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In this work we analyze the evolution of the quantum mixmaster cosmological model within an effective
approach. In particular, we study the behavior of the scale factor and anisotropies of the theory, and
determine how it deviates from its classical counterpart due to quantum backreaction. Remarkably, we
determine that the effective evolution avoids the initial singularity. The semiclassical dynamic of the system
is obtained from a Hamiltonian in an extended phase space, whose classical position and momentum
variables are the expectation values of the corresponding quantum operators, as well as of quantum
dispersions and correlations of the system, and it is in this framework that we obtain semiclassical one-
particle trajectories.
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I. INTRODUCTION

In the mid-20th century Lifshitz discovered that as the
universe shrinks to regions of space close to the initial
singularity, spacetime is no longer isotropic [1]. Because of
this, the interest in anisotropic cosmological models
increased considerably during the past years [2–5]. One of
the most prominent results of these investigations is the
Belinski-Khalatnikov-Lifshitz (BKL) conjecture, stating
that, in a general way, it is possible to neglect the matter
terms near the initial singularity because, for them, time
derivatives are dominant over those with spatial derivatives;
the dynamics in this case is described by the Bianchi IX
model [6]. In recent years, a great variety of studies of
anisotropic models of the universe, based on this conjecture,
have been carried out [7–9]. The most general anisotropic
homogeneous model of the universe, based on the BKL
conjecture, is themixmaster [10]. It describes the behavior of
the universe near the initial singularity. The universe is
treated as a point particle moving through the anisotropies
space, subject to a time-dependent potential [11]. The studies
carried out on the classicmixmastermodel have shown that it
not only is singular but also has a chaotic behavior close to the
initial singularity [12–14]; therefore, a quantization scheme
is introduced in the anticipation of mitigating these issues.
Among the most interesting approaches in the analysis of
these quantum cosmological models are effective quantiza-
tion schemes based on loop quantum gravity [15] and
effective polymeric quantum mechanics [16], showing that

the initial singularity is removed and the chaos present in the
theory is reduced [17]. This shows the importance of
effective quantization approaches in analyzing complex
cosmological models, as the ones mentioned above.
Quantum effective methods in quantum mechanics allow

us to obtain an approximate solution of the whole system.
In particular, momenta quantum mechanics reduces quan-
tum systems to semiclassical ones, where the dynamics is
obtained from an effective Hamiltonian in an extended
phase space [18]. One of the most prominent features of
this method is that the notion of individual particle
trajectories is recovered, a characteristic not existing in
usual quantum mechanics. These trajectories describe the
evolution of expected values of position and momentum
operators, and of the (infinite many) quantum dispersions.
The versatility of application of this method has allowed the
study of a broad spectrum of quantum systems, ranging
from the relatively simple phenomenon of quantum
tunneling [19] to models of quantum cosmology [20–22].
In this work we obtain a system of effective equations of

motion for spatial anisotropies and the scale factor of
the mixmaster model, once we determine the effective
extended Hamiltonian. The interaction of the several
degrees of freedom of the system is encoded in an effective
potential, obtained in a direct way. In Sec. II we review the
more general aspects of the classical mixmaster model and
perform a canonical transformation to explicitly express the
Hamiltonian of the theory as a kinetic plus potential term.
In Sec. III we provide the formalism of momenta quantum
mechanics, and we apply this to the mixmaster model to
obtain the effective dynamics of the system. Finally, in
Sec. IV the semiclassical evolution is analyzed.
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II. CLASSICAL MIXMASTER MODEL

The interest in investigating the mixmaster model lies in
its representation as a general solution to Einstein’s
equations near the initial singularity [23]. Furthermore,
various studies have been conducted that provide substan-
tial evidence supporting the BKL conjecture [24–26]. We
will analyze the quantum model with an effective pre-
scription of quantum mechanics, so we start with a
discussion of the classical model. The most general
anisotropic cosmological model is the Bianchi IX, whose
metric is given by [11]

ds2 ¼ −N2dt2 þ gijσiσj; ð1Þ

whereN is the lapse function and σ are differential forms of
the three-sphere [27]

σ1 ¼ cosðψÞdθ þ sinðψÞ sinðθÞdϕ;
σ2 ¼ sinðψÞdθ − cosðψÞ sinðθÞdϕ;
σ3 ¼ dψ þ cosðθÞdϕ:

In particular, the metric gijðtÞ can be written in terms of the
Misner parameters α and β such that (1) is

ds2 ¼ −N2dt2 þ e2αðe2βÞijσiσj; ð2Þ

where α is the parameter determining the volume of the
universe and βij is a null trace matrix trðβijÞ ¼ 0 containing
the spatial anisotropies. The components of the matrix βij
satisfy the following equations [28]:

β11 ¼ βþ þ
ffiffiffi
3

p
β−;

β22 ¼ βþ −
ffiffiffi
3

p
β−;

β33 ¼ −2βþ; ð3Þ

where βþ and β− are the shape parameters defined as [22]

