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We propose a scenario that can explain the early-time inflation and the late-time dark energy within a
unified framework. A scalar potential combining power-law and exponential type in a context of extended
Jordan-Brans-Dicke gravity is critically important for this realization. A realistic scenario can be achieved
in a two-field model in which one directional motion in field space realizes the slow-roll inflation. The
inflaton ends up with oscillatory period and turns its direction to another direction that is identified as the
quintessence field, giving rise to the dark energy at late times. The inflaton oscillation is expected to realize
efficient heating if parametric amplification works. Along the quintessence direction, the present universe
is on the way to reach the asymptotic fixed point. We search for a successful parameter region, taking the
potential function in the form of low-order field powers times decreasing exponential in two-dimensional
field space.
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I. INTRODUCTION

The great success of the Standard Model (SM) of particle
physics has highlighted the necessity for a new framework to
comprehend the unexplained observational data in cosmol-
ogy. This new physics includes dark matter [1–3] and dark
energy [4,5], proposed to account for the Universe’s large-
scale structure and its accelerated expansion. Additionally,
cosmic inflation [6–12] provides a compelling framework for
the initial conditions that led to structure formation [13–17],
supported by the cosmic microwave background (CMB)
spectrum [18]. However, the rapid expansion of the early
Universe necessitates the existence of unidentified vacuum
energy. These unresolved issues underscore the need for a
new framework beyond the SM, potentially involving
modifications to general relativity.
An appealing approach to addressing unsolved ques-

tions in cosmology has been the framework introduced
by Jordan [19] and subsequently developed by Brans
and Dicke [20] (JBD), which seeks a better understan-
ding of gravity, coupled to matter fields. An extended
version incorporating a potential term for the scalar fieldwas
discussed by Bergmann [21] and Wagoner [22]. Depending
on the choice of gravitationally induced couplings of scalar
fields to the SM sector, various extended models of JBD’s
scalar-tensor gravity can be constructed. This class of

models, referred to as extended JBD (eJBD) theory, features
a scalar degree of freedom that couples to gauge-invariant
pieces of the Lagrangian [23].
The eJBD framework shares a common spirit with

other models that incorporate scalar fields, such as dilaton
and moduli fields. For instance, starting with a dilatation
invariant theory, the spontaneous breaking of global
dilatation symmetry gives rise to a Nambu-Goldstone
boson, known as the dilaton. Since interacting theories
often lack invariance under scaling transformations, the
dilaton can couple to the trace of the energy-momentum
tensor, a phenomenon known as the trace (or dilatation)
anomaly [24–26]. In the context of string theory, specific
couplings between the dilaton and matter fields have been
explored in Refs. [27,28]. Although we do not discuss
ultraviolet completion of the eJBD theory, in the present
paper, we implicitly assume that an effective theory in the
Einstein-metric frame emerges from the theory defined in
the Jordan-metric frame where the eJBD scalars couple to
all the gauge-invariant terms of the SM Lagrangian.
The properties of the eJBD scalar field can be classified

into two types based on its dynamics. We refer to it as
type I when the eJBD field eventually settles at a finite
field value, yielding a constant vacuum energy, akin to a
ΛCDM model. However, this model leaves behind the
fine-tuning problem of the cosmological constant. This
class includes the chameleon scenario [29–32], where the
minimum of the potential depends on the ambient matter
density due to couplings to matter fields with gravitational
strength.
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The other class, called type II, is characterized by a
sliding behavior of the scalar eJBD field toward infinity.
An example of this scenario includes quintessence
models [33,34]. If such a field is the source of the energy
density driving the current expansion of the Universe,
the equation of state parameter w can potentially deviate
from −1, prompting more precise measurements in future
observations. Furthermore, through its couplings to SM
fields, physical constants may vary over time, subject to
various laboratory, astrophysical, and cosmological obser-
vational constraints. A systematic study of this kind has
been conducted in Ref. [23].
If there are more than two eJBD fields, as will be

