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In this paper, we investigate the effect of the string radius of curvature RGaussian on the massive and
massless scalar radiation emitted from collisions of traveling waves propagating along an axion (global
cosmic) string. We construct initial conditions for two colliding Gaussians and perform parameter scans
over their amplitude A and standard deviation σd. We show that these collisions emit isotropic bursts of

massless radiation and that the energy emitted via this channel obeys a power law ∼∝Aγ, where the
coefficient γ depends on the regime of A=δ and δ is the string width. Massive radiation is exponentially

suppressed ∼∝e−ζRGaussian in the quasilinear regime σd ≫ δ and exhibits power-law decay ∼∝R−γ0
Gaussian in the

nonlinear regime σd ≲ 2δ, with different ζ and γ0 in different regimes of RGaussian. In this nonlinear regime,
massive particle radiation can comprise up to 50% of the total energy emitted. Drawing on a known parallel
between axion radiation from global strings and gravitational radiation from Abelian-Higgs strings, this
suggests that massive particle radiation may become significant with respect to the massless (gravitational)
channel for such nonlinear burst signals. For all configurations studied, we obtain a spectral index q≳ 1

for the axion radiation, where q → 1 as A increases; i.e., a higher proportion of radiation is emitted in
high-frequency modes.

DOI: 10.1103/PhysRevD.110.043513

I. INTRODUCTION

Axion strings are a class of cosmic string which arise
from the breaking of a global Uð1Þ symmetry. They are
motivated by simple extensions to the Standard Model,
such as certain axion dark matter models, grand unified
theories, and string theory, and arise cosmologically as a
result of a “phase transition” in the early Universe.
Neglecting any coupling to gravity, axion strings will
radiate energy via massless axion radiation and massive
particle radiation. The mechanism behind these decay
channels is a crucial point of discussion for two fields
within cosmology and astrophysics: axion string network
evolution and gravitational wave (GW) modeling. For the
former, the spectrum of the massless radiation emitted from
a network has direct implications for the predicted mass of
the axion in the postinflationary symmetry-breaking

scenario [1–7]. For the latter, the size distribution of cosmic
string loops and their decay channels determines the
gravitational waveform [8–12]. This is crucial both for
accurate matched template searches by LIGO-Virgo-
KAGRA [13,14] and similar future GW experiments and
for stochastic background searches, such as the pulsar
timing array experiments European Pulsar Timing Array
[15] and NanoGRAV [16].
Typically, cosmic string simulations are undertaken by

either approximating the string as being infinitely thin
using the Nambu-Goto action or simulating the fundamen-
tal fields themselves, known as the “field theory” approach.
Radiation in the Nambu-Goto model is well understood,
and gravitational waveforms (see, e.g., [8,17–19]) and
power spectra [20–22] have been calculated for several
string configurations. However, these predictions do not
have the benefit of incorporating radiation backreaction.
Numerical investigations have also been undertaken

into the radiation from individual string configurations
in field theory. These do incorporate backreaction, albeit
with limited dynamic range. These have included the
decay [23–26] and gravitational collapse [27,28] of indi-
vidual loops, radiation from standing waves [29–31] and
radiation from cusps on Abelian-Higgs strings [32]. It has
been shown that cosmic string loops [23] and domain walls
[33] deviate from Nambu-Goto-like behavior in regions of

*a.drew@damtp.cam.ac.uk
†tk593@cam.ac.uk
‡e.p.s.shellard@damtp.cam.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 110, 043513 (2024)

2470-0010=2024=110(4)=043513(22) 043513-1 Published by the American Physical Society

https://orcid.org/0000-0001-8252-602X
https://orcid.org/0009-0004-9474-7654
https://ror.org/013meh722
https://ror.org/00x444s43
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.043513&domain=pdf&date_stamp=2024-08-12
https://doi.org/10.1103/PhysRevD.110.043513
https://doi.org/10.1103/PhysRevD.110.043513
https://doi.org/10.1103/PhysRevD.110.043513
https://doi.org/10.1103/PhysRevD.110.043513
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


high string curvature, where curvature can be taken as a
proxy for high acceleration. Recent work [34] has also
parametrized the proportion of energy that is emitted via
particle radiation compared to gravitational radiation for
Abelian-Higgs network simulations. A natural question to
ask might be: Can we extend any properties of the radiation
from these specific configurations to more general string
configurations, such that we do not need to simulate each
one individually?
In this paper, we present investigations of the massive and

massless (axion) radiation from axion string network sim-
ulations and from individual cusplike configurations on an
axion string using high-resolution adaptive mesh refinement
techniques. Section II outlines the theory of global strings,
the diagnostics used to analyze their radiation, and how to
interpret the simulation results. Section III presents qualita-
tive observations from axion string network simulations,
along with their numerical implementation. Section IV
details the initial conditions and numerical implementation
of cusplike configurations, obtained by colliding two
Gaussian traveling waves along the string. In Sec. V, we
present results from a detailed parameter scan over the string
curvature radius RGaussian for the burst configurations, and
Sec. VI compares the results obtained with previous inves-
tigations of sinusoidal configurations [30,31]. Section VII
discusses the potential implications of these results for GW
signals from Abelian-Higgs strings, motivated by [22].
Finally, we conclude and discuss the implications of this
work in Sec. VIII. We use “natural” units throughout, setting
ℏ ¼ c ¼ kB ¼ 1 such that ½E� ¼ ½M� ¼ ½L�−1 ¼ ½T�−1.

II. AXION STRING THEORY
AND RADIATION DIAGNOSTICS

In this section, we provide a brief outline of the model
for global cosmic strings and the radiation diagnostics used
in this paper. Further information can be found in [8,30].
We consider the Goldstone model for a single complex

scalar field φ with a symmetry-breaking potential. This has
a Lagrangian density L given by

L ¼ ð∂μφ̄Þð∂μφÞ − VðφÞ; ð1Þ

with the potential

VðφÞ ¼ 1

4
λðφ̄φ − η2Þ2: ð2Þ

The constant η sets the symmetry breaking scale, and the
mass of the Higgs particle in the broken symmetry statemH

is set by η and λ, where mH ¼ ffiffiffi
λ

p
η.

The Euler-Lagrange equations for the evolution if the
scalar field are given by

∂
2ϕ1;2

∂t2
−∇2ϕ1;2 þ

λ

2
ϕ1;2ðjφj2 − η2Þ ¼ 0; ð3Þ

where the complex field φ is split into its real and imaginary
parts by φ ¼ ϕ1 þ iϕ2. We can numerically solve the static
Euler-Lagrange equations,

∂
2ϕ

∂r2
þ 1

r
∂ϕ

∂r
−

ϕ

r2
−
λ

2
ϕðϕ2 − η2Þ ¼ 0; ð4Þ

in cylindrical symmetry and subject to the boundary
conditions ϕð0Þ ¼ 0 and ϕ → η as r → ∞, to obtain
the radial string profile ϕðrÞ. The initial conditions for a
string with winding number n ¼ 1 are then given by
φðr; θÞ ¼ ϕðrÞeiθ, where ϕ ¼ jφj and θ is the angle in
cylindrical polar coordinates. For the string network con-
figurations in this paper, we utilize a period of dissipative
evolution to form the network prior to the Euler-Lagrange
evolution (3), using

∂ϕ1;2

∂t
−∇2ϕ1;2 þ

λ

2
ϕ1;2ðjφj2 − η2Þ ¼ 0: ð5Þ

A. Radiation and energy diagnostics

The energy density of φ can be split into massive and
massless components using the T00 component of the
stress-energy tensor Tμν in the following form [30,31]:

T00 ¼ Π2
ϕ þ ðDϕÞ2 þ Π2

ϑ þ ðDϑÞ2 þ λ

4
ðϕ2 − η2Þ2: ð6Þ

The massive components are given by

Πϕ ≡ ϕ̇ ¼ ϕ1ϕ̇1 þ ϕ2ϕ̇2

ϕ
; ð7Þ

Diϕ≡∇iϕ ¼ ϕ1∇iϕ1 þ ϕ2∇iϕ2

ϕ
ð8Þ

and the massless by

Πϑ ≡ ϕϑ̇ ¼ ϕ1ϕ̇2 − ϕ2ϕ̇1

ϕ
; ð9Þ

Diϑ≡ ϕ∇iϑ ¼ ϕ1∇iϕ2 − ϕ2∇iϕ1

ϕ
; ð10Þ

where the potential contribution tends to zero at large
distances from the string core and ϕ and θ have been
promoted to dynamical variables ϕ¼ ϕðxμÞ and ϑ ¼ ϑðxμÞ,
respectively. The tension of the string itself is calculated by
integration of T00 over the polar angle and up to an
appropriate radius and is given by

