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At high energies, the dynamics of a plasma with charged fermions can be described in terms of chiral
magnetohydrodynamics. Using direct numerical simulations, we demonstrate that chiral magnetic waves
(CMWs) can produce a chiral asymmetry μ5 ¼ μL − μR from a spatially fluctuating (inhomogeneous)
chemical potential μ ¼ μL þ μR, where μL and μR are the chemical potentials of left- and right-handed
electrically charged fermions, respectively. If the frequency of the CMW is less than or comparable to the
characteristic growth rate of the chiral dynamo instability, the magnetic field can be amplified on small
spatial scales. The growth rate of this small-scale chiral dynamo instability is determined by the spatial
maximum value of μ5 fluctuations. Therefore, the magnetic field amplification occurs during periods when
μ5 reaches temporal maxima during the CMW. If the small-scale chiral dynamo instability leads to a
magnetic field strength that exceeds a critical value, which depends on the resistivity and the initial value of
μ, magnetically dominated turbulence is produced. Turbulence gives rise to a large-scale dynamo
instability, which we find to be caused by the magnetic alpha effect. Our results have consequences
for the dynamics of certain high-energy plasmas, such as the early Universe.
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I. INTRODUCTION

In the Standard Model of particle physics, the chirality of
high-energy fermions can lead to macroscopic quantum
effects, which are a result of the chiral anomaly. A
prominent example is the chiral magnetic effect (CME)
[1], which is relevant at high energies and can lead to a
magnetic-field-aligned electric current, if there is an asym-
metry between the number density of left- and right-handed
electrically charged fermions. The emergence of the CME
and other novel quantum phenomena in nonequilibrium
relativistic quantum matter can be derived from first
principles [2–9]. However, to improve the usability of
the models, lots of effort has been put into the development
of a quantum kinetic theory for massless fermions often
referred to as chiral kinetic theory [10–13]. The additional
electric current caused by the CME can also be incorpo-
rated into an effective description of a relativistic plasma.

Such models have become known as chiral (or anomalous)
magnetohydrodynamics (MHD) [14–18]. This paper is
based on chiral MHD as its theoretical framework.
Chiral phenomena occur in plasmas with fermions that

are effectively massless. In the context of astrophysics and
cosmology (see Ref. [19] for a recent review), this limits the
applications to high-energy plasma in which the temper-
ature is above 10 MeV [20]. A prime example is the hot and
dense plasma that fills the early Universe. It was first
suggested in Ref. [21] that the CME can lead to an
instability in the primordial magnetic field, which is now
known as the chiral plasma instability [19] or the small-
scale chiral dynamo instability [22]. If the dynamo is
excited, strong helical magnetic fields can be generated
[23], which can drive magnetically dominated turbulence
that gives rise to mean-field dynamos [17,24]. These
primordial magnetic fields can potentially explain the
baryon asymmetry of the Universe [25,26], produce relic
gravitational waves [27,28], and affect the properties of the
global 21 cm signal [29] and dwarf galaxies [30].*Contact author: jennifer.schober@epfl.ch
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A second domain within astrophysics and cosmology
where the chiral anomaly becomes relevant is core-collapse
supernovae. Here, a chiral imbalance is generated through
the emission of neutrinos which are, in the Standard Model
of particle physics, only left-handed. Chiral effects have
been included in modeling the magnetic field evolution in
core-collapse supernovae [31,32], and were suggested to
play a role in the generation of magnetars [33–36] and the
occurrence of pulsar kicks [37,38]. These ideas have
recently been extended by possible implications of the
chiral anomaly in magnetospheres of pulsars [39], where
the produced chiral asymmetry can be substantial. It can
trigger the small-scale chiral dynamo which, in turn, can
produce circularly polarized electromagnetic radiation in a
wide range of frequencies, spanning from radio to near-
infrared. This can affect some features of fast radio bursts.
Beyond the extreme environments in the Universe, chiral

effects can be studied more directly in heavy ion colliders
[40]. However, the existence of the CME has not yet been
confirmed in experiments conducted at the Large Hadron
Collider [41] or the Relativistic Heavy Ion Collider [42]. At
low energies, chiral effects can emerge in new materials
that include massless quasiparticles [43–45]. The detection
of the pseudorelativistic analogues of CME are realized by
the low-energy electron quasiparticles in Dirac and Weyl
materials [46–48], and it opens up the possibilities of novel
technological developments (e.g., in the field of quantum
computing [49]).
Chiral MHD differs from classical MHD by an addi-

tional term in the induction equation, which describes the
evolution of the magnetic field. This term stems directly
from the additional contribution to the electric current from
the CME and is proportional to the chiral chemical
potential μ5 ≡ μL − μR, where μL and μR are the chemical
potentials of left- and right-handed fermions, respectively.
This additional term leads to an instability in the magnetic
field on small spatial scales [21], the (small-scale) chiral
dynamo instability, if μ5 is nonzero. The amplification of
magnetic energy in the nonlinear stage of the chiral dynamo
instability can cause the production of magnetically domi-
nated turbulence, making exact analytical treatment unfea-
sible. Nevertheless, mean-field theory allows for exploring
the effects of turbulence in chiral MHD. In particular, the
occurrence of a new mean-field dynamo, i.e., the αμ
dynamo, was predicted in Ref. [17]. With direct numerical
simulations (DNS), it has been shown that, in the nonlinear
evolutionary stage, a mean-field dynamo instability can
occur [24]. In recent studies [50,51], it has been demon-
strated that the chiral dynamo instability even occurs in a
plasma with an initial spatial fluctuating chiral chemical
potential with zero mean. A necessary condition for a chiral
dynamo instability is that the effective correlation length of
chiral chemical potential fluctuations is larger than the
corresponding instability length scale, which is given by
the inverse of the spatial maximum value of μ5.

The aforementioned studies have explored the role of
the CME in the evolution of magnetic fields. However, the
CME is not the only macroscopic quantum effect that
results from the chiral anomaly. Another prominent
example is the chiral separation effect (CSE) [52,53].
The CSE is a complementary transport phenomenon to the
CME in which a nonzero chemical potential μ ¼ μL þ μR
generates an axial current along an external magnetic
field. A consequence of the CSE is the possibility of
exciting new collective modes, most notably the chiral
magnetic wave (CMW) [54]. These waves imply periodic
conversion between μ5 and μ, in the presence of a small
background magnetic field and nonvanishing gradients of
μ5 and μ. Chiral magnetic waves in chiral plasma have
been studied in a number of publications [55–58].
Simulating the CMW in a Cartesian domain, it has been
recently shown [59] that the chiral dynamo instability and
even mean-field dynamos can occur for vanishing initial
chiral asymmetry if initial spatial fluctuations of the
chemical potential are inhomogeneous ð∇μ ≠ 0Þ. In this
study, we explore the parameter space of CMWs (for
which the chemical potential is nonuniform) and identify
the conditions under which the chiral dynamo instability
and mean-field dynamos can be excited for plasmas with
vanishing initial chiral asymmetry.
The outline of this paper is as follows. In Sec. II we

present the system of equations that describe plasma with
relativistic fermions including the CME and CSE, and
discuss the initial conditions that we consider. In Sec. III
the evolution of the system is modeled phenomenologi-
cally and we make some predictions for different scenar-
ios. The system of equations is solved numerically in
Sec. IV, where we compare our predictions with the
numerical results. Finally, the results are discussed in
Sec. V and conclusions are drawn in Sec. VI.

