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Embedded walls are domain wall solutions which are unstable in the vacuum but stabilized in a plasma
of the early Universe. We show how embedded walls in which the electroweak symmetry is restored can
lead to an efficient scenario of electroweak baryogenesis. We construct an extension of the Standard Model
of particle physics in which embedded walls exist and are stabilized in an electromagnetic plasma.
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I. INTRODUCTION

Electroweak baryogenesis is an interesting scenario to
explain the origin of the observed asymmetry between
matter and antimatter (see, e.g., [1] for some reviews). As
realized a long time ago [2], in order to be able to generate
an asymmetry between baryons and antibaryons starting
from symmetric initial conditions, three criteria must be
satisfied. First, the theory needs to admit baryon number
violating processes. Secondly, the CP symmetry must be
broken in the sector of the theory which communicates with
baryons, and thirdly, the baryon number violating processes
must take place out of thermal equilibrium. There is CP
violation in the Standard Model (SM) of particle physics,
and, as realized in [3], the Standard Model also features
baryon number violating sphaleron processes. The key
challenge is to realize a setup in which the baryon number
violating processes take place out of thermal equilibrium.
If the electroweak phase transition is strongly first order,

then it proceeds by the nucleation and growth of bubbles of
the broken phase in a sea of the unbroken phase. The
bubble walls represent regions of space-time which are out
of thermal equilibrium. Hence, sphaleron processes which
take place inside of the bubble walls can lead to baryo-
genesis [1]. However, in the Standard Model, the electro-
weak phase transition is not strongly first order, and thus,
the above mechanism is ineffective. Going beyond the
Standard Model, it is possible to construct models in which
a strong first-order electroweak phase transition is realized.

However, as pointed out in [4,5], there is another way to
obtain regions of space-time which are out of thermal
equilibrium, namely by invoking topological defects. It is
known that in large classes of particle physics models
beyond the Standard Model, topological defect solutions
exist (see, e.g., [6–8] for reviews of the role of topological
defects in cosmology). If Nature is described by a theory
with defect solutions, then causality implies that a network
of defects will form in the early Universe [9]. If the defects
are topologically stable, the network of defects will persist
to all times [9]. Topological defects are out-of-equilibrium
configurations. Thus, provided the electroweak symmetry
is unbroken inside of the defects, the defects can be the
locations in space-time where electroweak baryogenesis
takes place. Among theories with topologically stable
defects, those with cosmic strings are the most interesting
since, in this case, the string network contributes a fixed
fraction of the total energy density. However, it was found
in [5] (see also [10]) that in the case of cosmic strings,
baryogenesis occurs in too small a volume of space and is
unable to generate the observed net baryon-to-entropy
ratio. As was already remarked in [5], if the defects were
domain walls, baryogenesis could take place in all of space
and hence be effective, but models with stable domain walls
are ruled out since a single domain wall would overclose
the universe [11].1 As we point out here, ‘embedded walls’
can help to provide an efficient mechanism of electroweak
baryogenesis.2

An ‘embedded defect’ is defined as a defect configura-
tion which is not topologically stable in the vacuum, but
can be stabilized by plasma effects. A simple example is the
‘electroweak Z-string’, a string configuration in the stan-
dard electroweak model which can be stabilized in an
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1Assuming here that the energy scale of the domain walls
is larger than the LHC scale.

2Yet another baryogenesis mechanism via electroweak-
symmetric balls was suggested in [12].
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electromagnetic plasma [13].3 The Higgs field of the
electroweak theory is a complex Higgs doublet, one of
the complex fields electrically charged and the other one
neutral. Through the gauge kinetic term, in a plasma, the
vacuum manifold (which is S3 without plasma interactions)
is lifted in the charged field direction. The remaining
effective vacuum manifold is S1, thus allowing for cosmic
string solutions in which the charged scalar field is zero,
and the neutral one winds the vacuum manifold. Similarly,
the low-energy effective theory of the strong interactions
has two complex scalar fields, one of them charged (the
charged pions) and the other neutral (representing the
neutral pion and the sigma field). In the case of vanishing
quark masses, the vacuum manifold is S3, but coupling to
an electromagnetic plasma lifts the potential in the charged
pion directions, leaving the vacuum manifold of the
effective theory to be S1. In this case, the “pion string”
[16] is stabilized and can, in fact, be used to generate
primordial magnetic fields [17].4

In this paper we will first show that embedded domain
walls which are stabilized in the electromagnetic plasma of
the early Universe can lead to an efficient scenario of
electroweak baryogenesis, provided that the electroweak
symmetry is unbroken in the core of the walls. We then
present an extension of the Standard Model of particle
physics where embedded walls with the required proper-
ties arise.
We begin with a short review of plasma stabilization of

embedded defects. Section III is an analysis of wall-
mediated electroweak baryogenesis, and in Sec. IV, we
estimate the net baryon-to-entropy ratio, which can be
obtained from embedded walls. In Sec. V, we present a
particle physics model in which embedded walls with the
required properties arise. In the final section, we discuss our
results.
We work in the context of a spatially flat space-time with

metric

ds2 ¼ dt2 − a2ðtÞdx2; ð1Þ

where t is physical time, x are the spatial comoving
coordinates, aðtÞ is the scale factor, and we use natural
units in which c ¼ ℏ ¼ kB ¼ 1. The temperature is denoted
by T. The baryogenesis processes we are interested in take
place in the radiation phase of cosmology, and g� will
denote the effective number of entropic degrees of freedom
present at the relevant time.

II. EMBEDDED DEFECTS: A BRIEF REVIEW

We will illustrate the idea behind embedded defects with
the example of the electroweak Z-string, an embedded
string in the standard electroweak theory. The Higgs field is
a complex Higgs doublet. In terms of the four real
component fields ϕi∶ i ¼ 0; 1; 2; 3 the potential is

VðϕÞ ¼ 1

4
λ

�X3
i¼0

ϕ2
i − η2

�2

; ð2Þ

where λ is the Higgs coupling constant and η is the vacuum
expectation value of the field in the broken phase. The
fields ϕ0 and ϕ3 are uncharged [under the usual Uð1Þ of
electromagnetism], while ϕ1 and ϕ2 are charged. The
vacuum manifold is S3 and hence there are no stable
topological defects (in four space-time dimensions). The
Lagrangian of the scalar sector of the Standard Model after
electroweak symmetry breaking is

L ¼ 1

2
DμϕiDμϕi − VðϕÞ − 1

4
FμνFμν; ð3Þ

where the index i runs from 0 to 3, and Dμ ¼ ∂μ − iqiAμ is
the gauge covariant derivative operator, qi being the charge
of the ϕi field. Fμν is the field strength tensor associated
with the gauge fields Aμ.
It is well-known that if ϕ is in thermal equilibrium, then

at high temperature, the full gauge symmetry can be
restored since ϕ ¼ 0 is the minimum of the finite temper-
ature effective potential [18].5 One way to understand this
symmetry restoration is to study the effect of thermal
fluctuations of the fields (scalars, vectors, and spinors) on a
scalar field background. Due to the nonlinearities in the
Lagrangian, the fluctuations of ϕ contribute a correction
term (see, e.g., [24] for a review of finite temperature effects
on the effective potential)

δV ∼ λT2ϕ2; ð4Þ

where T is the temperature. Gauge field fluctuations
contribute a similar term, but with λ replaced by the gauge
coupling constant. At temperatures larger than a critical
value Tc, ϕ ¼ 0 becomes the minimum of the effective
potential.
When discussing topological defect formation, one is

interested in the situation when ϕ is no longer in thermal
equilibrium, but one of the gauge fields is. In the case of the
Standard Model, after electroweak symmetry breaking, the
photon field is the only field which remains massless below

3See also [14] for other types of nontopological defects, and [15]
for further work on the plasma stabilization mechanism.