μ ≈ μ0 þ 2πη2 lnðR=δÞ; ð11Þ
where μ0 is the contribution from the massive string core
and the second term is the contribution from the long-range
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massless field, which dominates at R≳ 2δ. Here, δ ¼ m−1
H

is the string width, and R is the approximate curvature scale
of the string, i.e., the radius out to which it is appropriate to
integrate.
The momentum component T0i of the stress tensor can

also be split into components, given by

Pi ≡ T0i ¼ 2ðΠϕDiϕþ ΠϑDiϑÞ; ð12Þ

where the two terms represent the massive and massless
radiation energy fluxes, respectively. We can calculate the
magnitude of these two components that are propagating
away from a string in the radial direction P · r̂ and integrate
over a surface S at large r over time t to determine the total
energy flux through the surface for each channel. The
massive component is given by

Emassive ¼
Z

Pmassivedt

∝
Z

ðΠϕDϕÞ · r̂dSdt ð13Þ

and the massless component by

Emassless ¼
Z

Pmasslessdt

∝
Z

ðΠϑDϑÞ · r̂dSdt: ð14Þ

These diagnostics are used for the majority of the analysis
in this study.

B. Parameters and interpretation of simulations

The parameters η and λ that determine the symmetry
breaking scale via the potential (2) can both be scaled out of
the Euler-Lagrange equations (3) without loss of generality.
This is achieved by rescaling ϕ → ϕ=η, x → ηx, and
t → ηt, allowing us to set η ¼ 1, and rescaling x →

ffiffiffi
λ

p
x

and t →
ffiffiffi
λ

p
t, allowing us to scale out λ. We choose λ ¼ 3

for the network simulation in Sec. III and λ ¼ 1 for the
traveling wave simulations. This means that numerical
results from simulations of a given string configuration can
be rescaled to different energies, with the ratio of string
curvature R to string width δ as a free parameter. For
example, changing λ for a curved string is equivalent to
changing R=δ, and vice versa.
Setting η ¼ 1 sets the units of time, each length

dimension, and the value of jϕj. In order to interpret results
from our simulations in a specific context, we can reintro-
duce η as necessary. For example, for the measured energy
density T00, we multiply by η4 to obtain the rescaled value.
From any string configuration we simulate, the ratio that we
observe between the massive and massless radiation is,
therefore, independent of η; even if the overall energy scale
of the simulated configuration changes, the proportion of

massive and massless radiation emitted does not. For
configurations in which we see massless and massive
radiation approximately equivalent in magnitude, this will
also be the case in reality.
Physically, the role of λ is to set the mass threshold

mH ∼
ffiffiffi
λ

p
η, which must be overcome for massive radiation

to be able to propagate, as shown in [31]. This means that
the energy scale η does not fully determine the magnitude
of the massive decay channel, and λ also has an effect via
this mechanism. We will see that the details of this also
depend on the configuration of the source, specifically the
ratio R=δ ≈ R

ffiffiffi
λ

p
η.

III. NETWORK SIMULATIONS

In this section, we present qualitative observations
from an adaptive mesh simulation of a global cosmic string
network in a flat background. The simulation is carried out
using GRChombo on a 1283 base grid, with periodic boundary
conditions, string width λ ¼ 3, and initial conditions
obtained as described in Sec. III A. We use a regridding
threshold jϕthresholdj ¼ 0.5, a coarsest grid resolution
Δx0 ¼ 1, coarsest time step Δt0 ¼ Δx0=100, and a
Kreiss-Oliger damping coefficient of 0.3. The simulation
uses a maximum refinement level of lmax ¼ 4, with
Δx ¼ 0.0625.

A. Network initial conditions

The initial conditions for a string network are obtained
numerically by assigning a random phase −π ≤ θ < π and
magnitude −0.01 ≤ ϕ ≤ 0.01 to each grid point on the
coarsest level of the grid. We assign

ϕ1 ¼ ϕ cos θ; ϕ2 ¼ ϕ sin θ: ð15Þ

This simulates the complex scalar field φ falling into the
potential minimum of VðφÞ at different values of θ. This
initial configuration can be evolved using the dissipative
evolution equations (5) until a network of distinct strings has
formed.We identify the formation of strings by visualisingϕ
in three dimensions at various stages of damping, using
Paraview to determine when regions between the strings
reachminimal energy and the stringwidth has stabilized, i.e.,
when high-frequency internal degrees of freedom have
been damped.1 We subsequently evolve using the wave
equations (3). These initial conditions have proved useful for
qualitative observations of string radiation.

B. Qualitative evolution

Figure 1 shows volume renderings of the massive
diagnostic Πϕ (7) and massless diagnostic Πϑ (9) for
radiation emitted from the network at t ≈ 15; 20; 30, and

1In a cosmological scenario, the mechanism for dissipation
comes from the expansion of the Universe.

AXION STRING SOURCE MODELING PHYS. REV. D 110, 043513 (2024)

043513-3



50. The massless diagnosticΠϑ includes contributions from
the string self-field, which we bear in mind when drawing
qualitative conclusions. At t ≈ 15, we observe from the
massive radiation that directed bursts are beginning to be
emitted from nonlinear configurations formed as a result of
string reconnections, as well as signals from collapsing
loops. The massless radiation emitted is more diffuse and is
becoming increasingly significant. At t ≈ 20, the visuali-
zation shows clear beamed massive signals from relativistic
sections and approximately spherical blast waves from loop
collapse, with the massless radiation still relatively diffuse.
We also observe that the string network density is begin-
ning to decrease as loops collapse and strings are annihi-
lated. Both of these trends continue at t ≈ 30, and finally at
t ≈ 50 we observe more diffuse massive and massless

radiation distributed throughout the simulation box, again
with a decreased density of strings. In general, we observe
that massless radiation emanating from the strings is spread
quite diffusely throughout the volume, whereas massive
radiation is more localized to the specific configurations
described.
Several interesting qualitative conclusions can be drawn

from the contrasting nature of the massive and massless
radiation from a string network. Although the massive
radiation signals are striking, particularly the dramatic and
explosive demise of small loops, we note that all of these
massive signals are localized to regions of high curvature
on scales comparable to the string width. For regions where
the string motion is coherent and the curvature is lower,
massive radiation is less evident. In comparison, massless

FIG. 1. Volume rendering in 3D space ðx; y; zÞ of massive Πϕ (left) and massless Πϑ (right) radiation from a λ ¼ 3 string network at
t ≈ 15; 20; 30, and 50 from top to bottom. Strings are indicated by gray contours around the cores, and both channels of radiation are
indicated in blue and yellow (maxima and minima, respectively).
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radiation is also emitted from these high-curvature regions
but is more pervasive from all strings in the evolving
networks. Whereas the simulation box is largely filled
with massless radiation at the late stage, there are still
voids evident in the massive radiation. This has important
implications for the extrapolation to cosmological strings,
where the existence of curved regions comparable to the
string width likely occurs much less frequently. We may,
therefore, expect massive radiation to be suppressed and
localized, especially relative to the global emission of
massless modes.

IV. BURST SIGNAL IMPLEMENTATION

In this section, we discuss our implementation of
traveling wave initial conditions, our numerical grid setup,
and results from convergence tests. In Sec. IVA, we present
the analytic equations that describe collisions of traveling
waves with a Gaussian profile, which we implement to
emulate realistic cusplike or “burst” configurations. This
allows us to maintain direct control over important param-
eters such as the radius of curvature of the string.
Section IV B details the relationship between these travel-
ing wave solutions and analytic Nambu-Goto string sol-
utions, which are often used in cosmic string modeling.
Sections IV C and IV D detail the numerical setup and
convergence test results, including a comparison to fixed
grid results.