II. SYSTEM OF EQUATIONS

A. Chiral MHD equations with CSE

In this paper, we study effects of relativistic fermions
applying an effective fluid description for plasma motions.
As in our previous study [59], we consider the following set
of equations which includes both the CME and the CSE
(see Appendix A):

∂B
∂t

¼ ∇ × ½U × Bþ ηðμ5B − ∇ × BÞ�; ð1Þ

ρ
DU
Dt

¼ ð∇ × BÞ × B − ∇pþ ∇·ð2νρSÞ; ð2Þ

Dρ

Dt
¼ −ρ∇ · U; ð3Þ

Dμ

Dt
¼ −μ∇ · U −Dμ∇4μ − CμðB·∇Þμ5; ð4Þ
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Dμ5
Dt

¼ −μ5∇ · U −D5∇4μ5 − C5ðB·∇Þμ
þ λη½B·ð∇ × BÞ − μ5B2�: ð5Þ

Here, B and U are the magnetic field and the velocity
field, respectively, η is the microscopic magnetic diffusiv-
ity, p is the pressure, ν is the viscosity, ρ is the mass
density, S is the trace-free strain tensor with components
Sij ¼ ð∂jUi þ ∂iUjÞ=2 − δijð∇·UÞ=3. In Eq. (5), λ ¼
3ℏcð8αem=kBTÞ2 is the chiral feedback parameter, where
ℏ is the reduced Planck constant, c is the speed of light,
αem ≈ 1=137 is the fine-structure constant, kB is the
Boltzmann constant, and T is the temperature. To close
the system of equations, we use an isothermal equation of
state p ¼ ρc2s , where cs is the sound speed. For numerical
stability, the evolution equations for μ5 and μ also include
(hyper)diffusion terms with the diffusion coefficients D5

and Dμ [51]. The coupling between μ5 and μ, the strength
of which is determined by the coupling constants C5 and
Cμ, leads to CMWs [54]. When considering the coupled
linearized equations (4) and (5), the frequency of CMWs is
found to be

ωCMW ¼ �
�
C5Cμðk · BexÞ2 −

1

4
ðληB2

exÞ2
�
1=2

; ð6Þ

where Bex is the external magnetic field and k is the wave
vector. As long as the magnetic fluctuations are smaller
than Bex, the characteristic timescale of these waves is half
of the period

PCMW ¼ 2π

ωCMW
; ð7Þ

since this is the timescale on which the sign of μ5 changes.
The damping rate of the CMW is

γCMW ¼ −
1

2
ληB2

ex: ð8Þ

B. Initial conditions

We consider initial conditions where μ5ðt0Þ ¼ 0 and
μðt0Þ are spatially random fields consisting of Gaussian
noise with a power law spectrum, Eμðk; t0Þ ∝ ðk=k1Þs,
where k1 is the minimum wave number in the system.
The initial magnetic field is weak and in the form of
Gaussian noise. Additionally, we consider an external very
weak uniform magnetic field with Bex ¼ ðBex; 0; 0Þ to
support CMWs, which effectively produce the chiral
asymmetry, i.e., a difference in the left- and right-handed
chemical potentials. The initial velocity field vanishes.

III. PHENOMENOLOGY

In this section, we discuss the evolution of a plasma with
inhomogeneous chemical potential phenomenologically.
We describe the linear phase of the production of μ5 from
the chiral separation effect in Sec. III A. Since we consider
a system with an imposed magnetic field, the produced
inhomogeneous μ5 necessarily leads to an effect that we
call “chiral tangling,” as we describe in Sec. III B. If μ5
exceeds a critical value, the small-scale dynamo instability
is excited and the magnetic field grows exponentially, as
discussed in Sec. III C. The magnetic field drives turbu-
lence which, if the Reynolds number becomes larger than
unity, can give rise to a mean-field dynamo instability,
amplifying the field on large spatial scales. The physics of
the mean-field dynamo is described in Sec. III E.

A. Production of μ5
In the initial phase, a chiral asymmetry is generated via

the term involving C5 in Eq. (5). For times less than the
period of a CMW, i.e., t ≪ 2πω−1

CMW, the evolution of μ5
can be approximated as

μ5ðtÞ ≈ −C5ðBex·∇Þμt: ð9Þ

Assuming an initial condition where μðt0Þ has a character-
istic wave number kμ;eff, we find

μ5ðtÞ ≈ −C5Bexkμ;effμðt0Þt: ð10Þ

Note that, even for t ≪ 2πω−1
CMW, μ can be a function of

time due to the dissipation term in Eq. (4).
Given that the chemical potential has a spectrum

Eμ ∝ ks, we can write for its k-dependent value

μ2ðkÞ ≈ EμðkÞk ∝ k1þs: ð11Þ

Inserting μðkÞ ≈ kð1þsÞ=2 in Eq. (10) yields

μ5ðk; tÞ ∝ C5Bexkð3þsÞ=2t: ð12Þ

The spectrum of μ5 is then

E5ðkÞ ¼
μ5ðkÞ2

k
∝ C2

5B
2
exk2þst2: ð13Þ

B. Chiral tangling

Nonuniform fluctuations of the chemical potential μ
produce nonuniform fluctuations of the chiral chemical
potential μ5 due to the term −C5ðB·∇Þμ in Eq. (5). This can
lead to a linear in time growth of magnetic fluctuations,
which is analogous to tangling of an external magnetic field
by velocity fluctuations. The relevant term in the induction
equation is
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∂B
∂t

¼ η∇μ5 × Bex: ð14Þ

We call this effect “chiral tangling” and expect it to be only
relevant in early phases, or in cases where the generation of
μ5 is not efficient enough to lead to a chiral dynamo
instability.

C. Small-scale chiral dynamo instability

If μ5 exceeds a critical value, a chiral dynamo instability
amplifies the magnetic field exponentially with the maxi-
mum growth rate

γ5 ¼
ημ25;max

4
; ð15Þ

where μ5;max is the spatial maximum of μ5 [50,51]. The
expression given in Eq. (15) is the maximum possible
growth rate and is only reached if the instability wave
number

k5 ¼
μ5;max

2
ð16Þ

is much larger than the effective correlation wave number
kμ5;eff of μ5 [50], where

k−1μ5;effðtÞ ¼
R
E5ðkÞk−1dkR
E5ðkÞdk

: ð17Þ

Note that during this phase, μ5 continues to grow similar
to Eq. (10), but the external constant field Bex is being
replaced by Bex þ BrmsðtÞ, once BrmsðtÞ≳ Bex. Therefore,
the produced chiral chemical potential μ5 depends on the
magnetic fluctuations Brms and the chiral dynamo insta-
bility becomes nonlinear.
Whether a large enough chiral asymmetry can be

produced to trigger a chiral dynamo instability depends
on the initial μ as well as on the characteristic parameters of
the system. The first necessary condition for a dynamo is
that the maximum value of μ, μmax, needs to be much larger
than its effective correlation length, kμ;eff . Only then, a large
enough μ5;max can be produced such that the dynamo
instability scale, μmax=2, exceeds kμ5;eff . The second nec-
essary condition for the dynamo instability in CMWs is
that the chiral dynamo needs to operate on a timescale
that is less than half of the period of the CMW,
PCMW=2 ¼ π=ωCMW. In other words, the (minimum pos-
sible) dynamo timescale

tD ¼ 4

ημ2maxðt0Þ
ð18Þ

needs to be shorter than PCMW=2. In Eq. (18) we assume
that, at times when μ5;max reaches its maxima, its value

corresponds to μmaxðt0Þ (which implies that the dissipation
of μ5 and μ is insignificant) and therefore the maximum
possible growth rate γ5 is determined by μmaxðt0Þ.