4The plasma stabilization mechanism of embedded strings has
many potential phenomenological applications beyond the uti-
lization of pion strings for magnetogenesis. This is a rich area of
research which we plan to further explore in the future.

5Note that, as already pointed out in [19], there are models in
which the electroweak symmetry is not restored (see e.g., [20,21]
for some lattice models, and [22] for a more recent analysis), or
restored only at temperatures much higher than the electroweak
symmetry breaking scale (see e.g., [23]).
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the symmetry breaking scale and which is then in thermal
equilibrium. In this case, one-loop photon effects from the
gauge kinetic term produce [13] a contribution to the
effective potential which lifts the potential, but only in
the charged scalar field directions, i.e.,

δV ∼ gT2ðϕ2
1 þ ϕ2

2Þ: ð5Þ

This effect reduces the vacuum manifold to S1

Meff ¼ fðϕ0;ϕ3Þ∶ϕ2
0 þ ϕ2

3 ¼ η2g: ð6Þ

This allows for string solutions, solutions where the neutral
scalar field winds Meff .
In order to obtain embedded walls, we must have a

theory in which plasma effects break a gauge symmetry to a
discrete symmetry such that Meff is disconnected. A toy
model would be a scalar field triplet ϕ ¼ ðϕ0;ϕ1;ϕ2Þ for
which ϕ1 and ϕ2 are electrically charged while ϕ0 is
neutral. If the bare potential for ϕ is of the usual symmetry
breaking form (2) (with the sum over i now running from 0
to 2), then in an electromagnetic plasma the effective
potential will be

Meff ¼ fðϕ0;ϕ1;ϕ2Þ ¼ ð�η; 0; 0Þg ð7Þ

and will hence allow for embedded domain walls, walls
across which ϕ0 transits from ϕ0 ¼ η to ϕ0 ¼ −η.
In Sec. V we will present an extension of the Standard

Model in which embedded walls can be realized, inside of
which the electroweak symmetry is restored. First, we will
discuss how such embedded walls can lead to an effective
scenario of electroweak baryogenesis.

III. ELECTROWEAK BARYOGENESIS FROM
EMBEDDED WALLS

We consider a scenario which yields embedded domain
walls inside of which the electroweak symmetry is unbro-
ken. Baryon number violating processes are unsuppressed
inside of the domain wall, and the wall boundaries
represent the location in which the out-of-equilibrium
condition is satisfied. There are two general scenarios of
electroweak baryogenesis; local [25] and nonlocal [26–29].
In local baryogenesis, baryon number violation takes place
in the same region of space where the out-of-thermal-
equilibrium condition is satisfied, namely in the boundary
region. In nonlocal baryogenesis, scattering of particles off
the advancing wall edge produces a chiral fermion current,
which flows to the inside of the domain wall, where it
transforms to a net baryon number via sphaleron processes.
Before we turn more closely to the case of nonlocal

baryogenesis, we take a brief look at local baryogenesis to
see that it is insufficient to reproduce the observed baryon-
to-entropy ratio. Consider a point in space x which is
approached by a domain wall. A net antibaryon number is

generated in the leading edge. Weak sphaleron processes
then lead to a relaxation of this number while x is inside the
wall where sphaleron processes are unsuppressed. A
baryon number with an opposite sign to what is generated
when the leading wall edge passes x is then generated when
the trailing edge passes x and is not relaxed since it stays
outside the domain wall, leading to a net positive baryon
number. The necessary CP violation on the domain wall
can, for example, be achieved by introducing a second
Higgs doublet where the CP violation occurs from a
relative phase θ between the two Higgs fields. In this case,
the baryon-to-entropy ratio produced locally at the edge of
the wall was estimated in [5] to be

ñ0b
s
≃ −4

Γs

g�T4

�
mf

T

�
2

θCP; ð8Þ

where the entropy density reads

s ¼ 2π2

45
g�T3: ð9Þ

Here, θCP denotes the change in the CP-violating relative
angle in the two-Higgs-doublet model over the domain
wall boundary, and Γs is the weak sphaleron rate per unit
volume [30]

Γs ¼ κα4WT
4; ð10Þ

with αW ¼ g2

4π, and a constant κ in the range κ ∼ 0.1…1.6 In
principle, both quarks and leptons, with mf denoting their
mass, can contribute to this process. However, in the case of
quarks, any induced CP-violation in the domain wall
boundary that could be converted via weak sphalerons will
be washed out by the much faster strong sphalerons.
Therefore, only leptons are expected to have a significant
impact. From the scaling of (8) with the fermion mass, it is
clear that themost massive lepton, i.e., the tau, will dominate
the baryon production. Let us consider for definiteness θCP to
be positive such that a net antibaryon number is produced at
the leading edge of the domain wall. Since these antibaryons
still have to pass through the region of width lD in which
electroweak symmetry is restored, weak sphalerons will
wash out the baryon number again, and their number density

is suppressed by a factor of e−
Γ̄slD
vD after the passage. Here,

Γ̄s ¼ 6Nf
Γs
T3 is the decay rate of the antibaryons, andvD is the

velocity of the domain wall such that the passage time is
lD=vD. Nf denotes the number of particle families, and we
will use Nf ¼ 3 for all numerical evaluations.