βþ ¼ −
1

2
ln

�
a3

ða1a2a3Þ1=3
�
;

β− ¼ 1

2
ffiffiffi
3

p ln

�
a1
a2

�
; ð4Þ

and a1, a2, a3 are the scale factors in each spatial direction.
On the other hand, the square root of the determinant of the
metric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

p
from Eq. (2) allows us to identify the

volume of the universe as the scale factor aðtÞ in terms of
the parameter α [11],

aðtÞ ¼ ða1a2a3Þ1=3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
¼ expð3αÞ: ð5Þ

The relation between the parameters α; βþ; β− with the
scale factor aðtÞ is [28]

αðtÞ ¼ 1

3
lnðaðtÞÞ;

βþðtÞ ¼
1 − P3

2
αðtÞ;

β−ðtÞ ¼
ffiffiffi
3

p
ðP1 − P2ÞαðtÞ; ð6Þ

wherePi are theKasner coefficients. For instance, to describe
a universe that expands in two directions, and contracts in
the other, the coefficients Pi are P1 ¼ P3 ¼ 2=3, and
P2 ¼ −1=3 [29]. Equation (5) shows that as α → −∞,
aðtÞ → 0, which corresponds to the initial singularity.
Once the Hamiltonian formulation for the Bianchi IX

model is introduced, the resulting model is called the
mixmaster. Its dynamics is determined by a Hamiltonian
constraintH, which is obtained through the variation of the
following action [28]:

I ¼
Z

dtðpαα̇þ pþβ̇þ þ p−β̇− − NHÞ; ð7Þ

where pα and p� are the conjugate momenta of α and β�
satisfying fα; pαg ¼ fβþ; pþg ¼ fβ−; p−g ¼ 1 [22]. H is
defined as

H ¼ k
3ð8πÞ2 e

−3αð−p2
α þ p2þ þ p2

− þ VÞ ¼ 0; ð8Þ

with

V ¼ 3ð4πÞ4
k2

e4αVðβþ; β−Þ; ð9Þ

where k ¼ 8πG and Vðβþ; β−Þ is the potential correspond-
ing to the Bianchi IX model defined as [30]

Vðβ�Þ ¼ e−8βþ − 4e−2βþ coshð2
ffiffiffi
3

p
β−Þ

þ 2e4βþ½coshð4
ffiffiffi
3

p
β−Þ − 1�: ð10Þ

This potential is a function of anisotropies βþ; β−, and is
graphically represented by equilateral triangles that evolve
in time as shown in Fig. 1. For the isotropic case the
potential, V ∝ e4αVðβ�Þ, can be negative; however, for
the region under study near the initial singularity where
α → −∞ it can be shown that the combination p2þþp2

−þV
is non-negative [29,30]. In general, the physical behavior of
all Bianchi universes within H is codified in the potential
term V, as defined by Eq. (9). Each Bianchi model
corresponds to a specific equipotential line [23].
The dynamics is obtained through the variation of (7)

with respect to each of the variables. The variation with
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respect to the lapse function N generates the Hamiltonian
constraint H ¼ 0. Solving for pα we have

−pα ¼ HIX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ V
q

: ð11Þ

From this expression one obtains the dynamics of
the universe represented as a point particle interacting
with the potential (10) in the space of anisotropies
ðβþ; β−Þ [27,30,31]. Each of the classical variables evolves
with respect to the parameter α. Equations of motion are
obtained from Poisson brackets between classical variables
(β�) and the Hamiltonian (11). Close to the initial singu-
larity, the particle experiences consecutive reflections as the
volume of the universe decreases [28]. Near the singularity
α → −∞, the potential in (9) becomes negligible and the
Hamiltonian is dominated only by the square root of the
kinetic term. The transition time between each interaction
becomes larger: oscillations take longer [22,32].
Using the Hamiltonian (11), equations of motion follow:

β̇þ ¼ pþ
HIX

;

β̇− ¼ p−

HIX
;

ṗþ ¼ 4
3ð4πÞ2
k2HIX

e4α½e−8βþ − e−2βþ coshð2
ffiffiffi
3

p
β−Þ

− e4βþðcoshð4
ffiffiffi
3

p
Þ − 1Þ�;

ṗ− ¼ 4
ffiffiffi
3

p 3ð4πÞ2
k2HIX

e4α½e−2βþ sinhð2
ffiffiffi
3

p
β−Þ

− e4βþsinhð4
ffiffiffi
3

p
Þ�: ð12Þ

This is a highly nonlinear, coupled system for the classical
anisotropies and their momenta, so we solve it numerically.
The evolution obtained is shown in Fig. 2.
Figure 2(a) shows that the trajectory of the universe

experiences reflections at the potential barriers. As the
particle moves away from the origin in the βþ; β− space, the
anisotropy of the model increases. Only when the particle
passes through the origin where βþ ¼ β− ¼ 0 does the
universe become completely isotropic. In Fig. 2(b) we
show the chaotic behavior of the model by plotting different
trajectories corresponding to different initial conditions.
On the other hand, in Fig. 3 we show a 3D plot in the

space ðα; βþ; β−Þ. This last simulation is similar to the one
obtained in [31].