explained later, their dynamics become more intricate than
in the single-field case. In this paper, we demonstrate that a
two-eJBD field model provides an interesting and unified
framework that can explain both inflation and dark energy
on an equal footing. In the single-field case, there have been
attempts to identify the inflaton as the quintessence field
that simultaneously explains dark energy [35]. A notable
feature of such a scenario is that the scalar field potential
does not have a global minimum at a finite field value; thus,
inflaton oscillation does not imply the end of inflation.1 As
we will discuss, in the two-field case, inflation and dark
energy can be smoothly connected during inflaton oscil-
lation, which is expected to achieve an efficient heating
mechanism.
This paper is organized as follows. In Sec. II, we describe

our setup based on the eJBD framework, focusing on the
scalar sector. The inflationary epoch is discussed in Sec. III,
where we highlight that our potential parameters are
strongly constrained by the spectral tilt and the tensor-
to-scalar ratio. In Sec. IV, we argue that the same potential
shape can suitably account for dark energy in the present
universe. A two-field model connecting inflation and dark
energy is proposed in Secs. Vand VI is devoted to summary
and discussion.

II. SCALAR SECTOR IN EXTENDED
JORDAN-BRANS-DICKE GRAVITY

We begin by writing the scalar-tensor sector of the
Lagrangian as

ffiffiffiffiffiffiffiffi
−gJ

p
L ¼ ffiffiffiffiffiffiffiffi

−gJ
p �

−
M2

P

2
FgðϕÞRJ

þ 1

2
FdϕðϕÞgμνJ ∂μϕ∂νϕ − VðϕÞ

�
; ð2:1Þ

with MP ≃ 2.4 × 1018 GeV being the reduced Planck mass
and FgðϕÞ and FdϕðϕÞ being arbitrary functions of a real
scalar ϕ coupled to the Ricci scalar RJ and metric gμνJ ,
where the subscript J refers to functions defined in the
Jordan frame.
Through the Weyl rescaling gJμν ¼ FðϕÞgEμν, we obtain

the action in the Einstein frame,

S¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
−
M2

P

2
REþ

1

2
gμνE ∂μχ∂νχ−VeffðχÞ

�
; ð2:2Þ

where χ is a canonically normalized scalar field [23],
appropriately defined in terms of FgðϕÞ and FdϕðϕÞ. The
scalar potential VðχÞ is related to FgðϕÞ as

VeffðχÞ ¼
VðϕÞ
FgðϕÞ

ð2:3Þ

being subject to the field redefinition, ϕ ¼ ϕðχÞ, in the
right-hand side of the equation. In the rest of the paper, we
drop the subscript “eff.”
Among various possibilities for VðχÞ, we consider a

scalar potential that combines power-law and exponential
type,2 parametrized by

VðχÞ ¼ V0

� jχj
MP

�
p
e−γχ=MP ; ð2:4Þ

where V0, p, and γ are assumed to be positive constants.
Note that p is allowed to be not only a positive integer but
also a rational number. In the following, we use Planck
units, MP ¼ 1, unless otherwise stated.

III. EARLY TIME COSMOLOGY: INFLATION

In this section, we show that the potential given in
Eq. (2.4) explains inflation in the early Universe. The
potential has a localminimumat χ ¼ 0 and a localmaximum
at χ ¼ χmax ¼ p=γ. The potential exponentially grows as
χ → −∞ while exhibiting a sliding behavior as χ → ∞.
Among a few possible inflation scenarios with the same
potential, we particularly focus on slow-roll inflation occur-
ring during the field’s evolution from χ ∼ χmax ¼ p=γ to
χ ¼ 0, as illustrated in Fig. 1. As we will discuss later, this
scenario is capable of achieving reheating through the decay
of the oscillating inflaton into Standard Model particles.
The dynamics of the inflaton during inflation follow the

equation of motion

χ̈ þ 3Hχ̇ þ ∂χV ¼ 0; ð3:1Þ

where the dot represents a derivative with respect to the
comoving time t in the Planck unit, and H ¼ ȧ=a with a

1In such a nonoscillatory scenario, the gravitational production
of particles [36] may serve as a heating mechanism (often referred
to as reheating in the literature), which is, however, inefficient,
resulting in low heating temperatures. See, e.g., Ref. [37] for
possible remedies. 2For a possible origin of such potential, see Appendix C.
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being the scale factor.3 We can assess whether the slow-roll
condition can be achieved by examining the slow-roll
parameters [38] given by

