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Recently, it was found that a Q-ball can amplify waves incident upon it, due to rotation in the internal
space and the interaction of the two modes in the complex scalar field. While the spherically symmetric 3D
case has been investigated previously, here we explore the 3D axisymmetric case, which is numerically
much more challenging. The difficulty comes because a partial wave expansion is needed, and the different
partial waves can not be separated, for either the background spinning Q-ball solution or the perturbative
scattering on top of it. A relaxation method and a high dimensional shooting method are applied to compute
the Q-ball solutions and the amplification factors respectively. We also classify the behavior of the
amplification factors and we discuss their bounds and the superradiance criteria.
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I. INTRODUCTION

Q-balls represent a class of solitonic solutions in field
theories, characterized by configurations that are localized
in space with the field rotating in the internal space [1,2].
The conditions for Q-balls to arise are quite broad,
including the case of self-interacting complex scalar field
theories, in which the potential grows slower than the
quadratic mass term away from its minimum, facilitating
the condensation of charges. In contrast to topological
solitons, whose stability arises from topological charges,
Q-balls are nontopological solitons. Their stability is
exclusively due to Noether charges. While initial inves-
tigations of Q-balls focused on nonrotating, spherically
symmetric forms, subsequent studies have revealed the
existence of spinning Q-balls [3–8]. Notably, it was found
that the angular momentum of spinning Q-balls is propor-
tional to the associated Noether charge. Multiple Q-balls
can form composite structures, which can be either stable
or long-lived [9–11]. Typically, classical theories are

employed to investigate the properties of Q-balls and their
composite counterparts. Nevertheless, recent research has
also made progress in exploring these phenomena within
the framework of quantum theories [12–14]. Aside from
their theoretical interest, Q-balls have found uses in a
cosmological setting, such as the Affleck-Dine baryo-
genesis scenario in supersymmetric extensions of the
Standard Model. After formation these Q-balls decay into
baryonic matter or remain stable and act as self-interacting
dark matter, influencing the evolution of the Universe
[15–25]. When the gravitational effect is significant,
analogous soliton solutions are dubbed boson stars [26,27].
If the constituent scalar field is sufficiently light, boson
stars can achieve astronomical masses comparable to
generic fermionic stars and become extremely compact.
Boson stars may serve as dark matter sources and black
hole mimickers [28–34]. In addition to cosmology and
relativistic field theory, Q-balls are also produced and
investigated experimentally in cold atom systems [35,36].
The concept of superradiance, originally introduced by

Dicke to describe radiation enhancement in a coherent
medium [37], has been extended to encompass a wide
range of phenomena associated with enhanced radiation.
A famous example is the rotational superradiance discov-
ered by Zel’dovich, demonstrating that the energy and
angular momentum of a rotating cylinder with absorbing
surfaces can be extracted via the scattering of incident
waves [38,39]. In the realms of relativity and astrophysics,
Reissner-Nordström black holes and Kerr black holes have
been found to be capable of inducing superradiance and in
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some cases superradiant instabilities can arise. This prop-
erty is employed in the search for dark matter and many
related questions have been investigated in recent years
[40–60]. Reviews of this rapidly developing field can be
found in [61,62].
Recently, superradiance in Q-ball systems has been

identified, enabling energy, charge, and angular momentum
to be extracted from a Q-ball through incident waves [63].
The underlying reason is that the coherent internal rotation
of the scalar field in the complex plane allows the transfer
of energy and other quantities among coupled wave modes
occur. For certain ranges of wave frequency, the system
experiences a net extraction of energy that exceeds the
energy input from the incident waves, leading to the
manifestation of superradiance. The rotation of the back-
groundQ-ball further influences the superradiance process.
It was soon realized that this mechanism can apply to
generic Q-ball-like, time-periodic solitons and specific
cases of boson stars and their Newtonian limits have been
investigated [64,65]. This emerging phenomenon may offer
novel approaches to the search for new particles and the
identification of exotic compact objects.
Although some key ingredients of Q-ball superradiance

have been identified in previous studies, they primarily
delved into relatively straightforward cases, such asQ-balls
in 2þ 1D and nonrotating, spherical Q-balls in 3þ 1D. In
this paper we study the more realistic case of solitions in
three dimensions, with the inclusion of angular momentum.
As we delve into our analysis, it becomes clear that the
introduction of angular momentum, which specifies a
preferred direction in space, makes the phenomena sig-
nificantly more complex and diverse. Moreover, this
complexity also introduces numerous technical challenges.
When doing a mode analysis, both the equations governing
the background Q-balls and the perturbations form infinite
sets of coupled equations, categorized by spherical har-
monics Ym

l ðcos θÞ. Achieving solutions with high accuracy
necessitates truncating these equations at a relatively high
degree l, which means that a large number of equations
have to be solved simultaneously. Furthermore, the dimen-
sion of the parameter space is also greatly increased, posing
an additional challenge. Addressing these difficulties is a
focus of our work, and we shall investigate these intricate
phenomena using representative cases.
The paper is organized as follows. In Sec. II, we

introduce the fiducial field model to be studied, review
basic properties of spinning Q-balls in 3þ 1D and explain
the methods used to solve for spinning Q-ball solutions. In
Sec. III, we derive the equations expanded with spherical
harmonics for perturbation waves and define various
amplification factors, some of which depend on the polar
angle. The details of the numerical methods used to solve
spinning Q-balls and perturbative waves are explained in
Appendix A, while the accuracy of the results and the
convergence test are presented in Appendix B. In Sec. IV,

we show the numerical results of spinning Q-ball super-
radiance. Addtionally, we perform an analytic examination
of the asymptotic behavior of the amplification factors as
the wave frequency approaches infinity or the mass gap. We
identify the criteria for superradiance and establish bounds
on the amplification factors that we use in this paper. We
summarize in Sec. V.

II. SPINNING Q-BALLS

In this section, we construct the spinningQ-ball solution
in 3þ 1D [3], which provides a background for the waves
to scatter on, and from which energies and angular
momentum can be extracted. While a spinning Q-ball in
2þ 1D can be easily obtained by solving an ordinary
differential equation (ODE) with a 1D shooting method, a
3þ 1D spinning Q-ball necessitates solving a system of
coupled ODEs involving several partial waves. This can be
handled with a more intricate higher-dimensional shooting
method or relaxation method.
We will consider a U(1) symmetric complex field in

(3þ 1)-dimensional spacetime, whose effective Lagrangian
density1 is given by

L̃ ¼ −∂̃μΦ̃�
∂̃μΦ̃ − V; V ¼ m̃2jΦ̃j2 − λ̃jΦ̃j4 þ g̃jΦ̃j6;

ð1Þ

where the parameters are chosen such that Φ̃ ¼ 0 is the true
vacuum.We can reduce the number of relevant parameters to
one by introducing the dimensionless variables,

xμ ¼ m̃x̃μ; Φ ¼
ffiffiffĩ
λ

p Φ̃
m̃
; g ¼ g̃

m̃2

λ̃2
; ð2Þ

such that wemayworkwith the rescaled Lagrangian density

L ¼ −∂μΦ�
∂μΦ − V; V ¼ jΦj2 − jΦj4 þ gjΦj6: ð3Þ

The conserved charge associated with the global U(1)
symmetry is

Q ¼ i
Z

d3x
�
Φ�Φ̇ −ΦΦ̇��; ð4Þ

where a dot means a time derivative Φ̇ ¼ ∂Φ=∂t, and the
energy-momentum tensor for the scalar field has compo-
nents

Tμν ¼ ∂μΦ�
∂νΦþ ∂μΦ∂νΦ� þ gμνL; ð5Þ

where gμν is the Minkowski metric.

1We use a mostly positive signature for the spacetime metric
throughout.
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In spherical coordinates ðt; r; θ;φÞ, the ansatz for a
spinning Q-ball has the form

ΦQ ¼ fðr; θÞe−iðωQt−mQφÞ; ð6Þ

where mQ is an integer, mQ ¼ 0 for nonspinning configu-
rations andmQ ≠ 0 for spinning configurations, and fðr; θÞ
is the profile function or amplitude that depends on the
polar angle θ. For a stable, spherical Q-ball to exist, ωQ

must be real and satisfy the following conditions [2]:

ω2
Q > ω2

min ≡min
f

�
V
f2

�
¼ 1 −

1

4g
; ð7Þ

ω2
Q < ω2

max ≡ 1

2
V 00ð0Þ ¼ 1: ð8Þ

For the spinning case, the stability range seems to be
roughly the same, as can be checked numerically, and we
can choose ωQ > 0 without loss of generality. With a
nonzero ωQ, the Q-ball rotates in the internal field space
with angular velocity ωQ; with additionally a nonzero mQ,
the Q-ball also rotates in real space with angular phase
velocityΩQ ≡ ωQ=mQ. For a given profile fðr; θÞ, the U(1)
charge, energy and angular momentum of the spinning
Q-ball are respectively given by