6In [31] a different dependence on the electroweak coupling
Γs ∝ lnð 1

αW
Þα5WT4 was found. For the numerical evaluation, this

difference is, however, covered by the prefactor κ.
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Since the baryons produced at the trailing edge do not
pass through the domain wall, they are not diluted, and the
net baryon-to-entropy ratio after the passage of the domain
wall becomes

B≡ nb
s
¼ ñ0b

s
ðe−

Γ̄slD
vD − 1Þ ∼ 10−16: ð11Þ

For the numerical value, we took lD ∼m−1
H , κ; θCP; vD ∼ 1,

g� ∼ 102, and T ∼mH. This value is at least five orders of
magnitude too small to explain the observed baryon-to-
entropy ratio, even though we considered the parameters in
a range in which it becomes maximal.
Therefore, let us now turn to nonlocal electroweak

baryogenesis [26–29].7 In this mechanism, after the electro-
weak phase transition, a net chiral fermion number builds
up at x as the leading wall edge passes the point and
afterwards, this chiral current diffuses into the wall. Since,
by assumption, the electroweak symmetry remains unbro-
ken inside the wall, weak sphaleron processes lead to net
baryon number generation while x is inside the wall.
Let us now be more quantitative. Generally, for NF

families, the baryon production rate (per unit volume) is
given by

dnb
dt

¼ −
NFΓs

2T

X
i

ð3μiuL þ 3μidL þ μilL þ μiνLÞ; ð12Þ

where the μ denote differences between particle and
antiparticle chemical potentials, the index i runs over the
families, u, d, l, ν denoting up-, down-type quarks, charged
leptons and neutrinos, respectively. The index L denotes
left-handedness.
For massless fermions, chemical potentials, and pertur-

bations in the associated number density δn are related
via

δn ¼ μT2

12
ð13Þ

such that Eq. (12) may be rewritten at sufficiently large
temperatures as

dnb
dt

¼ −
6NFΓs

T3
ð3nb;L þ nl;LÞ; ð14Þ

where nb;L; nl;L denote the total number densities of left-
handed baryons and leptons.

The CP violation on the domain wall due to the relative
phase θ between the two Higgs fields in the two-Higgs-
doublet model leads, for sufficiently thin walls as will be
realized in our scenario, to differences between reflection
coefficients of particles and antiparticles on the domain wall.
In the following, we fix our coordinates such that the

domain wall lies in the xy-plane at z ¼ 0. Let us denote the
reflection coefficient for right-handed fermions incident
from the unbroken phase by Ru

R→L and the transmission
coefficient from the unbroken to the broken phase by Tu→b

R .
Furthermore, denoting by L̄ and R̄ the CP-conjugates of
left- and right-handed particles, respectively, it was found
that the difference satisfies [28]

ΔRðpzÞ ¼ Ru
R→L − Ru

R̄→L̄

¼ 4tð1 − t2ÞθCP
mf

mH
exp

�
−

p2
z

m2
H

�
Θðjpzj −mfÞ;

ð15Þ

where t ¼ tanhðϑÞ, tanh ð2ϑÞ≡ mf

jpzj, θCP is the change in

the CP-violating angle over the wall’s boundary, mH is the
mass of the electroweak Higgs, mf is the mass of the
fermion in the broken phase and pz the z-component of its
momentum in the wall frame. The Θ-function occurs due to
the fact that particles with jpzj < mf will be totally
reflected from the wall and consequently ΔR ¼ 0, while
the suppression of large momenta jpzj > mH is due to
coherence effects across the boundary of the region in which
the electroweak symmetry is restored. The CP-violating
angle changes over the width of this boundary, which we
assumed to be ∼m−1

H . Since jpzj > mf, we can approximate
t ≃ mf

2jpzj and, furthermore, replace the exponential by a step

function, thus obtaining

ΔRðpzÞ ≃
2m2

f

jpzjmH
θCPΘðmH − jpzjÞΘðjpzj −mfÞ: ð16Þ

Next, we want to consider the net flux of left-handed
particles J0 into the unbroken phase. For this, we need to
calculate the difference between the flux densities jL and jL̄
of left-handed particles and their CP conjugates such that

J0 ¼
Z

d3p
ð2πÞ3 ðjL − jL̄Þ: ð17Þ

For both ji,wehave to consider transmission from thebroken
into the unbroken phase and reflection back into the
unbroken phase [26]. For concreteness, let us assume that
the domain wall moves with velocity vD in positive
z-direction. We want to calculate the influx into the domain
wall from the broken phase on the right into the unbroken
phase inside the domain wall on the left. We can then
write, e.g.,

7The calculation of the CP-violating source is complex, with
many possible contributions (see, e.g., [32,33] for more recent
reviews). Our analysis is based on calculating reflection and
transmission coefficients at the wall’s boundary and gives only a
rough order of magnitude estimate. For a recent discussion of
some of the subtle aspects, see [34].
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jLðpz; p⊥Þ ¼ f←ðpz; p⊥ÞTb→u
L þ f→ðpz; p⊥ÞRu

R→L

− f→ðpz; p⊥Þ; ð18Þ

where f→ denotes the flux density of particles moving in the
unbroken phase to the right (towards the domain wall
boundary) and f← that of particles moving in the broken
phase to the left (also towards the domain wall boundary).
Here, pz is the momentum perpendicular to the domain wall

and p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. For the third term in (18) we used that

Ru
L→R þ Tu→b

L ¼ 1 which implies that this term will cancel
when considering jL − jL̄.
Assuming free field phase space densities and using the

velocity vz ¼ pz
E, we have in the wall frame

f← ¼ jpzj
E

1

1þ exp
�
γ
T

�
E − vD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z −m2

f

q �� ð19Þ

and

f→ ¼ jpzj
E

1

1þ exp ðγT ðEþ vDjpzjÞÞ
; ð20Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

p
is the energy in the wall frame

and γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2D

p .

We can now relate transmission and reflection coeffi-
cients by first using CPT invariance, then probability
conservation, and again CPT invariance

Tb→u
L ¼ Tu→b

L̄ ¼ 1 − Ru
L̄→R̄ ¼ 1 − Ru

R→L: ð21Þ

Doing the same for jL̄, one finds the expression

J0 ¼
Z
pz<0

d3p
ð2πÞ3 ðf

→ − f←ÞΔRðpzÞ

¼ m2
f

2π2mH
θCP

Z
mH

mf

dpz

Z
∞

0

p⊥dp⊥
f→ − f←

jpzj
: ð22Þ

First, let us assume that we are at temperatures for which
mH
T ≪ 1 and use mf

mH
≪ 1. We then obtain [28]

J0 ¼
vDm2

fmHθCP
4π2

: ð23Þ

In a similar manner, we can calculate the average
velocity of the chiral flux relative to the wall [28]

vi ≡
R
pz<0

d3p
ð2πÞ3

jpzj
E ðf→ − f←ÞΔRðpzÞR

pz<0
d3p
ð2πÞ3 ðf→ − f←ÞΔRðpzÞ

≃
1

4 lnð2Þ
mH

T
; ð24Þ

where we expanded in leading order of vD;
mf

mH
; mH

T ≪ 1 as
before.
Next, in order to compute the conversion of the injected

chiral fermion current inside the wall, we have to consider
the diffusion equation. Modeling the injected current as
ξpJ0δðz − vDtÞ, the first and second diffusion laws together
with ṅl;L ¼ −vDn0l;L can be brought into the form