ϵ≡ 1

2

�
∂χV

V

�
2

¼ 1

2

�
p
χ
− γ

�
2

; ð3:2Þ

η≡ ∂
2
χV

V
¼ γ2 −

2pγ
χ

þ pðp − 1Þ
χ2

; ð3:3Þ

in the Planck unit. Note that these quantities are indepen-
dent of the overall scale of potential V0. They can indeed be
sufficiently small at the vicinity of χ ¼ χmax. This scenario
may be regarded as a variant of the hilltop inflation [39]. At
χ ¼ χmax, we obtain

ϵðχ¼ χmaxÞ¼ 0; ηðχ¼ χmaxÞ¼−
γ2

p
; ð3:4Þ

suggesting that γ2=p ≪ 1 should be satisfied to achieve
viable inflation with ϵ; jηj ≪ 1. The number of e-folds is
defined by

NCMB ¼
Z

χCMB

χend

dχffiffiffiffiffi
2ϵ

p ; ð3:5Þ

where χCMB is such that the CMB scale exits the horizon at
N ¼ NCMB. For the definition of χend, see Appendix B.
In Fig. 2, we show the spectral index ns ¼

1–6ϵðNCMBÞ þ 2ηðNCMBÞ and the tensor-to-scalar ratio
r ¼ 16ϵðNCMBÞ for the cases with p ¼ 1=2, 1, 2, 4, where

each dot is associated with a specific choice of γ. In all
cases, small γ values are favored to obtain a scale-invariant
spectrum (close to ns ¼ 1), while small r is realized only
when p is small, < Oða fewÞ. We find that p < 4 is needed
to satisfy the Planck data [18]. The overall energy scale V0

is determined by the amplitude of the scalar power
spectrum AS ≃ 2.099 × 10−9 [18] via

AS ¼
VðχCMBÞ

24π2ϵðNCMBÞ
; ð3:6Þ

which yields V1=4
0 ∼Oð1015–1016Þ GeV, depending on p

and γ.

IV. LATE TIME COSMOLOGY:
DARK ENERGY

The same shape of potential (2.4) can also explain the
present value of dark energywhen χ ≫ χmax. In this scenario,
the density parameter of the dark energy Ωχ ≡ ρχ=ρcr and
the equation of state parameter wχ ≡ pχ=ρχ are explained
by the sliding eJBD scalar, where ρχ and pχ are the energy
density and the pressure of χ. The critical energy density
is given by ρcr ≡ 3H2M2

P whose present-day value is
ρcr;0 ¼ ð2.46 meVÞ4. By writing

v≡ dχ
dN

; ð4:1Þ

with N ≡ lnða=a0Þ, we have the relations

ρχ ¼ K þ V; ð4:2Þ

wχ ¼
K − V
K þ V

; ð4:3Þ

where

K ¼ 1

2
ðHvÞ2: ð4:4Þ

From these, we obtain

VðχÞ ¼ 1 − wχ

2
ρχ ; ð4:5Þ

v2 ¼ 3ð1þ wχÞΩχ ; ð4:6Þ

which allow us to set the boundary conditions for χ and v at a
given time in terms of Ωχ and wχ . In our numerical analysis,
we set the boundary conditions at a=a0 ¼ 10−10, where a0 is
the scale factor at the present time. In Fig. 3,
the colored region satisfies Ωχ ¼ 0.6889� 0.0168ð3σÞ.
The parameter space shown in the figure satisfies wχða0Þ <
−0.95 [40]. The top panel of Fig. 4 shows a typical field
evolution over time,where χ is frozen until recently due to the

FIG. 1. Typical potential shape of the eJBD field χ. Inflation at
early times is realized by slowly rolling from the potential hill
toward the origin. Dark energy at late times is achieved by the
field’s excursion from the potential hill toward χ → ∞, where the
exponential decrease dominates. In this example, we take p ¼ 2
and γ ¼ 1 for illustration.

