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The possibility that quantum geometry effects may alleviate the apparent tensions existing at large
angular scales in the observations of the cosmic microwave background explains the increasing interest in
considering primordial perturbations within the framework of loop quantum cosmology. In this framework,
a number of approximations have been suggested to simplify the study of perturbations and derive analytic
expressions for the power spectra. This study requires a new choice of vacuum state that takes into account
the preinflationary background geometry, a choice for which we adopt the so-called nonoscillating with
asymptotic Hamiltonian diagonalization (NO-AHD) prescription. Here, we apply the aforementioned
approximations to the investigation of scalar perturbations. We discuss two approaches to the quantization
of perturbations in loop quantum cosmology, namely the hybrid and the dressed metric approaches. We
improve previous approximations by including slow-roll corrections in the inflationary era. Moreover, for
the first time in the literature of the NO-AHD prescription, we compute numerically the primordial power
spectra for the two considered approaches, and show that the analytic estimations are remarkably accurate
for all observable modes. We also discuss the similarities and differences between the spectra obtained with

those two approaches.

DOI: 10.1103/PhysRevD.110.043508

I. INTRODUCTION

The cosmological microwave background (CMB) is
an important tool to explore the physics of the early
Universe [1]. Among the observables available in the
CMB, the angular power spectrum is especially important
given the precision that we have attained in its observations
and the amount of information that can be extracted from
it [2—4]. Although these observations have provided strong
support to the standard inflationary models of general
relativity (GR), there exist anomalies at large angular scales
that reveal some tensions with those models [3,5]. This is
the case of the power suppression anomaly, the lensing
amplitude anomaly, or the parity anomaly [6-9]. It has been
suggested that these tensions may indicate new physics
arising from a nonstandard inflationary evolution or from
preinflationary epochs [10,11]. This includes the possibility
of quantum gravity effects in the very early stages of our
Universe. In this context, quantum geometry corrections
originated from loop quantum gravity (LQG) have attracted
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an increasing interest. LQG is a nonperturbative program
for the quantization of GR [12,13]. Its application to
cosmological scenarios, like those of relevance for the
study of the CMB, is usually called loop quantum cosmol-
ogy (LQC) [14]. One of the results of LQC is the existence
of quantum states peaked on effective trajectories that avoid
the cosmological singularity, replacing it with a bounce that
connects a contracting cosmology with an expanding
one [14,15]. These effective trajectories differ from cos-
mological solutions in GR only near the bounce (typically
for matter energy densities approaching a critical density of
Planck order, p,., which is the maximum allowed in LQC
and which is reached precisely at the bounce [16]).
Considerable attention has been paid to the possibility of
extracting predictions in LQC for the angular power
spectrum of temperature anisotropies in the CMB, with
an eye on falsifying the theory with observations (see, e.g.,
Refs. [6-9,17-21]). For this goal, understanding the
behavior and evolution of primordial scalar perturbations
in LQC is crucial. These scalar perturbations contribute
also to other observables, such as the E-mode polarization
and the cross-correlation between E modes and temper-
ature. Furthermore, lensed scalar E modes induce B
polarization, additional to the one produced by tensor

© 2024 American Physical Society
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perturbations. Therefore, missions designed to measure
these other observables can provide valuable complemen-
tary information [22-24].

Primordial scalar perturbations can be described in terms
of the so-called Mukhanov-Sasaki gauge invariant [25-27],
which follows a field equation that can be interpreted as a
generalized wave equation with a background-dependent
mass. This equation differs from the dynamical equation of
tensor perturbations (written in a suitable form) by certain
contributions of the inflaton potential to the mass [28-30].
On the other hand, when LQC effects are considered, the
mass is modified with quantum geometry corrections. The
corrections do not coincide for tensor and scalar perturba-
tions, i.e., the difference between the masses of these
perturbations is changed by quantum contributions. As a
consequence, the imprints transmitted to the primordial
power spectrum (PPS) are not exactly the same for these
two types of perturbations.

Several approaches have been suggested within LQC to
study primordial perturbations [31-38]. Two of these
approaches respect the hyperbolicity of the equations of
the perturbations in the ultraviolet sector and do not distort
the relativistic dispersion relations. The main effect of the
quantum geometry is to modify the background-dependent
mass [39]. These are the hybrid [19,31,32,40-42] and the
dressed metric [17,18,33,34,43] approaches. The hybrid
approach treats the whole system, composed of the back-
ground and the perturbations, as a constrained canonical
system [32]. The resulting Hamiltonian constraint is quan-
tized combining a loop quantization of the background with a
conventional Fock quantization of the perturbations. Using a
kind of mean field approximation, one can extract propaga-
tion equations for the perturbations from this constraint. For
quantum states of the background that are peaked on an
effective trajectory of LQC [16,44], these equations for the
perturbations reproduce the equations of GR except for
changes in the mass term, which is now obtained by
evaluating the canonical background variables on the effec-
tive solution described by the peak [32,39]. In contrast, in the
dressed metric approach one first quantizes the background
geometry, considers peaked states, assigns to their peaks a
metric that is dressed with quantum corrections, and lifts this
metric to the phase space of the perturbations [17,34]. The
resulting propagation equations differ again from those of
GR inasmuch as the dressed metric is not a classical
relativistic solution. Furthermore, they also differ from the
hybrid equations because the classical relations between
canonical momenta and time derivatives are not respected by
the quantum modifications encapsulated in the effective
dynamics of LQC, which governs the evolution of the
dressed metric [39]. Consequently, in the regime where
quantum effects are important, the two approaches result in
distinct background-dependent masses for the perturbations.