FIG. 1. Parametric representation of the mixmaster potential.
Different equipotential lines correspond to different times.

FIG. 2. Trajectory of the particle in space ðβþ; β−Þ for different
values of Vðβþ; β−Þ. It is shown how the temporal dependence of
Vðβþ; β−Þ results in reflection in different equipotential lines.
(a) Initial conditions are βþ ¼ −0.1, β− ¼ 0.1, pβþ ¼ −3,
pβ− ¼ 1.28. Vðβþ; β−Þ ∼ expf−4αg. (b) Initial conditions are
βþ ¼ β− ¼ 0, pβþ ¼ 100; pβ− ¼ 8. Vðβþ; β−Þ ∼ expf−1.2αg.
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The effective evolution above is obtained in terms of
anisotropies β�; to better discuss quantum modifications to
the classical singularity it is useful, though, to obtain a
Hamiltonian in terms of the scale factor explicitly, and to
that end we consider a different expression of (11).
We use the following set of variables: q ¼ expfð3=2Þαg,
p ¼ 3

2
exp−fð3=2Þαgpα [33], and p0þ ¼ pþ=q, β0þ ¼ βþq,

p0
− ¼ p−=q, β0− ¼ β−q, with Poisson relations

fq; pg ¼ 9

4
;

fβ0þ; p0þg ¼ 1;

fβ0þ; p0þg ¼ 1: ð13Þ

The quantization scheme following these transformations is
physically well defined and can be consulted in more detail
in [34]. The use of the variables defined above in the
context of anisotropic cosmological models can be found
in [34–38]. Using (13) it is possible to decouple the
Hamiltonian (8) into a kinetic and potential term that
reduces to the uncoupled Hamiltonian K,

K¼ 1

24π

�
−
9

4
p2 þp02þ þp02

− þ 12π2q2=3Vðq;β0þ;β0−Þ
�
;

ð14Þ

where the transformed potential Vðq; β0þ; β0−Þ is given by

Vðq; β0þ; β0−Þ ¼ e−
8β0þ
q − 4e−

2β0þ
q cosh

�
2

ffiffiffi
3

p
β0−

q

�

þ 2e
4β0þ
q

�
cosh

�
4

ffiffiffi
3

p
β0−

q

�
− 1

�
: ð15Þ

In the isotropic limit, β0þ ¼ β0− ¼ p0þ ¼ p0
− ¼ 0,

Eq. (14) becomes

Kiso ¼ −
3p2

32π
−
3πq2=3

2
; ð16Þ

with only 1 degree of freedom q. From this, the classical
equations of motion for q and p are

q̇ ¼ −
27

64π
p;

ṗ ¼ 9π

4
q−1=3: ð17Þ

Since q ¼ expfð3=2Þαg, from (5) we know that q ¼ ffiffiffi
a

p
.

Therefore, q → 0 implies that a → 0 and LogðqÞ → −∞,
which corresponds to the initial singularity.

FIG. 3. Trajectory of the particle in space ðβþ; β−; αÞ. The
classical singularity is approached as α → −∞. (a) Initial con-
ditions are xð0Þ ¼ 0.1, yð0Þ ¼ 0.1, pxð0Þ ¼ −60, pyð0Þ ¼ 200.
(b) Initial conditions are xð0Þ ¼ 0.1, yð0Þ ¼ 0.1, pxð0Þ ¼ −80,
pyð0Þ ¼ 200. (c) Initial conditions are xð0Þ ¼ 0.1, yð0Þ ¼ 0.1,
pxð0Þ ¼ −30, pyð0Þ ¼ 200.
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On the other hand, the equations of motion obtained
from (14) are

q̇ ¼ −
27

64π
p; ṗ ¼ −

3π

4

e
−8β0þ

q

q
4
3

ðf − gÞ;

β̇0þ ¼ 1

12π
p0þ; ṗ0þ ¼ −

4πe
−8β0þ

q

q
1
3

h;

β̇0− ¼ 1

12π
p0

−; ṗ0
− ¼ 4

ffiffiffi
3

p
πe

−2β0þ
q

q
1
3

j; ð18Þ

where f, g, h, and j are functions of q; βþ, and β−
defined as

f ¼ −4e
6β0þ
q

�
ð3β0þ þ qÞ cosh

�
2

ffiffiffi
3

p
β0−

q

�

− 3
ffiffiffi
3

p
β0− sinh

�
2

ffiffiffi
3

p
β0−

q

��
þ ðqþ 12β0þÞ;

g ¼ −2e
12β0þ
q

�
ðq − 6β0þÞ

�
1 − cosh

�
2

ffiffiffi
3

p
β0−

q

��

þ 6
ffiffiffi
3

p
β0− sinh

�
4

ffiffiffi
3

p
β0−

q

��
;

h ¼ e
6β0þ
q cosh

�
2

ffiffiffi
3

p
β0−

q

�
þ 2e

12β0þ
q sinh2

�
2

ffiffiffi
3

p
β0−

q

�
− 1;

j ¼ sinh

�
2

ffiffiffi
3

p
β−

q

�
− e

6βþ
q sinh

�
4

ffiffiffi
3

p
β−

q

�
: ð19Þ

The numerical evolution of the anisotropies βþ; β− for
the above system is shown in Fig. 4. This evolution shows a
consistency with the behavior of trajectories obtained in
Fig. 2. The main difference between (11) and (14) is the
explicit dependence on the factor q related with the volume
of the universe.