3We assume that a friction term caused by inflaton decay
during inflation is negligible compared to the Hubble-drag term.
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Hubble drag force. The bottom panel of the figure depicts the
evolution of the density parameters for the same choice of
parameters used in the top panel.
It is worth mentioning that the model under consider-

ation has fixed-point solutions at t → ∞. The detailed
analysis is given in Appendix A. Among mathematically
allowed fixed points, it turns out that the cosmologically
favored fixed point is given by

χ̇ffiffiffi
6

p
H
¼ γffiffiffi

6
p ;

ffiffiffiffi
V

p
ffiffiffi
3

p
H
¼

ffiffiffiffiffiffiffiffiffiffiffi
1−

γ2

6

r
; wχ ¼−1þ γ2

3
; ð4:7Þ

which is an attractor solution as discussed in Appendix A
and indicates the following two features. First, the model
predicts that the Universe is completely dominated by χ at
distant future, namely, Ωχ ¼ 1. Therefore, what we find
numerically in Figs. 3 and 4 are the solution on the way to
the fixed point, but the Universe has not reached the fixed
point as of yet. Second, the asymptotic fixed point does not
depend on the power p that appears in the potential V.
Thus, regardless of the choice of p, the dark energy can be
explained if γ is sufficiently small to achieve wχ ≃ −1.

FIG. 3. The colored region satisfies Ωχða0Þ ¼ 0.6889�
0.0168ð3σÞ [40].

FIG. 2. Inflationary predictions for p ¼ 1=2, 1, 2, 4. Each dot indicates the value of γ. The thick and thin hatched regions depict
68% CL and 96% CL area from Planck data [18], respectively.
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V. TWO FIELD MODEL CONNECTING
INFLATION AND DARK ENERGY

We present a model to realize both the early-time
inflation and the late-time dark energy based on a new
two-field framework. Letting χ1 and χ2 denote eJBD scalar
fields, we consider a potential in the Einstein frame,

V ¼ ðλ0 þm2
1χ

2
1 þm2

2χ
2
2 þ λ12χ

2
1χ

2
2Þe−γ1χ1−γ2χ2 ; ð5:1Þ

where λ0, m1, m2, γ1, γ2, and λ12 are positive constants.
Depending on the choice of the parameters and the initial
conditions, either of the two fields plays the role of inflaton
or dark energy field. For instance, if we set the initial
condition χ2 ¼ χ2;ini ð> 0Þ, χ1 ¼ χ̇1;2 ¼ 0, χ2 may be
regarded as inflaton. There are only two possibilities at
infinite time: Either the absolute value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ21 þ χ22

p
goes to∞

or falls into the local minimum around the field origin, with
χ1, χ2 ≃ 0. In the latter case, the dark energy is not realized;
hence, we search for the case of the sliding to field infinity.
It is obvious that the cosmological constant λ0 presumably
in the Jordan frame does not need to be fine-tuned: Due to
the exponential factor in V, the present value of the
cosmological constant is nearly zero.

To illustrate the field trajectory in the model, we solve
the classical equations of motion with the friction term
arising from the expansion of the Universe.4 Setting the
scale factor at the initial time a ¼ ai, we introduce the
number of e-folds N ¼ lnða=aiÞ. This change of time
variable is always allowed provided that aðtÞ is monoton-
ically increasing with time t. Using the notation 0≡ d=dN,
the equation of motion becomes

χ00i þ
Ḣ þ 3H2

H2
χ0i þ

Vi

H2
¼ 0; ð5:2Þ

where i ¼ 1, 2, Vi ≡ ∂V=∂χi, and

Ḣ ¼ −
1

2
H2v2; ð5:3Þ

with v2 ≡ χ021 þ χ022 . Assuming the negligible amount of
radiation, we may approximate

3H2 ≃ ρχ1 þ ρχ2 ¼
V

1 − v2=6
: ð5:4Þ

Recasting the potential into the form

V ¼ V0ðλþ hχ21 þ χ22 þ gχ21χ
2
2Þe−γ1χ1−γ2χ2 ; ð5:5Þ

we take λ, h, g, γ1, and γ2 as free parameters. Note that V0

should have been normalized properly to explain the scalar
amplitude AS inferred by the Planck data; however, in the
following analysis, V0 can always be normalized by the
timescale, namely, the choice of H, and hence, we may
take V0 ¼ 1 without loss of generality. In our numerical
analysis, we set λ ¼ 0.1, h ¼ 10−3, g ¼ 1, γ1 ¼ 0.2, and
γ2 ¼ 0.12 as an example. The initial condition is taken as
χ2 ¼ 11.14, and vanishing otherwise, χ1 ¼ 0, χ̇1 ¼ χ̇2 ¼ 0.
This choice of χ2 respects the inflaton field value at the end
of inflation for p ¼ 2 and N ¼ 60 with γ ¼ 0.12, being
consistent with the Planck data, as discussed in Sec. III.
Figure 5 shows the field trajectory, giving the height of