In order to determine the cosmological perturbations at
the end of inflation, in addition to their propagation

equations, we need initial conditions for them. These
conditions are usually identified as corresponding to a
natural vacuum state for the perturbations [45]. In standard
slow-roll inflation, a natural choice of vacuum is the
Bunch-Davies state, invariant under the symmetries of
de Sitter spacetime and with a good ultraviolet
(Hadamard) behavior [46]. In LQC scenarios, however,
we must not expect that the Bunch-Davies state be a
reasonable choice of vacuum state, at least for modes able
to feel the quantum effects of the preinflationary stages near
the bounce. These modes have wavelengths in those epochs
of the order of the Planck scale [17]. A vacuum that is
especially well adapted to the background dynamics in
these situations is the nonoscillating with asymptotic
Hamiltonian diagonalization (NO-AHD) state [47,48].
The modes of this state diagonalize the Hamiltonian of
the perturbations in the asymptotic limit of infinitely large
wave numbers (ultraviolet modes). In addition, the state
leads to a power spectrum without rapid oscillations,
suppressing spurious power contributions that could arise
from an average of those oscillating contributions [49]. In
this work, we will adopt this choice of vacuum state.

The numerical evolution of the perturbations and the
determination of the power spectrum when that evolution
freezes is demanding and time consuming. Owing to this, it
is very convenient to develop approximation methods to
estimate the results in an analytic manner. Such approx-
imations have been proposed in the literature, first for the
hybrid approach [49] and more recently for the dressed
metric case [50]. The strategy consists of dividing the
evolution from the bounce until the end of inflation in
several intervals where one can approximate the back-
ground-dependent mass in such a way that an analytic
resolution of the equations is possible. The approximations
are tailored to the behavior of the effective LQC back-
grounds that have phenomenological interest in the dis-
cussion of the CMB. These backgrounds suffer a number of
e-folds compatible with observations and lead to quantum
corrections in the power spectrum that can affect the modes
measurable today [18]. It turns out that these backgrounds
have an inflaton energy density at the bounce dominated by
the kinetic contribution, and experiment short-lived
inflation [18,45,49,51].

Strictly speaking, the aforementioned approximations
were originally conceived for tensor perturbations, but are
applicable to scalar perturbations at the price of ignoring
the influence of the potential, except in order to sustain a de
Sitter inflation. In the case of the hybrid approach, however,
the approximations have recently been improved in
Ref. [52] to include the effect of the inflaton potential,
both at first order during kinetic domination (in a kind of
perturbative treatment of this potential) and in slow roll
during inflation. In the present work, and still adhering to
the NO-AHD proposal to select the vacuum state, we are
going to consider exclusively scalar perturbations and adapt
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the available approximations to simplify the analytic
description as much as possible, although retaining slow-
roll corrections in the inflationary regime to discuss the
dependence on the inflaton potential. We will apply these
improved approximations not only to the hybrid approach,
but also to the dressed metric approach, completing the
study of the scalar perturbations and of the analytic
evaluation of their power spectrum in both cases.
Furthermore, for the first time in the literature, we will
compute numerically the PPS for both approaches adopting
the NO-AHD vacuum. This will allow us to check the
goodness of our approximations and demonstrate that they
capture the most relevant aspects of the dynamics of the
perturbations. Indeed, we will prove that the analytic
estimations are remarkably accurate. We will also compare
the power spectra obtained with each of the two considered
quantization approaches within LQC. For convenience, in
this work, we will carry out our analytic and numerical
calculations using a quadratic inflaton potential, but our
study can be generalized to other potentials.

The structure of the rest of this paper is as follows. In
Sec. II we present the class of backgrounds of interest
in effective LQC that we are going to consider, and the
initial conditions on the perturbations corresponding to the
NO-AHD state. Then, we study the corresponding back-
ground-dependent mass, its approximations, and the exact
resolution of the mode equations for the scalar perturba-
tions, both for the hybrid and the dressed metric
approaches. Section III is devoted to the analytic and
numerical computation of the PPS. This numerical com-
putation is novel in LQC for the NO-AHD vacuum. We
compare the resulting spectra, studying also the two
considered approaches. Finally, Sec. IV contains the con-
clusions. Details of the numerics are described in the
Appendix. We use Planck units in our calculations, setting
G, ¢, and 7 equal to 1.