III. EFFECTIVE DYNAMICS OF THE
MIXMASTER MODEL

A. Effective momenta quantum mechanics

In usual quantum mechanics, the Schrödinger equation
determines the evolution of the system: all the information
is encoded in the wave function, and classical variables are
now operators. Within this Schrödinger representation, the
concept of the position of a single particle is absent,
therefore, trajectories that determine its evolution cannot
be constructed. It is possible, however, with a generaliza-
tion of the Ehrenfest theorem, to obtain an effective
description by means of a Hamiltonian HQ ¼ hĤi, which
depends on expectation values of observables and quantum
dispersions (or momenta) [39]. Once this Hamiltonian is

obtained, dynamical equations of motion can be obtained in
the usual way through the following equation:

fhf̂i; hĝig ¼ 1

iℏ
h½f̂; ĝ�i: ð20Þ

For 1 degree of freedom, these momenta are defined as

Ga;b ≔ hðp̂ − hp̂iÞaðq̂ − hq̂iÞbiWeyl; ð21Þ

where hq̂i and hp̂i are the expectation values of position
and momentum, respectively, and aþ b ≥ 2. The legend
Weyl means totally symmetrization [20]. The momenta
Ga;b obey a generalization of the Heisenberg uncertainty
principle [18], that is,

G2;0G0;2 − ðG1;1Þ2 ≥ ℏ2

4
: ð22Þ

The effective Hamiltonian Heff is defined in the follow-
ing way:

Heff ¼
X∞
a¼0

X∞
b¼0

1

a!b!
∂
aþbH

∂pa
∂qb

Ga;b: ð23Þ

FIG. 4. Classical evolution in the space (β0þ, β0−). (a) qð0Þ ¼ 10,
and pð0Þ ¼ 0, β0þ ¼ −0.1, β0− ¼ 0.1, p0þ ¼ 7.15, p0

− ¼ 1.
(b) qð0Þ ¼ 10, and pð0Þ ¼ 0, β0þ ¼ −0.1, β0− ¼ 0.1,
p0þ ¼ 7.15, p0

− ¼ 2.5. (c) qð0Þ ¼ 10, and pð0Þ ¼ 0,
β0þ ¼ −0.1, β0− ¼ 0.1, p0þ ¼ 7.15, p0

− ¼ 5.
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A general expression for k degrees of freedom for
Heff is [40]

Heff ¼
X∞
a1;b1

� � �
X∞
ak;bk

1

a1!b1! � � � ak!bk!
∂
a1þb1þ���þakþbkH

∂qa11 ∂pb1
1 � � � ∂qakk ∂pbk

k

× Ga1;b1;…;ak;bk : ð24Þ

For general systems there are an infinite number of
momenta and, correspondingly, an infinite number of
equations of motion, usually impossible to solve analyti-
cally, although consistent truncations can be implemented
to obtain approximated solutions [41].
Analysis of this effective dynamics is done usually in a

numerical way, for which initial conditions are required.
We employ general squeezed states to determine such
conditions; for example, for the wave function ψðχÞ,

ψðχÞ ¼ 1

π1=4
ffiffiffi
σ

p exp

�
−
ðχ − χ0Þ2

2σ2
þ iχp0

ℏ

�
; ð25Þ

we can readily obtain the initial values for quantum
variables. For instance,

Ga;b ¼
�
2−ðaþbÞℏaσb−a a!b!

ða=2Þ!ðb=2Þ! ; a andb even

0; otherwise:
ð26Þ

One can see that the initial momenta Ga;b saturate the
Heisenberg uncertainty relation

G2;0G0;2 ¼ ℏ2

4
:

In this effective formulation, the momenta scale as
powers of ℏ, that is,

Ga;b ∝ ℏ
ðaþbÞ

2 :

It is possible to obtain important modifications of
the classical system considering only the second order
terms [41].
On the other hand, the momenta Ga;b form a set of

noncanonical coordinates in the quantum phase state which
complicates the canonical analysis of the system [42].
However, it is possible to generalize this effective method
through a coordinate transform that allows us to rewrite the
momenta in terms of pairs of canonical variables si, psi , and
Casimir parameters [43]. These new coordinates encode all
the quantum information of the system. The main advan-
tage of this reformulation is that it avoids the truncation
required by the momenta approach and allows us to
construct an effective potential [44]

VAllðq; sÞ ¼
1

8s2
þ 1

2
½Vðqþ sÞ þ Vðq − sÞ�; ð27Þ

where VðqÞ is the classical potential of the system. In
general, for 3 degrees of freedom we have [45]

VAllðxi; sjÞ ¼
X3
i¼1

U
2s2i

þ 1

8
½Vðxi þ siÞ þ Vðxi − siÞ�: ð28Þ

For a second order truncation in the momenta Ga;b the
coordinate transformation is

s ¼
ffiffiffiffiffiffiffiffiffi
G0;2

p
;

ps ¼
G1;1ffiffiffiffiffiffiffiffiffi
G0;2

p ;

U ¼ G0;2G2;0 − ðG1;1Þ2; ð29Þ
where fs; psg ¼ 1 and fs; Ug ¼ fps; Ug ¼ 0 [42].