the potential, as well. The top panel is a projected three-
dimensional plot of the trajectory, the red dot indicating
the initial location of the fields. The yellow cross marks
the saddle point along the χ2 direction with χ1 ≃ 0.
The bottom panel shows the same trajectory, where the
contours represent the height of the potential. In the
present setup, χ2 may be identified as inflaton at early
times and realizes the slow-roll inflation with the potential
given by

V ≃ V0χ
2
2e

−γ2χ2 ð5:6Þ

FIG. 4. Top: Shown is a typical field evolution for a choice
of viable parameters. Bottom: The evolution of the density
parameters.

4Since particle production caused by inflaton oscillation is not
included in our analysis, a radiation-dominated universe is not
realized in this model.
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for χ1 ≃ 0. Once the slow-roll regime is over, χ2 compo-
nent alone starts oscillation and settles down at the local
minimum, where

χ1 ¼
γ1λ

2hþ γ21λ
; χ2 ¼

γ2λ

2þ γ22λ
: ð5:7Þ

In the illustrated example, those values are χ1 ≃ 3
and χ2 ≃ 0.006.

Figure 6 shows the evolution of each field with the same
choice of the parameters used in Fig. 5. As is evident from
the figure, χ1 is stabilized at χ1 ≃ 0 during inflation due to
the term gχ21χ

2
2. After the end of inflation, χ2 oscillation is

damped, and some amount of its energy is transferred to χ1
through the same coupling, and χ1 is eventually expelled
from the potential minimum toward χ1 → ∞, its effective
potential being given by

Vðχ1 ≫ 1Þ ≃ hV0χ
2
1e

−γ1χ1 : ð5:8Þ

This explains the dark energy at later times. Notice that we
may choose generic power p on χ1 other than p ¼ 2,
namely Vðχ1 ≫ 1Þ ≃ hV0χ

p
1e

−γ1χ1, since the fixed point
does not depend on p as discussed in Sec. IV. This power
change may occur if the escape to field infinity is tilted
along χ2 ¼ cχ1, c ≠ 0.
It should be emphasized that the inflaton oscillation

around the field origin is not only responsible for generating
a heat bath but also for triggering the evolution of the dark
energy field. Such behavior can be achieved for various
choices of the potential parameters. Phenomenological
constraints are imposed on γ1 and γ2. We fix γ2 ¼ 0.12 to
satisfy the Planck data for inflation. Since observations
indicate the equation-of-state parameter should be wχ ∼ −1
in the present Universe, we require γ1 < Oð0.1Þ, as dis-
cussed in Sec. IV. Setting g ¼ 1 for simplicity, we study how
the field trajectory depends on the choice of λ and h for a
given γ1. The initial condition is the same as in Fig. 5. We
find that, depending on the parameters, χ1 either rolls toward
infinity or oscillates around the origin.
The boundary between the two cases is determined by

the disappearance of the saddle point along the χ1 direction
while fixing χ2 ¼ γ2λ=ð2þ γ22λÞ≡ χ2;min. The condition
for the disappearance can be obtained by finding the two
extremum points along the χ1 direction of the potential
Vðχ1; χ2 ¼ χ2;minÞ. One of the two is a local minimum, and

FIG. 6. Shown is the evolution of each field with the same
choice of the parameters as Fig. 5, where the inset magnifies the
oscillation period of χ2 in the same figure.