A. Traveling wave initial conditions

It has been shown that analytic field theory solutions can
be obtained for traveling wave configurations on a global
cosmic string which are consistent with Kalb-Ramond
modeling [35]. These are obtained by redefining the
coordinate along which direction the string core is dis-
placed, which is transverse to the direction of travel of the
wave. We choose to redefine x → X, where the new X
coordinate is given by

X ¼ x − ψðz� tÞ: ð16Þ

We introduce the function ψðz� tÞ to define the shape of
the traveling wave and to indicate the direction of travel of
the specified configuration along the string, in the positive
or negative z direction. We will comment shortly on the
interpretation of these solutions in terms of Nambu-Goto
string solutions once transverse degrees of freedom are
integrated out. At this point, it is sufficient to note that the
field deformations (16) are considerably more general,
allowing the creation of large-amplitude, ultrarelativistic
configurations (essentially field “shock waves”) for which
the Nambu-Goto string analog is not straightforward.
Nevertheless, we will study the full range of possibilities,
whether or not there are realistic cosmological production
mechanisms in some regimes.

We choose to investigate the collision of two Gaussian
configurations, which gives us control over the radius of
curvature along the string. We set

ψðz� tÞ ¼ ψGðzþ tÞ � ψGðz − tÞ; ð17Þ

where the Gaussian configuration ψG is given by

ψGðz� tÞ ¼ A exp

�
−
ðz� t ∓ bÞ2

2σ2d

�
: ð18Þ

Here, A is the amplitude, b is the displacement of the center
of the Gaussian from the center of the simulation box at
z ¼ 0, and σd is the standard deviation. The � in (17)
defines whether we add two Gaussians of the same sign
(Gaussian-Gaussian configuration) or of opposite signs
(anti-Gaussian-Gaussian configuration). Both configura-
tions are investigated in this study.
In order to obtain the initial conditions, we substitute the

numerically determined complex scalar field profile from
(4) with

φðr; θÞ → ΦðX; yÞeiΘ: ð19Þ

The real and imaginary parts Φ1 and Φ2 are now defined,
respectively, by

Φ1 ¼ ΦðX; yÞ cosΘ; Φ2 ¼ ΦðX; yÞ sinΘ; ð20Þ

where tanΘ ¼ y=X. The initial time derivatives Π1;2 are
obtained by differentiating Φ1 and Φ2 with respect to t,
given by

Π1 ¼
∂X
∂t

����
t¼0

�
X2

R2

∂Φ
∂R

þΦ
y2

R3

�
;

Π2 ¼
∂X
∂t

����
t¼0

�
∂Φ
∂R

Xy
R2

−Φ
Xy
R3

�
; ð21Þ

where R2 ¼ X2 þ y2 and

∂X
∂t

����
t¼0

¼ ∂ψ

∂t

����
t¼0

: ð22Þ

As outlined in [35], (20) and (21) can be used to set initial
conditions for a traveling wave which can be evolved using
the wave equations (3).
It is common in numerical simulations of cosmic strings

to apply a period of dissipation to the initial conditions,
prior to evolving using the wave equation. Dissipation is
less necessary here than, for example, with sinusoidal
initial conditions, as we are already using a field theory
solution which will be close to a true physical traveling
wave configuration. We, therefore, do not apply dissipative
evolution to the initial conditions in this case, allowing us to
keep better control of the parameter space.
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B. Correspondence with Nambu-Goto strings

The Nambu-Goto action for a string, proportional to its
world-sheet area, can be derived in the Abelian-Higgs
model by integrating out the transverse degrees of freedom
around the cylindrical string solution (4). This methodol-
ogy can also be extended to axion strings (11) to describe
them using the Kalb-Ramond action (see Ref. [8] and
references therein). However, these derivations depend on
the underlying assumption that perturbations along the
string are small, in particular, that the local radius of
curvature R is considerably larger than the string width
δ ≈ 1=ð ffiffiffi

λ
p

ηÞ over which the integration is taking place, i.e.,
R ≫ δ. The general traveling wave deformations (16) do
not need to satisfy this requirement, and, in principle, the
Gaussian (17) configurations being investigated here can
have an arbitrarily large amplitude (and small curvature
radius R). For this reason, it is worth clarifying where the
parameter range of this study can be expected to correspond
to realistic Nambu-Goto strings or cosmic axion strings.
We can construct Nambu-Goto long string configura-

tions along which left- and right-moving modes travel
using an analogous solution to (17), with the x coordinate
of the string core given by

xðσ; τÞ ¼ 1

2
½ΨGðσ − τÞ þ ΨGðσ þ τÞ�; ð23Þ

where ΨGðσ; τÞ is given by (18), σ measures the invariant
length along the string, and τ is the proper time. The
magnitude of the derivative of the vector left- and right-
moving modes is constrained to be unity, so the z
coordinate is given by

zðσ; τÞ ¼ 1

2
½ΦGðσ − τÞ þΦGðσ þ τÞ�; ð24Þ

where

ΦGðσÞ ¼
Z

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ψ0

GðσÞ2
q

: ð25Þ

If the function ΦG is to be real, then the amplitude A of the
Gaussian in (18) is constrained to satisfy

Amax ≤
ffiffiffi
e

p
σd; ð26Þ

where e is the elementary charge and can be set equal to
unity. The magnitude of the velocity along the string is
simply given by the time derivatives of (23) and (24).
An example of a parametric Nambu-Goto string solution

closely corresponding to the “Gaussian burst” configura-
tion (17) with σd ¼ 2 and A ¼ 4 is shown in Fig. 2. This
has the maximal amplitude allowed for the Nambu-Goto
Gaussian solution, which means that it generates two cusps
before and after the left- and right-moving modes meet to
create the rounded shape at the center. A cusp is a single

point where the string momentarily attains the speed of
light c, but in this solution there is also a wider relativistic
region around the center that achieves a large γ factor, thus
facilitating the generation of a burst of radiation.
How then do we understand the large amplitude traveling

wave solutions that violate (26)? In this case, the field
traveling waves do not satisfy the criterion A ≤ σd, and
there is not a simple Nambu-Goto solution of the form
(23)–(24). The traveling waves (17) can be thought of as
highly relativistic field deformations that propagate along a
straight string, as if “shock waves” or correlated energy
packets. When meeting the counterpart traveling in the
opposite direction, there is no simple linear or quasilinear
mechanism by which the two modes superpose and
smoothly pass through each other as in the Nambu-Goto
case shown in Fig. 2. Instead, at collision, a superrelativistic
configuration forms that will most naturally annihilate with
a huge release of radiative energy (both massless and
massive), rapidly reducing the traveling wave toward or
below the Amax allowed by the Nambu-Goto solution (26).
As we shall see, for extreme amplitudes, the string
annihilation process can be sufficiently energetic and
coherent to form a new loop which reconnects with the
original configuration, albeit at greatly reduced amplitude.
It is questionable whether the short-lived traveling wave
solutions with A ≫ σd created here numerically can also be
generated in a realistic physical context, because they require
a correlated mechanism by which a large-amplitude, highly
relativistic string deformation is launched along a straight
unperturbed string.

C. Numerical setup

For the parameter scans performed in this paper, it is
necessary to balance several numerical and physical factors
in order to choose the optimal simulation box configura-
tion. We require a string configuration with an appropriate
initial separation of the traveling waves—not too far apart
as to add unnecessary time to the simulations but not too
close that the Gaussians overlap at t ¼ 0. The total string
length has to be long enough that the entire signal from the
first burst can be extracted before the traveling waves

–10 –5 0 5 10
0

1

2

3

4

Separation x

A
m
pl
itu
de
A

FIG. 2. Parametric Nambu-Goto solution (23) with σd;eff ≈ 2.5
and A ¼ 4.12 (solid lines) mimicking the dual Gaussian field
configuration (17) σd ¼ 2 and A ¼ 4.12 (dotted lines). This is the
maximal Nambu-Goto solution for this Gaussian width with the
string configuration creating cusps, a point moving momentarily
at the speed of light. Beyond this amplitude Amax, there are no
simple collision Gaussian string solutions.
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collide with the z boundaries, and the x and y boundaries
have to be far enough away from the string to reduce any
(very minimal) effects from incoming radiation. On the
other hand, the box size has to be small enough for
simulations to be performed quickly and using a nonpro-
hibitive number of computational resources—in this case,
approximately 200 CPUs. The computational restrictions
on the total box size are significantly lessened by the use of
adaptive mesh refinement (AMR).
We find the best configuration to be a total coarse

simulation box size of 5123 with periodic boundaries in the
z direction and Sommerfeld outgoing radiation boundary
conditions in the x and y directions. We use an initial
Gaussian separation of d ¼ 2b ¼ 32 and an extraction
cylinder at R ¼ 64. This means that the traveling waves
that collide near the beginning of the simulation collide
again on the z boundary at t ≈ 300, so we are able to
analyze the simulation confidently up until t ≈ 250 with
minimal concerns about the aforementioned sources of
numerical error.
All simulations in this paper are performed using the

adaptive mesh refinement code GRChombo [36,37]. We use a
base grid resolution of Δx0 ¼ 1 and a base time step of
Δt0 ¼ Δx0=4. Each refinement level reduces Δt and Δx by
a ratio of 2 compared to the next-coarsest level. Based on
observations from [31] of the effects of damping high-
frequency modes, we choose to set the Kreiss-Oliger
damping coefficient to be zero. We set the regridding
threshold jϕthresholdj ¼ 0.25, prompting additional mesh
refinement to be implemented around the string core.
The maximum refinement level obtained is lmax ¼ 6
(Δx ¼ 0.015625) for very-high-amplitude runs.