D. Maximum possible magnetic field strength
generated by the chiral dynamo

Within one period of the wave, 2π=ωCMW, the sign of the
produced μ5 oscillates between positive and negative.
Therefore a chiral dynamo instability can amplify the
magnetic field significantly as long as the timescale on
which μ5 changes sign,

tCMW;nl ≈
π

½C5Cμðkμ;effBrmsÞ2 − 1
4
ðληB2

rmsÞ2�1=2
; ð19Þ

is longer than the dynamo timescale in Eq. (18). In Eq. (19),
we assume that the system is at a stage where magnetic
fluctuations are larger than the imposed field. With increas-
ing Brms, tCMW;nl decreases and eventually becomes com-
parable with tD. This allows estimating the maximum
strength of a magnetic field produced by CMWs.
Comparing Eqs. (19) and (18) yields a maximum magnetic
field strength of

jB�j ¼
ffiffiffi
2

p

ηλ

ffiffiffiffiffiffiffiffiffiffiffi
C5Cμ

p
kμ;eff ½�ð1 − ξ2Þ1=2 þ 1�1=2 ð20Þ

with

ξ≡ πλη2μ2maxðt0Þ
4C5Cμk2μ;eff

. ð21Þ

This expression for B� is based on the assumptions that (i) a
complete conversion of μ to μ5 is possible and (ii) that there
is no turbulence in the system. It is worth noting that
Eq. (20) approaches

jB−� j ¼
πημ2maxðt0Þ

4
ffiffiffiffiffiffiffiffiffiffiffi
C5Cμ

p
kμ;eff

; ð22Þ

or

jBþ� j ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
C5Cμ

p
kμ;eff

ηλ
ð23Þ

if ξ ≪ 1. The physically relevant value is
jB�j ¼ minðjB−� j; jBþ� jÞ, because as soon as the magnetic
field strength reaches the lower branch of the solutions, the
sign of μ5 changes on a timescale that is shorter than tD. In
the limit of ξ ≫ 1 Eq. (20) becomes

jB�j ¼
ffiffiffi
π

p

2
ffiffiffi
λ

p μmaxðt0Þ: ð24Þ
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However, in this limit the damping of the CMW can be
significant, see Eq. (8), and μ5;max never reaches the
maximum possible value of μ5;max ¼ μmaxðt0Þ. Therefore,
the expression in Eq. (24) can be considered as an upper
limit. The expression given by Eq. (20) is plotted for
different parameters in Fig. 1.

E. Production of turbulence and mean-field
dynamo instability

Magnetic fluctuations generated by the chiral dynamo
instability, produce velocity fluctuations Urms through the
Lorentz force. This leads to an increase of the Reynolds
number ReM ¼ Urms=ðkfηÞ, where kf is the forcing wave
number. In such magnetically driven turbulence, kf is
roughly equal to the wave number on which the magnetic
energy peaks. For a chiral dynamo instability, this corre-
sponds to kf ≈ k5 ¼ μ5;max=2. Using the rough assumption
that

ffiffiffiffiffiffiffihρip
Urms ≈ Brms, we can estimate the critical mag-

netic field strength Bcrit which is necessary for the pro-
duction of turbulence, i.e., for reaching a value of ReM

above unity. We find that the critical magnetic field strength
is estimated as

Bcrit ≈
ffiffiffiffiffiffiffi
hρi

p
η
μmaxðt0Þ

2
: ð25Þ

The value of Bcrit is presented as horizontal black lines in
Fig. 1. It can be used to illustrate the regions of the
parameter regime in which turbulence can be produced.
If the small-scale chiral dynamo leads to a magnetic field

that exceeds Bcrit, a mean-field dynamo instability can be
excited. The maximum growth rate of the mean-field
dynamo is

γα ¼
ðηhμ5i þ αMÞ2
4ðηþ ηTÞ

; ð26Þ

where hμ5i is the mean chiral chemical potential and αM is
the magnetic α effect [50,51]. Here αM ¼ 2ðq − 1Þ=ðqþ
1Þτcχc=hρi is the magnetic α effect, which is determined by
the current helicity χc ¼ hb·ð∇ × bÞi ≈ ha · bik2f , where q is
the exponent of the magnetic energy spectrum EM ∝ k−q,
and a and b are the fluctuations of the vector potential
and the magnetic field, respectively. The correlation time
of the magnetically driven turbulence is τc ≈ ðUAkfÞ−1,
where the Alfvén speed isUA¼

ffiffiffiffiffiffiffiffiffi
hb2i

p
=

ffiffiffiffiffiffiffihρip
≈Brms=

ffiffiffiffiffiffiffihρip
.

The turbulent diffusion coefficient ηT is estimated as
ηT ¼ Urms=ð3kfÞ. The characteristic wave number on
which the mean-field dynamo occurs is

kα ¼
jηhμ5i þ αMj
2ðηþ ηTÞ

: ð27Þ

IV. NUMERICAL SIMULATIONS

In this section, we use simulations to verify the phe-
nomenology discussed above. Using DNS, the conditions
for chiral dynamo instabilities, efficient magnetic field
amplification and, in particular, the mean-field dynamo
phase can be analyzed qualitatively.

A. Setup and analysis tools

We use the PENCIL CODE [60] to solve equations (1)–(5)
in a three-dimensional periodic domain of size L3 ¼ ð2πÞ3
with a resolution of up to 10243. This code employs a third-
order accurate time-stepping method [61] and sixth-order
explicit finite differences in space [62,63]. The smallest
wave number covered in the numerical domain is k1 ¼
2π=L ¼ 1 which we use for normalization of length scales.
All velocities are normalized to the sound speed cs ¼ 1 and
the mean fluid density is set to hρi ¼ 1. Further, the
magnetic Prandtl number is 1, i.e., the magnetic diffusivity
equals the viscosity. Time is normalized either by the
diffusion time tη ¼ ðηk21Þ−1 or by the period of the chiral
magnetic wave PCMW.

FIG. 1. Dependence of the maximum magnetic field strength
that can result from a chiral magnetic wave B�, as given by
Eq. (20), on the coupling constants C5 and Cμ. The different
panels indicate different combinations of the initial value of the
maximum chemical potential, μmaxðt0Þ, and the magnetic resis-
tivity, η. Colors indicate the value of the feedback parameter λ.
The horizontal black lines indicate the approximate threshold for
the production of turbulence, as estimated in Eq. (25), and the
dashed black line shows the approximate minimum value above
which the velocity of the CMW becomes supersonic; see
Appendix B. Overplotted are the values of B�, which are obtained
when inserting the parameters for all the runs presented in this
paper (see Table I) into Eq. (20).
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The simulation parameters have been selected to cover
the three different regimes: the “chiral tangling regime”
(tD ≳ PCMW=2), the “small-scale chiral dynamo regime”
(tD ≲ PCMW=2 and B� ≲ Bcrit) and the “mean-field dynamo
regime” (tD ≲ PCMW=2 and B� ≳ Bcrit). We also perform a
comparison with the results obtained in our previous study,
Ref. [50] (see Run R–2 there), where chiral dynamo
instabilities were found for an initial μ5 ≠ 0 with zero
mean but spatial fluctuations. For this comparison, the
spatial maximum value of the chemical potential at the
initial time t0, μmax, and its spectrum Eμðk; t0Þ have been
chosen to eventually (before the onset of the small-scale
chiral instability) result in a state of the system that is
comparable to the initial conditions in the Run R–2. In
particular, in the Run R–2 the initial μ5;max was ≈50 and the
initial spectrum was E5ðk; t0Þ ∝ k−2. We therefore choose,
for most runs of this study, μmaxðt0Þ ≈ 50 and Eμðk; t0Þ ∝
k−4 which results in the spectrum E5ðk; t0Þ ∝ k−2 according
to Eq. (13).
The range of parameters chosen for this study is also