FIG. 5. The top panel illustrates the trajectory in the two-field
model along with the potential shape, where the black solid line is
the path of the classical motion, whose starting point
(χ2 ¼ 11.14) is indicated by the red dot, which is smaller than
the saddle point at χ2≃ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− γ22λ

p
Þ=γ2≃17 and Vðχ1 ¼ 0;

χ2 ≃ 17Þ=V0 ≃ 38 depicted by the yellow cross. The bottom panel
shows the same trajectory in black, where each contour shows the
height of the potential.
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the other is a local maximum. Equating the two points, we
obtain a relation among the potential parameters, namely, g,
λ, h, γ1, and γ2. We define h≡ hcr satisfying this relation by

hcrðg;λ;γ1;γ2Þ¼
λ

ð2þ γ22λÞ2
½γ21ð1þ γ21λÞð4þ γ22λÞ−gγ22λ�:

ð5:9Þ

Here, we assume hcr > 0. The field excursion toward
χ1 → ∞ may be achieved when h < hcrðg; λ; γ1; γ2Þ.
When h > hcr, conversely, χ1 oscillates around the poten-
tial minimum and eventually settles down. Figure 7 illus-
trates the boundary between these two cases. The red-solid,
blue-dashed, and green-dotted lines represent hcr as a
function of λ for γ1 ¼ 0.1, 0.12, and 0.2, respectively.
In the shaded area below each line, the field excursion
toward infinity is realized. The insets in the figure show the
potential shape for h < hcr and h > hcr. Notice that h ¼ 0,
equivalent to p ¼ 0, is permissible, as the fixed point does
not depend on p.
Before closing the section, we note that our numerical

analysis does not include the radiation contribution in the
total energy density, and thus, the later time evolution of χ1
shown in Fig. 5 does not correspond to a realistic case.
However, as discussed in Sec. IV, the late time behavior has
an asymptotic fixed point. Therefore, we may expect that
the late time evolution falls into such a case, though the
detailed analysis on heating to a hot big bang universe is
left for future study.

VI. SUMMARY AND DISCUSSION

In the context of eJBD gravity, we have proposed a
phenomenological eJBD scalar potential of the power-
times-exponential type, capable of explaining either infla-
tion or dark energy, depending on the cosmological stage
under consideration. The proposed potential is simple,

involving only two parameters aside from the overall
normalization of the energy scale: the power p and the
negative exponent γ. This potential features a local maxi-
mum at the field value p=γ, below which inflation occurs
and above which dark energy is realized.
When the eJBD scalar is identified as the inflaton, the

CMB data provides a constraint on the power, requiring
p < 2; otherwise, the model predicts an excessively large
tensor-to-scalar ratio r and an insufficiently small spectral
tilt ns. In this scenario, the initial field value of the inflaton is
taken near the hilltop, and the inflaton slow-rolls toward
the origin. For a viable choice of p, typically γ cannot be
greater than Oð0.1Þ, while too small a value for γ is also
not permitted. The parameter space for smaller γ will be
explored when reaching smaller r. Future CMB observa-
tions, including LiteBIRD [41], CMB-S4 [42], and SO [43],
are capable of testing r at 10−3 level, which can potentially
probe our scenario.
The eJBD scalar may also be identified as the quintes-

sence field that accounts for dark energy at later times.
We have shown that there exists an asymptotic fixed
point where the Universe is fully dominated by χ, and the
equation-of-state parameter is determined solely by γ,
specifically wχ ¼ −1þ γ2=3. Since the present stage of
the Universe has not yet been fully dominated by the
quintessence field, χ is on its way to reaching field
infinity. A deviation of wχ from −1 should, in principle,
be testable by high-precision observations. Up-to-date data
from DESI [44] result in wχða0Þ ¼ −0.99þ0.15

−0.13 (68% CL),
indicating γ ≲ 0.7, which will be further improved, includ-
ing its time dependence, in future dark energy survey,
e.g., Euclid [45] and LSST [46].
Given the successful cosmology at early and late

times, we have proposed a unified model to smoothly
connect the regimes of inflation and dark energy. Our
numerical analysis has shown that inflation concludes
with a period of oscillation, which amplifies the other
field direction and eventually expels it from the potential
origin. The field excursion of quintessence at later
times is governed by the potential of the power-times-
exponential form.
Our numerical analysis does not account for radiation

production, necessitating further study on how the rolling
field dissipates into the produced particles that realize a
heat bath. A detailed analysis of the heat-up stage, includ-
ing the effects of parametric amplification, is left for
future work.
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FIG. 7. Each line shows hcr, below which the field excursion
into infinity is possible, for a given γ1. The field excursion toward
χ1 → ∞ may be achieved in the shaded region below each line.
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APPENDIX A: AUTONOMOUS SYSTEM
FOR A GENERIC POTENTIAL