II. BACKGROUND-DEPENDENT MASS

In this section, we summarize the most relevant results
about the dynamics of the effective backgrounds in LQC
with phenomenological interest for the CMB and about the
background-dependent mass of the scalar perturbations
corresponding to such backgrounds in the hybrid and the
dressed metric approaches (for further details, see, e.g.,
Refs. [18,32,39]). We also apply and improve the approx-
imations to this mass discussed in Refs. [49,50].

A. The background

We consider backgrounds that possess a homogeneous
and isotropic Friedmann-Lemaitre-Robertson-Walker met-
ric and contain a homogeneous scalar inflaton field ¢(¢),
subjected to a potential V(¢), which we particularize for
convenience to a quadratic potential of the form m?>¢?/2.
This inflaton potential can be generalized to other

cases without serious obstructions, and even our ana-
lytic calculations can be reproduced for certain families
of polynomic or exponential potentials, including the
Starobinsky potential [53]. Motivated by phenomenologi-
cal reasons, in order to get results that include reason-
able quantum corrections while retaining compatibility
with observational data [18,49], and also for easy com-
parison with previous computations available in the
literature [17,45,49,52], we take an inflaton mass equal
to m = 1.2 x 107 in Planck units. The energy density and
pressure of the scalar field are p = V(¢) + (¢')?/(2a*) and
P = p —2V(¢), respectively, where the prime denotes the
derivative with respect to conformal time. We reserve
the dot symbol for the proper time derivative. The back-
ground dynamics in effective LQC is given by the
equations [17,19]

" 4
“_:_”a2p<1 +2£> —47za2P<] —23). (2.1)
a 3 ¢ Pe

The first one is a modified Friedmann equation that can be
treated as a constraint in (unperturbed) effective LQC. The
second equation can be obtained from this first one by
derivation, using the local conservation law for the inflaton
energy density.

As we mentioned in the Introduction, the inflaton energy
density reaches a maximum at the bounce, equal to
pe = 3/(87y*A), where y is the Immirzi parameter [54]
and A = 4\/3xy is the area gap, derived from the area
spectrum of LQG [12,13]. Here, we take the usual value
y = 0.2375, motivated by black-hole entropy calculations
in LQG [12]. We can integrate the background dynamics
starting at the bounce, where the derivative of the scale
factor vanishes, and set the scale factor equal to 1 there, as a
reference scale. The modified Friedmann equation provides
then a relation between the initial value of the inflaton and
its conformal time derivative. Hence, we only need to
choose an initial value for our inflaton field. For concrete-
ness, we take ¢, = 0.97, a value that leads to effective
background solutions of phenomenological interest and has
been studied in several previous analyses [18,45,49], in
consonance with our comments above about the inflaton
mass. The results are not qualitatively affected if we
slightly change this initial value.

B. Approximate analytic solution
for the hybrid approach

In the case of the hybrid approach to the quantization
of scalar perturbations within LQC, the background-
dependent mass s©) has the form [32,39]
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PP a3p P

(2.2)

The comma in the potential stands for the derivatives with
respect to the inflaton. The Fourier modes of the scalar
perturbations satisfy the equation u + (k> + s, = 0,
where k is the (angular) wave number of the mode.

Two facts are crucial to introduce convenient approx-
imations to the above mass. First, the mass is almost
indistinguishable from its counterpart in GR away from the
region surrounding the bounce. In other words, quantum
geometry effects are only relevant during a short interval
near the bounce. Second, the influence of the inflaton
potential is important only after the onset of inflation, once
the epoch of kinetic domination has finished.

This kinetic era can be subdivided into two, namely, the
aforementioned interval with non-negligible quantum cor-
rections around the bounce, and a subsequent classical
relativistic period with kinetically dominated evolution.
During these two periods, we can ignore the presence of the
inflaton potential, for backgrounds of interest in effective
LQC. Therefore, the mass of the scalar perturbations can be
treated in these periods with the same approximations
discussed in Refs. [49,50] as if they were tensor perturba-
tions. Kinetic domination is followed by an inflationary era,
where the potential plays a key role. Even though very
close to the onset of inflation the expansion is not yet in a
slow-roll regime (in a restricted period when the evolution
transitions from kinetic domination to inflation), the slow-
roll approximation is quite successful in incorporating the
global effect of inflation on the perturbations. In particular,
it reflects the main imprint of the inflaton potential on the
perturbation modes before their dynamics freeze. Here, we
include such slow-roll corrections to the description of the
scalar perturbations, in contrast with the original approxi-
mation made in Ref. [49] where these corrections were
ignored. These corrections are essential to understand the
influence of the inflaton potential in the PPS and ultimately
discuss whether a specific potential is favored by obser-
vational data.