based on numerical aspects. The parameter space that we
explore includes the regime where the magnetic field
strength becomes larger than the critical value Bcrit for the
production of turbulence and the subsequent excitation of
mean-field dynamos. According to the estimate in
Eq. (20), which is illustrated in Fig. 1, the maximum
magnetic field strength B� is higher for lower frequencies
ωCMW of the CMW. However, for low ωCMW and there-
fore low values of C5, the initial linear (in time)
production of μ5 becomes very slow, as can be seen in
Eq. (10). Increasing the initial value of μ increases the
initial production rate of μ5, but this also leads to a larger
value B�, which can cause the characteristic velocity of
the CMW to become comparable or larger than the sound
speed. Additionally, larger values of the initial μ lead to
larger values of μ5 and therefore a higher characteristic
wave number of the chiral dynamo instability. Hence
sufficient spatial resolution is required. More details on
the numerical criteria are given in Appendix B.
Due to the numerical constraints discussed above, and

also to allow for an appropriate comparison with the DNSs
presented in [50,51], we initiate most of the simulations
with μmaxðt0Þ ≈ 50 and use η ¼ 10−4. We name this main
series of simulations as Series A. Series B has μmaxðt0Þ≈50

and η ¼ 2 × 10−4 and Series C has μmaxðt0Þ ≈ 100 and
η ¼ 10−4. A summary of all runs of this study is given in
Table I and the values for the corresponding estimates of B�
is shown in Fig. 1. Comparing the estimates B� and Bcrit,
we can expect the occurrence of turbulence in Runs A1, A3,
A5, A5b, and potentially in Runs A10 and A10b. All other
runs are expected to result in values of B� that are
comparable or below Bcrit.
For runs in which turbulence develops, we perform a

mean-field analysis. To this end, an averaging of the
instantaneous fields needs to be performed in the DNS.

Since turbulence is driven magnetically, the forcing scale kf
corresponds to the integral scale of the magnetic field
which we determine via the magnetic energy spectrum
EMðkÞ as

kint ≡
�
1

EM

Z
EMðkÞk−1dk

�
−1
: ð28Þ

Magnetic energy density EM and magnetic spectrum EMðkÞ
are connected as

EM ≡ B2
rms

2
¼

Z
EMðkÞ dk: ð29Þ

To take into account that the magnetically driven turbulence
exists in the range of the wave numbers k ≥ kint, we define
the mean quantity X in simulations as

hXiint ≡
�Z

EXðkÞfðkÞdk
�
1=2

; ð30Þ

where we use the function

fðkÞ≡ ½1 − tanhðk − kintÞ�=2 ð31Þ

to filter out the scale k≳ kint. The result of taking the
average hXiint is typically different from the volume
average, which is denoted by hXiV.

B. Results for the reference runs

In this section, we present three reference runs that
have the same initial chemical potential, but different
frequencies of the CMW. Run A1000 is the run in our
sample with the highest frequency of the CMW. With a
ratio of PCMW=ð2tDÞ ≈ 0.35, no dynamo activity is
expected in Run A1000. The second reference run is
A80, which has PCMW=ð2tDÞ ≈ 17. Therefore, a small-
scale chiral dynamo can occur. However since the expected
maximum magnetic field strength B� ≈ 0.0017 is lower
than the critical value Bcrit ≈ 0.0022 that is necessary for
the production of turbulence, no mean-field dynamo is
expected in Run A80. A mean-field dynamo can occur in
the third reference run, Run A5, which has B�=Bcrit ≈ 12.
Run A5 is the run with the third to the highest value of
PCMW=ð2tDÞ in our sample. We discuss the results of the
reference runs in the following and confront them with the
estimates based on the phenomenological estimates pre-
sented in Sec. III.
The left panels of Fig. 2 show the time evolution of

various parameters of Run A1000. In the top left panel, the
oscillatory behavior of μrms and μ5;rms is clearly seen and the
time evolution governs almost 20 periods of the CMW. In
systems like this, where the CMW has a very high
frequency and the initial chiral chemical potential is small,
the timescale of the chiral dynamo tD is much longer than
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PCMW. In this case, magnetic fluctuations can only be
amplified by chiral tangling. This phenomenon alone leads
to the production of magnetic fluctuations that are of the
order of the imposed magnetic field Bex. The magnetic field
evolution in Run A1000 can be seen in the lower left panel
of Fig. 2. The maximum value of Brms produced by chiral
tangling alone is approximately less than half of Bex. At
t≳ 0.02tη, both μrms and μ5;rms decay, and therefore Brms

decreases.
Snapshots of Run A1000 are presented in Fig. 3. While

the magnetic field is, as in all simulations of this paper,
set up as weak and random fluctuations, the magnetic
fluctuations quickly develop into patches that are
stretched along the x axis. At the forth snapshot shown
here (at t ≈ 7.7PCMW), the Bx patches stretch out through
the entire numerical domain. The magnetic field structure
produced by chiral tangling is therefore very different
from what is expected when a small-scale chiral dynamo
instability is excited. In linear theory, the magnetic field
instability is expected to occur on a characteristic wave
number that is half of the value of μ5;max. This leads to the
formation of isotropic patches of high absolute values of

Bx on the surface of the numerical domain, at the
locations where μ5 reaches the maximum value.
The middle panels of Fig. 2 show the time evolution of

various parameters of Run A80, where a small-scale chiral
dynamo instability occurs. Two oscillations between μrms
and μ5;rms are seen in the upper middle panel. The initial
production of the spatial maximum value of μ5ðtÞ,
μ5;maxðtÞ, proceeds linear in time and follows the prediction
given by Eq. (10) until the instant t ≈ 0.015tη. Temporal
maxima of μ5;rms are reached at t ≈ 0.025tη and t ≈ 0.055tη.
These times coincide, as expected, with an increased
growth rate of the magnetic field; see the time evolution
of magnetic fluctuations in the lower middle panel.
However, the magnetic field fluctuations, Brms, never reach
a field strength that is much larger than the one of the
imposed field Bex. At its maximum, the rms magnetic field
strength is approximately 0.2B� in Run A80. At later times,
t≳ 1.0PCMW, the quantities μrms, μ5;rms, and Brms decay.
The estimated maximum value of Brms, B�, is 16 times

higher in Run A5 than in A80. Contrary to the other
reference runs, in Run A5, the maximum value B� of
magnetic field exceeds Bcrit, which implies that turbulence