D. Convergence testing

We perform convergence tests on Gaussian-Gaussian
configurations with the parameters A ¼ 35, A ¼ 8, and
A ¼ 1 with σd ¼ 2 in order to investigate the full range of
amplitudes run in Sec. V, concentrating on configurations
in the nonlinear regime. We perform AMR tests using the
parameters in Table II, presented in Appendix A, and
compare to fixed grid results. We focus on the convergence
of Emassive (13) and Emassless (14). As GRChombo uses a
fourth-order Runge-Kutta evolution scheme, we expect to
see approximately fourth-order convergence. We use these
convergence tests, along with any differences between the
AMR and fixed grid simulations, to estimate error bars for
Fig. 7. Convergence test plots are presented in Appendix A.
The comparison with fixed grid results must be taken in
context; running a fixed grid simulation, for example, with
Δx ¼ 0.0625 in order to compare with a maximum AMR
refinement level lmax ¼ 4 is far too computationally inten-
sive, a demonstration in itself of the necessity of AMR. We,
therefore, compare our AMR results to fixed grid results
with a coarser refinement Δx ¼ 0.25 as an indicator of

accuracy only, bearing in mind that this refinement may not
be sufficient for an accurate fixed grid result.
The AMR convergence test for A ¼ 35 in Fig. 14

shows that Emassive and Emassless converge at approximately
second and third order, respectively, although the conver-
gence order for Emassless varies over time. The AMR
simulations reach a maximum refinement level of lmax ¼
6 with Δx ¼ 0.015625, and Emassive and Emassless measured
by the finest fixed grid configuration, withΔx ¼ 0.25, were
∼7% and ∼4% larger than their respective AMR configu-
rations (Fig. 15). For A¼ 8, the AMR convergence test in
Fig. 13 shows that Emassive and Emassless converge at
approximately third and fourth order, respectively. The
AMR simulations reach a maximum refinement level of
lmax ¼ 4 with Δx ¼ 0.0625, and Emassive and Emassless
measured by the finest fixed grid configuration, with
Δx ¼ 0.25, were∼30% and∼6% larger than their respective
AMR configurations (Fig. 15). The AMR convergence test
for A ¼ 1 in Fig. 12 shows that Emassive and Emassless
converge at approximately sixth and fourth order, respec-
tively. The AMR simulations reach a maximum refinement
level of lmax ¼ 3withΔx ¼ 0.125, andEmassive andEmassless
measured by the finest fixed grid configuration, with
Δx ¼ 0.25, were ∼86% and ∼48% larger than their respec-
tive AMR configurations (Fig. 15). As the signals are
already small for this low-amplitude configuration, this
error does not significantly affect our results (see Fig. 7).

V. MASSIVE AND AXION RADIATION

In this section, we plot results from over 100 simulations
of colliding traveling wave configurations on an axion
string. We perform parameter scans over initial amplitudes
from 0.4 ≤ A ≤ 35 with fixed standard deviations σd ¼ 2
and σd ¼ 6 and a parameter scan from 1 ≤ σd ≤ 6, with
fixed amplitude A ¼ 5. We consider two configurations of
traveling waves: the collision of two Gaussians (G=G)
(displacements with the same sign) and the collision of a
Gaussian and an anti-Gaussian (aG=G) (opposite sign). For
both, we consider initial amplitudes of equal magnitude for
the traveling waves.
In light of the discussion of corresponding Nambu-Goto

solutions in Sec. IV B, we define four regimes for the
radiative channels that can be investigated with this
parameter range (not necessarily mutually exclusive).

(I) Quasilinear Nambu-Goto regime R≳ σd ≫ OðδÞ,
A ≤ Amax. These are traveling wave configurations
with a large radius of curvature compared to the
overall width of the traveling wave, i.e., a low
amplitude A relative to σd, with σd larger than the
string width. These closely approximate Nambu-
Goto string solutions with left- and right-moving
modes that smoothly pass through each other and an
amplitude A ≤ Amax ≈ σd that is lower than the
threshold calculated in Sec. IV B. These should
reproduce Nambu-Goto results with ubiquitous
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massless radiation and highly suppressed massive
emission.

(II) Nonlinear relativistic regime R < σd, A > Amax.
These are superrelativistic traveling wave configu-
rations with a small radius of curvature compared to
the overall width of the source, i.e., a high amplitude
A relative to σd that is higher than the threshold
calculated in Sec. IV B. These large-amplitude
collisions cause major energy loss through string
annihilation and radiation. For our categorization,
this regime is agnostic to the ratio of A or σd to the
string width δ.

(III) Extreme topological regime A ≫ Amax. These are
hyperrelativistic traveling waves (more like “shock
waves”) where the large-amplitude collisions are
sufficiently energetic to create new loops which
reconnect with the original string configurations.
Energy losses are reduced but still very substantial.
As with regime II, this regime is agnostic to the ratio
of A or σd to the string width δ.

(IV) Above mass threshold σd ≈OðδÞ. These are narrow
sources where the overall width of the traveling
wave is comparable to the string width. Short
wavelength excitations along the string σd ≈ δ mean
that modest perturbations can excite massive modes
mH ≈ δ−1. For example, σd ¼ 2 is in this regime
when we choose parameters where δ ¼ 1. This
regime can coincide with regime II or III.

Figure 3 shows a 3D visualization of the massless
radiation diagnostic Πϑ (9) (left) and jϕj (right) from a
G=G configuration in regimes III and IV, with A ¼ 20 and
σd ¼ 2, after the traveling waves have collided. We observe
the lobes of the massless self-field signal corresponding to
the traveling waves moving away from the center, along
with an isotropic burst radiating from the point of collision,
from which there are also subsequent internal mode
oscillations of the string. Importantly, this massless spheri-
cal burst is qualitatively similar to the isotropic GW signal
predicted from a kink-kink collision in the Nambu-Goto
model [38]. For jϕj, we observe oscillations of the field
along the length of the string with a clear ripplelike effect
coming from a shocklike wave. Analysis of this and similar
configurations forms the basis of this paper.

A. Absolute and relative magnitude

We measure the time integral of the massive and
massless radiation signals, Pmassive (13) and Pmassless
(14), for different burst configurations created by the
collision of two traveling waves. An example of a signal
from a G=G collision is given in Fig. 4, which shows a
burst of massless radiation reaching the extraction cylinder
at R ¼ 64 at t ≈ 80, with the massive signal arriving
slightly afterward. A second burst arrives after t ≈ 300
which comes from the collision of the traveling waves with
the periodic z boundary. We analyze only the first burst

FIG. 3. Volume rendering in 3D space ðx; y; zÞ of massless Πϑ radiation (left) and jϕj from a Gaussian-Gaussian traveling wave
collision with A ¼ 20 and σd ¼ 2, at t ≈ 100. The isotropic massless signal is qualitatively similar to the isotropic GW signal predicted
from kink-kink collisions in [38].
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signal in subsequent plots, choosing to integrate from
0 ≤ t ≤ 200.
We concentrate first on a parameter scan that traverses

the quasilinear and highly nonlinear regimes I–III but
which are not in regime IV. Figure 5 shows the magnitude
of the massive and massless burst signals for G=G
configurations with σd ¼ 6 ≫ δ over a range of amplitudes
1 ≤ A ≤ 20. We plot the dependence of these signals on the
radius of curvature of the string at the centre of the initial
traveling wave, RGaussian. We use RGaussian rather than the
radius of curvature at the point of collision because, for the
aG=G configurations investigated later, the traveling waves
will completely destructively interfere at this point, result-
ing in an instantaneously straight string with infinite radius
of curvature that we cannot use as a model parameter. The
radius of curvature along the string is defined by

R ¼ ½1þ X0ðzÞ2�3=2
X00ðzÞ ; ð27Þ

where XðzÞ is given here by (16) and denotes the position
of the string core. Although this is not necessarily a
Lorentz-invariant quantity, its definition here is unambigu-
ous, because we always work in the center of mass frame in
which the traveling waves collide. For a Gaussian, the
radius of curvature is minimized at its peak, with a value of

RGaussian ¼
σ2d
A
: ð28Þ

For fixed σd as in Fig. 5, RGaussian is proportional to the
inverse of the amplitude A. In the following discussion, we
will also refer frequently to the “curvature” of the string
defined as 1=RGaussian, as it is usually more intuitive to
discuss an increase in curvature rather than a decrease in
radius of curvature, and vice versa. We recall that the ratio
of the radius of curvature R to the string width δ determines
the tension of the string via (11).