Q ¼ 4πωQ

Z
drdθr2 sin θf2; ð9Þ

E ¼ 2π

Z
drdθr2 sin θTtt; ð10Þ

L ¼ 2π

Z
drdθr2 sin θTtφ ¼ mQQ; ð11Þ

where Ttt ¼ ð∂rfÞ2 þ 1
r2 ð∂θfÞ2 þ

m2
Qf

2

r2sin2θ þ ðωQfÞ2 þ V.
With the Q-ball ansatz Eq. (6), the field equation

reduces to

�
∂
2
r þ

2

r
∂r þ

∂
2
θ

r2
þ cos θ

sin θ
∂θ

r2
−

m2
Q

r2sin2θ
þ ω2

Q

�
f

¼ f − 2f3 þ 3gf5: ð12Þ

To obtain a Q-ball solution, which has a finite energy, we
also need to supply the field equation with appropriate
boundary conditions. The profile function of a spinning
Q-ball fðr; θÞ must decay to zero as r goes to 0 or infinity,
the exact form depending on the parity of the scalar Φ.
To solve the partial differential equation (PDE) (12)

along with the boundary conditions, we can perform an
angular mode expansion on fðr; θÞ,

fðr; θÞ ¼
X∞
l¼m̄Q

flðrÞPmQ

l ðcos θÞ; ð13Þ

where P
mQ

l ðcos θÞ are the associated Legendre functions
and the over bar denotes the absolute value

m̄Q ≡ jmQj: ð14Þ

Note that the field equation (12) is invariant under parity
ðr; θÞ → ðr; π − θÞ and the associated Legendre function
satisfies P

mQ

l ð− cos θÞ ¼ ð−1ÞlþmQP
mQ

l ðcos θÞ. So if Φ is a
scalar, meaning fðr; π − θÞ ¼ fðr; θÞ, we only have even
modes

fðr; θÞ ¼
X∞
k¼0

fm̄Qþ2kðrÞPmQ

m̄Qþ2kðcos θÞ; ð15Þ

and ifΦ is a pseudoscalar, meaning fðr; π − θÞ ¼ −fðr; θÞ,
we only have odd modes

fðr; θÞ ¼
X∞
k¼0

fm̄Qþ1þ2kðrÞPmQ

m̄Qþ1þ2kðcos θÞ: ð16Þ

Thus, a clear distinction is that the profile function fðr; θÞ
vanishes at the equatorial plan θ ¼ π=2 for the odd parity/
pseudoscalar case, but is nonzero for the even parity/scalar
case. The two cases should be explored separately.
Plugging the angular mode expansion into the field

equation for fðr; θÞ and expanding the nonlinear terms
fn ¼ ðPl flP

mQ

l Þn in the basis of P
mQ

l , the PDE field
equation can be split into a system of coupled ODEs. In our
numerical evaluations, we cut off l at some finite lmax
where the energy of the spinning Q-ball has reached
convergence, and the coupled ODEs are of the following
form:

�
∂
2
rþ

2

r
∂rþω2

Q−1−
lðlþ1Þ

r2

�
flþVlðfl0 Þ¼0; ð17Þ

where l ¼ m̄Q þ sþ 2k, k ¼ 0; 1; 2;…, s ¼ 0 for even
parity and s ¼ 1 for odd parity, and Vlðfl0 Þ are nonlinear
polynomial functions of fl0 with multiple l0 that are
generally different from l. As r goes to zero or infinity,
the nonlinear terms are negligible for a spinning Q-ball
solution, so we can infer from (17) that the mode functions
fl should have the following asymptotic form:

flðr → ∞Þ → 0; flðr → 0Þ → ðκlrÞl; ð18Þ

where κl are constants.
The above set of coupled ODEs can be solved with either

a high dimensional shooting method or a relaxation method
[66]. Later, for the perturbative waves scattering on the
Q-ball, we will use a high-dimensional shooting method.
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For the background Q-ball solution, we will present the
solutions with the relaxation method, which produces more
accurate results with high efficiency. The relaxation method
transforms, via finite difference, the coupled ODEs into a
set of matrix equations that include every discretized point
in the solving range, and solves it with an initial guess and
subsequent iterations. By comparison, the high dimen-
sional shooting method solves the coupled ODEs from a
point near r ¼ 0 to a large r� to establish a numerical map
between the “initial” conditions near r ¼ 0 and the “final”
conditions r�, and then, by matching to the correct
boundary conditions, this map can be turned into a set
of coupled equations that can be solved to find the desired
Q-ball. Both of the two methods will be explained in
Appendix A.
We note from (15) and (16) that the k index of the sum is

related to the angular momentum number, l, by
lmax ¼ m̄Q þ 2kþ s, and while the exact solution would
require k to range from zero to infinity, in numerical
solutions we must impose a cutoff. Convergence is ensured

by varying this cutoff. The number of the cutoff modes is
Nmax ¼ kQmax þ 1 ¼ ðlmax − m̄Q − sþ 2Þ=2. In Figs. 1
and 2 we present two spinning Q-ball solutions for the
same number of modes, kQmax þ 1 ¼ 6, one for the even
parity and one for the odd parity. The parameters used are
mQ ¼ 1, ωQ ¼ 0.7, g ¼ 1=3, which will be our fiducial
case unless otherwise stated. We see that the fiducial
spinning Q-ball solutions converges very quickly with
lmax. The first mode profile f1 for the even parity case
changes only slightly as lmax increases, while the first
mode for the odd parity case f2 reduces significantly when
lmax ≥ 4, which seems to be due to the fact that the second
mode f4 is sizable for the odd case. For both the even and
odd case, the first couple of l modes contain most of the
energy. The odd parity Q-ball is more energetic compared
to the event parity one—both the energy and charge
of the odd parity one is about twice the even parity one.
This is mainly because the even parity case has one peak
in the profile fðr; θÞ, while the odd parity case has
two peaks.
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FIG. 1. Radial amplitudes fl for the even parity spinning Q-ball (Φ being a scalar) in (a). The mode cutoff is lmax ¼ 11 or,
equivalently, kQmax þ 1 ¼ 6 modes in the partial wave expansion. The other parameters are mQ ¼ 1, ωQ ¼ 0.7, g ¼ 1=3, and all
calculations in this paper use this set of parameters unless otherwise stated. The (b) plots the r and θ dependence for lmax. The (c) plots
how the total energy and charge converge with lmax.

(a) (b) (c)

FIG. 2. Radial amplitudes fl for the odd parity spinning Q-ball (Φ being a pseudo-scalar) in (a). The mode cutoff is lmax ¼ 12 or,
equivalently, kQmax þ 1 ¼ 6 modes in the partial wave expansion. The other parameters are mQ ¼ 1, ωQ ¼ 0.7, g ¼ 1=3. From (b), we
see that the profile function fðr; θÞ has two peaks, compared to one peak for the even parity case. The (c) plots how the total energy and
charge converge with lmax.
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III. PERTURBATIVE SCATTERING

Having constructed the spinningQ-ball solutions, in this
section we study the waves scattering on top of the Q-ball
background. We will work with small scattering waves and
so will only keep the linear perturbations in the equations of
motion. Note that the linear approximation still takes into
account the backreaction of the scattering waves on the
Q-ball. That is, the perturbative fields contain the infor-
mation about both the scattering waves and the corrections
to theQ-ball background. The various amplification factors
will be defined, which can be used to describe the energy
and angular momentum enhancements in the scattering
from various angles.

A. Perturbative waves

Now, we consider small perturbations ϕ on top of a
Q-ball background solution ΦQ

Φ ¼ ΦQ þ ϕ; ð19Þ

The linear perturbations satisfy the following equation of
motion:

□ϕ ¼ ∂
2V

∂Φ�
∂Φ

����
ΦQ

ϕþ ∂
2V

∂ðΦ�Þ2
����
ΦQ

ϕ�

¼ ð1þUÞϕþWe−2iðωQt−mQφÞϕ�; ð20Þ

where U and W are determined by the background Q-ball
solution

Uðr; θÞ ¼ ∂

∂ðf2Þ
�
f2

∂V
∂ðf2Þ

�
− 1 ¼ −4f2 þ 9gf4; ð21Þ

Wðr; θÞ ¼ f2
∂
2V

ð∂ðf2ÞÞ2 ¼ −2f2 þ 6gf4: ð22Þ

Here,□ is the Minkowski d’Alembertian, U andW depend
only on the background Q-ball, and they both approach
zero as r → ∞, thanks to the asymptotic behavior of the
spinningQ-ball amplitude f. As has been shown in the last
section, for a spinning Q-ball where mQ ≠ 0, f also
approach zero as r → 0. Given that the scalar is complex,
we may compliment Eq. (20) with its complex conjugate.
Note that, since we are solving for the perturbation in the
same field as the background, the perturbation solution
includes corrections to the background. We would also like
to point out that, although Eq. (20) contains a time-periodic
driving factor, the wave amplification discussed in the
paper is not due to parametric resonance, for the simple
reason that the Q-ball solution is stable [2].
The perturbative equations of motion become easier to

solve by Fourier transforming to the frequency domain,
“factoring out” the time dependence. Equivalently, since Φ

or ϕ inherently contains two coupled modes, we can
minimally consider a scattering involving the following
two modes for ϕ:

ϕ ¼ ηþðr; θÞe−iðωþt−mþφÞ þ η−ðr; θÞe−iðω−t−m−φÞ; ð23Þ
where

ω� ¼ ωQ � ω; m� ¼ mQ �m: ð24Þ

(Although it would be more explicit to express η� as
ηω�;m� , we opt for the former to minimize clutter, and the
same rationale applies to other quantities defined in the
following.) Using this ansatz (or by Fourier transform), the
equations of motion become

ð∇2 þ k2�Þη� ¼ Uðr; θÞη� þWðr; θÞη∓�; ð25Þ

where k2� ¼ ω2
� − 1. As we seek a propagating solution, we

can impose a physical condition on the wave numbers

jωQ � ωj > 1: ð26Þ

Again, similar to solving the background Q-ball solu-
tion, since η� are functions of r, θ, we can perform an
angular mode expansion for them to turn the PDE into a set
of ODEs:

η�ðr; θÞ ¼
X∞
l¼m̄�

η�l ðrÞPm�
l ðcos θÞ; ð27Þ

where we have defined m̄� ¼ jmQ �mj. Since the η�

equation of motion is linear and invariant under parity, the
even and odd parity modes are decoupled, so we can
discuss them separately. Substituting Eq. (27) into the
equation of motion and integrating both sides against Pm∓

l ,
the PDE for η� splits into a set of ODEs for η�l ðrÞ,

�
∂
2
r þ

2

r
∂r −

lðlþ 1Þ
r2

þ k2�

�
η�l

¼
Xl�max

l0¼m̄�

ðU�
l0lðrÞη�l0 þW∓

l0lðrÞη∓�
l0
�
; ð28Þ

where l�
max ¼ m̄� þ sþ 2N�

max − 2, N�
max is the number of

the cutoff modes and

U�
l0l ¼ C�

l

Z
1

−1
dcθUðr; θÞPm�

l0 ðcθÞPm�
l ðcθÞ; ð29Þ

W∓
l0l ¼ C�

l

Z
1

−1
dcθWðr; θÞPm∓

l0 ðcθÞPm�
l ðcθÞ; ð30Þ

cθ ≡ cos θ; ðC�
l Þ−1 ¼

Z
1

−1
dcθðPm�

l ðcθÞÞ2: ð31Þ
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We see that the W (or W) function couples the ηþ and η−

modes so that they cannot be separated. The coupling of the
þ and − modes is essential for the energy enhancement to
happen.
The perturbative equations of motion also need to be

supplied with appropriate boundary conditions. The back-
ground spinning Q-ball solution asymptotes to the
Minkowski vacuum both as r → 0 and r → ∞, implying
that U, W and thus U, W asymptotes to zero as r → 0 and
r → ∞. Thus, the þ and − modes are decoupled asymp-
totically. In the r → ∞ region, they can be described by
spherical waves. In the r → 0 region, we still have
regularity conditions, similar to the case of the background
Q-ball solution. Therefore, we have the following boundary
conditions at the origin and the infinity,

η�l → F�
l ðk�rÞl; r → 0; ð32Þ

η�l →
A�
l

k�r
eik�r þ B�

l

k�r
e−ik�r; r → ∞; ð33Þ

where F�
l , A

�
l , B

�
l are complex constants.

Let us now describe the interpretation of the asymptotic
solutions. We are considering a scattering problem where,
in general, there can be two ingoing wave modes and two
outgoing wave modes, with frequencies ωþ and ω−,
respectively. By the asymptotic solutions at r → ∞ and
Eq. (23), we can recognize the physical meaning of A�

l and
B�
l as giving ingoing or outgoing waves, depending on the

sign of ω, as shown in Fig. 3.
With the above setup, we can now treat Eq. (28) as an

initial value problem with r playing the role of time. In
other words, for a given set of F�

l near r ¼ 0, we can evolve
Eq. (28) to a large r, which will produce a set of A�

l and B�
l

at the large r. From this point of view, if we truncate the
angular modes to l�

max and we choose the same cutoff mode
number Nmax ¼ Nþ

max ¼ N−
max, the naive number count of

required initial data is 4Nmax, since Fþ
l and F−

l are
complex. However, since Eq. (28) is linear, there is an

overall complex scaling of the solution that can not be
fixed, which reduces the number-count by 2 to 4Nmax − 2.
This complex scaling can be used to, say, fix

Fþ
m̄þ ¼ 1; ð34Þ

which will be the choice we make in this paper.
It is instructive to do a counting of the dimensions of the

solution space from another point of view. After the l�
max

truncation, Eq. (28) is a linear system of 2Nmax (the 2
coming from the þ and − modes) complex second-order
ODEs. So if one starts to evolve the system from a large r
inwards, naively, we require 8Nmax − 2 parameters (again
the −2 coming from the unfixed overall complex scaling
and the 8 being due to four types of complex constants
A�
l ; B

�
l ), and this seems to match the freedom in choosing

A�
l and B�

l . However, solving from large r inwards is not
purely an initial value problem, we have 4Nmax regularity
conditions at r ¼ 0, which counts as boundary conditions
and reduces the degrees of freedom to 4Nmax − 2. This
agrees with the counting from r ¼ 0 outwards.

B. Amplification factors

Let us now define the amplification factors between the
outgoing and ingoing scattering waves. Because the system
inherently contains two coupled modes with different phase
velocities, we can define a number of alternative amplifi-
cation factors for the relevant physical quantities.
First, since the amplitude of the background Q-ball

solution decays to zero exponentially at large r, the Oðϕ0Þ
and Oðϕ1Þ terms are negligible at large r. So the energy
density of the scattering waves as r → ∞ can be approxi-
mated by2

Ttt ¼ j∂tϕj2 þ j∂rϕj2 þ
j∂θϕj2
r2

þ j∂φϕj2
r2sin2θ

þ Vðjϕj2Þ: ð35Þ

The first two terms and the jϕj2 term of the potential are
Oð1=r2Þ and the remaining terms are Oð1=r4Þ. Therefore,
as r → ∞, the leading order of the perturbative wave
energy density can be obtained by evaluating

Ttt ¼ j∂tϕj2 þ j∂rϕj2 þ jϕj2: ð36Þ

Similarly, for the scattering waves at large r, the energy flux
Trt, the z component of the angular momentum density Ttφ

and the z component of the angular momentum flux Trφ

are, respectively,

Trt ¼ ∂rϕ
�
∂tϕþ ∂rϕ∂tϕ

�; ð37Þ

FIG. 3. Ingoing and outgoing waves scattering on and off a
Q-ball [cf. Eqs. (20), (23), and (33)]. Solid (dashed) lines
represent positive (negative) charge.

2We will use the ¼ symbol even though this and other similar
equations only hold to leading order asymptotically.
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Ttφ ¼ ∂tϕ
�
∂φϕþ ∂tϕ∂φϕ

�; ð38Þ

Trφ ¼ ∂rϕ
�
∂φϕþ ∂rϕ∂φϕ

�: ð39Þ

To see why Ttφ is the z component of the angular
momentum density, note that the angular momentum
densities in Cartesian coordinates are JLij ¼ xiTtj − xjTti.
Transforming to the spherical coordinates, we get JLxy ¼
xTty − yTtx ¼ Ttφ, JLxz ¼ − cosφTtθ þ cot θ sinφTtφ and
JLyz ¼ − sinφTtθ − cot θ cosφTtφ. For our ansatz (23),
since Ttθ and Ttφ are independent of φ,

R
dφJLxz ¼R

dφJLyz ¼ 0. So we will only evaluate the amplification
for JLxy.
To determine the enhancement of physical observables,

let us first define the integration of the averaged energy
density, energy flux, angular momentum density, and
angular momentum flux respectively over a spherical shell
region from r1 to r2 as r1; r2 → ∞,

E⊚ ¼ 1

r2 − r1

Z
r2

r1

drr2hTttiTΩ;

¼ 2
ω2þ
k2þ

ðA2þ þ B2þÞ þ 2
ω2
−

k2−
ðA2

− þ B2
−Þ; ð40Þ

Ptr
⊚ ¼ −1

r2 − r1

Z
r2

r1

drr2hTrtiTΩ;

¼ 2
ωþ
kþ

ðA2þ − B2þÞ þ 2
ω−

k−
ðA2

− − B2
−Þ; ð41Þ

Lxy
⊚ ¼ 1

r2 − r1

Z
r2

r1

drr2hTtφiTΩ;

¼ 2
ωþmþ
k2þ

ðA2þ þ B2þÞ þ 2
ω−m−

k2−
ðA2

− þ B2
−Þ; ð42Þ

Prφ
⊚ ¼ 1

r2 − r1

Z
r2

r1

drr2hTrφiTΩ;

¼ 2
mþ
kþ

ðA2þ − B2þÞ þ 2
m−

k−
ðA2

− − B2
−Þ; ð43Þ

where the shell region from r1 to r2 must include at least a
full spatial oscillation of the longest wave, hiTΩ denotes the
average over several temporal oscillations and over the
whole 2-sphere, and we have defined

A2
� ¼ 1

2

Z
1

−1
dcθ

����
X
l

A�
lP

m�
l ðcθÞ

����
2

;