B. Momenta effective dynamics for HIX

To analyze the effective evolution of anisotropies βþ, β−,
we use the Hamiltonian (11)

HIX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ
3ð4πÞ2
k2

e4αVðx; yÞ
s

; ð30Þ

where the potential Vðx; yÞ is
Vðx; yÞ ¼ e−8x − 4e−2x coshð2

ffiffiffi
3

p
yÞ

þ 2e4x½coshð4
ffiffiffi
3

p
yÞ − 1�: ð31Þ

We have rewritten (for simplicity and to facilitate the
numerical application of the method) βþ → x, β− → y,
pþ → px, and p− → py.
Using the Hamiltonian (30), and truncating to second

order in momenta Eq. (24), we obtain the following
expression:

HQIX ¼ HIX þ ðH−1
IX − p2

xH−3
IX ÞG0200

þ ðH−1
IX − p2

yH−3
IX ÞG0002 þ η

�
2
∂

∂x
ðg1H−1

IX ÞG2000

þ 2
ffiffiffi
3

p ∂

∂y
ðg2H−1

IX ÞG0020

−
4px

H3
IX
g1G1100 −

4
ffiffiffi
3

p
py

H3
IX

g2G0011

�
: ð32Þ

The functions g1 ¼ g1ðx; yÞ, g2 ¼ g2ðx; yÞ, and η ¼ ηðαÞ
are as follows:

g1ðx; yÞ ¼ −e−8x þ e−2x coshð2
ffiffiffi
3

p
yÞ

þ e4xðcoshð4
ffiffiffi
3

p
yÞ − 1Þ;

g2ðx; yÞ ¼ −e−2x sinhð2
ffiffiffi
3

p
yÞ þ e4x sinhð4

ffiffiffi
3

p
yÞ;

ηðαÞ ¼ 3ð4πÞ2
k2

e4α; ð33Þ
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and the momenta for 2 degrees of freedom are given by

Gabcd ≔ hðx̂ − hx̂iÞaðŷ − hŷiÞb × ðp̂x − hp̂xiÞcðp̂y − hp̂yiÞdiWeyl: ð34Þ

The equations of motion for the classical variables are

ẋ ¼ px

HIX
− 2pxη

∂

∂x
ðg1H−3

IX ÞG2000 − 4ηg1
∂

∂px
ðpxH−3

IX ÞG1100 þ 1

2

∂

∂px
ðH−1

IX − p2
xH−3

IX ÞG0200

þ 2
ffiffiffi
3

p
η

∂
2

∂px∂y
ðg2H−1

IX ÞG0020 − 4
ffiffiffi
3

p
pyη

∂

∂px
ðH−3

IX Þg2G0011 þ 1

2

∂

∂px
ðH−1

IX − p2
yH−3

IX ÞG0002;

ẏ ¼ py

HIX
þ 2η

∂
2

∂x∂py
ðg1H−1

IX ÞG2000 − 4pxη
∂

∂py
ðg1H−3

IX ÞG1100 þ 1

2

∂

∂py
ðH−1

IX − p2
xH−3

IX ÞG0200

þ 2
ffiffiffi
3

p
η

∂
2

∂px∂y
ðg2H−1

IX ÞG0020 þ ∂

∂y
ðH−1

IX − p2
yH−3

IX ÞG0011 þ 1

2

∂

∂py
ðH−1

IX − p2
yH−3

IX ÞG0002;

ṗx ¼ −4ηg1H−1
IX − 2η

∂
2

∂x2
ðg1H−1

IX ÞG2000 − 4η
∂
2

∂x∂px
ðg1H−1

IX ÞG1100 −
1

2

∂

∂x
ðH−1

IX − p2
xH−3

IX ÞG0200

− 2
ffiffiffi
3

p
η

∂
2

∂x∂y
ðg2H−1

IX ÞG0020 þ 4
ffiffiffi
3

p
pyη

∂

∂x
ðg2H−3

IX ÞG0011 −
1

2

∂

∂x
ðH−1

IX − p2
yH−3

IX ÞG0002;