Let us start with the bounce epoch. In this first interval, a
Poschl-Teller potential provides a good approximation to
the effective background-dependent mass. The parameters
of the Poschl-Teller potential are fixed with conditions at
the bounce and at the end of the interval, as it is done in
Refs. [49,50]. Also, as in those references, the end of the
interval is chosen to optimize the approximation to the
mass in the union of this bounce era and the following
classical interval with kinetic domination. For our initial
condition on the inflaton, this leads to a proper time of
to = 0.4 Planck units [49]. The exact general solution to the
mode equation for the scalar perturbations with a Poschl-
Teller mass is known analytically. We have to select the

specific solution that corresponds to our choice of vacuum
state. As commented in the Introduction, a Bunch-Davies
state ceases to be a natural choice of vacuum when we
consider the preinflationary dynamics of LQC and, in
particular, the bounce. Other possible choices of vacuum
have been proposed in LQC [55-58]. In this work, we
adhere to the NO-AHD proposal [47], which selects a state
with modes that diagonalize the Hamiltonian of the
perturbations in the ultraviolet (and ultimately must lead
to a power spectrum without rapid oscillations). With the
Poschl-Teller approximation and imposing the asymptotic
diagonalization condition, restricted to the bounce epoch, it
is possible to determine the vacuum state, as shown in
Ref. [49]. This state determines in turn the following
(normalized) mode solutions:

| . |
PT—  [x(1 = x)] 5 Fy (e, =2 e - Z 125,
T = (1= (e, = e =1 =),

where we have chosen the origin of time at the bounce, , F;
is a hypergeometric function, and

1 _ arcosh(a)

:7’ a
1 + e 2m r]g
1 32

Here, 7, is the conformal time at the end of the bounce
interval (corresponding to the proper time ¢;), and a is the
scale factor at that moment. Evaluating this solution and its
derivative at 7, and requiring continuity in the modes up to
first derivatives, we then obtain initial values to integrate
the modes in the classical period following the bounce.

This second interval is characterized by kinetically
dominated dynamics. Thus, the influence of the potential
can be ignored. In addition, quantum effects are already
negligible, and the study can be carried out as in GR.
Therefore, the mass of the scalar perturbations can be
approximated as in the tensor case with Kkinetic
domination [49], namely, s6) = sgl){ with

X

s

(2.4)

s 1 _ 1
son(n) = AR + (2H0a0>7 (2.5)

where H is the Hubble parameter at the initial time of this
interval, n7,. With the above mass, the general solution to the
mode equation is

ny

UER() =\ TICHG (69) + Dy (K5)). (2.6)

where H(()D and Héz) are the Hankel functions of zeroth

order and of the first and second kind, respectively.
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The integration constants C, and D, are fixed by our
continuity requirements with the mode solution 4T at the
bounce (Péschl-Teller) period. Calling k = k/(2agH,), we
obtain [49]

1 8Hya N
Ce=—m> {\/ OZ0uET o) — DHE (k) |
HY (k) LV 7

(2.7)

. 3 A o
Dy=i [ngl)(k)ﬂlzzT(ﬂo) - HodoHél)(k)ﬂl;T(ﬂo)
8Hodo
1) /%y
+ HY (R (no)). (2.8)

We place the beginning of the inflationary era when the
inflaton potential contribution to the energy density starts to
be of the same order as the kinetic term. We choose the
transition time to ensure a good approximation to the
background-dependent mass. More specifically, we set this
time at ; = 966, before the instant when the relative error
between the exact mass and the approximated mass in
kinetic domination starts to grow rapidly (see Fig. 1). It is
worth commenting that this choice, based on our numerical
analysis of the mass, differs appreciably from the corre-
sponding one in the fit of the mass for tensor perturbations

(discussed in detail in Ref. [59]). This difference is due to
the introduction of the new potential term ¢/ in the scalar
mass, which maintains its positivity for a longer interval
than in the tensor case.

Finally, we consider the inflationary period in
slow-roll approximation. The relevant slow-roll parameters
are [29,30] ey = V?¢/(16HV2) and 6y =V ,,/(8zV).

Defining v = /9 + 36¢y — 125, /2, the slow-roll approxi-
mation to the mass of the perturbations yields [29,52]

RO (2.9)
(’76 - 77)2

where 7, signals the end of inflation. The general mode
solution with this mass is [29,52]

(2.10)

where H ﬁl) and H f) are Hankel functions, now of order v.

The integration constants A, and B can be calculated by
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FIG. 1.

Top: numerical computation of the background-dependent mass s'*) for scalar perturbations (continuous blue line) and tensor

perturbations (dashed green line) in the hybrid approach, its numerical difference (dotted cyan line), and the approximated mass
obtained using a kinetically dominated regime in GR (dash-dotted red line). This background-dependent mass is defined in Eq. (2.2),
with vanishing potential contribution ¢/ for tensor perturbations, and its approximation is given by Eq. (2.5). Bottom: relative error
between the numerical and the approximated values of the mass for scalar perturbations. We see that the approximation to the
background-dependent mass is very good, with a relative error below 0.1 in most of the considered interval and which is always below
1.6, including conformal times close to the instant #; corresponding to the beginning of inflation, where this mass is actually very small.
We have taken y = 0.2375 and ¢y = 0.97 for the Immirzi parameter and the value of the inflaton at the bounce, respectively, and
considered a quadratic inflaton potential with mass m = 1.2 x 1076,
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imposing continuity of the modes up to the first derivative
at the matching point #; with kinetic domination, getting

Ay = —iy /%An [kHﬁ)] (kAn) — kH.?, (kAn)