Dn00l;L þ vDn0l;L ¼ ξpJ0δ0ðz − vDtÞ: ð25Þ

where D ¼ 1=ð8α2WTÞ is the diffusion constant, ξp is the
persistence length, and a prime denotes a derivative with
respect to z. The persistence length can be estimated as
ξp ∼ 6Dvi [28]. This equation is solved by [5]

nl;LðzÞ ¼ J0
ξp
D

e−
vD
D z: ð26Þ

Finally, making use of (14) and ṅb ¼ −vDn0b, we find

n0b ¼
6NFΓs

vDT3
nl;L ¼ Γ̄s

vD
nl;L ð27Þ

with

Γ̄s ¼ 6NFκα
4
WT: ð28Þ

Integrating over the region of nonvanishing sphaleron
transitions, i.e., from 0 to lD, we obtain

nb ¼
Γ̄s

4π2
D
vD

ξp
D

θCPm2
fmH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡n0b

ð1 − e−
vD
D lDÞ ð29Þ

for the induced baryon number density.
Using the expression (9) for the entropy density, we find

the following result for the prefactor of the induced baryon-
to-entropy ratio in (29),

n0b
s
¼ 45

8π4g�
Γ̄sD
vD

ξp
D

θCP

�
mf

T

�
2 mH

T
: ð30Þ

Note that this holds only as long as mH
T ≪ 1. Applying the

above formula to lower temperatures would suggest a
significant rise of nb=s at late times. However, solving
all the integrals numerically shows that this behavior is not
realized and, instead, that (in the relevant temperature range
with mτ > T) nb=s is a slowly decreasing function of T.8

While the above result can be applied to any chiral
fermion current injected into the wall, quarks were found to
yield negligible contributions for baryogenesis compared to

8In particular, using ξp
D ¼ 6vi, we cannot apply (24) as this

velocity becomes quickly larger than 1 for low temperatures.
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left-handed leptons (see [28,35]). Besides quarks having
shorter diffusion lengths, this is due to strong sphaleron
processes in equilibrium, which quickly wash out chiral
perturbations in quarks but not in leptons. The dominant
contribution to this baryogenesis scenario comes, therefore,
from τ-leptons, on which we will focus henceforth.
Based on (29), we can estimate the induced baryon-to-

entropy ratio at a point in space which is passed once by a
wall. Since the computations above are for order of
magnitude estimates still reliable at temperatures close to
the value of the Higgs mass, we will use T ¼ mH in the
following. Using v2D=ðΓ̄sDÞ ∼ 102, vD ∼ 1, θCP ∼ 1,
vDlD=D ∼ 10−2, and g� ∼ 102, we find a value

B ∼ 10−11; ð31Þ

compatible with the measured value of B ≃ 9 × 10−11 [36],
even if only marginally. This is a conservative estimate in
two ways. First, it assumes that the formula (30) ceases to
apply almost immediately below the Higgs mass scale. If
the formula were applicable to a lower temperature T, then
the result would be enhanced by a factor of ðmH=TÞ3.
Secondly, the estimate (31) neglects the fact that a given
point of space can be passed by many wakes. In the
following section, we will turn to a computation of the
enhancement of baryon production due to the second effect.

IV. BARYON-TO-ENTROPY RATIO FROM
EMBEDDED WALLS

Domain walls are defects in a relativistic field theory. In a
theory with domain wall solutions, the system of domain
walls will take on a ‘scaling solution’ with a fixed number
N (independent of time) of walls per Hubble volume at
each time and with a typical extrinsic curvature radius
which is comparable to the Hubble radius. The curvature
will induce motion of the walls at speeds of the order of the
speed of light. Hence, if the domain wall network is
sufficiently long-lived, domain walls can swipe over each
point in space multiple times. The Kibble causality argu-
ment implies that N ≥ 1.
To obtain a rough estimate of the net baryon-to-entropy

ratio induced by a network of embedded walls, we can take

BT ≃ nB; ð32Þ

where B is the result for one wall crossing from (29) and n
is the number of times a given point in space will be crossed
by a wall during the time interval when the baryogenesis
process is effective. We have

n ¼ ÑN1; ð33Þ

where Ñ is the number of Hubble expansion times when
baryogenesis is effective and N1 is the number of wall
crossings per Hubble time. The latter is given by

N1 ≃
tvD
LD

; ð34Þ

where LD is the mean separation between walls

LD ∼
t
N
: ð35Þ

Hence,

n ∼ NÑvD: ð36Þ

Since embedded walls arising in quantum field theories are
relativistic objects, we have vD ∼ 1. Numerical simulations
of cosmic string evolution [37] indicate that a number
N ∼ 10 is reasonable. The velocity-dependent one-scale
model for domain walls also yields a number N > 1 (see,
e.g., [38] and references therein).
The number Ñ of Hubble expansion times during which

electroweak baryogenesis is efficient can be estimated to be
the number of expansion time steps between the time of
electroweak symmetry breaking when the temperature is
TEW and the time when T drops below mτ. Thus, making
use of the Friedmann equation to relate time to temperature,
we obtain

Ñ ∼ 2 ln

�
TEW

mτ

�
: ð37Þ

With TEW ≃ 160 GeV and mτ ¼ 1.8 GeV, and taking
N ∼ 10, we see that an enhancement factor of between
one and twoorders ofmagnitude overwhat is obtained froma
single wall crossing is possible. Hence, a sufficient baryon-
to-entropy ratio can be generated even if θCP ∼ 10−1.
In the above estimate, we have neglected the decay of the

baryon number produced in the nth crossing when the next
wall crosses, as well as the temperature dependence of the
baryon production rate. An improved estimate of the total
baryon-to-entropy ratio can be obtained in the follow-
ing way:
For the case of local baryogenesis, we can express the

baryon-to-entropy ratio after swiping over each point in
space nþ 1 times as

Bnþ1
0 ¼Bn

0 exp

�
−
Γ̄slD
vD

�
þ ñ0b

s

�
1− exp

�
−
Γ̄slD
vD

��
ð38Þ

with

B0
0 ¼ 0; ð39Þ

where, as before, lD is the width of electroweak symmetry
restoration around the domain wall and ñ0b the baryon
number density produced locally at its edge [cf. Eq. (8)].
The first factor takes into account that after the (nþ 1)st
passage of the domain wall, the baryons that remained after
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the nth step decay during the passage of the wall due to
sphaleron processes. The second term is the newly pro-
duced baryon number density due to the difference between
baryons produced at the trailing edge and antibaryons
produced at the leading edge, which had time to decay
during the passage of the wall.
For nonlocal baryogenesis, we have

Bnþ1
0 ¼Bn

0 exp

�
−
Γ̄slD
vD

�
þn0b

s

�
1− exp

�
−
vDlD
D

��
ð40Þ

with

B0
0 ¼ 0; ð41Þ

where n0b was calculated in (30). While the first term in the
previous equation remains unmodified with respect to the
local case, the second term, which describes the production
mechanism, is now changed as baryogenesis happens not
only locally at the edge of the domain wall but in the entire
domain wall due to injection of a chiral lepton current into
the unbroken electroweak phase via diffusion from the
domain wall edge. Here, D ¼ 1=ð8α2WTÞ is the diffusion
constant.
Equations (38) and (40) can be solved by