ṗy ¼ −4
ffiffiffi
3

p
ηg2H−1

IX − 2η
∂
2

∂x∂y
ðg1H−1

IX ÞG2000 þ 4pxη
∂

∂y
ðg1H−3

IX ÞG1100 −
1

2

∂

∂y
ðH−1

IX − p2
xH−3

IX ÞG0200

− 2
ffiffiffi
3

p
η
∂
3

∂y3
ðg2H−1

IX ÞG0020 − 4
ffiffiffi
3

p
η

∂
2

∂y∂py
ðg2H−1

IX ÞG0011 −
1

2

∂

∂y
ðH−1

IX − p2
yH−3

IX ÞG0002; ð35Þ

and for the momenta,

Ġ2000 ¼ 8px

H3
IX
ηg1G2000 − 2ðH−1

IX −p2
xH−3

IX ÞG1100;

Ġ1100 ¼ 4η
∂

∂x
ðg1H−1

IX ÞG2000 − ðH−1
IX −p2

xH−3
IX ÞG0200;

Ġ0200 ¼ 8η
∂

∂x
ðg1H−1

IX ÞG1100 −
8px

H3
IX
ηðαÞg1G0200;

Ġ0020 ¼ 8
ffiffiffi
3

p
py

H3
IX

ηg2G0020 − 2ðH−1
IX −p2

yH−3
IX ÞG0011;

Ġ0011 ¼ 4
ffiffiffi
3

p
ηðαÞ ∂

∂y
ðg2H−1

IX ÞG0020 − ðH−1
IX −p2

yH−3
IX ÞG0002;

Ġ0002 ¼ 8
ffiffiffi
3

p
η
∂

∂y
ðg2H−1

IX ÞG0011 −
8

ffiffiffi
3

p
py

H3
IX

ηg2G0002: ð36Þ

These are two sets of coupled and highly nonlinear
equations providing the evolution of the quantum modified
anisotropies, and we employ a numerical method to obtain
the dynamics of this system and its trajectories.

C. Momenta effective dynamics for Kiso

Using the isotropic Hamiltonian (16), and truncating to
second order in momenta Eq. (24), we get the effective
Hamiltonoan Keff

iso,

Keff
iso ¼ Kiso þ

3π

18
q−4=3G2;0 −

1

24π
G0;2: ð37Þ

The momenta for 1 degree of freedom are

Ga;b ≔ hðq̂ − hq̂iÞaðp̂ − hp̂iÞbiWeyl; ð38Þ

and the equations of motion for the classical variables are

q̇ ¼ −
27

64π
p; ṗ ¼ πq−7=3

2
G2;0 þ pπ

4
q−1=3; ð39Þ

while for the momenta we have

Ġ2;0 ¼ 3

8π
G1;1;

Ġ1;1 ¼ −
3

16π
G0;2 þ πq−4=3

3
G2;0;

Ġ0;2 ¼ 2πq−4=3

3
G1;1: ð40Þ

D. Momenta effective dynamics for K

The effective second order anisotropic Hamiltonian Keff
is obtained similarly using (24) for 3 degrees of freedom,
and in this case Keff is
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Keff ¼ Kþ 1

2

�
∂
2K
∂q2

Aþ ∂
2K

∂β02þ
Dþ ∂

2K
∂β02−

G

�
−

3

32π
C

þ 1

24π
ðF þ JÞ; ð41Þ

where the momenta for 3 degrees of freedom are defined as
follows:

Gabcdef ≔ hðq̂ − hq̂iÞaðβ̂0þ − hβ̂0þiÞbðβ̂0− − hβ̂0−iÞc
× ðp̂ − hp̂iÞdðp̂0þ − hp̂0þiÞeðp̂0

− − hp̂0
−iÞfiWeyl:

ð42Þ

In Table I, the second order momenta are summarized.
The equations of motion obtained from (41) form a

system of 15 coupled equations that describe the dynamics
of the mixmaster model. Equations for the classical
variables are

ṗ ¼ −
∂K
∂q

−
1

2

�
∂
3K
∂q3

Aþ ∂
3K

∂q∂β02þ
Dþ ∂

3K
∂q∂β02−

G

�
;

ṗ0þ ¼ −
∂K
∂β0þ

−
1

2

�
∂
3K

∂β0þ∂q2
Aþ ∂

3K
∂β03þ

Dþ ∂
3K

∂β0þ∂β02−
G

�
;

ṗ0
− ¼ −

∂K
∂β0−

−
1

2

�
∂
3K

∂β0−∂q2
Aþ ∂

3K
∂β0−∂β02þ

Dþ ∂
3K

∂β03−
G

�
;

q̇ ¼ −
27

64π
p;

β̇0þ ¼ 1

12π
p0þ;

β̇0− ¼ 1

12π
p0

−; ð43Þ

while for quantum variables we have

Ȧ¼ 3

8π
B; Ḃ¼ ∂

2K
∂q2

Aþ 3

16π
C; Ċ¼ 2

∂
2K
∂q2

B;

Ḋ¼−
1

6π
E; Ė¼ ∂

2K
∂β02þ

D−
1

12π
F; Ḟ¼ 2

∂
2K
∂β02þ

E;