()
H;” (kAn .7 7
B ﬁ} HR(n:) + l\/;;’H52>(kAn)ﬂfR(f7i),

An
(2.11)

and a similar equation for B} except for a global minus sign
and the interchange of first order Hankel functions by
second order ones and vice versa. Here, Anp =7, — ;. On
the other hand, normalization of the mode solutions
requires that R (u3R)" — (U3R)' (R)* =1 which, in
terms of the integration constants, amounts to the condition
|Bi|> = 1+ |A;|?>. The symbol = stands for complex con-
jugation. It is possible to check that this condition is
automatically satisfied if the mode solutions have been
normalized in any of the intervals preceding the inflationary
period, as we did. Then, substituting the above expressions
in the slow-roll solution, we obtain the scalar modes. Their
evaluation when the evolution freezes provides the PPS.

C. Approximate analytic solution for the
dressed metric approach

The dressed metric approach incorporates the most
important quantum effects on the homogeneous back-
ground in a metric corrected with quantum contributions,
and then describes the evolution of the perturbations as test
fields propagating on this dressed background. The back-
ground-dependent mass for scalar perturbations on effec-
tive solutions to LQC has the form [45]

4
56) :—?ﬂazp<l +2ﬁ) +4m2P(1 —2ﬁ) +V, (2.12)
c pC
where
48 967 ||V
V=a [V,¢¢+48ﬂv——”v2—aa —”W—"’} (2.13)
p p a

Here o, is the sign of the product between ¢’ and the
canonical momentum of the scale factor. This expression
differs from its counterpart in the hybrid case. The differ-
ence is significant in the interval around the bounce, where
quantum effects are relevant, and dilutes becoming negli-
gible as soon as the dynamics enter a classical regime in the
interval of kinetic domination. Therefore, the mass of the
scalar perturbations can be treated in the same way and with
the same approximations as in the hybrid analysis after the
bounce period. Obviously, this happens also for the mode
solutions. In the bounce interval, on the other hand, the type
of Poschl-Teller approximation employed in the hybrid

approach is still applicable if we change the parameters of
the Poschl-Teller potential and add a constant to it. This
constant adapts the approximation to the fact that the mass
of the dressed metric case turns out to change sign during
the stages with important quantum effects. It starts being
negative at the bounce and flips signs before the classical
regime with kinetic domination starts. Our procedure
allows us to extend the NO-AHD proposal to the dressed
metric approach. This is of utmost importance if we want to
compare the influence of the quantization approach used in
LQC while adhering to the same criterion for the choice of
vacuum. It also serves to avoid prejudices favoring other
vacuum proposals [6-9] as more suited to the dressed
metric approach. The inclusion of the additive constant in
the Poschl-Teller mass does not change much the analytic
solution for the scalar modes: it only implies a redefinition
of the wave number and the variable x that appear in
Eq. (2.3), and a change of the constants c. in that equation.
Actually, since the influence of the inflaton potential is
negligible in the bounce period, the resulting formula for
the mode solution can be found in Ref. [50], where the case
of tensor perturbations in the dressed metric approach was
discussed.

The main difference in the inflationary stages with
respect to the hybrid approach is found in the specific
values of the constants A, and B, for the scalar mode
solutions. These constants are fixed by the continuous
matching (up to first derivatives) of the solutions through
the different evolution intervals, backward until we reach
the bounce period where the initial conditions for the
modes are set by the choice of a NO-AHD vacuum state.
Therefore, changes in those initial conditions involve a
subsequent change of A, and B,, which are the constants
that determine the PPS when the evolution of the modes
freezes during inflation.

III. PRIMORDIAL POWER SPECTRUM

With our approximated analytic mode solutions, we can
now estimate the PPS. For this, we only need to evaluate the
amplitude of the solutions at the moment 7, when the
variation of all relevant modes has frozen. This happens
approximately when the expansion has reached 30 e-
folds [45]. The PPS of the scalar perturbations is given
by [29,30]

R Junp)P

Pr = 27% z(ny)?

(3.1)

where z = a’¢'/d’, which in the slow-roll regime becomes
7> = d’ey/(4n). We can also use the slow-roll approxi-
mation to rewrite the mode solution (2.10) in a much easier
form, because the argument of the Hankel functions is
much smaller than 1, at least for wave numbers in a
sufficiently large range which includes the observable

043508-6



ANALYTIC AND NUMERICAL STUDY OF SCALAR ...