Figure 5 shows that the magnitude of both the massive
and massless burst signals increases as the amplitude (and,
therefore, curvature) of the string increases (i.e., minimum
local string tension decreases). This is as we would expect;
it has been shown in previous publications that particle
radiation is emitted more strongly from high-curvature
regions [23,31] and that a higher amplitude also radiates
more massless radiation [22,30]. The massless radiation
from the G=G configurations falls into two power-law
regimes: one corresponding to the nonlinear regimes II and
III with high amplitude and the other for the quasilinear
regime I with low amplitude. For A=δ≲ 6, the radiation
obeys Emassless∼

∝A4, where we recall that η and δ have been
set to 1. The power law is quoted to one significant figure;
the more precise gradient and statistical errors are given in
Table I. For A=δ≳ 6, Emassless∼

∝A2 as presented in Table I.
Figure 6 shows the results from a G=G parameter scan

over 1 ≤ σd ≤ 6 with A ¼ 5, incorporating all regimes. In
this case, Emassless is only weakly dependent on the extent of

FIG. 4. Time integral of the massive radiation signal Pmassive
(13) and massless radiation signal Pmassless (14), emitted from a
Gaussian-Gaussian traveling wave collision with amplitude A ¼
5 and σd ¼ 3.5.

FIG. 5. Massive (blue) and massless (yellow) radiation emitted
from Gaussian-Gaussian collisions with amplitude 1 ≤ A ≤ 20
and σd ¼ 6. The plots show the time integral of the massive and
massless components of the Poynting vector, Pmassive (13) and
Pmassless (14), on the diagnostic cylinder at R ¼ 64 integrated
from t ¼ 0 to t ¼ 200.
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the source; there is a slight suggestion that increasing σd
decreases the overall magnitude of the radiation, but the
effect is small. We, therefore, conclude that the massless
radiation depends to leading order on A=δ alone rather than
the string curvature which includes σd.
In contrast, Figs. 5 and 6 show that the massive radiation

is exponentially suppressed in the linear or quasilinear
regime I approximately as Emassive∼

∝e−ζRGaussian , where ζ is a
dimensionful exponent with ½ζ� ¼ ½E�. Although both
parameter scans exhibit exponential decay, the exponents

have different values; for Fig. 5, we obtain ζ ¼ 0.98�
0.02, and Fig. 6 obtains ζ ¼ 0.55� 0.01. These reflect
two different rescalings of the string configuration at the
intersection of regimes I and IV, i.e., one changing
amplitude A at fixed σd, and vice versa. While the results
are qualitatively consistent, more detailed analysis may be
required to guide and improve our oversimplified model-
ing. It is possible, for example, that something closer to
Emassive∼

∝e−ζσ
α
dA

−β
with separate exponents α and β for σd

and A, respectively, would be more appropriate, potentially
with the inclusion of additional constants. This will require
more in-depth analysis and further simulations to determine
and is deferred to future work.
In Fig. 5, the massive radiation levels off at small

amplitude A≲ 3 to become an approximately constant

TABLE I. Power-law coefficients γ in different curvature
regimes as defined in Sec. V for Gaussian-Gaussian (G=G)
and anti-Gaussian-Gaussian (aG=G) traveling wave configura-
tion, defined by Echannel ∝ ðRGaussianÞ−γ. Values are given for the
massive and massless decay channels separately and the ratio
between the two. Error bars are the statistical error from the linear
regression.

Configuration σd Radiation Regime

σd ≫ δ
A≳ 6 (II–III) A≲ 6 (I)

G=G 6 Massless 2.15� 0.02 3.90� 0.04

σd ≲ 2δ (IV)
A≳ 6 A≲ 6

G=G 2 Massive 1.61� 0.04 4.13� 0.03
Massless 1.88� 0.05 3.79� 0.01

aG=G 2 Massive 0.44� 0.12 3.55� 0.04
Massless 1.36� 0.03 3.67� 0.03

A≳ 2
G=G 2 Massive/massless 1.00� 0.06
aG=G 2 Massive/massless 0.87� 0.03

FIG. 6. Massive (blue) and massless (yellow) radiation emitted
from Gaussian-Gaussian collisions with amplitude 1 ≤ σd ≤ 6
and A ¼ 5. The plots show the time integral of the massive and
massless components of the Poynting vector, Pmassive (13) and
Pmassless (14), on the diagnostic cylinder at R ¼ 64 integrated
from t ¼ 0 to t ¼ 200. This figure is reproduced from [39].

FIG. 7. Massive (blue) and massless (yellow) radiation emitted
from Gaussian-Gaussian collisions (top) and anti-Gaussian-Gaus-
sian collisions (bottom) with amplitude 0.4 ≤ A ≤ 35 and σd ¼ 2.
The plots show the time integral of the massive and massless
components of the Poynting vector, Pmassive (13) andPmassless (14),
on the diagnostic cylinder at R ¼ 64 integrated from t ¼ 0 to
t ¼ 200. Lines of corresponding colors indicate power-law fits to
the data for two regimes either side of the central transition region.
The upper error bars are estimated for three points by comparing to
fixed grid simulations. The top figure is reproduced from [39].
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and very low value. We believe this is a numerical artifact
related to the massive radiation at this amplitude not being
properly resolved by the numerical AMR grid (see the
discussion in Sec. IV D). These outlier points are, therefore,
not included in the bottom plot in Fig. 5. Figure 6 also
includes a region σd ≲ 2 where Emassive does not exhibit
exponential decay. In this highly nonlinear region, the
initial Gaussian traveling waves are so curved that the
string is already significantly overlapping with itself prior
to the collision (i.e., in regime IV). We, therefore, expect
some of the energy of the configuration to already have
dissipated before the traveling waves have a chance to
collide, reducing the magnitude of the burst signal (see also
the suppression that occurs in regime III).

We next concentrate on parameter scans over the non-
linear to highly nonlinear (extreme topological) regimes II
and III. This figure also covers regime IV, because σd ≲ 2δ,
and then includes regime II with A=δ≲ 6 and III with
A=δ≳ 6, respectively. Figure 7 plots results for G=G and
aG=G traveling wave configurations, with upper error
bars estimated using the fixed grid comparison runs in
Sec. IV D. Looking first at the massless radiation, similarly
to Fig. 5, there is a distinct change in the power law which
occurs around the same value of A ≈ 6, despite the different
values of RGaussian. In this case, we observe a more extended
“transition region” between 4≲ A≲ 9. The massless radi-
ation either side of the transition region obeys approx-
imately equivalent power laws to the regions either side of

FIG. 8. 2D slices through two Gaussian-Gaussian traveling wave configurations, with snapshots over time running from left to right.
The top configuration shows jϕj from A ¼ 4 and σd ¼ 2, and the bottom configuration is A ¼ 20 and σd ¼ 2. This figure is reproduced
from [39].
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A ≈ 6 in Fig. 5, Emassless∼
∝A4 in the lower-amplitude region

and Emassless∼
∝A2 in the higher-amplitude region, although

we note that this is closer to Emassless∼
∝A for the high-

amplitude aG=G configuration. We also note that the values
of the power laws do not match between the corresponding
curvature regimes of the two datasets. This consolidates
our conclusion that the magnitude of the massless radiation
depends to leading order only on A=δ, with little explicit
dependence on R.
In the highly nonlinear regime II with A≲ 6, the

massive radiation is present at comparable magnitude to
the massless radiation and is described by a similar
power law Emassive∼