We introduce a generic parametrization to efficiently
derive, if any, a closed set of differential equations. An
important difference compared to the literature, e.g.,
Refs. [47,48], is that we take the equation-of-state param-
eter w to be also a function of time since it is determined by
the dynamics of the system.
For a scalar field χ with a potential VðχÞ, we define the

following quantities:

x≡ χ̇ffiffiffi
6

p
H
; y≡

ffiffiffiffi
V

p
ffiffiffi
3

p
H
; z1≡∂χV

V
;

z2≡∂
2
χV

∂χV
; z3≡∂

3
χV

∂
2
χV

; � � � : ðA1Þ

By assuming that χ is secluded from other sectors, the
equation of motion is given by

χ̈ þ 3Hχ̇ þ ∂χVðχÞ ¼ 0: ðA2Þ

The equation of state parameter w is introduced as

w ¼ ptot

ρtot
ðA3Þ

for the total pressure ptot and the total energy density ρtot
so that we may write Ḣ as

Ḣ ¼ −
1

2

X
i

ðρi þ piÞ ¼ −
3

2
H2ð1þ wÞ; ðA4Þ

where the sum over i is taken for i ¼ r (radiation), i ¼ m
(matter), and i ¼ χ. Since pr=ρr ¼ 1=3, pm=ρm ¼ 0, and
ρχ þ pχ ¼ χ̇2, Ḣ may also be written as

Ḣ ¼ −
1

2

�
4

3
ρr þ ρm þ χ̇2

�
: ðA5Þ

From Eqs. (A4) and (A5), we obtain

w ¼ ρr
9H2

þ x2 − y2; ðA6Þ

where we have used ρr þ ρm ¼ 3H2ð1 − x2 − y2Þ. Using
Eqs. (A1), (A2), and (A6), we obtain

x0 ¼ 3

2
ðw − 1Þx −

ffiffiffi
3

2

r
y2z1; ðA7Þ

y0 ¼ 3

2
ðwþ 1Þyþ

ffiffiffi
3

2

r
xyz1; ðA8Þ

w0 ¼ 3w

�
w −

1

3

�
− 2x2 − 4y2 − 2

ffiffiffi
6

p
xy2z1; ðA9Þ

z0i ¼
ffiffiffi
6

p
xðziziþ1 − z2i Þ; ðA10Þ

where the prime denotes d=dN for N ¼ ln a, and z0i
(i ¼ 1; 2; 3;…) for a sufficiently large i should be consid-
ered until the system is closed, namely, the right-hand side
of z0i does not include ziþ1 when expressing ziþ1 in terms
of z1;…; zi. Note that the initial condition for w should be
taken so that w ¼ ð1þ 2x2 − 4y2 −ΩmÞ=3 where we may
assume Ωm ¼ 0 at early times.
We turn to apply the analysis explained above to the

specific case where the potential is given by

VðχÞ ¼ V0χ
pe−γχ ; ðA11Þ

assuming χ > 0. The autonomous system may be analyzed
using a set of first order differential equations,

x0 ¼ 3

2
ðw − 1Þx −

ffiffiffi
3

2

r
y2z1; ðA12Þ

y0 ¼ 3

2
ðwþ 1Þyþ

ffiffiffi
3

2

r
xyz1; ðA13Þ

w0 ¼ 3w

�
w −

1

3

�
− 2x2 − 4y2 − 2

ffiffiffi
6

p
xy2z1; ðA14Þ

z01 ¼ −
ðz1 þ γÞ2

p
: ðA15Þ

Taking x0 ¼ 0, y0 ¼ 0, w0 ¼ 0, and z01 ¼ 0, we find that

x¼ γffiffiffi
6

p ; y¼
ffiffiffiffiffiffiffiffiffiffiffi
1−

γ2

6

r
; wχ ¼−1þ γ2

3
ðA16Þ

is the only viable fixed point where the solution does not
depend on p. Note that the asymptotic value of the density
parameter is Ωχðt → ∞Þ ¼ x2 þ y2 ¼ 1, and thus, the
present Universe is located midway toward the fixed point,
as discussed in Sec. IV.
The stability of the fixed point can be analyzed by

perturbing x, y, z1, and w about the fixed point. Denoting
r⃗ ¼ ðx; y; z1; wÞT , we consider r⃗ ¼ r⃗0 þ δr⃗ where r⃗0 rep-
resents the fixed point. The coupled differential equations
can then be recast into the form of