B2
� ¼ 1

2

Z
1

−1
dcθ

����
X
l

B�
lP

m�
l ðcθÞ

����
2

: ð44Þ

E⊚, Ptr
⊚, L

xy
⊚ , and Prφ

⊚ contain both the ingoing and the
outgoing waves, but it is easy to identify the ingoing and
the outgoing waves with help of Fig. 3. Therefore, for a

generic scattering, we find that the amplification factors for
the energy density, energy flux, angular momentum den-
sity, and angular momentum flux in a large r spherical shell
are, respectively,

AE ¼
�ω2

þ
k2þ

A2þ þ ω2
−

k2−
B2
−

ω2
−

k2−
A2
− þ ω2

þ
k2þ

B2þ

�signðωÞ

; ð45Þ

Atr ¼
�����

ωþ
kþ

A2þ − ω−
k−
B2
−

ω−
k−
A2
− − ωþ

kþ
B2þ

����
�signðωÞ

; ð46Þ

AL ¼
�ωþmþ

k2þ
A2þ þ ω−m−

k2−
B2
−

ω−m−
k2−

A2
− þ ωþmþ

k2þ
B2þ

�signðωÞ
; ð47Þ

Arφ ¼
�����

mþ
kþ

A2þ − m−
k−
B2
−

m−
k−
A2
− − mþ

kþ
B2þ

����
�signðωÞ

: ð48Þ

Apart from the quantities constructed from the energy
momentum tensor, there are also observables associated
with the U(1) symmetry. In particularly, we can look at the
radial current JQr ¼ ϕ�

∂rϕ − ϕ∂rϕ
�. Again, averaging over

several temporal oscillations and over the whole 2-sphere in
from r1 to r2, we get the charge density in a far away region,

PQ
⊚ ¼ i

r2 − r1

Z
r2

r1

drr2hJQr iTΩ;

¼ 2

kþ
ð−A2þ þ B2þÞ þ

2

k−
ð−A2

− þ B2
−Þ: ð49Þ

Since both one positive charge and one negative charge give
rise to one particle number, we can also define the particle
number density in a far away region as

N⊚ ¼ 2

kþ
ðA2þ þ B2þÞ þ

2

k−
ðA2

− þ B2
−Þ: ð50Þ

Then, we can define the amplification factors for the particle
number respectively in the scattering as follows:

AN ¼
� 1

kþ
A2þ þ 1

k−
B2
−

1
k−
A2
− þ 1

kþ
B2þ

�signðωÞ
: ð51Þ

An important feature in the scattering for a U(1) field is
that the particle number is conserved [63,65], which means
AN ¼ 1, or

1

kþ
A2þ þ 1

k−
B2
− ¼ 1

k−
A2
− þ 1

kþ
B2þ: ð52Þ

This relation is useful to derive the superradiance criteria
for the various observables as well as bounds on the
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amplification factors. It also serves as a consistency check
for our numerical results.
Given that the Q-ball is not spherically symmetric, it is

also interesting to look at how the amplification factors
vary according to the θ angle. One way to examine the θ
distribution is to define the θ dependent amplification
factors Aθ� by computing the counterparts of E⊚, Ptr

⊚,
Lxy
⊚ , Prφ

⊚ with the average operation hiTφ, which does not
include the average over θ, both for the ingoing and
outgoing modes,

hiTΩ → hiTφ; ð53Þ

A2
� → ðAθ

�Þ2 ¼
����
X
l

A�
lP

m�
l ðcθÞ

����
2

sin θdθ; ð54Þ

B2
� → ðBθ

�Þ2 ¼
����
X
l

B�
lP

m�
l ðcθÞ

����
2

sin θdθ: ð55Þ

That is, Aθ� measures the amplification between waves
incident on and emitted from the Q-ball in the region
θ → θ þ dθ. Note that in this case the Aθ� factors will be
independent of the choice of dcθ, as dcθ cancels out
between the ingoing and the outgoing modes.
Another set of complementary θ dependent amplification

factors Ãθ
� can be defined with the average operation hiTφ

for the outgoing modes and with the average operation hiTΩ
for the ingoing modes. That is, Ãθ

� measures the amplifi-
cation between the waves incident on the Q-ball from all
angles and the waves emitted from the Q-ball in the angle
dθ from the direction θ. In this case, the results do depend
on the choice of dθ, but this simply rescales all the
amplification factors by an overall factor.

IV. Q-BALL SUPERRADIANCE

In this section, we will present the numerical results of
waves scattering around a 3þ 1D spinning Q-ball, the
energy and angular momentum enhancements in the
process and some salient features of the superradiance.
As mentioned, to solve the perturbative equations numeri-
cally, we will use the high-dimensional shooting method, as
the convergence of the relaxation method is difficult to
achieve for the perturbative equations.

A. Numerical results

As discussed towards the end of Sec. III A, since the
different partial wave modes (i.e., modes with different l)
are inherently coupled in this 3þ 1D system, there are
many free parameters to choose in a generic scattering,
even with a relatively small l�

max truncation. Therefore, in
presenting the numerical, we will be selective in probing
the parameter space, deferring a comprehensive survey for

future work. The directions of the parameter space that we
are going to probe in this paper include:

(i) Background: First of all, we will divide the numeri-
cal results into two subcategories: (1) the back-
ground Q-ball has even parity and (2) the
background Q-ball has odd parity. We will mainly
focus on the even sector, since the main super-
radiance features of the odd sector seem to be
similar. Note that when the background Q-ball
has even (or odd) parity, the scattering waves on
top of it can have the same or the opposite parity. We
will focus on the Q-ball solutions with mQ ¼ 1.

(ii) One ingoing mode: We will be interested in scatter-
ing where there is only one ingoing mode with the
lowest l ¼ m̄� þ s ¼ jmQ �mj þ s, where s ¼ 0
(s ¼ 1) for an even (odd) parity Q-ball. To be more
concrete, if ω > 0, the only ingoing mode is set to be
Bþ
l¼m̄þþs; if ω < 0, the only ingoing mode is set to

be Aþ
l¼m̄þþs. Although there is just one ingoing

modes, the energy will be scattered into all available
l modes in the outgoing waves. Note that the parity
of the perturbative modes can be different from that
of the background Q-ball.

(iii) Two ingoing modes: We also plot figures where
there are both þ and − ingoing modes. In this case,
we also only consider the scenario where only the
lowest l modes, i.e., l ¼ m̄� þ s, are present in the
ingoing waves.

1. Even parity

In this subsubsection, we present the numerical results
for the case where the background Q-ball is of even parity,
but both the even and odd parity perturbative modes will be
explored. We will discuss the one ingoing mode case and
the two ingoing modes case, as itemized above.
In Fig. 4, we plot the spectra for the amplification factors

AE, AL, Atr, and Arφ, defined in the last section, for the
case of one ingoing mode with l ¼ m̄þ ¼ 1, 2, 3, corre-
sponding to m ¼ 0, 1, 2. Note that there are empty gaps,
which is referred to as the mass gap, in the ω spectra simply
because we are interested in propagating waves where
ω2
� ¼ k2� þ 1. For this figure, we truncate l�

max up to
the fourth order, such that Nmax ¼ Nþ

max ¼ N−
max ¼ 4,

which for one point of ω can be computed approximately
within 105–106 seconds by the high-dimensional shooting
method with ParametricNDSolve and FindRoot in
Mathematica. This allows us to achieve good convergence
for these amplification factors, except for the small gray
region in the m ¼ 1 case where the errors in the amplifi-
cation factor AE, inferred from the third and fourth order,
can exceed about 2% in terms ofAE, but still below 4% for
the largest error. Generally, the convergence for all of these
amplification factors are very similar. The convergence of
the perturbative scattering computations can also be
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confirmed by monitoring the particle number amplification
factor AN ¼ 1. Figures 13 and 14 depicting the particle
number conservation and the differences between the third
and fourth order for AE can be found in Appendix B.
In Fig. 4, we see that the angular momentum can be

amplified in the m ¼ 2 case near the mass gap but can not
be enhanced in the m ¼ 0, 1 cases over the whole ω
spectrum. This is related to the fact that the background Q-
ball has mQ ¼ 1. That is, when the ingoing modes are of
one kind (ηþ or η−), angular momentum can only be
enhanced when m > mQ. As will be explained in the
Sec. IV B, this is different from the Zel’dovich rotational
superradiance condition. Also, in them ¼ 1 plot, the line of
AL overlaps with that of Arφ. Technically, this is because
when m− ¼ mQ −m ¼ 0 we can see from Eqs. (47) and
(48) that AL ¼ Arφ. Physically, it simply means that when
m− ¼ 0, only the ηþ modes have angular momentum, in
which case it is the same to define the amplification factor

with the angular momentum in the far-away region and
with the angular stress current.
Moreover, we observe that there can not be super-

radiance for the energy current and the angular stress
current when ω > 0, which is consistent with the semi-
analysis in Sec. IV C. However, the energy current does get
amplified from the left-hand side of the mass gap, that is,
when it satisfies a Zel’dovich-like rotational superradiance
condition ωþ < ωQ [64]. We want to emphasize that,
different from the traditional real-space rotation, here it
is a rotation in the internal field space. We can also establish
the superradiance criteria for other amplification factors
such as AE and AL [63,65], which will be discussed in
Sec. IV C. Our numerical results confirm all of these
criteria.
A probably unsurprising feature is that the peaks and

dips of the different amplification factors often align with
each other. However, near the mass gap, there are obvious
differences between AE and Atr or between AL and Arφ.
This is because the scattering problem involves two kinds
of modes with frequency ωþ and ω−, respectively, and they
have different group velocities due to the massive nature of
the complex scalar field [64]. Far away from the mass gap,
the differences between the group velocities become
negligible, so we expect AE ≃Atr and AL ≃Arφ, as we
can see in Fig. 4. We also see that there are generally
multiple peaks in the spectrum, and it would be interesting
to understand the underlying mechanism to generate them.
A 3D spinningQ-ball is axisymmetric, so it is of interest

to look at the polar-angle dependence of the amplification
factors. We have defined two sets of such amplification
factorsAθ� and Ã