∝A4, given more precisely in Table I.
The massive radiation is slightly suppressed for the aG=G
configuration in the regime A≲ 6 relative to the G=G
configuration. This makes sense as, for the aG=G
configuration at the point of collision, the string is
instantaneously flat rather than highly curved as in the
G=G case. Configurations with very low amplitudes A≲
δ emit a higher magnitude of massive radiation than
massless, in contrast with the rest of the parameter space.
However, this is likely to be due to the effects of
imperfect initial conditions becoming dominant.
In the extreme topological regime III with A≳ 6, the

massive radiation is relatively more suppressed, although
it still follows a similar power law to the massless
radiation. In fact, both the massive and massless channels
are perhaps suppressed compared to if we were to naively
extrapolate from regime II. As we will see, this is likely
due to the formation of new loop structures from
coherent radiation from these extremely high-energy
configurations, which has the effect of relatively damping
the radiation signal as the energy instead forms new
string. For the G=G configuration, the massive radiation
power-law relationship in the high-amplitude region
Emassive∼

∝A2 is consistent with the corresponding ampli-
tude regime in Fig. 5, where at high A the massive
radiation tends toward the same power law as the
massless radiation. However, the value of the power
law does not agree in the same curvature regime between
the two scans. This lends weight to the previous
suggestion that there is some additional dependence on
A or σd for the massive radiation aside from RGaussian,
although in this regime we are looking at a power-law
relationship rather than an exponential suppression.
Further interesting features of the highly nonlinear regime
in Fig. 7 are that both radiation channels are suppressed
for the aG=G configurations with respect to the G=G
configurations, and the power law for the G=G case is
also steeper for both channels.
Figure 8 shows an example evolution for regime II

with A≲ 6 and regime III with A≳ 6, both in regime IV
with σd ¼ 2. We observe fundamentally different quali-
tative behavior of the traveling waves between the two
regimes. For the lower amplitude A ¼ 4, the two

traveling waves collide, pass through each other, and
move apart, with internal mode oscillations generated at
the point of collision continuing to radiate massive
radiation. For the highly nonlinear A ¼ 20, we observe
some very extreme phenomena; at the point of collision,
the traveling waves have sufficient energy that they
instantaneously create an additional loop of string, which
then reconnects with the long string in such a way that
the central portion of the string is displaced, which we
could potentially interpret as a “memory” effect. The
extreme topological regime of A≳ 6 with σd ¼ 2 is,
therefore, fundamentally different from the behavior we
observe in the other regimes, even compared to other
nonlinear configurations in regime II.
Finally, Fig. 9 shows the dependence of the ratio of the

massive to massless radiation for the same range of RGaussian
as plotted in Fig. 7. We observe for A≳ 2 that the ratio of
radiation channels for the G=G configurations is consistent
with a linear dependence on RGaussian, i.e.,

Emassive

Emassless
∝ RGaussian: ð29Þ

We also observe from Fig. 9 that, for 1≲ A≲ 2, the
massive to massless ratio flattens out to approximately a
constant or a slight decrease with RGaussian for the G=G
configuration. The ratio then increases again for A≲ 1 ≈ δ,
i.e., amplitudes smaller than the string width. Here, the
overall magnitude of the radiation is so small that it is not
clear that this region needs to be considered. However, if
this region is physically relevant, it means that, for very
small, linear displacements of the string, the massive

FIG. 9. Ratio of massive to massless radiation emitted from
Gaussian-Gaussian and anti-Gaussian-Gaussian collisions with
amplitude 0.4 ≤ A ≤ 35 and σd ¼ 2. The plot shows the ratio of
the time integrated massive to massless components of the
Poynting vector, Pmassive (13) and Pmassless (14), on the diagnostic
cylinder at R ¼ 64 integrated from t ¼ 0 to t ¼ 200. Lines of
corresponding colors indicate power-law fits to the data for the
high-curvature regime.
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radiation in fact becomes comparable to or larger than the
massless channel, while we are in regime IV.

B. Axion radiation spectrum

In Fig. 10, we plot the massless radiation spectrum from
G=G configurations with A ¼ 1; 3; 10, and 30. We plot on a
log-log scale to enable a power-law fitting, along with
some example power laws to guide the eye. For A ¼ 1, a
power-law fit of lnF ðEmasslessÞ ∝ −4 ln f approximates the
high-frequency part of the spectrum. For higher amplitudes
such as A ¼ 30, the spectrum is approximated more accu-
rately by lnF ðEmasslessÞ ∝ − ln f. The power laws
lnF ðEmasslessÞ ∝ − 4

3
ln f and − 5

3
ln f also provide a plau-

sible fit, where we choose these values bearing in mind the
analytic analogy between massless axion radiation from
global strings and gravitational radiation from Abelian-
Higgs strings (see Appendix B) and the GW spectrum
predictions for cusps and kinks [8,18,19]. In general, the
spectral index, definedhere to beqwhereF ðEmasslessÞ ∝ F−q

andF is frequency, decreases as the amplitude and curvature
increases. This means that there is a higher proportion of
radiation emitted in high-frequency modes as the curvature
increases. The implications of these spectral index measure-
ments are discussed further in Sec. VII.

VI. COMPARISON WITH A PERIODIC SOURCE

In this section, we link the results obtained in Sec. V to
those obtained for sinusoidal string configurations in
[30,31]. In [30,31], sinusoidal configurations of axion
strings were analyzed using similar techniques to those
used in this traveling wave investigation, allowing us to
compare the two configurations to make more general
statements about the dependence of the string radiation on
the string parameters.

We first note that it is not possible to meaningfully
compare the magnitude of the massive radiation using
the current modeling, due primarily to the fact that the
magnitude of the radiation also depends on either a
currently undetermined prefactor, a more subtle depend-
ence on A and the source length σd, or both. Even within the
traveling wave investigation, if we compare, for example,
the magnitude of the massive radiation from lnRGaussian ≈ 1
in Figs. 5 and 7, there is a difference of Oð100×Þ,
indicating an additional dependence on A and/or σd that
is not yet included in the model. This prefactor and further
details of the parameter dependence will be important if we
wish to make more general statements about the massive
radiation from different configurations.
In contrast, comparing the magnitude of the massless

radiation for the same two Figs. 5 and 7, it does appear as
though radiation of a comparable magnitude is emitted for
configurations with the same amplitudes, which may
facilitate a meaningful comparison to the sinusoidal case.
We must bear in mind that the traveling wave configuration
emits only one burst signal, when the Gaussians “collide”
at z ¼ 0. In contrast, for a sinusoidal configuration, the
string oscillates periodically, performing a full oscillation
slightly less than once every time period Δt ¼ L, where
L is the wavelength of the source. In this case, each
oscillation has four incidences of maximum amplitude: at
z ¼ L=4 and 3L=4, twice each per oscillation. We also bear
in mind that the amplitude of the sinusoidal oscillations
decreases as the simulation progresses due to damping.
Figure 11 shows the cumulative integrated massless

signal Emassless emitted by the two configurations. We plot
the traveling wave signal for A ¼ 8 with σd ¼ 2 for both

FIG. 11. Cumulative integral of the massless radiation signal
Pmassless (14) emitted from a λ ¼ 1 string from (i) a sinusoidal
configuration with A ¼ 8 and L ¼ 32 (blue), (ii) a Gaussian-
Gaussian burst configuration with A ¼ 8 and σd ¼ 2 (red), (iii) an
anti-Gaussian-Gaussian burst configuration with A ¼ 8 and σd ¼
2 (orange), and (iv) a Gaussian-Gaussian burst configuration with
A ¼ 8 and σd ¼ 6 (purple). We also plot the signals from
Gaussian-Gaussian burst configurations with A ¼ 9 (red dashed
line) and A ¼ 7 (red dash-dotted line), both with σd ¼ 2.