FIG. 2. Exemplary runs from the three different regimes: A high-frequency CMW with just chiral tangling (Run A1000, left panels),
inefficient small-scale chiral dynamo due to a CMW with moderate frequency (Run A80, middle panels), and a low-frequency CMW
with a small-scale chiral and mean-field dynamo (Run A5, right panels). The top panels show the time evolution of the rms and
maximum values of the chemical potential μ and the chiral chemical potential μ5, respectively, as well as the volume average of μ. The
bottom panels show the evolution of the rms values of the magnetic and the velocity fields, Brms and Urms as well as the external field
strength Bex and the maximum possible magnetic field strength B� if no turbulence is produced. For Run A5 the time evolution of the
mean magnetic field strength hBiint is presented for comparison.
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can be produced. The time evolution of Run A5 is shown in
the right panels of Fig. 2. Due to the smaller value ofωCMW,
the production of μ5 is much slower than that in Run A80.
Here, the threshold for the small-scale chiral dynamo
instability is only being exceeded at t ≈ 0.08tη. After the
magnetic field has been amplified by more than two orders
of magnitude through the small-scale chiral dynamo, a
mean-field dynamo instability is excited at t ≈ 0.11tη with a
growth rate of the magnetic field that is less than that for the
small-scale chiral dynamo instability. In Run A5, the
magnetic field strength exceeds B� by a factor of ≈5.4.
The analysis of the mean-field dynamo phase of Run A5
and the other runs in which the value of the Reynolds
number eventually exceeds unity will be discussed in more
detail in Sec. IV D.
The time evolution of the simulation snapshots for

Run A5 is presented in Fig. 4. Here, the values for the
quantities μ, μ5, and the x component of the magnetic
field, Bx, on the surface of the cubic domain are shown for
t¼ 0.05tη−0.172tη. The snapshots show that, as expected,
μ5 grows fastest where the gradient of μ is largest. At
t ¼ 0.05tη, the fastest production of μ5 occurs approx-
imately in the middle of the front x-z plane (where μ5 is
produced with a positive sign) and in the middle of the

front of the x-y plane (where μ5 is produced with a
negative sign). These are the two locations on the shown
surface of the domain, where also the magnetic field
instability kicks in the fastest. In the snapshot at time
t ¼ 0.10tη, the magnetic field grows approximately on the
length scale k−15 ≈ ðμ5=2Þ−1 ≈ 1=20. At t ¼ 0.20tη, the
simulation is at the end of the mean-field dynamo stage
and the characteristic length scale of the magnetic field
has increased. At late times, we also observe that both μ
and μ5 develop small-scale fluctuations, especially in
locations where the magnetic field is the strongest.
These small-scale structures are symmetric in μ and μ5,
but with opposite sign.
For a quantitative analysis of the evolution of the

characteristic scales, the evolution of the energy spectra
is presented in Fig. 5 for Runs A1000 (middle panels), A80
(middle panels), and A5 (right panels). In all cases, the
initial spectrum of μ5, E5ðkÞ, scales with the wave number
as k−2, as expected for an initial EμðkÞ spectrum that is
proportional to k−4; see Eq. (13). For Runs A1000 and A80,
the initial k−2 scaling of E5ðkÞ is less visible due to the fast
production of μ5. At later times, the spectra E5ðkÞ and
EμðkÞ, approach a scaling of k−1, as has been reported in
[50]. The evolution of the magnetic energy spectra EMðkÞ is

FIG. 3. Snapshots of Run A1000. The surface of the cubic domain is shown for μ (upper row), μ5 (middle row), and the x component of
the magnetic field Bz (lower row). The snapshots cover the different evolutionary phases, from the initial μ5 production phase
(t ¼ 0.05tη, first column), to the onset of the chiral dynamo instability (t ¼ 0.10tη, second column), to the early mean-field dynamo
stage (t ¼ 0.15tη, third column), and the end of the mean-field dynamo stage (t ¼ 0.20tη, forth column).
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shown in the lowest panels of Fig. 5. In the case of Run
A80, a short phase of amplification on k ¼ μmaxðt0Þ=2 ≈ 22
is seen, but at t≳ 0.07tη the magnetic energy decays and a
EM ∝ k−3 develops. The magnetic field amplification is
much more efficient in Run A5. Here the initial instability
occurs also on k ¼ μðt0Þ ≈ 22. Due to the production of
turbulence, however, the peak of the magnetic energy
spectrum moves to smaller wave numbers. Eventually, a
EM ∝ k−3 develops in Run A5 as well.

C. Exploration of the parameter space

A direct comparison between runs with different CMW
frequencies ωCMW, including Runs A5, A80, and A1000, is
presented in Fig. 6. All of the runs in Fig. 6 have the same
initial values of μ, and the same λ and η. Even though the
temporal maximum values of μ5;max is higher for runs with
higher ωCMW, the maximum value of the produced mag-
netic field decreases with increasing ωCMW. Therefore,
CMWs with higher frequencies are less efficient in ampli-
fying the magnetic field. This stems from the small-scale
chiral dynamo being less efficient when the period of the
CMW is small.
Figure 7 shows a comparison between runs with different

chiral feedback parameter, λ. As expected from Eq. (20),
larger values of λ lead to lower magnetic field strengths.

In Fig 7(a), it can be seen that μ5;max in all runs with low λ
reach a value that is comparable to (or even slightly
exceeds) the initial value of μmax. This leads to three
instances of magnetic field amplification, see Fig. 7(b). In
Run A80c, which has λ ¼ 4 × 106, lower values of μmax are
reached, which is caused by the damping of the CMW
according to Eq. (8). However, phases of magnetic field
amplification can still be seen for Run A80c. This is
different for Run A80d, which has λ ¼ 4 × 108. Here, no
CMWoccurs since the frequency of the wave is imaginary.
The maximum magnetic field strength found in DNS

agrees well with the prediction given by Eq. (20), as is
illustrated in Fig. 8. Here, the predicted value B� is plotted
against the temporal maximum of the magnetic field
strength in all DNS of this study. The agreement between
phenomenology and DNS is better for runs with lower
values of λ. This follows from the fact that Eq. (20) is based
on two assumptions: (i) the effective correlation wave
number of μ, kμ;eff , stays constant until the maximum
magnetic field strength is reached, and (ii) μ5;max can reach
the same value as μmaxðt0Þ. As can be seen in Fig. 7(a), the
conversion between μ and μ5 becomes less efficient when λ
increases. Even though all runs in Fig. 7 have similar values
of μmaxðt0Þ ≈ 45, in the run A80d the temporal maximum of
μ5;max never exceeds 6.3. Therefore, in the limit of large λ,

FIG. 4. Similar to Fig. 3 but for Run A5.
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the expression in Eq. (20) has to be considered as an upper
limit for the maximum possible magnetic field strength.