θ
� in the last section. Here we will see more

clearly that they are complementary when the ingoing
modes are not spherically symmetric. More concretely, in
the setup of Fig. 5, the ingoing mode is given by the
ðjmþj; mþÞ partial wave withmþ ¼ 1þm,m being 0, 1, or
2. The intensity of each of these partial waves peaks at the
equator, monotonically decreases away from the equator
and vanishes at the north/south pole. Since the outgoing
waves have nonzero intensity at the two poles, we will find
that the Aθ� factors tend to infinity at the two poles, as we
see in Fig. 5 for the case ofm ¼ 0. However, there are some
regions where the amplification factors do not tend to
infinity at the two poles. The reason is that near the two
poles, the outgoing wave has a negative angular momen-
tum, opposite to that of the ingoing wave. Therefore, Aθ

L
becomes negative at the two poles. The cases with m ¼ 1
and m ¼ 2, which are not displayed, exhibit a considerable
degree of similarity. On the other hand, in Fig. 6 for the
numerical setup dθ ¼ 0.1, the Ãθ

� factors faithfully depict
the θ dependence of the outgoing waves, but neglect the
fact that the ingoing waves are not spherically symmetric.
As we can see in Figs. 5 and 6, near the poles theAθ� factors
tend to infinity roughly. While these figures show the
amplification factors, we note that the actual amount of flux

FIG. 4. Spectra of the energy amplification factor AE, the
angular momentum amplification factor AL, the energy current
amplification factor Atr and the angular stress current amplifi-
cation factor Arφ. Both the Q-ball background (truncated up to

6th order in the l expansion, such thatNQ
max ¼ 6; i.e., the solution

of Fig. 1) and the perturbative waves are of even parity (truncated
up to fourth order in the l expansion, such that
Nmax ¼ Nþ

max ¼ N−
max ¼ 4). Convergence is generally very good,

but in the gray shaded region of the m ¼ 1 plot, the numerical
errors in the perturbative scattering calculations with the fourth-
order truncation can exceed 2%. In them ¼ 1 plot, the line ofAL
overlaps with that of Arφ.
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in the various physical quantities is larger in the region of
the equator.
The scattering of Fig. 4 is a process where one ingoing

mode (ηþl¼1þm) is scattering into various different l modes
in the outgoing waves. Figure 9 is a breakdown of the

distribution of the energy in the different η�l modes for the
outgoing modes for different ω and m. Since the ingoing
mode are of the þ type, we see that most energy in the
outgoing waves remain in theþmodes. Also, it is clear that
the lower l modes contain more energy in the scattered

FIG. 5. Angular distribution of the amplification spectra for the energy Aθ
E, angular momentum Aθ

L, energy current Aθ
tr and angular

stress currentAθ
rφ. θ is the polar angle, and these angular amplification factors are defined via the replacements (53)–(55). The numerical

setup is the same as the m ¼ 0 case of Fig. 4.

FIG. 6. Angular distribution of the amplification spectra for the energy Ãθ
E, angular momentum Ãθ

L, energy current Ãθ
tr and angular

stress current Ãθ
rφ. The parameter used for the numerical setup is dθ ¼ 0.1. θ is the polar angle, and these angular amplification factors

are defined via the replacements (53)–(55). The numerical setup is the same as them ¼ 0 case of Fig. 4. The definition of the Ãθ can be
found at the end of the Sec. III B.
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outgoing waves, except for a small range of negativeω near
the mass gap where the l ¼ 2 or 3 mode can dominate the
energy budget. For the m ¼ 2 case, there is also a small
range of positive ω where the l ¼ 2 and − mode can
dominate. In general, it is easier to convert the þ modes
into the −modes when the ingoing mode has a largerm and
when ω is closer to the positive side of the mass gap. Again,
since the system is symmetric with respect to the swap of
the þ and − modes, similar results also apply to the case
with one − ingoing mode.
In general, there can be both þ and − modes in the

ingoing waves, in which case theþ and −modes interact to
enhance the amplification of waves in the scattering. In
Fig. 7, we probe the scenario of both þ and − ingoing
modes around the one ingoing mode case of Fig. 4. It is
simplest to parametrize the deviation from the one ingoing
mode case by the F�

i parameters, which parametrize all
possible regularity conditions at the center of the Q-ball.
They contain the information about the scattering waves
and also the correction to the background Q-ball by the
scattering waves. The F�

i parameters corresponding to the
one ingoing mode case of Fig. 4 are listed in the bottom left
corner of Fig. 7. Note that all the l modes are activated
even for the case of one ingoing l mode.

2. Odd parity

In the previous subsubsection, we focused on the case
where both the backgroundQ-ball and the scattering waves
are of even parity. Here we shall briefly explore the cases
where either the background or the scattering waves are of

odd parity; see Fig. 8. For the same set of parameters, the
odd parity Q-ball is more energetic, due to the double-peak
structure the energy of the Q-ball in Fig. 2 is about twice
that of Fig. 1. Despite that, we see that generally the even
parityQ-ball tends to create more energy amplification than
the odd parity Q-ball. In the event of energy reduction, the
even parity Q-ball also absorbs more energy than the odd
parity Q-ball. However, as for the parity of the scattering
waves, there is no clear trend whether one parity can
enhance or reduce the energy more than the other. In
particular, a mixed parity case sometimes can produce the
largest amplification effects.

B. Amplification in asymptotic regions

In the previous subsection, the numerical results of the
various amplification factors are presented. In this
subsection, to further confirm these results, we (semi)
analytically examine the asymptotic behavior of the ampli-
fication factors as ω approaches the mass gap or ω → ∞,
for the case where the ingoing modes are of the same
frequency.
If we consider a single ingoing mode we can, without

lost of generality, take there to be only ηþ modes but no η−

ingoing modes. There are two cases for this: (i) ω > 0 and
A− ¼ 0; (ii) ω < 0 and B− ¼ 0. For simplicity, we also
assumem ≥ 0. Let us consider the case of ω > 0 and A− ¼
0 first. Near the mass gap, we can write ω ¼ 1þ ωQ þ ϵ,
where 0 < ϵ ≪ 1 (note that we have also assumed
ωQ > 0). In this case, by the particle number conservation
Eq. (52), the amplification factors can be written as

FIG. 7. Amplification factor AE for two ingoing modes parametrized by F�
l . The other numerical setup is the same as the m ¼ 0 case

of Fig. 4. The one ingoing mode case of Fig. 4 is marked with black dots, and the corresponding F�
l parameters are listed in the bottom

left corner of the figure. The parameters used are m ¼ 0, ω ¼ −4.00.
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AE ¼
1
2ϵB

2
− þ ω2

þ
k2þ

A2þ
ω2
þ

kþ
1ffiffiffiffi
2ϵ

p B2
− þ ω2

þ
k2þ

A2þ
; ð56Þ

AL ¼
− m−

2ϵ B
2
− þ ωþmþ

k2þ
A2þ

ωþmþ
kþ

1ffiffiffiffi
2ϵ

p B2
− þ ωþmþ

k2þ
A2þ

; ð57Þ

Atr ¼
����

1ffiffiffiffi
2ϵ

p B2
− þ ωþ

kþ
A2þ

ωþffiffiffiffi
2ϵ

p B2
− þ ωþ

kþ
A2þ

����; ð58Þ

Arφ ¼
����
− m−ffiffiffiffi

2ϵ
p B2

− þ mþ
kþ

A2þ
mþffiffiffiffi
2ϵ

p B2
− þ mþ

kþ
A2þ

����: ð59Þ

Note that these amplification factors now only depend on
the far-away amplitudes B2

− and A2þ. As we are considering

linear scattering, we can always scale the amplitude of the
ingoing wave Aþ to be order one. Generically, the outgoing
ηþ wave Bþ should also be order one. Now, let us assume
the leading behavior of B2

− goes like

B2
− ∝ ϵn; n ≥

1

2
; 0 < ϵ ≪ 1; ð60Þ

as ϵ goes to zero. The fact that n must be no less than 1=2
can be seen from the particle number conservation con-
dition jB−j2=

ffiffiffiffiffi
2ϵ

p ¼ ðjBþj2 − jAþj2Þ=kþ and the fact that
the right hand side of this equation is finite. We then see
that the behavior of the amplification factors near the mass
gap depends on the size of n:

(i) n > 1: These four amplification factors all have the
same asymptotic behaviorA → 1 asω approaches the
mass gap: AE should tend to 1 from above, and Atr
Arφ should tend to 1 frombelow.ForAL, it dependson
the value of m; it should tend to 1 from below when
0 ≤ m ≤ mQ and from above when m > mQ. How-
ever, we do not observe this case in Fig. 4.