FIG. 10. Spectrum of the massless radiation Pmassless emitted
from Gaussian-Gaussian traveling wave configurations with a
range of A. We observe a decrease of the spectral index (more
UV) with increasing amplitude. Dashed lines correspond to
spectral indices of 1 (purple), 4=3 (brown), 5=3 (pink), and
4 (gray).
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the G=G and aG=G configurations and A ¼ 8 with σd ¼ 6
for the G=G configuration, along with the sinusoidal signal
for A ¼ 8 and L ¼ 32. We also plot the G=G traveling
wave signals for A ¼ 7 and A ¼ 9 with σd ¼ 2 to provide a
comparison with nearby amplitudes. The A ¼ 8 sinusoidal
signal is approximated well by all of the A ¼ 8 traveling
wave configurations to within 50% of its total magnitude.
Of the A ¼ 8 configurations, the aG=G traveling wave
signal fits closest, which makes sense if we consider its
similarity with the sinusoidal string close to the point of
collision. We also note that the A ¼ 7 with σd ¼ 2
configuration approximates the signal better than A ¼ 8
with σd ¼ 2. This also makes sense, if we recall that the
sinusoidal configuration decreases in amplitude via damp-
ing over time. We conclude that the amplitude of the string
provides a useful order of magnitude estimate of the
magnitude of the massless radiation emitted, which is
likely to be of use for both network and individual source
modeling.
For the sinusoidal case in [30,31], the magnitude of the

massive and massless radiation was determined for differ-
ent widths of string, where the width was altered by
changing the value of the parameter λ. As detailed in
Sec. II, rescaling by

ffiffiffi
λ

p
is equivalent to scaling the radius of

curvature R. This means that, by performing a parameter
scan over λ, Refs. [30,31] also effectively performed a scan
over the maximum radius of curvature Rsin of the string. We
can, therefore, compare the traveling wave parameter scan
over radius of curvature with the sinusoidal λ parameter
scan, to determine whether or not the observations are
consistent. The highest-curvature configuration studied
in [31] with A ¼ 6 and L ¼ 16 ≫ δ lies in either regime
II or III. A power-law decay is obtained in [31] for the
massive radiation for this configuration, with a coefficient of
γpow ¼ 2.1ð�0.1Þ. This is consistent with regime III in
Fig. 7. For the sinusoidal configuration with A ¼ 8 and
L ¼ 32, a power-law coefficient of γpow ¼ 6.2ð�0.2Þ was
obtained. This is not directly consistent with any power law
obtained in the traveling wave study, providing further
evidence that our massive radiation model requires
refinement.

VII. APPLICATION TO GRAVITATIONAL
WAVE MODELING

In general, the modeling of gravitational waveforms in
general relativity relies on a combination of analytic
modeling of linear perturbations and numerical simulation
of the strong-field regime. This has been used successfully
to determine the “chirp” signal expected for binary black
hole mergers, where the “inspiral” phase is modeled using
perturbation theory and the “merger” is usually determined
by numerical relativity simulations or using post-
Newtonian approximations. In the case of cosmic strings,
waveform modeling of burst signals has been carried out
primarily using analytic models (for a review, see

Refs. [8,9]). These are useful in linear regimes, but, in
principle, they may fail to accurately capture the dynamics
in the strong-field regime, i.e., in regions of highly
relativistic regions with high curvature and acceleration.
The most widely studied burst signal configurations from

cosmic string networks are the Nambu-Goto cusp and kink
configurations for Abelian-Higgs strings. In the Nambu-
Goto model, the gravitational waveform can be phenom-
enologically described by a simple power-law shape

hqðl; z; fÞ ¼ Aqðl; zÞf−qΘðfh − fÞΘðf − flÞ; ð30Þ

where q ¼ 4=3, 5=3, and 2 for cusps, kinks, and kink-kink
collisions, respectively, f is frequency, Aqðl; zÞ is the
amplitude, l is the loop size, and z is the cosmological
redshift. The amplitude is given by

Aqðl; zÞ ¼ g1
Gμl2−q

ð1þ zÞq−1rðzÞ ; ð31Þ

where rðzÞ is the proper distance to the source and g1 is an
“uncertainty” factor, which is usually set to unity. This
waveform has been used to search for cusp and kink burst
signals in the first Advanced LIGO observing run [13] and
subsequently in the third Advanced LIGO-Virgo observing
run [14].
Neglecting (for now) the dependence on redshift and the

cutoff frequencies, which are determined by the beaming
angle and the size of the burst-emitting configuration, the
parameters that determine the gravitational waveform in
this model are the string tension Gμ and the loop size l.
The dependence on the string tension is intuitive; for a
higher Gμ, strings have a higher mass per unit length and,
therefore, can be expected to emit a stronger signal than
lighter strings when accelerating near the speed of light.
The dependence on l is a more direct consequence of the
Nambu-Goto modeling, which assumes that the length of a
string loop determines the actual discrete frequencies
making up its waveform via the loop harmonics. It is for
this reason that the loop distribution function has been so
important in modeling cosmic string signals, setting the
frequency spectrum, and so why different loop models lead
to very different GW signal predictions.
It is also well understood that this Nambu-Goto model

has its limitations. First, we know that cosmic strings are
not infinitely thin, despite this being a good approximation
on cosmological scales. This is not so important for low-
curvature configurations, but, in regions where the string
curvature is high and comparable to the string width,
Nambu-Goto modeling will become inaccurate. It has been
shown that radiation backreaction in field theory simula-
tions causes strings to diverge from Nambu-Goto behavior
in high-curvature regions [23]. As we have seen in the
present simulations, we expect such high-energy configu-
rations of physical cosmic strings to emit massive particle
radiation, a nonlinear effect which is not captured in the
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Nambu-Goto model. It has been the subject of some
discussion whether this particle radiation will significantly
affect the overall network evolution on cosmological
scales. However, particle radiation can be important micro-
physically for cusp or cusplike configurations (see, e.g.,
[40]), as these are exactly the high-curvature, nonlinear
regions for which we expect to see massive radiation
become a relevant decay channel. Massive particle emis-
sion could, therefore, have a backreaction effect on the
magnitude of the GW signal. Some important questions
become: To what extent does massive particle radiation
modify the GW amplitude, and on what frequencies might
we expect this to affect, or even cut off, GW burst signals
from “cusplike” configurations?.
For the physical setup presented in this paper, we

consider massless and massive particle radiation from
global strings. Although we do not directly consider
gravity, the behavior of massless radiation from global
strings has been shown to be approximately analogous to
gravitational radiation from local Abelian-Higgs strings
(see Appendix B). We, therefore, postulate that observa-
tions made in this study about the balance between the two
channels may also apply to GW signals from local strings.
For the high-curvature (regime II) configurations plotted in
Fig. 7, we observed collision and annihilation cases in
which up to 50% of the total signal was emitted in massive
particle radiation. If such configurations arise generically in
realistic networks and the analogy between axions and
GWs carries over, then we might expect particle radiation
from such burst signals in this regime which would also
reduce the relative amplitude of predicted GW signals. The
details of the knock-on effects for GW observational
constraints on cosmic strings are left to future work.

VIII. CONCLUSION AND FUTURE WORK

We have investigated massive and massless (axion)
radiation emitted from axion string networks and cusplike
burst configurations using adaptive mesh refinement sim-
ulations. We have observed from network simulations that
massive radiation is emitted most strongly from regions of
high string curvature, in contrast to axion radiation, which
is more diffuse. This has motivated an investigation into the
dependence of both channels on the maximum string radius
of curvature RGaussian, which also determines the local string
tension.
We have presented the results of parameter scans over

RGaussian ¼ σ2d=A for colliding Gaussian-Gaussian (G=G)
and anti-Gaussian-Gaussian (aG=G) traveling wave con-
figurations, obtained by implementing initial conditions
from [35]. We have performed scans over different non-
mutually-exclusive parameter regimes, defined to be (I)
quasilinear Nambu-Goto regime where R≳ σd ≫ OðδÞ
and A < Amax, where Amax ≈ σd is the maximum amplitude
permitted in the Nambu-Goto model (26); (II) nonlinear
relativistic regime where R < σd and A ≥ Amax; (III)

extreme topological regime where A ≫ Amax; and (IV)
above mass threshold, where σd ≈ δ and massive modes
mH ≈ δ−1 can be excited.
Scans over 1 ≤ A ≤ 20 with σd ¼ 6 and 1 ≤ σd ≤ 6 with

A ¼ 5 showed that the energy emitted in massless radiation
is consistent with a power-law relationship Emassless ∝ A4 in
regimes I and II with A≲ 6 and Emassless ∝ A2 in regimes II
and III A≳ 6 (where the latter scan is also regime IVat low
σd). The scan over σd at fixed A showed no significant
dependence of massless radiation on the spatial extent of
the source σd. Massive radiation was shown to be expo-
nentially suppressed with Emassive ∝ e−ζRGaussian in regimes I
and II, although it was noted that the exponent ζ was not
consistent between the scans. This indicates that our very
simple model for massive radiation requires further devel-
opment to incorporate such extreme nonlinear effects.
In a scan over the nonlinear regimes II and III for 0.4 ≤