D. DNS with mean-field dynamo activity

As can be seen in Fig. 8, the maximum magnetic field
tends to exceed the estimate from Eq. (20) for runs that
develop turbulence. This is understandable, since during
the mean-field dynamo phase, the sign of μ5 does not affect
the magnetic field amplification. Therefore, the comparison
between the timescale of the CMW and the chiral dynamo
instability that leads to the estimate given by Eq. (20), is not

applicable in the presence of turbulence. The magnetic field
can grow to higher strengths, until saturation occurs due to
nonlinear effects or the increase of turbulent magnetic
diffusion.
In runs with low-frequency CMWs, the magnetic field

strength reaches the highest values, leading to efficient
driving of magnetically dominated turbulence. In this case,
a large-scale magnetic field is generated via a mean-field
dynamo instability, as can be seen in the snapshots of Run
A5 in Fig. 4. Out of all the runs presented here, the ones in
which ReM exceeds unity, i.e., in which turbulence devel-
ops, are Runs A1, A3, A5, A5b, and A10b. The time series

FIG. 5. Exemplary runs from the three different regimes: A high-frequency CMW with just chiral tangling (Run A1000, left panels),
inefficient small-scale chiral dynamo due to a CMW with moderate frequency (Run A80, middle panels), and a low-frequency CMW
with small-scale chiral and mean-field dynamos (Run A5, right panels). From top to bottom, the spectrum of fluctuations of chemical
potential, EμðkÞ, chiral chemical potential, E5ðkÞ, and the magnetic energy spectrum EMðkÞ are shown. The vertical dotted line indicates
the highest possible value of the small-scale dynamo instability scale, μmaxðt0Þ=2, on which the magnetic field is amplified if all of the
initial μ has been converted to μ5.
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of various quantities of these runs are directly compared in
Fig. 9. After the turbulence production phase, the value of
μ5;max is comparable in Runs A1, A3, A5, and A5b. In Run
A10b, μ5;max never exceeds 40, which is due to the higher
frequency of the CMW. In all runs, the magnetic Reynolds
number exceeds unity after less than a resistive time; see
Fig. 9(b). With ReM becoming larger than one, the type of
dynamo instability changes from a small-scale chiral
dynamo to a mean-field dynamo. This transition, which
is accompanied by a change in the growth rate, can be seen
in Fig. 9(c), where the time evolution of the mean magnetic
field strength is presented.
The theoretically expected growth rate during the

mean-field dynamo phase is given by Eq. (26). In the
simulations, we estimate the magnetic α effect as αM;int ¼
2ðq − 1Þ=ðqþ 1Þτcχc ≈ τcha · biintk2int, assuming that the
forcing scale is kf ≈ kint and that the exponent of the
magnetic energy spectrum q ≈ 3. The correlation time of
the magnetically driven turbulence is τc ≈ ðUAkintÞ−1,
where the Alfvén speed is UA ¼

ffiffiffiffiffiffiffiffiffi
hb2i

p
≈ Brms. The mean

fluid density hρi entering inUA and αM is set to unity in the
DNS. The turbulent diffusion coefficient ηT is estimated as
ηT ¼ Urms=ð3kintÞ. The time evolution of αM;int and ηT for

(a) (b)

(c) (d)

FIG. 6. Time series for runs with different values of the ratio of
the CMW period over the resistive time, PCMW=tη, as indicated
by the color bar. (a) Maximum values of chemical and chiral
chemical potential, μ5;max and μmax. (b) Rms value of the
magnetic field strength Brms. (c) Measured growth rate γrms of
Brms. (d) The measured scale separation k5=kμ5;eff .

(a) (b)

(c) (d)

FIG. 7. Time series for runs with different values of λ, as
indicated by the color bar. (a) Maximum values of chemical and
chiral chemical potential, μ5;max and μmax. (b) Rms value of the
magnetic field strength Brms. (c) Measured growth rate γrms of
Brms, and the theoretical value ημ25;max=4 of the maximum growth
rate, which would be reached for an infinite scale separation
(k5 ≫ kμ5;eff ). (d) The measured scale separation k5=kμ5;eff .

(a)

(b)

FIG. 8. The maximum value of Brms measured in all runs as a
function of the phenomenologically derived maximum, B�.
Colors indicate (a) the value of λ and (b) the ratio of the resistive
time tη over the period PCMW of the CMW (note that Run A80d is
not shown in panel (b) since there is no CMW). The size of the
symbols increases with increasing maximum Reynolds number
obtained in the individual runs.
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(a) (b) (c)

FIG. 9. Time evolution of all runs in which magnetically dominated turbulence is produced. Different colored lines indicate the
different runs (A1, A3, A5, A5b, and A10b) as indicated in panel (c). (a) Time evolution of μmax (dashed lines) and μ5;max (solid lines).
(b) Time evolution of the magnetic Reynolds number ReM. (c) Time evolution of the magnetic field strength hBiint averaged on the
integral scale. The color bars in the panels highlight the time range in which the Reynolds number is larger than unity. This time range is
shown in Fig. 10.

FIG. 10. Mean-field dynamo analysis for all runs in which magnetically dominated turbulence is produced. Different rows of panels
indicate the different runs (A1, A3, A5, A5b, and A10b) as indicated on the top. The time axis is reduced to the phase of the DNS, where
the Reynolds number is larger than unity up to the final time of the individual simulations. This time range is also indicated by the color
blocks in panels (a)–(c) of Fig. 9. Upper row: Time evolution of dynamo coefficients, αM;int (dotted lines), αsatM;int (dashed lines), and
ηþ ηT multiplied by the integral wave number kint (solid lines). The evolution of ηhμ5iM;int (dashed-dotted lines) is also shown, which
can be relevant for the mean-field dynamo. Middle row: Time evolution of the integral scale of the magnetic field kint as measured in the
DNS (solid lines). This evolution is compared to theoretical estimates of the mean-field dynamo theory that is based on the turbulent
transport coefficients. Different expressions for the magnetic α effect are used: αM;int (dotted lines) and αsatM;int (dashed lines and dashed-
dotted lines). Bottom row: Same as middle row, but for the measured growth rate of hBiint in DNS, γint, and different theoretical
estimates.
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all turbulent runs is presented in the upper panels of Fig. 10.
The time range shown in Fig. 10 is the moment when ReM
exceeds unity up to the final time of the simulation, i.e., it
governs the turbulent phase of the simulation. Right after
the onset of turbulence, αM;int is the dominant transport
coefficient for all runs presented in Fig. 10. However, ηT
grows constantly with time.
The magnetic α effect can also be estimated from the

evolutionary equation for the magnetic helicity ha · bi of
the small-scale field b ¼ ∇ × a in chiral MHD [17]:

∂

∂t
ha·biþ∇ ·F¼ 2ηhμ5ihb2i−2hEi · hBi−2ηhbð∇×bÞi;

ð32Þ

where F is the flux of ha·bi that is given by

F ¼ huajihBji − hBiha · ui − ηha × ð∇ × bÞi
þ ha × ðu × bÞi; ð33Þ

and hEi≡ hu×bi ¼ αMhBi − ηTð∇ × hBiÞ is the turbulent
electromotive force. In the steady-state, two leading source/
sink terms in Eq. (32), 2ηhμ5ihb2i − 2αMhBi2, compensate
each other, so that the magnetic α effect reaches [50,51]