Bn
0 ¼ n0b

�
1 − exp

�
−
vDlD
D

��Xn
k¼1

exp

�
−ðn − kÞ Γ̄slD

vD

�

¼ n0b

�
1 − exp

�
−
vDlD
D

��
1 − exp ð−n Γ̄slD

vD
Þ

1 − exp ð− Γ̄slD
vD

Þ
ð42Þ

in the nonlocal case, and in the local case by

Bn
0 ¼ ñ0b

�
1 − exp

�
−n

Γ̄slD
vD

��
; ð43Þ

respectively. Here, the sum runs over all wall crossings

during the time when n0b;
vDlD
D , and Γ̄slD

vD
can be taken to be

approximately time-independent.
If vDlD=D ≪ 1 and Γ̄slD=vD ≪ 1, we can get in the

nonlocal case an enhancement [5]

Bn
0 ¼

v2D
Γ̄sD

n0b

�
1 − exp

�
−n

Γ̄slD
vD

��
!n→∞ v2D

Γ̄sD
n0b: ð44Þ

In our case v2D=ðΓ̄sDÞ ∼ 102. This enhancement is absent in
the local case. Note that the enhancement factor we have
obtained using this consideration is comparable to the one
we obtained at the beginning of this section using the more
naive approach.
To make the enhancement efficient in the nonlocal case,

we require n ≥ vD=ðΓ̄slDÞ. Let us now express this require-
ment in terms of the ratio between the temperature Tf when

the domain wall network decays and the temperature Ti ¼
TEW when electroweak baryogenesis can begin. We need to
estimate the number n of times a given point x in space is
crossed by a domain wall. We estimate this number using
the scaling solution of the domain wall network.
Taking the Hubble length to change discretely after each

Hubble-time step, the time between passes over each point

in space is τn ¼ LDðtnÞ
vD

with LD the average distance between

domain walls. Since LDðtÞ ∝ 1
HðtÞ ¼ 2t, which holds under

the assumption that we are in the scaling regime and deep in
the radiation-dominated era, we can write

LDðtÞ ¼ 2ξt ð45Þ

and hence τn ¼ 2ξtn
vD

. The time after the nth passage over
each point in space is

tn ¼ tn−1 þ τn−1 ¼ tn−1

�
1þ 2ξ

vD

�
ð46Þ

and thus

tn ¼
�
1þ 2ξ

vD

�
n
t0: ð47Þ

Using that during radiation domination

1

2t
¼ HðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3G
90

g�
r

T2 ð48Þ

holds, this translates to under the assumption of approx-
imately constant degrees of freedom to

Tn ¼
T0

ð1þ 2ξ
vD
Þn=2 ð49Þ

and, therefore, the enhancement in the case of nonlocal
baryogenesis becomes efficient when

Ti

Tf
≥
�
1þ 2ξ

vD

� vD
2Γ̄slD : ð50Þ

Finally, let us mention that in order to apply the above
treatment to much lower temperatures than mH, for more
precise values of BT , numerical evaluation of the integrals
(23) and (24) is necessary and shows that our mechanism
can for reasonable parts of the parameter space comfortably
explain the observed baryon-to-entropy ratio. Results of
this numerical evaluation are shown in Fig. 1. The four
plots depict the total baryon-to-entropy ratio BT after the
baryon production has ceased as a function of the reduced

average domain wall distance ξ ¼ LDðtÞ
2t and the temperature

Tf at which the embedded DWs decay and baryogenesis
stops. In each plot, we consider a different set of parameters
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vD; κ, and θCP. As a common feature of all four plots, lower
ξ and lower Tf lead to a higher value of BT . This is because
both lead to an increase in the number of times each point in
space is washed over by a domain wall before the embedded
walls decay. The parameters κ and θCP enter almost exclu-
sively as a common prefactor κθCP in BT . The role of vD is
more complicated. For very low values, the domain walls
wash over each point in space only a few times before they
decay, leading to a small BT . On the other hand, a too large
value of vD can reduce the baryon number produced in a
single passage of a wall. The solid white line in the plots
indicates the observed baryon-to-entropy ratio. As can be
seen, for a large part of the displayed parameter space, the
presentedmechanism leads to a sufficient baryon production
to explain observations. It should be emphasized again that
the parameter dependencies and numbers shown in Fig. 1 are
based on order-of-magnitude estimations.

V. A MODEL WITH EMBEDDED WALLS

While the standard electroweak model has embedded
strings, it is necessary to go beyond the Standard Model to

obtain embedded walls. Here, we will propose an extension
of the Standard Model, which admits embedded walls
within which the electroweak symmetry is restored.
We are looking for an extension of the Standard Model

gauge symmetry group such that, when the enhanced
symmetry group G breaks to the gauge group of the
Standard Model, embedded defects arise. Thus, we con-
sider the symmetry breaking pattern9

G!Φ SUð3ÞC×SUð2ÞL×Uð1ÞY!H SUð3ÞC×Uð1ÞEM; ð51Þ

where Φ is a new Higgs field that acquires a nonvanishing
vacuum expectation value (VEV) in the first phase tran-
sition, and H is the electroweak Higgs, which may or may
not be embedded in Φ. The symmetry breaking should
occur in such a way that the vacuum manifold M is
connected, i.e., π0ðMÞ ≅ f1g, and hence admits no

FIG. 1. Plots showing the final baryon-to-entropy ratio obtained from (40) with numerically calculated
n0b
s (cf. Sec. III) as a function of

the reduced average domain wall distance ξ [cf. Eq. (45)] and final temperature Tf at which the embedded walls dissolve such that
baryogenesis terminates for four different values of ðvD; κ; θCPÞ. The wall velocity vD ≃ 0.38 corresponds to the prediction of the VOS
model. The black dashed line indicates the value ξ ≃ 0.56 predicted by the VOS model, and the solid white line shows the observed
baryon-to-entropy ratio BT ≃ 9 × 10−11. The light-gray dashed lines show how often the DWs have swept over each point in space
after TEW.

9SUð3ÞC is the gauge group of the strong interactions while
SUð2ÞL × Uð1ÞY is the electroweak symmetry group which is
broken by the standard Higgs field to the Uð1ÞEM symmetry of
electromagnetism.
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topologically stabilized domain walls. It should, however,
allow for embedded domain wall solutions, which can be
stabilized via interactions with the thermal plasma. We
might, e.g., have some Higgs field Φ ¼ ðϕ1;…;ϕnþ1Þ,
such that its vacuum is described by

M ¼
�
Φ∈Rnþ1j

Xnþ1

i¼1

ϕ2
i ¼ v2Φ

	
≅ Sn: ð52Þ

It is important to note that the ϕi are real-valued. If the
fields ϕ1;…;ϕn are charged under Uð1ÞEM or SUð3ÞC
while ϕnþ1 is uncharged, interactions of the fields with the
thermal plasma in the early universe can lift the potential in
the direction of the charged fields, effectively reducing the
vacuum to