(ii) n ¼ 1: The amplification factors for the energy and
the angular momentumwill asymptotically approach
nonvanishing constants as ϵ → 0. This seems to
happen when m ≠ mQ in Fig. 4. This nonvanishing
constant is greater than 1 for AE. For AL, it depends
on the value ofm: the constant is greater than 1 when
m > mQ and is less than 1 when 0 ≤ m ≤ mQ.
Additionally, it is also easy to obtain the following
asymptotic ratio

lim
ϵ→0

AL − 1

AE − 1
¼ −

ωþm−

mþ
; ð61Þ

This consistency relation agrees quite well with our
numerical results in Fig. 4, as can be seen in Fig. 10.

(iii) 1 > n ≥ 1=2: The amplification factor for the energy
AE will asymptotically tend to infinity as ϵ → 0.
While this case is allowed in principle, we do not
observe it in all of numerical evaluations. That is,
when we approach the mass bound, the difference
between the group velocities of ηþ and η− tends to
infinity, the energy amplification factor may not tend
to infinity, because B− tends to zero faster. On the
other hand, the amplification factor for the angular
momentum AL depends on the value of m; it should
tend to negative infinity when mQ > m ≥ 0, tend to
a nonvanishing constant that is less or equal than 1
when m ¼ mQ and tend to infinity when m > mQ.

Generally, neither the energy current nor the angular stress
current can be amplified near the right-hand side of the
mass gap, since neither Atr > 1 nor Arφ > 1 has a real
solution for ϵ. In fact, this holds for generic ω > 0, as we
will see in the next subsection.
For the case of ω < 0 and B− ¼ 0 (and m ≥ 0), the

analysis is similar. Assuming that

FIG. 8. Amplification factors AE, Atr, AL, and Arφ for mixed
parities. For example,þ−means that the backgroundQ-ball is of
even parity and the scattering waves are of odd parity. The even
parity Q-ball is that of Fig. 1 and the odd parity Q-ball is that of
Fig. 2.
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jA−j2 ∝ ϵn; n ≥ −
1

2
; 0 < ϵ ≪ 1; ð62Þ

as ω approaches the mass gap from the left
ω → −1 − ωQ − ϵ, we find:

(i) n > − 1
2
: Atr always tends to 1 from above and AE,

AL, and Arϕ tend to 1 from below, as ϵ → 0.
(ii) n ¼ − 1

2
: As ϵ → 0, AE and AL approaches a

constant less or equal than 1, and Atr and Arφ

approaches 1, Atr approaching 1 from above and
Arφ approaching 1 from below.

When ω is large, ωþ, −ω−, kþ, and k− all tend to ω, for
which case all the amplification factors approach 1.
Specifically, when ω → ∞, AE, Atr, AL, and Atφ

approaches to 1 from below; when ω → −∞, AE and
Atr approaches to 1 from above and AL and Atφ

approaches to 1 from below. This is expected as the
couplings between the high-frequency modes and the
modes of theQ-ball should be suppressed by the frequency
hierarchy between them.
Near the mass gap, it is also easy to extract the super-

radiance criteria for the amplification factors. Let us again
take the case of ω > 0, m ≥ 0 and A− ¼ 0 for an example.

First, by requiring AE > 1, we can get the energy super-
radiance criterion,

ϵ <
2ωQð1þ ωQÞ
ð1þ 2ωQÞ4

≡ ϵE: ð63Þ

FIG. 9. Fractional distribution of energy in the outgoing l modes for various ω and m, when there is only one ingoing wave (ηþ1þm) in
the scattering. The plots should be taken in pairs, for example the first two plots on the top row show the fractional distribution of energy
form ¼ 0 and ω < 0, with the first of the two giving the energy in ηþ and the second giving the energy in η−. The black lines are the sum
of all the four corresponding l modes and we note that the energy in these outgoing ηþ and η− modes add up to one, when the plots are
considered in pairs as described. The numerical setup is the same as Fig. 4.

FIG. 10. Numerical confirmation of the consistent relation (61)
between AE and AL near mass gap.

SPINNING Q-BALL SUPERRADIANCE IN 3þ 1D PHYS. REV. D 110, 043504 (2024)

043504-13



From this, we see that the energy is always enhanced
AE > 1 as long as B− is nonzero and 0 < ϵ < ϵE.
Similarly, we can obtain the angular momentum super-
radiance criterion by requiring AL > 1, which leads to

mQ<m and ϵ<
2ωQð1þωQÞðmQ−mÞ2
ð1þ2ωQÞ2ðmQþmÞ2 ≡ϵL: ð64Þ

In fact, some generic superradiance criteria can be estab-
lished away from the mass gap, as we shall see in the next
subsection.
As we are considering one ingoing mode here, it is

instructive to compare the angular momentum superra-
diance condition m > mQ with the Zel’dovich rotational
superradiance condition, ωþ=mþ < ΩQ ¼ ωQ=mQ.
Rewriting the Zel’dovich condition near the mass gap
we get m > ð1þ ð1þ ϵÞ=ωQÞmQ. Since ϵ > 0 and
ωQ < 1, we see that the Zel’dovich condition is stronger
than m > mQ. So in the Q-ball case, it is not necessary for
the Zel’dovich condition to be satisfied to have angular
momentum superradiance.

C. Superradiance criteria and amplification limits

In this subsection, we shall review the frequency criteria
for the amplification factors to go above 1, i.e., for the wave
amplification to take place [63–65]. We will also obtain
some generic upper bounds on the amplification factors,
which are independent of the amplitudes of the perturbative
scattering waves. This is again made possible by using the
particle number conservation in the scattering.
Let us first consider the case where there are only

ingoing ηþ modes. In this case, when ω > 0ðω < 0Þ, we

have A− ¼ 0ðB− ¼ 0Þ. Making use of the particle
number conservation, the amplification factors can be
rewritten as

AE ¼
ω2
þ

k2þ
pþ ω2

−
k2−

ω2
þ

k2þ
pþ ω2

þ
kþk−

; Atr ¼
����
ωþ
kþ

p − ω−
k−

ωþ
kþ

pþ ωþ
k−

����;

AL ¼
ωþmþ
k2þ

pþ m−ω−
k2−

ωþmþ
k2þ

pþ ωþmþ
kþk−

; Arφ ¼
����
mþ
kþ

p − m−
k−

mþ
kþ

pþ mþ
k−

����; ð65Þ

where we have defined p ¼ A2þ=B2
− when ω > 0 and

p−1 ¼ A2
−=B2þ when ω < 0. Obviously, p ≥ 0, so running

through all possible p gives us the allowed range of these
amplification factors, and these ranges only depend on with
ωQ, ω and m. Assuming that ωE solves AE ¼ 1 and ωL

solves AL ¼ 1, they must satisfy

ω2þ
kþ

¼ ω2
−

k−

����
ω→ωE

; ð66Þ

ωþmþ
kþ

¼ ω−m−

k−

����
ω→ωL

: ð67Þ

It is easy to see that when ω < −ωE or 1þ ωQ < ω < ωE,
the energy amplification factor falls within the range
1 < AE < ω2

−kþ=ω2þk−. That is, we can always achieve
superradiance in this range. When ωE < ω, we have
ω2
−kþ=ω2þk− < AE < 1. [Numerically, we can verify that

the criteria ϵE established in Eqs. (63) and (64) are
conservative: 1þ ωQ þ ϵE < ωE and 1þ ωQ þ ϵL < ωL

for m > mQ.] Similarly, with the same analyses, we

TABLE I. Analytical bounds on the amplification factors when there are only ingoing ηþ modes. The bounds for
ingoing η− modes only can be obtained by replacing ω with −ω. The table shows the range of parameters and
amplification factors that can produce superradiance in the top four rows, and the range of parameters and
amplification factors that correspond to the nonsuperradiant regime in the bottom four rows. When m ¼ −mQ, the
amplification factors AL and Arφ tend to infinity because mþ ¼ 0.