αsatM ¼ ηhμ5i
hb2i
hBi2 : ð34Þ

The time evolution of αsatM;int ¼ ηhμ5iintB2
rms=hBi2int is com-

pared to the one of αM;int in the upper panels of Fig. 10. We
note that the values of αsatM;int are consistently lower than
αM;int, which could result from the fact that the divergence
of the magnetic helicity fluxes is ignored in the estimate
of αsatM;int.
In the middle and lower panels of Fig. 10, the estimates

of the turbulent transport coefficients are used to calculate
the theoretically expected characteristic wave number kα
and growth rate γα of the mean-field dynamo, respectively.
The theoretical estimates, given by Eqs. (26) and (27),
are compared with the measured characteristic wave
number of the magnetic field, kint and the measured growth
rate γint of the mean magnetic field strength hBiint. In the
middle row of Fig. 10 we compare the measured kint to
jαM;intj=½2ðηþ ηTÞÞ� and jαsatM;intj=½2ðηþ ηTÞ�, respectively,
and in the bottom row, we compare the measured γint to
jαM;intj2=½4ðηþ ηTÞ� and jαsatM;intj2=½4ðηþ ηTÞ�, respectively.
Using the αM;int to estimate kα and γα, tends to lead to
slightly higher values than the measured kint and γint, while
using αsatM;int, leads to slightly lower values.
One issue that arises in the comparison with theory is

that while computing the mean value of hμ5iint the
information about the sign is lost, as the averaging process
is based on the spectrum of μ25. This is a problem because

the expressions of kα and γα, as given in Eqs. (27) and (26),
include the sum of ηhμ5i and αM. For strong turbulence, we
expect that αM ≫ ηhμ5i, and therefore we neglect the
ηhμ5iint term in the estimates. But for systems with low
Reynolds numbers, the sign of hμ5iint can be relevant in the
comparison between DNS and mean-field theory. As can be
seen in the upper row of Fig. 10, indeed, in our simulations,
the contribution of ηhμ5iint can be relevant as it is not much
smaller than the values of αM;int and αsatM;int. As αsatM;int is
proportional to hμ5iint, for this case the sign of hμ5iint is
irrelevant in the expression jαM þ ηhμ5ij, and we can use
the full expressions from Eqs. (27) and (26), which are
shown as dashed-dotted lines in the middle and bottom
rows of Fig. 10. The contribution of ηhμ5i leads to slightly
higher characteristic wave numbers and growth rates,
which generally agree better with the directly measured
values of kint and γint.
All of the turbulent runs presented in Figs. 9 and 10 reach

saturation eventually, i.e., the mean magnetic field stops
growing. This can be seen in the time evolution of hBiint in
Fig. 9 and in the bottom row of Fig. 10, where γint vanishes
towards the end of the individual runs. In case of mean-field
dynamos, the maximum magnetic field strength cannot be
estimated by B� as given by Eq. (20), because the character-
istic timescale is different from that of the small-scale chiral
dynamo. Instead, we expect that the mean-field dynamo
instability is saturated by turbulent magnetic diffusion or by
nonlinear effects. In particular, the growth rate of this
dynamo vanishes when jðηþ ηTÞkintj ≈ jαM þ ηhμ5ij≈
jαMj. Indeed, we find that ðηþ ηTÞkint becomes comparable
to the different estimates of αM (see the top row of Fig. 10) at
the same time when γint vanishes (see the bottom row
of Fig. 10).

V. DISCUSSION AND APPLICATION TO THE
EARLY UNIVERSE

Depending on the parameters and the initial conditions
of the system, we have identified three different possible
evolutionary branches which are summarized in Fig. 11. If
the timescale of the small-scale chiral dynamo instability tD
[see Eq. (18), and remember that it is based on the
assumption that the total initial μ can be converted to μ5
through the CMW] is smaller than the characteristic period
of the CMW PCMW ¼ 2π=ωCMW, the magnetic field fluc-
tuations can only be produced due to chiral tangling (see
Sec. III B). In this case, the maximum magnetic field is
limited by the value of the small imposed magnetic field
Bex. If tD < PCMW, the small-scale chiral dynamo can
occur and amplify the magnetic fluctuations to values
Brms > Bex. We have estimated the maximum magnetic
field strength B� for a given set of initial conditions in
Eq. (20), and find that it depends on the values of the
coupling parameters C5 and Cμ, the initial strength and
correlation length of the chiral chemical potential, as well
as on the microscopic resistivity η and the chiral feedback
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parameter λ. Generally, we expect more efficient magnetic
field amplification for CMWs with lower frequencies; see
Fig. 1. For systems in which B� > Bcrit, the Reynolds
number eventually exceeds unity and the produced turbu-
lence leads to mean-field effects. Using DNS, we have
shown in Sec. IV D that a mean-field dynamo, caused by
the magnetic alpha effect, can amplify the magnetic
fluctuations to Brms > B�. We concluded that saturation
of the mean-field dynamo is caused by an increasing
turbulent diffusivity ηT in the system.
The autonomous generation of μ5 can have conse-

quences for the evolution of a primordial magnetic field
until the time when chirality-flipping interactions erase any
chiral asymmetry. The role of a nonvanishing μ5 in the early
Universe has been discussed in many studies, starting with
the pioneering work on the small-scale chiral dynamo [21].
Many works on the early Universe apply chiral MHD (e.g.,
[20,64]), and the highly nonlinear effects caused by a
sufficiently amplified magnetic field were characterized
[17,24,65]. These studies were based on initial conditions
with a nonvanishing μ5. Production of chirality, however,
requires physics beyond the Standard Model and can, for
instance, be realized by the decay of a heavy particle [19].
In Ref. [50], it was demonstrated that chiral dynamos and
the subsequent nonlinear plasma evolution can occur, even
if, on average, there is no chiral asymmetry in the early

Universe, but only a spatially fluctuating μ5. In the current
study, we report an autonomous generation of these
fluctuations of μ5 in systems with initially vanishing chiral
asymmetry if the chemical potential is inhomogeneous and
if there is a weak uniform magnetic field.
Whether this autonomous generation of μ5 in the early

Universe is sufficient to lead to a large-scale dynamo
instability in the primordial magnetic field depends on
the characteristic parameters of the plasma. For a large-
scale dynamo, the following criteria need to be fulfilled:
(i) An initial weak magnetic field and fluctuations in the
chemical potential need to exist to produce μ5 [via the
second to last term in Eq. (5)]. (ii) A sufficient separation of
scales needs to be established for the small-scale chiral
dynamo instability to develop. The requirement is that the
effective correlation wave number of μ5 is kμ5;eff ≲ 5μ5;max.
Whether this condition is realized or not depends on the
initial spectrum of μ, Eμ. The amplitude of Eμ determines
the maximum possible value of μ5;max, while the slope of
Eμ, assuming that it has a power-law shape, determines
k5;eff (remembering that during the linear (in time) phase of
μ5 production, E5 ∝ k2Eμ). (iii) The magnetic field pro-
duced by the small-scale chiral dynamo instability needs to
exceed Bcrit, given by Eq. (25), for the production of
turbulence. Only if all three conditions are satisfied in the
early Universe, autonomous generation of μ5 alone (i.e.,
without production of μ5 via physics beyond the Standard
Model) can result in a large-scale dynamo instability.