Meff ¼ fΦ∈Rnþ1jϕnþ1 ¼ �vΦg ≅ S0 ð53Þ

which is disconnected. These interactions stabilize
embedded domain wall solutions in which all of the ϕ
fields except for ϕnþ1 vanish, and ϕnþ1 transits from−vΦ to
þvΦ. Notice that this is only possible if n is even.
As a simple realization of this scenario, we propose to

study a model in which Uð1ÞY is embedded in a SUð2ÞA ×
Uð1ÞB symmetry group

G ¼ SUð3ÞC × SUð2ÞL × SUð2ÞA ×Uð1ÞB: ð54Þ

Since SUð3ÞC remains unbroken in the chain (51), we do
not have to consider it in detail and will ignore it for the
following discussion. The vacuummanifold, after the entire
symmetry breaking, is connected, admitting, therefore, no
topologically stable domain walls.
Symmetry groups of a similar form as G are, for

example, known from left-right symmetric models (see,
e.g., [39]).
In the low-energy limit (at the electroweak scale), we

need to recover the Standard Model Lagrangian, in par-
ticular for the gauge and Higgs fields,

LSM ⊃ L0
kin þ L0

H; ð55Þ

where

L0
kin ¼ −

1

2
trðWμνWμνÞ − 1

4
BμνBμν ð56Þ

describes the kinetic terms of the electroweak gauge
fields, namely the W-bosons Wμ associated with SUð2ÞL-
symmetry and with field strengthWμν, and the B-boson Bμ

associated with Uð1ÞY-symmetry and field strength Bμν.
The electroweak Higgs H is a complex SUð2ÞL doublet
with weak hypercharge YðHÞ ¼ 1=2.

L0
H ¼ ðD0

μHÞ†ðDμ
0HÞ − VHðHÞ ð57Þ

with

VHðHÞ ¼ λHðH†H − v2HÞ2 ð58Þ

and

D0
μH ¼

�
∂μ − igWa

μτ
a −

i
2
g0Bμ

�
H; ð59Þ

where H ¼ ðHþ; H0Þ and the generators being the re-
scaled Pauli matrices τa ¼ σa=2. The label 0 on the
covariant derivative is to distinguish the covariant deriva-
tive in the SM from the covariant derivative of the full
symmetry group.
Starting from a phase with the full internal symmetry,

the breaking to the Standard Model must involve
SUð2ÞA × Uð1ÞB → Uð1ÞY . To obtain embedded domain
walls, we realize this symmetry breaking in two steps,

SUð2ÞA ×Uð1ÞB !Φ Uð1ÞA ×Uð1ÞB !Ψ Uð1ÞY: ð60Þ

Here, Φ is taken to be in the ð1; 1; 3Þ0 representation of G
and Ψ is in the ð1; 1; 2Þ1

2
representation. With the Pauli

matrices σA, we can denote the SUð2ÞA-generators tA ¼
σA=2 which then have normalization trðtAtBÞ ¼ 1

2
δAB.

Hence, we can write Φ in terms of three real fields ϕA

(A ¼ 1; 2; 3) as

Φ ¼ ϕAtA ¼ 1

2

�
ϕ3 ϕ1 − iϕ2

ϕ1 þ iϕ2 −ϕ3

�
ð61Þ

and Ψ as a complex doublet

Ψ ¼
�
ψ1

ψ2

�
: ð62Þ

To fix conventions, let us also introduce the gauge con-
nections Rμ ¼ RA

μ tA for the SUð2ÞA-group and Sμ for the
Uð1ÞB-group. The covariant derivatives of the scalars are
then given by

DμΦ ¼ ∂μΦ − igA½Rμ;Φ�; ð63Þ

DμΨ ¼ ∂μΨ − igARμΨ −
i
2
gBSμΨ: ð64Þ

Under gauge transformations

UAðxÞ ¼ exp ðiαðxÞÞ with αðxÞ ¼ αAðxÞtA ð65Þ

and

UBðxÞ ¼ exp

�
i
2
βðxÞ

�
; ð66Þ
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the gauge and scalar fields transform as

Rμ ↦ UARμU−1
A þ i

gA
UA∂μU−1

A ; ð67Þ

Sμ ↦ Sμ þ
1

gB
∂μβ; ð68Þ

Ψ ↦ UAUBΨ; ð69Þ

Φ ↦ UAΦU−1
A : ð70Þ

Let us now realize the first symmetry stage of symmetry
breaking with a potential

V1ðΦÞ ¼ λΦ

�
trðΦ2Þ − 1

2
v2Φ

�
2

¼ λΦ
4

�X3
A¼1

ðϕAÞ2 − v2Φ

�2

: ð71Þ

The minimum of the potential is clearly at

X3
A¼1

ðϕAÞ2 ¼ v2Φ ð72Þ

and the corresponding vacuum manifold has, therefore, the
topology

MΦ ≅ S2: ð73Þ

Locally, we can choose our 3-axis in group space to be
parallel to the vacuum expectation value of Φ such that
hΦi ¼ vΦt3. The remaining unbroken generator is then t3,
corresponding to an unbroken Uð1ÞA-subgroup. Note that
the remaining symmetry group acts now on Ψ as

�
ψ1ðxÞ
ψ2ðxÞ

�
→

�
e

i
2
ðα3ðxÞþβðxÞÞψ1ðxÞ

e
i
2
ð−α3ðxÞþβðxÞÞψ2ðxÞ

�
: ð74Þ

For the second stage of symmetry breaking, we can again
use a quartic potential

V2ðΨÞ ¼ λΨðΨ†Ψ − η2ΨÞ2: ð75Þ

In this way, both ψ1 and ψ2 will acquire nonvanishing
VEVs which would break the remaining Uð1ÞA ×Uð1ÞB
symmetry completely.
To make sure that only one of the two acquires a

nonvanishing VEV, we have to lift the degeneracy between
ψ1 and ψ2 by breaking SUð2ÞA in the Ψ-potential, i.e., we
need to introduce interactions between Φ and Ψ. This can
be achieved via the gauge-invariant term

V3ðΦ;ΨÞ ¼ MΨ†ΦΨ ¼̊ MvΦ
2

ðjψ1j2 − jψ2j2Þ; ð76Þ

where ¼̊ means that the expression on the left-hand side
becomes effectively the expression on the right-hand side
below the symmetry-breaking scale ∼vΦ. Later on, we will
use¼∘∘ to mean a similar thing but with respect to the second
symmetry breaking at scale vΨ and ¼∘∘∘ for the electroweak
symmetry breaking.
The potential of Ψ becomes then effectively,

V2ðΨÞ þ V3ðΦ;ΨÞ¼̊ λΨjψ1j4 þ λΨjψ2j4 þ 2λΨjψ1j2jψ2j2
þ μ1jψ1j2 − μ2jψ2j2 þ λΨv4Ψ; ð77Þ

where we define

μ1 ¼
MvΦ
2

− 2λΨη
2
Ψ and

μ2 ¼
MvΦ
2

þ 2λΨη
2
Ψ: ð78Þ

The part of parameter space that is interesting for us (and
which is the natural one) is μ1;2 > 0. The minimum of the
potential that needs to be considered below the first
symmetry-breaking scale lies at

jψ1j2 ¼ 0 and

jψ2j2 ¼
μ2
2λΨ

≡ v2Ψ: ð79Þ

The vacuum associated with this is

MΨ ≅ S1 ð80Þ

and we can choose the field space direction again such that

hΨi ¼
�

0

vΨ

�
: ð81Þ

Transformations affecting the ψ2-component are therefore
no longer symmetries.
Looking at (74), we can however see that transforma-

tions with α3ðxÞ ¼ βðxÞ leave ψ2 untouched and the
remaining symmetry is a Uð1Þ symmetry that acts on
ψ1ðxÞ as

ψ1ðxÞ → eiβðxÞψ1ðxÞ: ð82Þ

We can associate this with weak hypercharge Uð1ÞY-
symmetry and the corresponding charge operator is

QY ¼ t3 þQB; ð83Þ

where QB is the corresponding Uð1ÞB charge and t3 the
unbroken SUð2ÞA generator.