Ġ¼−
1

6π
H; Ḣ¼ ∂

2K
∂β02−

G−
1

12π
J; J̇¼ 2

∂
2K
∂β02−

H: ð44Þ

IV. NUMERICAL SOLUTION

For 1 degree of freedom, the momenta Ga;b are
defined as

Ga;b ≔ hðq̂ − qÞaðp̂ − pÞbiWeyl;

where p ≔ hp̂i and q ≔ hq̂i. Using the squeezed state (25),
the initial conditions for the momenta Ga;b can be deter-
mined. For instance, for G2;0 we get

G2;0 ¼ hψðχÞ�jðp̂ − pÞ2jψðχÞi

¼ −
η

σ4

Z
∞

−∞
e
−ðχ−χ0Þ2

σ2 ðζ − 2χ0 � χ þ χ2Þdχ

¼ ℏ2

2σ2
; ð45Þ

where η ¼ −ℏ2ffiffi
π

p
σ5
and ζ ¼ χ20 − σ2 are constants. Following a

similar procedure, the second order initial values for
momenta are

G2;0 ¼ ℏ2

2σ2
; G1;1 ¼ 0; G0;2 ¼ σ2

2
: ð46Þ

For 2 degrees of freedom the momentaGabcd are defined as

Gabcd ≔ hðp̂1 − p1Þaðq̂1 − q1Þb
× ðp̂2 − p2Þcðq̂2 − q2ÞdiWeyl;

where p1 ≔ hp̂1i; q1 ≔ hq̂1i; p2 ≔ hp̂2i, and q2 ≔ hp̂2i.
Employing a similar procedure for the 1 degree of freedom
case, the initial conditions for the second order moments,
with 2 degrees of freedom Gabcd are

G2000 ¼ G0020 ¼ ℏ2

2σ2
;

G1100 ¼ G0011 ¼ 0;

G0200 ¼ G0002 ¼ σ2

2
: ð47Þ

For 3 degrees of freedom we get

G200000 ¼ G002000 ¼ G000020 ¼ ℏ2

2σ2
;

G110000 ¼ G001100 ¼ G000011 ¼ 0;

G020000 ¼ G000200 ¼ G000002 ¼ σ2

2
: ð48Þ

The set of equations (35) and (36) describes the dynamics
of anisotropies and quantum momenta of the mixmaster
model. The coupling between both kinds of variables
generates a quantum backreaction that modifies the classical
evolution of the system, which we explore now.

TABLE I. Second order momenta for 3 degrees of freedom.

A ¼ G200000 D ¼ G002000 G ¼ G000020

B ¼ G110000 E ¼ G001100 H ¼ G000011

C ¼ G020000 F ¼ G000200 J ¼ G000002
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We employ initial conditions (47) to generate, numeri-
cally, the evolution of the system. In Fig. 5 we show the
modification of the classical trajectories (red curves) due to
the quantum effects. In Fig. 5(a) the black dot denotes the
starting point of both trajectories classical and effective
(green curvs), while the purple dots correspond to both
trajectories at the same time. However, unlike the straight
line behavior of classical trajectories near the initial
singularity as jβ�j → ∞, as discussed in Sec. II and shown
in Fig. 2(a), the interaction of the quantum momenta with
the classical system increases the changes in direction of
the trajectory for the semiclassical particle at early times,
drastically changing its linear behavior. Figure 5(b) repre-
sents the same trajectories for different evolution times.

In Fig. 6 we show a comparison between several
classical and semiclassical trajectories, displaying chaotic
behavior [17]. The plots show how effective trajectories are
drastically modified due to quantum backreaction, although
the system retains its chaotic behavior.
In Fig. 7 we show the semiclassical evolution obtained

from the effective Hamiltonian (37) for an isotropic
universe. The variable q is related to the scale factor
through q ¼ ffiffiffi

a
p

. In this diagram the singularity is reached
when LogðqÞ → −∞, that is, a → 0. The image shows
the removal of the initial singularity and a bounce of the
trajectories generated by the quantum momenta. As the
volume of the universe decreases, the potential reaches a
maximum point and subsequently decreases. After the
rebound of the universe, the momentum increases again.
The different colors correspond to different values of the
dispersion σ.

FIG. 5. Comparison between classical (red curves) and effec-
tive evolution (green curves) for the anisotropies of the mixmaster
model. The dots represent the position at equal times. Initial
conditions are βþð0Þ ¼ 0, β− ¼ 0, pþ ¼ 100, p− ¼ 64, and
σ ¼ 2.2. (a) Classical (red) and effective evolution (green) for
anisotropies up to t ¼ 6. (b) Classical (red) and effective
evolution (green) for the anisotropies up to t ¼ 20.