VI. CONCLUSIONS

In this paper, we have studied a high-energy plasma with
joint action of the CME and the CSE. We considered a very
weak initial magnetic field in the form of Gaussian
fluctuations plus a weak constant external magnetic field
Bex. The initial chiral chemical potential μ5 is zero, but
there is a strong initial gradient of the chemical potential
fluctuations μ. Through the CSE, CMWs generate inho-
mogeneous fluctuations of μ5. As there is no (initial)
velocity field in the system, the only way for the magnetic
field to get amplified in this scenario is through the
produced chiral asymmetry (i.e., a nonzero μ5). The
generation of the magnetic field is caused by the second
term on the right-hand side of the induction equation (1).
However, this term can only lead to a magnetic field
instability if the produced μ5 becomes large enough.
In this paper, we have identified the parameter space in

which such an instability can occur. Depending on the
initial conditions, in particular the properties of the spatial
fluctuations of the chemical potential, and the characteristic
parameters, three different regimes were identified: (i) a
regime in which the magnetic field gets only amplified
through chiral tangling, limiting the maximum field
strength to that of the imposed field, (ii) a regime in which
only the small-scale chiral dynamo occurs, (iii) a regime in

FIG. 11. Summary of the three different regimes in systems
with vanishing initial chiral asymmetry, in which μ5 is generated
through the chiral separation effect. The maximum magnetic field
strength is the lowest in the regime where just chiral tangling
occurs (left side of the sketch). When the small-scale chiral
dynamo instability is excited, the maximum field strength is
either given by B� [see Eq. (20); middle part of the sketch] or
larger if magnetically driven turbulence is produced (right side of
the sketch).
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which the small-scale chiral dynamo amplifies the mag-
netic field to high values, such that it drives turbulence and
a large-scale dynamo instability occurs. We found that the
large-scale dynamo is best described by a magnetic alpha
effect, and that saturation is caused by the buildup of
turbulent diffusivity.
With our study, we have shown that chiral dynamo

instabilities and even mean-field dynamos are universal
mechanisms for high-energy plasma, even in the absence of
an initial chiral asymmetry. Our results may have important
consequences for the plasma of the early Universe, proto-
neutron stars, heavy ion collision experiments, and the
understanding of quantum materials.
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APPENDIX A: JUSTIFICATION OF EQS. (1)–(5)

In Sec. II A, we stated the governing equations used in
this paper. Here we provide more background regarding
their derivation. The continuity equations for the number
densities n5 ¼ nL − nR and n ¼ nL þ nR (which are pro-
portional to the chiral chemical potential μphys5 ¼ μphysL −
μphysR and the chemical potential μphys ¼ μphysL þ μphysR ,
respectively) are given by

∂n5
∂t

þ ∇ ·

�
n5U þ e

2π2ℏ2c
μphysB

�
¼ e2

2πℏ2c
E · B; ðA1Þ

∂n
∂t

þ ∇ ·

�
nU þ e

2π2ℏ2c
μphys5 Bþ σ

e
E

�
¼ 0; ðA2Þ

where nL and nR are the number densities of the left- and
right-handed electrically charged fermions, respectively,
μphysL and μphysR are the chemical potentials of the left- and

right-handed electrically charged fermions, e is the electric
charge, ℏ is Planck’s constant, c is the speed of light, E is
the electric field, B is the magnetic field, U is the plasma
velocity, and σ is the electric conductivity of plasma. The
second term in the squared brackets of Eq. (A1) describes
the chiral separation effect [52], while the second and third
terms in the squared brackets of Eq. (A2) determine the
electric charge screening effect [1] and the chiral screening
effect [56], respectively.
Equations (A1)–(A2) are written in the Heaviside-

Lorentz system of units where c ¼ 1. In the present paper
we use Gaussian units (in accordance with most of the
literature in plasma physics and astrophysics), so that the
coefficient e2=ð2π2ℏ2cÞ should be replaced by 2e2=ðπℏ2cÞ,
where αem ≡ e2=ðℏcÞ ≈ 1=137 is the fine-structure
constant. Now we define the normalized chiral chemical
potential μ5 and chemical potential μ as μ5¼4μphys5 αem=
ðℏcÞ and μ ¼ 4μphysαem=ðℏcÞ, so that our new variables μ5
and μ have the dimension of inverse length.
Since the main focus of the paper is the effect of the

chiral asymmetry production by inhomogeneous fluctua-
tions of chemical potential and since the chiral dynamo
effect and the production of turbulence studied in the
present paper develop on a timescale which is less than a
half period of the CMWs, we neglect the electric charge
screening which causes a damping of the CMWs [56].
Thus, Eqs. (A1)–(A2) yield Eqs. (4)–(5), where for
numerical stability we also added hyperdiffusion terms
with the diffusion coefficients D5 and Dμ [51].
We consider a system which consists of a nonrelativistic

plasma whose electric properties are described by the
Ohmic current and the electric charge density. The non-
relativistic dynamics of the plasma is governed by the
Maxwell equations and the Navier-Stokes equation relat-
ing the fluid velocity, jUj ≪ c, to the magnetic field, B. The
nonrelativistic plasma interacts with highly relativistic
electrically charged fermions. The electric current,
∝ μ5B, caused by the relativistic plasma component, is
an additional source for the magnetic field in the Maxwell
equations (see the detailed discussions related to different
plasma models in Ref. [17]). The electric field for very
small magnetic diffusion η ¼ c2=4πσ (typical for astro-
physical systems with large magnetic Reynolds numbers) is
given by [17]:

E ¼ −
1

c
½U × Bþ ηðμ5B − ∇ × BÞ� þOðη2Þ: ðA3Þ

The magnetic field B is normalized such that the magnetic
energy density is B2=2 without the 4π factor. MHD is
formulated as the evolution of the magnetic and velocity
fields, neglecting the Faraday displacement current in the
Maxwell equation for ∇ × B. Substituting the electric field
E given by Eq. (A3) in the Maxwell equation for ∂B=∂t, we
obtain the induction equation (1) for the chiral MHD.
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In the nonlinear stage of the chiral dynamo instability,
the velocity fluctuations are produced by the Lorentz force
in the Navier-Stokes equation. The plasma motions with
the bulk velocity U are described by the Navier-Stokes
equation (2) and continuity equation (3) which coincide
with corresponding equations of the classical MHD [17].

APPENDIX B: NUMERICAL CONSTRAINTS
FOR SIMULATIONS WITH CMWs

In the simulations presented in this study, two crucial
criteria need to be satisfied. As in any simulation of chiral
MHD, the resolution needs to be high enough to resolve the
small-scale chiral instability. The instability is attained on
the wave number k5 given in Eq. (16). With the minimum
wave number in the numerical domain with resolution N
being 2πN=L, the criterion for chiral MHD simulations is

2πN
L

≳ μ5
2
: ðB1Þ

If μ5 is produced from CMWs, the approximate maximum
value of μ5 is the initial value of the chemical potential,
μðt0Þ, and therefore the criterion in Eq. (B1) becomes

2πN
L

≳ μðt0Þ
2

: ðB2Þ

Another constraint on the parameter space that is
accessible with DNS is related to the time step. As

discussed in [66], the time step contribution from the terms
including μ5 and μ is

δtchiral ¼ cδt;chiral minðδtλ5 ; δtD5
; δtCMW; δtDμ

; δtvμÞ ðB3Þ

with

δtvμ ¼
δx
ημ5

; δtCMW ¼ δx

jBj ffiffiffiffiffiffiffiffiffiffiffi
C5Cμ

p ; δtλ5 ¼
1

ληB2
;

δtD5
¼ δx4

D5

; δtDμ
¼ δx4

Dμ
; ðB4Þ

and with the scaling parameter cδt;chiral. For CMWs with
large frequencies, the contribution from δtCMW becomes the
most relevant one. With B increasing through the chiral
dynamo instability, the CMW frequency increases, in other
words, the characteristic velocity of the CMWs

vCMW ≈ jBj ffiffiffiffiffiffiffiffiffiffiffi
C5Cμ

p ðB5Þ

becomes larger. If vCMW becomes larger than the sound
speed cs ¼ 1, shocks develop and the numerical solution
becomes unstable. Therefore, the parameters should be
chosen such that the maximum magnetic field strength B�
generated self-consistently through CMWs [see Eq. (B5)],
is less than ðC5CμÞ−1=2.
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