TOBIAS SCHRÖDER and ROBERT BRANDENBERGER PHYS. REV. D 110, 043516 (2024)

043516-10



We are now able to determine the electric charges of Φ
and Ψ. Since both are in the trivial representation of
SUð2ÞL, their electric charge Q is equivalent to their weak
hypercharge. For Ψ, we can directly see that

Qðψ1Þ ¼ 1 and Qðψ2Þ ¼ 0: ð84Þ

The latter is important since ψ2 acquires a nonvanishing
VEV. It would break Uð1ÞEM if it had a nonvanishing
electric charge. ForΦ, we have to determine the eigenstates
corresponding to the unbroken generator t3. We can write

t� ¼ 1

2
ðt1 � it2Þ ð85Þ

which satisfy ½t3; t�� ¼ �t�. Correspondingly, we find
(with the decomposition Φ ¼ ϕþtþ þ ϕ−t− þ ϕ0t3) that
the transformation behavior under the unbroken Uð1ÞA is

ϕþðxÞ → eiα
3ðxÞϕþðxÞ;

ϕ−ðxÞ → e−iα
3ðxÞϕ−ðxÞ;

ϕ0ðxÞ → ϕ0ðxÞ; ð86Þ

and, therefore, the electric charges are

QðϕþÞ ¼ 1;

Qðϕ−Þ ¼ −1;

Qðϕ0Þ ¼ 0: ð87Þ

As we will discuss in more detail below, interactions
between Φ and thermal electromagnetic radiation will
effectively change the potential (71) by lifting it in the
ϕ1 and ϕ2 directions such that the remaining vacuum has
effectively the topology

Meff
Φ ≅ S0 ð88Þ

and thus stabilizes (embedded) domain wall solutions.
It is important to specify how the SM particles can be

included in our model. Since the SUð3ÞC × SUð2ÞL-part of
the SM is not changed by the larger symmetry group, the
representations of all SM particles under these subgroups
stay the same. We can furthermore make all SM particles
singlets under SUð2ÞA and assign them Uð1ÞB charges
which are the same as their Uð1ÞY charges according to
(83). Therefore, the particle content of the new theory stays
the same as in the SM except for the introduction of Φ, Ψ,
and four gauge bosons of the SUð2ÞA ×Uð1ÞB-symmetry,
of which one field becomes the electroweak B-boson of the
Uð1ÞY symmetry, though.
The electroweak symmetry breaking SUð2ÞL ×

Uð1ÞY!H Uð1ÞEM is obtained with the usual electroweak
Higgs, an SUð2ÞL doublet with weak hypercharge 1

2
. So far,

we have obtained a theory with embedded domain walls,
but we must ensure that the electroweak symmetry is
restored inside of them. This is possible by introducing a
coupling between H and Φ via

V4ðΦ; HÞ ¼ σH†H

�
v2Φ
2

− trðΦ2Þ
�
; ð89Þ

where σ is a positive constant. Outside the domain wall,
where SUð2ÞA is broken, V4 ¼ 0 and the usual electroweak
theory remains unaffected, while inside the domain wall,
where the symmetry is unbroken, one obtains

V4 ¼
1

2
σv2ΦH

†H ð90Þ

which contributes to the electroweak Higgs potential
[cf. (58)]

V4ðΦ; HÞ þ VHðHÞ

¼̊
�
1

2
σv2Φ − 2λHv2H

�
H†H þ λHðH†HÞ2 þ λHv4H: ð91Þ

Therefore, the minimum of the potential is at H ¼ 0 for
v2Φ ≥ 4λH

σ v2H, and the electroweak symmetry is unbroken
inside the domain wall.
Let us now go through the different symmetry breaking

steps, the corresponding Higgs mechanism and determine
the corrections to the effective potential coming from
plasma interactions. We start with the first symmetry
breaking. The kinetic term for the first Higgs field reads

tr½ðDμΦÞðDμΦÞ� ¼ trð∂μΦ∂
μΦÞ − 2igAtrð∂μΦ½Rμ;Φ�Þ

− 2g2AtrðRμΦRμΦÞ þ 2g2AtrðRμRμΦ2Þ

⊃̊
g2Av

2
Φ

2
ðR1

μR
μ
1 þ R2

μR
μ
2Þ: ð92Þ

Correspondingly, the two gauge bosons R1;2
μ gain masses

while R3
μ remains massless

m1;2
R ¼̊ gAvΦ; m3

R ¼ 0: ð93Þ

Let us now consider the universe after the first symmetry
breaking. Since the photon and hence the R3 gauge field are
in thermal equilibrium, we can apply thermal averages and
approximate [13]

hR3
μiT ≃ 0 and hR3

μR
μ
3iT ≃ −κRT2 ð94Þ

with an order-one prefactor κR. The quadratic terms in the
first line of (92) give then rise to a contribution to the
effective Lagrangian of the form,
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−
g2AκR
2

T2ððϕ1Þ2 þ ðϕ2Þ2Þ; ð95Þ

and the fields ϕ1;2 acquire, therefore, the masses

m1;2
ϕ ≃̊

ffiffiffiffiffi
κR

p
gAT: ð96Þ

Wecannowsee explicitly that the term (95) yields an effective
contribution to the potential (71) and lifts it in the charged
field directions. Thus, the remaining vacuum becomes S0

instead of S2 and embedded domain walls are stabilized.
As usual, the new physical field φ≡ ϕ3 − vΦ obtains a

mass

mφ ¼
ffiffiffiffiffiffiffiffi
2λΦ

p
vΦ: ð97Þ

Let us now come to the second symmetry breaking.
Introducing�

Pμ

Bμ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2A þ g2B

q
 
gA −gB
gB gA

!�
R3
μ

Sμ

�
; ð98Þ

we can write for the kinetic term of the second Higgs field

ðDμΨÞ†ðDμΨÞ⊃∘∘ g
2
Av

2
Ψ

4
ðR1

μR
μ
1þR2

μR
μ
2Þþ

ðg2Aþg2BÞv2Ψ
4

PμPμ:

ð99Þ

We have then the following masses for our gauge fields

m1;2
R ¼∘∘ gA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Φþv2Ψ

2

r
; mP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Aþg2B

2

r
vΨ; mB ¼ 0:

ð100Þ

Since we consider the unbroken Uð1Þ-symmetry as corre-
sponding to the weak hypercharge, Bμ is the B-boson of
electroweak interactions. As one can easily check by consid-
ering how a field in an arbitrary representations of SUð2ÞA ×
Uð1ÞB with SUð2ÞA generators TA transforms, fixing

g0 ¼ gAgBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2A þ g2B

q ð101Þ

to be the B gauge coupling, the weak hypercharge operator
reads

QY ¼ T3 þQB: ð102Þ

We can apply again thermal averages after the
second symmetry breaking, in which case we have now
hBμBμiT ≃ −κBT2 which leads via (92) to a term

− g02κB
2

T2ððϕ1Þ2 þ ðϕ2Þ2Þ such that ϕ1;2 have after the second
symmetry breaking the thermal masses

m1;2
ϕ ≃∘∘ ffiffiffiffiffi

κB
p

g0T: ð103Þ

Similarly, the thermal average leads to a term −g02κBT2jψ1j2
such that also ψ1 acquires the same thermal mass

m1
ψ ≃∘∘ ffiffiffiffiffi

κB
p

g0T: ð104Þ

Let us finally consider electroweak symmetry-breaking
SUð2ÞL ×Uð1ÞY → Uð1ÞEM. The Higgs fieldH belongs to
the ð1; 2; 1Þ1

2
representation of the full group (54) and

transforms correspondingly as HðxÞ → eiγ
aðxÞτaei

2
βðxÞHðxÞ.

From the potential (58), we can read off that, outside the
domain walls, the minimum of the potential is at
H†H ¼ v2H. We can choose the VEV correspondingly in
the usual way

hHi ¼
�

0

vH

�
: ð105Þ

This VEV is invariant under SUð2ÞL ×Uð1ÞY transforma-
tions with γ1;2ðxÞ ¼ 0 and γ3ðxÞ ¼ βðxÞ corresponding to a
Uð1Þ subgroup which we interpret as the gauge group of
electrodynamics.
Let us now look at the mass generation. From the kinetic

term of the electroweak Higgs, we can find that the linear
combination

Aμ ¼
g0W3

μ þ gBμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ð106Þ

is the only gauge field which stays massless and can
correspondingly be interpreted as the gauge boson of the
unbrokenUð1ÞEM, i.e., the photon. Considering how a field
in an arbitrary representation of SUð2ÞL × SUð2ÞA ×
Uð1ÞB with SUð2ÞL generator T3

L and SUð2ÞA generator
T3 transforms, one can check that the electromagnetic
coupling constant and charge operator can be defined
consistently via

e ¼ gg0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ;

Q ¼ T3
L þQY ¼ T3

L þ T3 þQB: ð107Þ
After electroweak symmetry breaking, we can apply the
thermal average hAμAμiT ≃ −κAT2 and find tr½ðDμΦÞ
ðDμΦÞ� ⊃ − e2

2
κAT2ððϕ1Þ2 þ ðϕ2Þ2Þ such that

m1;2
ϕ ≃∘∘∘ ffiffiffiffiffi

κA
p

eT: ð108Þ
As we can see, plasma interactions lift the potential (71)
also after electroweak symmetry breaking in the ϕ1;2

directions, the effective vacuum remains disconnected
and embedded domain walls are stabilized. Similarly, we
find for the other Higgs fields the terms −e2κAT2jψ1j2 and
−e2κAT2jHþj2 in the Lagrangian such that these fields
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acquire additional mass contributions as well,

m1
ψ ≃
∘∘∘ ffiffiffiffiffi

κA
p

eT; mþ
H≃∘∘∘ ffiffiffiffiffi

κA
p

eT: ð109Þ
In the above model, we have not yet specified how CP

symmetry is violated at the domain wall boundary. To
directly apply the discussion of Sec. III, CP violation
should be included via a two-Higgs-doublet model (see,
e.g., [25]). The second Higgs can be coupled to the Higgs
field Φ, which makes up the embedded domain walls,
analogous to the first Higgs doublet H in Eq. (89).

VI. DISCUSSION

We have studied the baryon-to-entropy ratio which can
be induced by a network of embedded domain walls within
which the electroweak symmetry is restored. The walls
represent configurations which are out of thermal equilib-
rium. Thus, in the presence of sufficient CP violation, the
Sakharov conditions for baryogenesis are satisfied. We
have shown that the measured net baryon-to-entropy ratio
can be obtained. The main reason why wall-mediated
baryogenesis is more efficient than the string-mediated
process is that network of walls pass over a fraction of order
one of the space-time volume while the string world sheets
only cover a small fraction.
However, for our mechanism to work, certain conditions

have to be satisfied. First of all, to avoid the domain wall
problem, our embedded walls must have decayed. As long
as the decay temperature Td is higher than the temperature
of nucleosynthesis, the domain wall problem can be
avoided. The embedded wall network will decay once
the plasma effects become ineffective in lifting the vacuum
manifold in the charged Higgs field direction. This process
needs to be carefully studied.
Let us turn to a second requirement. The baryon number

violation is provided by the usual electroweak sphalerons.
For these processes to be efficient, sphalerons must fit
into the walls.10 The radius Rsph at a temperature T is

Rsph ∼ ðg2TÞ−1; ð110Þ
where g is the gauge coupling constant. The wall thickness
Rw, on the other hand, is

Rw ∼ λ−1=2η−1; ð111Þ

where λ is the self-coupling constant of the Higgs field
which yields the embedded walls, and η is the correspond-
ing symmetry breaking scale. A requirement for our
mechanism to be effective is Rsph < Rw which requires

g−2T−1 < λ−1=2η−1 ð112Þ
evaluated at the temperature TEW of electroweak symmetry
breaking. The value of η has to be consistent with the
symmetry breaking temperature Tc for the embedded wall
formation being higher than TEW and can be estimated as

Tc ∼ g̃−1λ1=2η; ð113Þ
where g̃ is the coupling constant between the embedded
wall field and the standard model fields. Hence, the bound
(112) becomes

g−2T−1 < g̃−1T−1
c ð114Þ

which can be realized for Tc > T ¼ TEW if g̃ is sufficiently
small. This is a second reason why embedded wall-
mediated electroweak baryogenesis can be more efficient
than the string-mediated process where [10] typically a
spherical sphaleron does not fit into the string core.
We have discussed electroweak baryogenesis from

embedded walls in which the electroweak symmetry is
unbroken. The same mechanism also applies to other types
of domain wall scenarios in which the walls decay at some
late time (between the time of electroweak symmetry
breaking and nucleosynthesis). A possible realization is
a scenario in which domain walls form at some early times
in a phase transition with a disconnected vacuum manifold,
but this vacuum manifold gets lifted in a later phase
transition, leaving a unique vacuum behind. (see, e.g.,
[40] for a generic model). Another scenario in which our
mechanism could apply is in a setup with biased [41] or
metastable [42] domain walls.
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