FIG. 6. Comparison between classical (red curves) and effec-
tive evolution (green curves) for the anisotropies of the mixmaster
model. Initial conditions for the classical model are βþð0Þ ¼ 0,
β− ¼ 0, pþ ¼ 100, and p− ¼ 8i (i ¼ 1; 2; 3;…; 10 labels differ-
ent trajectory). Initial conditions for the effective evolution are
βþð0Þ ¼ 0, β− ¼ 0, pþ ¼ 100, and p− ¼ 8i. (a) Classical and
quantum evolution for σ ¼ 0.08. (b) Classical and quantum
evolution for σ ¼ 0.6. (c) Classical and quantum evolution
for σ ¼ 2.6.
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Finally, in Fig. 8 we show again the removal of the initial
singularity in an anisotropic universe for different values of
the dispersion σ. We can see that the effective model is
highly susceptible to small changes in the initial conditions
corresponding to anisotropies. These small variations of βþ
and β− have important implications on the behavior of the
momentum p. The results obtained corresponding to the
removal of the singularity for the anisotropic model are
similar to those obtained in [33,37].

V. CONCLUSIONS

In this article the quantum mixmaster model was
analyzed in a semiclassical setting, finding important
differences with respect to the classical model. In particular,
by studying semiclassical trajectories describing the

evolution of anisotropies we show that the initial singularity
is avoided as a result of quantum backreaction.
In the classical mixmaster model, the universe interacts

with a time-dependent potential evolving in a space of
anisotropies, where the interaction with the potential walls
is less frequent as we approach the singularity. The classical
evolution was obtained through numerical simulations
and displayed in Figs. 2 and 3, matching those obtained
in [46–48]. We apply a transformation from the variables α
and pα to the pair q and p in the classical Hamiltonian to
obtain an expression in terms of the scale factor. Under this
formulation it is possible to make a direct comparison
between the quantum corrected behavior and that of the
classical model by means of effective trajectories.
The behavior displayed by the quantum model derived

from the effective Hamiltonian (32) shows that, although the
classical evolution is drastically modified due to quantum
backreaction throughquantummomenta, it retains its chaotic
behavior regardless of initial conditions taken into account,
in agreement with recent similar studies [17].
In the classical evolution, as we reach the initial

singularity we get jβ�j → ∞, and the particle experiences
an infinite number of reflections, less frequent each time. In
the quantum regime, the interaction of the particle with the
potential is stronger due to backreaction, generating more
dispersions and preventing the particle from reaching
jβ�j → ∞, effectively avoiding the singularity.
We obtain two effective Hamiltonians, one correspond-

ing to the isotropic limit in terms of the scale factor aðtÞ
(37) and another for the anisotropic model (41) as a
function of the shape parameters βþ, β−, and aðtÞ. In both
representations it is possible to observe the removal of the
initial singularity (Figs. 7 and 8). The effective equations
obtained from these Hamiltonians allow us to analyze the
backreaction to the scale factor and the anisotropies. The
dynamics of the isotropic model (39), (40) shows a
coupling between the classical variables (q, p) and the
quantum momenta Ga;b. This coupling is responsible for
the deviation of the effective trajectories with respect to the
classical ones resulting in the removal of the singularity. In
the anisotropic model the effective equations (43) and (44)
become more complicated because 2 extra degrees of
freedom are included corresponding to the shape param-
eters (βþ; β−). In this case the momenta couple not only
with the pair (q, p) but also with the anisotropies. As a
consequence, the effective evolution of the scale factor is
not only modified by the backreaction of the quantum
variables but now the anisotropies also influence the
behavior of the effective trajectory. Figure 8 shows that
small variations in the shape parameters result in important
modifications in the momentum of the system. These
results can be comparable with those obtained in [33].
In regions where the quantum effects are negligible, that is,
the momenta Gabcd become zero, we recover the classical
dynamics of the mixmaster model.

FIG. 8. Effective evolution corresponding to the anisotropic
Hamiltonian (41). The graph shows the removal of the initial
singularity through the rebound of the effective trajectories.
Different colors correspond to different values of σ. Initial
conditions are qð0Þ¼120, pð0Þ¼0, β0þð0Þ ¼ 0.01, pþð0Þ ¼ 0,
β0−ð0Þ ¼ 0.05, p−ð0Þ ¼ 0, and σ ¼ 3, σ ¼ 25, σ ¼ 50,
and σ ¼ 75.

FIG. 7. Effective evolution corresponding to the isotropic Ham-
iltonian (37). The graph shows the removal of the initial singularity
through the rebound of the effective trajectories. Different colors
correspond to different values of σ. Initial conditions are qð0Þ ¼
10; pð0Þ ¼ 0 and σ ¼ 0.5, σ ¼ 4, σ ¼ 8, and σ ¼ 13.
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These effective descriptions show that the quantum
regime imposes a minimum lower bound on the volume
of the universe.
In principle, it is possible to apply the effective poten-

tial of Eq. (28) and directly modify the Hamiltonians of
Eqs. (14) and (16) to obtain an effective system. However,
this requires a deeper analysis of the effective equations as
well as the numerical methods to solve them. This can
lead us to interesting results that can be compared with
those obtained in this research work. Our study can be

used to generalize the analysis of anisotropic cosmologi-
cal models into inhomogeneous models, where we
expect to obtain interesting results in this effective
description [21,49,50].
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