ω (mQ ≠ 0) A

AE ω < −ωE or 1þ ωQ < ω < ωE ð1; ω2
−kþ

ω2
þk−

Þ
Atr ω < −ð1þ ωQÞ ð1;− ω−

ωþ
Þ

AL
(m > mQ and 1þ ωQ < ω < ωL) ð1; ω−m−kþ

ωþmþk−
Þor (m < −mQ and (ω < ωL or 1þ ωQ < ω))

Arφ
−mQ < m < 0 and jωj > ð1þ ωQÞ ð0; j m−

mþ
jÞ

m < −mQ and jωj > ð1þ ωQÞ ð1; j m−
mþ

jÞ
AE −ωE < ω < −ð1þ ωQÞ or ωE < ω ðω2

−kþ
ω2
þk−

; 1Þ
Atr 1þ ωQ < ω ð− ω−

ωþ
; 1Þ

AL

(m > mQ and ðω < −ð1þ ωQÞ or ω > ωL))
ðω−m−kþ
ωþmþk−

; 1Þor (mQ ≥ m > −mQ and jωj > ð1þ ωQÞ)
or (m < −mQ and ωL < ω < −ð1þ ωQÞ)

Arφ m ≥ 0 and jωj > ð1þ ωQÞ ðmax ð0;− m−
mþ
Þ; 1Þ
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can find the exact superradiance ranges for all these
amplification factors. The results are tabulated in Table I
for the case where there are only ingoing ηþ modes, and the
table shows the range of parameters and amplification
factors that can produce superradiance in the top four rows,
and the range of parameters and amplification factors that
correspond to the nonsuperradiant regime in the bottom
four rows. Note that the bounds on AE and Atr do not
depend on m, and we see that the upper limits on these
amplification factors are all unbounded from above. In
Table I, when m ¼ −mQ, we have mþ ¼ 0, and the
amplification factors AL and Arφ diverge. This is because
the ingoing waves have zero angular momentum and

angular momentum flux, so the outgoing waves carry away
any amount of angular momentum and angular momentum
flux, makingAL and Arφ unbounded. A few visualizations
of the bounds on these amplification factors are shown in
Fig. 11. Our numerical results all fall within these bounds.
These bounds can be useful as a guide to find parameters
such as ωQ, ω, m and p to achieve larger amplifications for
the scattering waves.
Since the ηþ and η− modes are symmetric with respect to

the reflection ω → −ω, the bounds for the case where there
are only ingoing η− modes can be obtained from Table I by
replacing ω with −ω.
For AE and AL, the general amplification criteria can

also be established when there are both þ and − modes
ingoing. Assuming that ωE solves AE ¼ 1 and ωL solves
AL ¼ 1, they must satisfy

ωE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

Q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ω2

Q

qr
; ð68Þ

FIG. 11. A guide to achieve large amplification factors, taking
the case of only ingoing ηþ modes for an example. Top: bounds
on amplification factors AE and Atr, solid lines being upper
bounds and dashed lines being lower bounds. Middle: possible
maxima of AE when ω < 0 and their corresponding ω and ωQ

values. Bottom: dependence of AE (solid) and Atr (dashed) on ω
and the ratio p; p ¼ A2þ=B2

− when ω > 0 and p ¼ A2
−=B2þ

when ω < 0.

FIG. 12. Spectra of the energy amplification factor AE, the
angular momentum amplification factor AL, and the energy
current amplification factor Atr. The background Q-ball is the
nonspinning case and spherical symmetric solution, and the
scattering mode only keep the lowest cutoff N�

max ¼ 1 with the
even parity. Since the angular momentum current is proportional
to the particle number according to the numerical analysis, so
Arφ ¼ 1 for the nonspinning background Q-ball.
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ωL ≈

8<
:

ωQ þ
�
1 − m2

−
m2

þ

�
1 − ð1þ 2ωQÞ−2

�	−1=2
; if m > mQ;

−ωQ −
�
1 − m2

þ
m2

−

�
1 − ð1þ 2ωQ

�−2�	−1=2
: if m < −mQ:

ð69Þ

Finally, we briefly discuss the nonspinning Q-ball and its
superradiance effect, where mQ ¼ 0 and mþ ¼ −m− ¼ m.
The background Q-ball only gives us a spherical symmetric
solution for the nonspinning case of the complex scalar field,
which has only one cutoff mode Nmax ¼ kQmax þ 1 ¼ 1. Due
to the spherical symmetric background Q-ball, the linear
perturbation gives rise to uncoupled ODEs between the
different modes. In Fig. 12, we only consider the uncoupled
lowest cutoff N�

max ¼ 1 with the even parity. When m ¼ 0,
the ingoing and outgoing mode has not any angular momen-
tum, so we define AL ¼ 1 for this case. When m ≠ 0, the
frequency criteria for the angularmomentum tends to infinity,
therefore we can achieve the superradiance of the AL in the
range ω > 1þ ωQ. We also find the angular momentum
current is proportional to the particle number for both the
ingoing and outgoing cases from the numerical analysis, and
hence Arφ ¼ 1 for the nonspinning background Q-ball.

V. CONCLUSION

In summary, we have first reviewed the setup of the
spinning Q-ball solutions in 3þ 1D, which uses the
expansion of the associated Legendre functions to convert
the intractable partial differential equation into the coupled
ODEs. The numerical solutions can be obtained by
truncating the partial wave expansion. We found that the
problem can be efficiently solved with a relaxation method
(see Appendix A 1) with high accuracy.
Second, we have investigated the perturbative scattering

on a Q-ball background. By again applying the expansion
of the associated Legendre functions, the scattering wave
equations can be obtained, which are also in a form of
coupled ODEs. We imposed appropriate boundary con-
ditions, choosing only one ingoing mode with the lowest
cutoff, and use a high-dimensional shooting method (see
Appendix A 2) to obtain the solution to the scattering wave
equations. This enables us to obtain the amplification
factors for the energy density, energy flux, angular momen-
tum density, and angular momentum flux between the
outgoing and ingoing scattering waves in a large r spherical
shell. The particle number in the scattering is accurately
conserved. The numerical accuracy and convergence are
discussed in Appendix B. Since the spinning Q-ball is
axisymmetric, angular distribution of the amplification
factors is explored in details (see Figs. 5 and 6.) We also
investigated the influence of the parity in the scattering, for
both the background Q-ball and scattering waves, and
found that, in general, the even parity Q-ball lends to more
energy amplification than the odd one.

Next, we analyzed the amplification in asymptotic
regions; near the mass gap, the amplification factors exhibit
some distinct behaviors (see Sec. IV B), but when ω is large,
all the amplification factors approach 1. We also derived the
superradiance criteria and amplification limits (see Table I)
and found that, for only ingoing ηþ modes, the factorAE can
be superradiant only when ω < −ωE or 1þ ωQ < ω < ωE,
AL can be superradiant only when m > mQ or m < −mQ,
Atr can be superradiant only when ω < −ð1þ ωQÞ, and
Arφ can be superradiant only when m < 0. We found that
the standard Zel’dovich rotational superradiance criterion is
violated for the angular momentum at least for the case
where there is only one ingoing mode. In fact, for theQ-ball
system, some Zel’dovich-violating parameter regions still
allow for superradiance to happen. This is of course not
surprising, as the perturbative scattering around a Q-ball
contains two modes: when there is only one ingoing mode,
the outgoing waves contain both modes.
Note that the classical approximation for the Q-balls is

generally expected to be accurate for small couplings (i.e.,
small λ̃ and g̃) or equivalently large field amplitudes/
occupation numbers. However, sometimes, the occupation
numbers required can be very low [1]. In this paper, we have
rescaled away the coupling λ̃ (as well as m̃) to reduce
Lagrangian (1) to Lagrangian (3). Thus, our classical results
are applicable for any λ̃ (and m̃). Also, g̃ being small is easy
to satisfy as jϕj6 is an irrelevant operator in 4D. However,
one thing one has to bear in mind is that it is only in the
classical approximation can we scale away the coupling λ̃ (as
well as m̃) via Eq. (2). In the path integral formulation of the
quantum theory, for example, this rescaling will introduce a
factor in front of the action S, which essentially rescales the
ℏ in eiS=ℏ. Thus, while we can use Lagrangian (3) to study
the classical approximation for any λ̃ (as well as m̃), we only
expect our results to be applicable for small λ̃. See [13] for a
recent discussion on this.
In this paper, we focused on scatterings where the

perturbative ingoing modes contain only the lowest mode
of the partial waves.One obvious generalization is to consider
more generic ingoing setups and explore how the ingoing
partial waves affect the amplification factors. Another in-
triguing aspect that is worth exploring is the time domain
evolution of the scattering around the 3DQ-ball, which for a
spinning Q-ball needs to be done without the spherical
symmetry. Furthermore, one may also study the time domain
evolution for boson stars with a Q-ball-like potential.

All data created during this research are openly available
from the University of Nottingham data repository at [67].
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APPENDIX A: RELAXATION AND HIGH-
DIMENSIONAL SHOOTING

In this appendix, we review the basics of the relaxation
method that we use to solve for the background spinning
Q-balls and the high-dimensional shooting method that we
use to solve for the perturbative scattering on top of the
Q-ball background.