δr⃗0 ¼ Aδr⃗; ðA17Þ
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where A is a 4 × 4 matrix given by

A ¼

0
BBBBBBBB@

−6þγ2

2
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
6 − γ2

p
−6þγ2

2
ffiffi
6

p 1
2

ffiffi
3
2

q
γ

− γ
ffiffiffiffiffiffiffi
6−γ2

p
2

0 γ
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

6

q
1
2

ffiffiffiffiffiffiffiffiffiffiffi
9 − 3γ

2

q
0 0 0 0

−
ffiffi
2
3

q
γð−4þ γ2Þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2γ2

3

q
ð−2þ γ2Þ γ

3
ð−6þ γ2Þ −7þ 2γ2

1
CCCCCCCCA
; ðA18Þ

whose eigenvalues are f0;ð−6þ γ2Þ=2;−4þ γ2;−3þ γ2g.
Therefore, the fixed point is an attractor when γ <

ffiffiffi
3

p
as

δr⃗ → 0 for t → ∞.

APPENDIX B: SLOW-ROLL CONDITIONS
AND THE END OF INFLATION

The field value at the end of inflation, χend, can be found
by imposing either ϵðχendÞ ¼ 1 or ηðχendÞ ¼ �1 for
0 < χend < χmax. To find χend in a simple manner, we
introduce a parameter x such that

χ ¼ χmax

1þ x
ðB1Þ

in the region 0 < x < ∞. The slow-roll parameters may
then be written as

ϵðxÞ¼ γ2

2
x2; ηðxÞ¼ γ2x2−

γ2

p
ðxþ1Þ2: ðB2Þ

For p > 2, η quickly becomes positive for x > 0, and ϵ ¼ η
is achieved at

x ¼ 1ffiffiffiffiffiffiffiffi
p=2

p
− 1

≡ x�; ðB3Þ

where ϵ ¼ η ¼ ð γffiffiffi
p

p −
ffiffi
2

p Þ2. We find ϵ > η for x < x�, while

ϵ < η for x > x�, which indicates that for γ >
ffiffiffiffi
p

p −
ffiffiffi
2

p
,

χend is determined by ϵðχendÞ ¼ 1, and for γ <
ffiffiffiffi
p

p −
ffiffiffi
2

p
,

ηðχendÞ ¼ 1. Therefore, we obtain

χend¼

8>>><
>>>:

p
γþ ffiffi

2
p ðp>2;γ>

ffiffiffiffi
p

p −
ffiffiffi
2

p Þ
p−1
2

ðp>2;γ¼1Þ
pγ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðγ2þp−1Þ

p
γ2−1 ðp>2;γ≠1;γ<

ffiffiffiffi
p

p −
ffiffiffi
2

p Þ
: ðB4Þ

For p ¼ 2, given that γ2 ≪ p, ϵ > jηj is always satisfied,
and thus, χend is determined by ϵðχendÞ ¼ 1. For p ≤ 2, χend
can be found in the same manner, and here, we only show
the case with p ¼ 1 and 2 as examples:

χend ¼
8<
:

2

γþ ffiffi
2

p ðp ¼ 2; γ < 2Þ
1

γþ ffiffi
2

p ðp ¼ 1; γ < 1Þ : ðB5Þ

APPENDIX C: LINEAR-TIMES-EXPONENTIAL
POTENTIAL

A possible origin of the potential for an eJBD field
χ is a quantum effect. For instance, we may consider a
Majorana fermion whose mass is given by a function of χ,
MðχÞ. By integrating it out, we are left with an effective
potential

V1−loopðχÞ ¼ −
M4ðχÞ
32π2

ln
M2ðχÞ
μ2

; ðC1Þ

where μ is the renormalization scale. If we suppose

MðχÞ ¼ μe−γχ=4; ðC2Þ

the potential becomes

V1−loopðχÞ ¼
γμ4

64π2
χe−γχ ; ðC3Þ

where we may identify V0 ¼ γμ4=64π2. Note that this
potential is unstable for χ < 0, which is eliminated by, for
instance, replacing χ by jχj. The region where χ > 0 is
nevertheless relevant to explain the dark energy.
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