A ≤ 35 with σd ¼ 2 (i.e., also in regime IV), we found that
the magnitude of both decay channels is consistent with
two power laws linked by a more extended transition
region around 4≲ A≲ 9. For both channels, the power
law in regime III for the G=G configuration is consistent
with an inverse square law E ∝ R−2

Gaussian to one significant
figure, and regime II is consistent with E ∝ R−4

Gaussian,
where the power laws have slightly lower exponents for
the aG=G configurations. We note that, for the massless
radiation, the power laws are approximately consistent
with the first scan over regimes I and II over the same
amplitude range, suggesting that the amplitude could
provide an approximate estimate of Emassless for any string
configuration. The massive radiation is more subtle and
complex; we have observed that we cannot satisfactorily
compare Emassive between different string configurations
with the same curvature or amplitude using our current
modeling. However, we found that the ratio of the massive
to massless radiation was approximated by a linear
relationship Emassive=Emassless ∝ RGaussian to one significant
figure for A≳ 2 for the scan over regimes II–IV. This may
provide us with a method to probe Emassive, even in highly
nonlinear regimes. In the strongly nonlinear regime II,
massive particle radiation made up approximately 50% of
the total signal, that is, an approximate equipartition
between massless and massive modes for configurations
sufficiently energetic to be well above the massive
radiation threshold.
We have found that the spectral tilt q of the axion

radiation, defined as F ðEmasslessÞ ∝ F−q, where F is fre-
quency and F denotes the Fourier transform, from the
single-string, flat space configurations studied is bounded
by q≳ 1, where q decreases as the amplitude A of the initial
traveling wave increases; i.e., the proportion of the axion
signal in high-energy modes increases. It is possible that
this could shed light on current discrepancies in the spectral
tilt observed from network simulations [1,3,4]. This is left
to future work.
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We have compared the radiation emitted from the
traveling wave configurations with the sinusoidal configu-
rations in [30,31]. As previously determined, massive
radiation cannot yet be meaningfully compared between
the configurations. However, we have observed that
Emassless emitted from different string configurations with
similar amplitudes is equal to within approximately 50%.
This indicates that massless radiation from a string network
or other burst configurations could be approximately
parametrized by A, although the definition of amplitude
in the context of a network is less clear.
Finally, we compared the results obtained for axion

radiation from global strings to gravitational radiation from
Nambu-Goto strings, motivated by the analogous forms for
the power spectra obtained from Nambu-Goto and Kalb-
Ramond models, detailed in [22]. One important qualitative
observation was that the massless spherical burst signals
radiated from point at which the traveling waves collide are
qualitatively similar to the isotropic GW signal predicted
from kink-kink collisions in the Nambu-Goto model [38].
Further work is needed to determine to what extent this
analogy can be used to make quantitative claims about the
local string GW signal using simulations of global string
axion radiation. It is very interesting to note that it is possible
to have highly nonlinear configurations (regime II) in which
up to 50%of the radiation can be radiated asmassive particles.
Although these are not the usual cusps or kinks on the
boundary of nonlinearity in regime I, it may be that these
highly nonlinear configurations may create bursts with both
massive particles and gravitational waves, with the GW
amplitude reduced by backreaction from linearized estimates.
Additional future directions of study will be to generalize
these observations to general network configurations and
perhaps to embed these into phenomenological network
models, such as the velocity-one-scale model [41–43].
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APPENDIX A

Here, we present the parameters used for and the results
of our convergence tests. The grid parameters are given in
Table II, and the convergence test plots in Figs. 12–15.

TABLE II. Grid parameters for convergence tests. We perform
convergence tests with AMR and compare to fixed grid results
with different resolutions. For the fixed grid runs (FG), the grid
dimension L remains constant and we change the base grid
resolution Δx0. For the AMR tests (AMR), the maximum
refinement level lmax is changed and Δx0 remains constant.
The base grid box resolution is given by N3, with ðlmax þ 1Þ total
refinement levels including the coarsest base level, and grid
spacings on the finest level given by Δxlmax

.

Test N lmax L Δx0 Δxlmax

FG 512 � � � 512 1 � � �
1024 � � � 512 0.5 � � �
2048 � � � 512 0.25 � � �

AMR 512 0 512 1 1
512 1 512 1 0.5
512 2 512 1 0.25
512 3 512 1 0.125
512 4 512 1 0.0625
512 5 512 1 0.03125
512 6 512 1 0.015625
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FIG. 12. Absolute value (top) and convergence (bottom) of the energy emitted by massive radiation Pmassive (left) and massless
radiation Pmassless (right) from a Gaussian-Gaussian traveling wave configuration with initial amplitude A ¼ 1 and σd ¼ 2 using adaptive
mesh refinement (test AMR in Table II). The convergence plot shows the difference in the magnitude of Pmassive and Pmassless between
different resolutions, with the higher-resolution results also plotted rescaled according to nth-order convergence as indicated by the
factors in the legends Qn. In these plots, Pmassive and Pmassless are used as shorthand for

R
Pmassivedt and

R
Pmasslessdt, respectively.
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FIG. 13. Absolute value (top) and convergence (bottom) of the energy emitted by massive radiation Pmassive (left) and massless
radiation Pmassless (right) from a Gaussian-Gaussian traveling wave configuration with initial amplitude A ¼ 8 and σd ¼ 2 using adaptive
mesh refinement (test AMR in Table II). The convergence plot shows the difference in the magnitude of Pmassive and Pmassless between
different resolutions, with the higher-resolution results also plotted rescaled according to nth-order convergence as indicated by the
factors in the legends Qn. In these plots, Pmassive and Pmassless are used as shorthand for

R
Pmassivedt and

R
Pmasslessdt, respectively.

DREW, KINOWSKI, and SHELLARD PHYS. REV. D 110, 043513 (2024)

043513-18



FIG. 14. Absolute value (top) and convergence (bottom) of the energy emitted by massive radiation Pmassive (left) and massless
radiation Pmassless (right) from a Gaussian-Gaussian traveling wave configuration with initial amplitude A ¼ 35 and σd ¼ 2 using
adaptive mesh refinement (test AMR in Table II). The convergence plot shows the difference in the magnitude of Pmassive and Pmassless
between different resolutions, with the higher-resolution results also plotted rescaled according to nth-order convergence as indicated by
the factors in the legends Qn. In these plots, Pmassive and Pmassless are used as shorthand for

R
Pmassivedt and

R
Pmasslessdt, respectively.
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APPENDIX B

Here, we outline the analogy between gravitational
radiation from local strings and axion radiation from global
strings using the Nambu-Goto and Kalb-Ramond models.
The expressions below are valid for periodic configurations
with periodicity L but can also be derived for general
configurations.
It has been shown [20,21] that the power per unit length

radiated from an infinitely long periodic global string lying
along the z direction via massless radiation can be written in
terms of the Fourier transform J̃μν of the source distribution
Jμν. This is given by

dP
dz

¼ 2π
X∞
n¼1

ωn

X
jκmj<ωn

×
Z

2π

0

dθJ̃μν�ðωn;k⊥; κmÞJ̃μνðωn;k⊥; κmÞ; ðB1Þ

where ωn ¼ 2πn=L, κm ¼ 2πm=αL, where α is the
length of the periodic configuration relative to L,
k⊥ ¼ jk⊥jðcos θ; sin θÞ, and jk⊥j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n − κ2m

p
.

We can write an analogous expression for the gravita-
tional radiation from a local string in an equivalent
configuration, given by

FIG. 15. Absolute value of the energy emitted by massive radiation Pmassive (left) and massless radiation Pmassless (right) from a
Gaussian-Gaussian traveling wave configuration with initial amplitudes A ¼ 1 (top), A ¼ 8 (middle), and A ¼ 35 (bottom) and σd ¼ 2

on a fixed grid (FG in Table II). In these plots, Pmassive and Pmassless are used as shorthand for
R
Pmassivedt and

R
Pmasslessdt, respectively.
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dP
dz

¼ 2G
X∞
n¼1

ωn

X
jκmj<ωn

Z
2π

0

dθðT̃μν�ðωn;k⊥; κmÞT̃μνðωn;k⊥; κmÞ −
1

2
jT̃λ

λðωn;k⊥; κmÞj2Þ; ðB2Þ

where Tμν is the energy-momentum tensor of the string. See Ref. [22] for further details.
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