PHYS. REV. D 110, 043508 (2024)

window. We employ the asymptotic behavior of the Hankel
functions [60] to rewrite

k(n, —ny)

1 —2v
R T e I

(3.2)

where I is the gamma function. The corresponding analytic
expression of the PPS is Py = C,k>~2*|A, — B,|?, where

1 n.—n Ne —Nf\ ™2
C=55 2 [0(w)? (Tf> . (33)
e eyay

Here, ay is the scale factor at the conformal time 7.
Even if we have determined our mode solutions starting
with a state selected by the asymptotic Hamiltonian
diagonalization condition, the fact that we needed approx-
imations to characterize it analytically, including that we
restricted first our considerations to the bounce period and
adopted a Poschl-Teller potential there, introduces spurious
oscillations, accumulated during the whole interval of
evolution. However, these spurious oscillations are now
easy to remove, as explained in Ref. [49], arriving at last at
a genuine NO-AHD state. This can be accomplished by a
Bogoliubov transformation which eliminates the rapidly
varying phases of the integration constants A; and B;. Note
that the absolute values of these constants also vary with the
wave number, but this change is smooth and slow,
permitting a clear distinction of variation scales with
respect to the fast oscillations of the phase. The desired
Bogoliubov transformation (that indeed respects the nor-
malization condition |By|?> =1+ |A|?) can be directly
implemented by means of the correspondence

Ay = A = A, B, — By = |By/.

(3.4)
The analytic expression for the NO-AHD PPS is thus

Pr(k) = CE72(|A¢| = [By])*. (3.5)
This expression retains the main information about the
scale dependence of the original spectrum that was not a
superimposed rapid oscillation. It is easy to realize that this
PPS is the envelope of the minima of the oscillating one.

On the other hand, we need to test the goodness of this
analytical approximation to the PPS to be sure of its
reliability. In order to achieve this goal, we have numeri-
cally calculated the solutions to the mode equation of the
scalar perturbations, and evaluated the PPS with these
solutions. This is the first numerical investigation of these
questions in LQC with the NO-AHD proposal. Our
numerical computations start just after the bounce period,
at the time when the kinetic period begins, therefore

employing the Poschl-Teller approximation around the
bounce. The reason why our numerical integration relies
on this first approximated period is because we are able to
determine explicitly the state of the perturbations selected
by the NO-AHD prescription only by these means. The
value of the approximated mode solutions for this choice of
vacuum at the end of the short interval with quantum effects
is taken as our initial data for the numerics. This numerical
integration is performed over the whole of the dynamical
evolution until the moment when the relevant modes freeze.
In the numerical case, the fact that one does not need to
complete the evolution until the end of inflation, but just
until the beginning of this freezing regime, is very
important, because this considerably reduces the compu-
tation time. The only remaining step is to use the defi-
nition (3.1) of the PPS to evaluate the spectrum with our
numerical results. For convenience, we absorb the overall
constant C,, [see Eq. (3.3)] in a normalized version of the
PPS. It is worth emphasizing that this PPS has been
calculated starting from an asymptotic diagonalization of
the Hamiltonian of the perturbations restricted to the
bounce period, instead of considering the whole evolution
interval, and it is, therefore, the numerical counterpart of
our oscillating analytic spectrum, previous to the removal
of spurious oscillations by means of an adjustment of the
initial state via a suitable Bogoliubov transformation. More
details about this numerical computation are given in the
Appendix.

We can easily see that the NO-AHD analytic PPS for the
hybrid case (obtained with the final Bogoliubov trans-
formation) corresponds to the envelope of the minima of
the oscillating PPS, as we commented above (see Fig. 2). In
fact, we also see that this NO-AHD PPS fits very well the
minima of the numerical PPS, both for the hybrid and the
dressed metric approaches, displayed respectively in Figs. 2
and 3. Hence, our numerical analysis demonstrates the
remarkable goodness of our analytic approximations and
proves that they capture the relevant physics. Nevertheless,
the periods of the rapid oscillations seem slightly different in
the infrared region when we compare the numerical and the
oscillating analytic PPS. This discrepancy may come from
the transition epoch between the kinetic dominated regime
and the inflationary epoch, where our analytic approxima-
tion is less accurate. In addition, we see that far in the
infrared and for the dressed metric approach, the match of
the NO-AHD analytic PPS with the minima of the numerical
PPS and of the oscillating analytic PPS is not evident. This
might be a consequence of the fact that, in this region,
the superimposed oscillations cease to vary much faster than
the amplitudes |A;| and |By| of the modes. In practice,
however, this region is not relevant for observations, and
the accuracy of the approximations is not quantitatively
crucial there. In this sense, let us comment that the range
of observable modes [3] covers, in a rough estimation,
the interval 107™* Mpc™ < k/ayoq0y S 107" Mpc™!. This
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FIG. 2. Normalized PPS for the hybrid approach. We show the numerical computation of the oscillating PPS (continous red line), the
analytic approximation to this PPS (dotted cyan line), and the analytic approximation to the PPS of the NO-AHD vacuum (dashed green
line), obtained with a Bogoliubov transformation. We include an inset enlarging the region 1 < k < 10 (framed in the PPS) to see the
details when power suppression appears. We have taken y = 0.2375 and ¢y = 0.97 for the Immirzi parameter and the value of the
inflaton at the bounce, respectively, and considered a quadratic inflaton potential with mass m = 1.2 x 1076,
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FIG. 3.

