; ðR̂k1
R̂k2

R̂k3
Þðτ2Þ�

iE
i2k23: ðA14Þ

As in the case of BA4A3
there are 8 different contributions. The leading contribution is the one in which no contraction of R̂pi

with ∂
2R̂ki

is made. Considering the second line involving the contractions and following the same logic as the terms (a)
above, the leading contribution containing order p−6 is given by

−32i2q2PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR�
pðτ2Þ�Im½R0

qðτ1Þ2R�
qðτ2Þ2� þ 2 c:p: ðA15Þ

On the other hand, the term BB4A3
has the following form

BB4A3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1B4ðτ1ÞA3ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

×
Dh

ðR̂q1
R̂q2R̂q3R̂q4Þðτ1Þ; ½ðR̂p1

R̂p2
R̂p3

Þðτ0Þ; ðR̂k1
R̂0

k2
R̂0

k3
Þðτ2Þ�

iE
i2q3 · q4: ðA16Þ

Following the same steps as in the case of BA4A3
, there are two leading contributions of order p−6 as follows:

16i2q2PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR�
pðτ2Þ�Im½Rqðτ1Þ2R0�

q ðτ2Þ2� þ 2 c:p: ðA17Þ

and

32i2q2PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR0�
p ðτ2Þ�Im½Rqðτ1Þ2R0�

q ðτ2ÞR�
qðτ2Þ� þ 2 c:p: ðA18Þ

Finally, BB4A3
has the following form

BB4B3
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1B4ðτ1ÞB3ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

×
Dh

ðR̂q1R̂q2R̂q3R̂q4Þðτ1Þ; ½ðR̂p1
R̂p2

R̂p3
Þðτ0Þ; ðR̂k1

R̂k2
R̂k3

Þðτ2Þ�
iE

i4k23q3 · q4: ðA19Þ

It has the following leading contribution in its contractions:

32i4q4PRðp1ÞPRðp2ÞIm½Rpðτ0ÞR�
pðτ2Þ�Im½Rqðτ1Þ2R�

qðτ2Þ2� þ 2 c:p: ðA20Þ

Combining the leading terms (A20), (A17), (A15), and (A12) which all have common imaginary factor
Im½Rpðτ0ÞR�

pðτ2Þ�, yields the following contribution in B0:

−16PRðp1ÞPRðp2Þ
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1Im½Rpðτ0ÞR�

pðτ2Þ�
Z

d3q
ð2πÞ3 Im½I4ðq; τ1ÞI3ðq; τ2Þ�; ðA21Þ

in which the quantities I4ðq; τÞ and I3ðq; τÞ are given by

I4ðq; τÞ≡ ½A4ðτÞR0
qðτÞ2 þ q2B4ðτÞRqðτÞ2�; ðA22Þ
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and

I3ðq; τÞ≡ ½A3ðτÞR0�
q ðτÞ2 − 2q2B3ðτÞR�

qðτÞ2�: ðA23Þ
On the other hand, combining the remaining two terms (A13) and (A18) which both have the common imaginary factor
Im½Rpðτ0ÞR0�

p ðτ2Þ�, yields the following contribution in B0:

−32PRðp1ÞPRðp2Þ
Z

τ0

−∞
dτ2

Z
τ2

−∞
dτ1Im½Rpðτ0ÞR0�

p ðτ2Þ�A3ðτ2Þ
Z

d3q
ð2πÞ3 Im½I4ðq; τ1ÞR0�

q ðτ2ÞR�
qðτ2Þ�: ðA24Þ

Finally, combining the above results (A21) and (A24) yields the total contributions for B as given in Eq. (39).
The analysis for C goes similar as above, with the difference being that the positions ofH3 andH4 are switched. Here we

provide some steps yielding to CA3A4
which is given by

CA3A4
¼

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A3ðτ1ÞA4ðτ2Þ

�Y4
i

Z
d3qi

ð2πÞ32 ð2πÞ
3δ3

�X
i

qi

���Y3
j

Z
d3ki

ð2πÞ32 ð2πÞ
3δ3

�X
i

ki

��

×
Dh

ðR̂k1
R̂0

k2
R̂0

k3
Þðτ1Þ; ½ðR̂p1

R̂p2
R̂p3

Þðτ0Þ; ðR̂q1R̂q2R̂
0
q3R̂

0
q4Þðτ2Þ�

iE
: ðA25Þ

As in the case of BA4A3
, there are eight different contributions into the above contraction. As in BA4A3

, only two contributions
similar to (a) term and (e) term are leading. The term similar to the (a) term is given by

−16Im½Rp1
ðτ0ÞRp2

ðτ0ÞR�
p1
ðτ2ÞR�

p2
ðτ2Þ�Im½R0

qðτ1Þ2R0�
q ðτ2Þ2Rp3

ðτ1ÞR�
p3
ðτ0Þ� þ 2 c:p: ðA26Þ

From the above expression, one can show that the leading order contribution containing p−6 is given by

−16ðPRðp1Þ þ PRðp2ÞÞPRðp3ÞIm½Rpðτ0ÞR�
pðτ2Þ�Im½R0

qðτ1Þ2R0�
q ðτ2Þ2� þ 2 c:p: ðA27Þ

On the other hand, the term similar to the (e) term in BA4A3
has the following form:

−32Im½Rp1
ðτ0ÞRp2

ðτ0ÞR0�
p1
ðτ2ÞR�

p2
ðτ2Þ þ p1 ↔ p2�Im½R0

qðτ1Þ2R0�
q ðτ2ÞR�

qðτ2ÞRp3
ðτ1ÞR�

p3
ðτ0Þ� þ 2 c:p:

This is further simplified into

−32ðPRðp1Þ þ PRðp2ÞÞPRðp3ÞIm½Rpðτ0ÞR0�
p ðτ2Þ�Im½R0

qðτ1Þ2R0�
q ðτ2ÞR�

qðτ2Þ� þ 2 c:p: ðA28Þ

Combining Eqs. (A28) and (A27) yields the following expression for CA3A4
:

CA3A4
¼ −32PRðp1ÞPRðp2Þ

Z
d3q
ð2πÞ3

Z
τ0

−∞
dτ2

Z
τ2

−∞
dτ1A3ðτ1ÞA4ðτ2Þ

×
n
Im½Rpðτ0ÞR�

pðτ2Þ�Im½R02
q ðτ1ÞR0�

q
2ðτ2Þ� þ Im½Rpðτ0ÞR0�

p ðτ2Þ�Im½R02
q ðτ1ÞR0�

q ðτ2ÞR�
qðτ2Þ�

o
þ 2 c:p: ðA29Þ

Calculating similarly CA3B4
; CB3A4

and CB3B4
yield our final expression for C as given in Eq. (42).
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