1. Relaxation method

Relaxation methods solve boundary value problems by
iteratively updating trial solutions across the entire solving
range (or grid) until a desired accuracy is reached.
Consider a boundary value problem for a system of first-

order ODEs

∂rFðrÞ ¼ Yðr;FðrÞÞ; ðA1Þ

in the range ðra; rbÞ with boundary conditions

BðaÞðra;FðraÞÞ ¼ 0; BðbÞðrb;FðrbÞÞ ¼ 0; ðA2Þ

where F, Y, and B ¼ ðBðaÞ; BðbÞÞT are N-component
vectors, such as F ¼ ðFð1Þ; Fð2Þ;…; FðNÞÞT . Now, we want
to solve this boundary value problem with a finite differ-
ence method by discretizing the solving range with a grid
rk ¼ ra þ kðrb − raÞ=M, k ¼ 0; 1; 2;…;M. Denoting the
value of a quantity X at rk as Xk, a finite-difference version
of (A1) and its boundary conditions can be written as

Ekðrk; rk−1;Fk; Fk−1Þ ¼ 0; ðA3Þ

where k ¼ 1; 2;…;M we have

Ek ≡ Fk − Fk−1 þ ðrk−1 − rkÞY
�
rk−1 þ rk

2
;
Fk þ Fk−1

2

�
;

ðA4Þ

and we have also defined

E0 ≡ ðBðaÞ
0 ; 0Þ; EM ≡ ð0; BðbÞ

M Þ: ðA5Þ

Note that Ek only depends on rk, rk−1, Fk, and Fk−1. We
can conveniently combine Ek ¼ 0 with different k into an

ðM þ 1Þ × N matrix equation when solving them
numerically.
The relaxation method starts with an initial profile

Pk ¼ PðrkÞ for the whole grid and assumes the approxi-
mate solution is given by

Fk ¼ Pk þ ΔFk: ðA6Þ

ΔFk ¼ ðΔFð1Þ
k ;ΔFð2Þ

k ;…;ΔFðNÞ
k ÞT is to be determined by

the following equation:

EkðPk; Pk−1Þ þ Ek;k · ΔFk þ Ek;k−1 · ΔFk−1 ≈ 0; ðA7Þ

where we have Taylor-expanded the equations of motion
EkðPk þ ΔFk; Pk−1 þ ΔFk−1Þ ¼ 0 to leading order and
defined Ek;k ¼ ∂Ek=∂Pk and Ek;k−1 ¼ ∂Ek=∂Pk−1 and the
dot product of vectors A · B ¼ P

N
i¼1 A

ðiÞBðiÞ. Viewing

ðΔFðiÞ
k Þ as a vector ΔF by enumerating both the i and k

indices, it is easy to transform (A7) into a linear algebraic
equation of the form AΔF ¼ B, which can be solved by
modern efficient matrix equation solvers. After obtaining
ΔFk, we use Fk ¼ Pk þ ΔFk as the second profile and then
iterate until a desired accuracy is reached.
To determine whether the profile has relaxed to a

solution with a target accuracy, we can define the following
relative error

Erel ¼
1

ðM þ 1ÞN
XN
i¼1

XM
k¼0

���� ΔFðiÞ
k

maxkðFðiÞ
k Þ

����; ðA8Þ

to control the iteration process. For example, in this paper,
we choose Erel to be around 10−15. Alternatively, we can
also monitor the relaxation process with an absolute error.
For the background Q-ball solution, we need to solve a

system of second-order ODEs (17). But they can be easily
reduced to first-order ODEs by introducing more variables
hlðrÞ ¼ ∂rflðrÞ, which leads to

∂rfl ¼ hl; ðA9Þ

∂rhl¼−
2

r
hl−



ω2
Q−1−

lðlþ1Þ
r2

�
fl−Vlðfl0 Þ: ðA10Þ

The solving range of the exact problem is from r ¼ 0 to
r ¼ ∞, but in practice, we numerically solve it from ra ¼ ε
to rb ¼ 50, where 0 < ϵ ≪ 1. It is also crucial to employ a
sensible initial profile; otherwise, achieving a convergent
solution may not be obtained, or the process may take an
extended period to reach a solution. However, when it
comes to our background Q-ball solution, obtaining rea-
sonable initial profiles is easily achievable through a few
trial-and-error attempts, especially for a larger ωQ.
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2. Shooting method

The shooting method solves a boundary value problem
by treating it as an initial value problem and iteratively
tuning the initial conditions to achieve the desired solution.
While a 1D shooting method (i.e., with one parameter to
tune) can often be done manually, a high-dimensional
shooting method is computationally more challenging.
Consider a boundary value problem of the following

form:

DrHðiÞðrÞ þVðr;Hði0ÞðrnÞÞ ¼ 0; i¼ 1;2;…;N; ðA11Þ

in the range ðra; rbÞ with boundary conditions,

BðkÞ
a ðra;HðraÞ; ∂rHðraÞÞ ¼ 0; k ¼ 1; 2;…; K; ðA12Þ

BðlÞ
b ðrb;HðrbÞ; ∂rHðrbÞÞ ¼ 0; l ¼ 1; 2;…; L; ðA13Þ

where Dr is a second-order different operator, V is a
function of Hði0Þ,3 and K þ L ¼ 2N. In the simplest
shooting method, we effectively treat r as time, ra as the
“initial time” (for our perturbative wave scattering case,
ra ¼ ϵ with 0 < ϵ ≪ 1) and rb as the “final time.” The goal
is find an appropriate set of initial conditions for HðiÞðraÞ
and ∂rHðiÞðraÞ that satisfy (A12) and (A13). Often, it
is the case, such as in the Q-ball perturbative scattering
we have in this paper, that HðiÞðraÞ and ∂rHðiÞðraÞ are not
freely adjustable; instead, they must adhere to additional
conditions relevant to the problem at hand. While

BðkÞ
a ðra;HðraÞ; ∂rHðraÞÞ ¼ 0 can be easily factored into

the choice of the initial conditions, to satisfy

BðkÞ
b ðra;HðraÞ; ∂rHðraÞÞ ¼ 0, we essentially choose vari-

ous different initial conditions at ra, evolve (A11) from ra
to rb and then pick out the correct set of initial conditions.
Alternatively, one can also evolve the ODEs both from ra
and rb to a meeting point rm and matching the solutions at
rm, which is sometimes more accurate.
In Mathematica, this process can be efficiently imple-

mented with the ParametricNDSolve and FindRoot
command. Essentially, by numerically integration from ra
to rb, ParametricNDSolve can output a set of numeri-
cal equations among the free parameters of boundary
conditions. We can then feed these equations into the
FindRoot function to find the solution of this set of
equations, which gives rise to the desired solution for
HðiÞðrÞ between ra and rb.
For the Q-ball perturbative scattering in this paper,

by solving (28) from ra ¼ ε to rb ¼ 50 with
ParametricNDSolve and requiring that the matching

conditions on η�l ðrbÞ and ∂rη�l ðrbÞ, we can establish 8Nmax

real relations between F�
l and A�

l and B�
l ,

EIðF�
l ; A

�
l ; B

�
l Þ ¼ 0; I ¼ 1; 2;…; 8Nmax; ðA14Þ

To get a unique solution, we also need to, by user’s choice,
supply 4Nmax relations among F�

l and A�
l and B�

l , as there
are 12Nmax degrees of freedom among them. For example,
if we are interested in an even-parity scattering where there
is only one ingoing mode with the lowest l for Bþ

l and
ω > 0, we can impose A−

l ¼ Bþ
l>1 ¼ 0, which gives

4Nmax − 2 extra conditions. Additionally, we can also
choose Fþ

1 ¼ 1 due to the linearity of the scattering
equation, which gives another 2 conditions. Thus, we have
12Nmax equations, which can be uniquely solved for
12Nmax variables F�

l and A�
l and B�

l . We can then use
FindRoot solve these equations, which gives the solution
for the scattering problem.

APPENDIX B: NUMERICAL ACCURACY AND
CONVERGENCE

In this appendix, we provide some plots to demonstrate
the numerical accuracy and convergence in the obtained
results.
As mentioned in the main text, a good quantity to

monitor the accuracy of the numerical results is the
amplification factor AN, which is guaranteed to be 1 by
the particle number conservation in the scattering on the
Q-ball background. In Fig. 13, we see that in our numerical
computations AN ¼ 1 is held in relative high accuracy.
In Fig. 14, we plot the spectra of the AE amplification

factor with a third- and fourth-order truncation in partial
waves respectively, for the case of one ingoing mode. We
see that generally the convergence is very good with a third
truncation. All the perturbative scattering results in the
main text are presented with the fourth-order truncation.
However, the m ¼ 1 lines have a small region where the
differences between the third- and fourth-order truncation
can be greater than 0.02 but still smaller than 0.04. The
inset inside the left of the figure shows the average energy

FIG. 13. Deviation of the amplification factors for the particle
number LogðjAN − 1jÞ. The red line is the numerical result,
which has relative high accuracy, as shown in the figure, with an
error of at least below 10−9. The numerical setup is the same as
the m ¼ 0 case of Fig. 4.

3In general, V can be a function of Hði0Þ, but it is linear for the
perturbative wave scattering on top of the Q-ball background we
are dealing in this paper.
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for the ingoing waves, which should be independent of the
lmax cutoff, given by

EN ¼
ω2
þ

k2þ
B2þ þ ω2

−
k2−
A2
−

2
kþ
B2þ þ 2

k−
A2
−

for ω > 0: ðB1Þ

Therefore, the relative sizable errors near ω ¼ 2.6 in the
m ¼ 1 case seem to be largely due to the accuracy of the high-
dimensional shooting method, rather than the truncation in l.
Recall that in our high-dimensional shooting method, we
need to solve a system of high dimensional algebraic
equations to obtain both the amplitudes of the ingoing and
outgoing waves, which in turn are used to compute the
energies of the waves and the amplification factors.
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