Normalized PPS for the dressed metric approach. We show the numerical computation of the oscillating PPS (continous blue

line), the analytic approximation to this PPS (dotted orange line), and the analytic approximation to the PPS of the NO-AHD vacuum
(dashed violet line), obtained with a Bogoliubov transformation. We include an inset enlarging the region 3 < k < 30 (framed in the
PPS) to see the details when power suppression appears. We have taken y = 0.2375 and ¢y = 0.97 for the Immirzi parameter and the
value of the inflaton at the bounce, respectively, and considered a quadratic inflaton potential with mass m = 1.2 x 107,

interval depends on the present value of the scale factor,
@yoday> Which varies with the expansion experienced by the
background, starting from a unit scale factor at the bounce.
Those phenomenologically interesting background solu-
tions with more e-folds can reach large values of the scale
factor nowadays, with a corresponding lower bound for the

window of observable modes ranging in the interval
[1071,1] [18], which excludes the far infrared region
considered above. Let us also notice that our analytic and
numerical PPS become indistinguishable at ultraviolet
scales, where the tilt coming from the slow-roll inflationary
process is clearly visible.
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FIG. 4. Comparison of the normalized PPS for the hybrid and the dressed metric approaches. We show the numerical computation of
the oscillating PPS for the hybrid approach (dotted red line) and for the dressed metric approach (continuous blue line), as well as the
analytic approximations to the PPS of the NO-AHD vacuum for the hybrid approach (dashed green line) and the dressed metric
approach (dash-dotted violet line). We include an inset enlarging the region 1 < k < 30 (framed in the PPS) to see the details when
power suppression appears. We have taken y = 0.2375 and ¢, = 0.97 for the Immirzi parameter and the value of the inflaton at the
bounce, respectively, and considered a quadratic inflaton potential with mass m = 1.2 x 107°.

On the other hand, comparing the PPS of the two
considered quantization approaches (see Fig. 4), we see
an effective cutoff with power suppression at wave numbers
that may well lie at the observable window, according to
our previous discussion. This cutoff is not the same in both
approaches. Actually, it is a bit larger in the dressed metric
approach. However, we get more power suppression in the
hybrid case, and this suppression is also steeper around the
corresponding cutoff in this quantization approach. Finally,
we emphasize that the PPS of the two approaches become
almost identical for large wave numbers, at low angular
scales.

IV. DISCUSSION

In this work, we have computed the PPS of scalar
perturbations within the framework of LQC. We have
investigated two different approaches to the quantization
of primordial perturbations that respect the hyperbolicity of
the field equations in the region of modes with large wave
number. These are the hybrid and the dressed metric
approaches. The field equations for the scalar perturbations
reduce in both cases to (Fourier) mode equations of
generalized harmonic oscillator type, with a background-
dependent mass that differs in each of the two considered
approaches. For backgrounds in effective LQC of phenom-
enological interest, in the sense that they are compatible
with observations but may lead to observable modifications
with respect to the standard inflationary predictions in GR,
we have seen that the mass of the scalar perturbations

remains positive in the case of the hybrid approach all the
way from the bounce until the onset of inflation, while it
starts in negative values at the bounce and then changes its
sign in the dressed metric approach.

The masses of the two approaches are identical in
practice as soon as the quantum geometry effects on the
background can be ignored, something that happens soon
after the bounce. Therefore, once this bounce period
finishes and the dynamics enter the classical domain, the
mass of the perturbations can be treated as coincident in
hybrid and dressed metric LQC and in GR. On the other
hand, for the considered family of backgrounds in effective
LQC with a suitable behavior, the influence of the inflaton
potential is negligible until the beginning of the inflationary
era. Consequently, both in the quantum bounce epoch, and
in the classical regime until the onset of inflation, we can
analyze the propagation of the perturbations ignoring the
potential, adopting a kinetically dominated evolution.
These considerations have allowed us to introduce a
splitting of the evolution in different periods where we
have been able to introduce manageable approximations for
the background-dependent mass, leading in turn to analytic
solutions to the mode equations in both of the two studied
quantization approaches. Compared to previous analyses in
the literature (see Refs. [49,50]), we have improved the
transition times between the different periods (by benefit-
ting from our new numerical calculations of the mass for
the scalar perturbations) and introduced in both approaches
a slow-roll approximation in the inflationary era which
incorporates the effect of the inflaton potential, leading in
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particular to a tilt in the PPS for modes with large wave
number.

The integration of the mode equations requires initial
conditions for the perturbations, which are usually given in
terms of a choice of vacuum state. Typically, in standard
slow-roll inflation, this choice is provided by the Bunch-
Davies state. However, the preinflationary dynamics of
LQC and the existence of a bounce produce an evolution of
the Hubble horizon radically different from that of slow-roll
inflation, invalidating the privileged role of the Buch-
Davies state in these scenarios with quantum effects, at
least for modes with a wave number of the order of the
curvature scale at the bounce. To resolve this problem, we
have adhered to a recent proposal for the choice of a
vacuum, based on an asymptotic diagonalization of the
Hamiltonian of the perturbations at large wave numbers.
This proposal selects states without undesired superim-
posed oscillations. In fact, if this property is destroyed in
the evolution by the impossibility of optimally adapting the
selected state to all the details of the dynamics, it is possible
to restore it and eliminate the spurious oscillations with a
convenient Bogoliubov transformation, as we have shown.
We have determined this so-called NO-AHD state with
certain approximations around the bounce, and used it to
provide initial conditions for the perturbations that have
been evolved both analytically and numerically during the
rest of the time span until the dynamics of the (relevant)
modes freeze during the inflationary epoch. This numerical
computation for the NO-AHD vacuum is totally novel
in LQC.

As we have commented, in addition to our approximated
methods, we have employed numerical integration to
calculate the mode solutions and the corresponding PPS.
The main conclusion of our study is that the analytic
approximations provide a remarkably satisfactory estima-
tion of the nonoscillating PPS for all relevant scalar modes,
in both of the quantization approaches considered within
LQC. Therefore, our numerical computation demonstrates
that our analytic approximations can be used to obtain an
excellent description of the PPS, avoiding demanding
numerical simulations. Even so, before removing the
undesired oscillations in the spectrum, there may exist
some minor discrepancies in the oscillation frequency in
the infrared region, which may be attributed to the
transition from kinetic domination to inflation, which is
the stage when our approximations are a little less
accurate [52]. On the other hand, our results also allow
us to compare the spectra of the hybrid approach and the
dressed metric approach. For both of them, we find power
suppression at scales that may lie on the observable
window. Notably, this power suppression is greater and
steeper around the effective cutoff of the hybrid approach.
Finally, for large wave numbers, all the numerical and
analytic spectra of the two approaches become almost
indistinguishable, and reproduce the results of standard

slow-roll inflationary models in GR, including a tilt that
depends on the inflaton potential.

This work opens new avenues for future parametrizations
of the PPS, dependent basically on the initial condition of the
inflaton and the parameters of the background (like those in
the inflaton potential or those determining the end of each
regime in our approximations). This type of parametrization
is essential for handling computations of the different power
spectra and correlation functions of the perturbations, with
an eye on their confrontation with observational data. In
particular, this comparison should involve statistical analy-
ses to find the best fittings and clarify the significance of the
predictions. We consider the present work as a cornerstone
for further research in this direction.
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APPENDIX: NUMERICAL COMPUTATION
OF THE PPS

The first step to numerically calculate the PPS is to
integrate the evolution of the background and compute with
it the exact value of the effective mass of the perturbations,
both for the hybrid (2.2) and the dressed metric (2.12)
approaches. Since the scale factor changes very fast in
conformal time during inflation, we integrate its dynamics
in proper time, which requires less computational effort.
Thus, we perform a numerical integration of the Friedmann
equation and the energy conservation condition for the
inflaton, from the bounce until the end of inflation.
Actually, we split this numerical integration into two parts.
Using a Runge-Kutta method of order 4, we first integrate
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with high precision around the bounce, in the interval
[0, 100], and then we deal with the rest of the evolution
employing an Adams-Bashforth-Moulton method, until the
proper time ¢, = 10® that approximately marks the end of
the inflationary period. Inspecting the mass of the pertur-
bations resulting from this integration of the background
and comparing it with its analytic estimate allows us to
improve in particular the transition times between the
different stages of the dynamics, reducing the error of
our approximations to the effective mass.

Once the background is determined numerically, we
can proceed to integrate the mode equations for the
dynamics of the perturbations. As we have commented
above, we fix the initial state of the perturbations using a
Poschl-Teller approximation to the effective mass in a
brief epoch around the bounce, shorter than a Planck
second, imposing in this epoch the NO-AHD vacuum
state, which can be found analytically. Then, we start the
numerical integration with these data, beginning with the
next epoch of kinetic domination. Following the same
strategy used with the background, we integrate the
mode equations in proper time. The conditions at the
matching time #, between the bounce epoch and kinetic
domination are

-1 —hy (to) i (to)

i) =R (A

where the function /(7)) corresponds to the NO-AHD
vacuum at the considered time. Its detailed expression can
be found in Ref. [49], and we do not repeat it here. Again,
we divide the integration domain into two intervals, in
order to improve numerical performance. The first one is
chosen as [ty,3 x 10°], and approximately covers the
kinetically dominated period, while the second interval
is [3 x 10%,3.75 x 10°], and covers the inflationary regime
until the moment when the evolution of all relevant modes
is frozen. This happens around the time when the
expansion reaches 30 e-folds. For both intervals, we
perform the integration taking 4 x 107 points. This pre-
cision is enough to have a good numerical result in each of
the intervals. As a numerical check, the integration is
carried out with both an Adams-Bashforth-Moulton
method and a Runge-Kutta method of order 8. In both
cases, we obtain very similar results. On the other hand, in
principle we would have to perform the integration for
each possible mode k. Note that the evolution of modes
with large k will be more numerically demanding, because
they freeze later during inflation and therefore oscillate for
longer periods of time than modes with small k. To get
better control of this situation, we also split the integration
into two different sets of k’s, namely those smaller or
larger than unity, with the last set requiring a higher
computational cost. Finally, the integration of all modes is
performed with an absolute and relative tolerance of 10~°
in the integrators.
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