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Hořava-Lifshitz gravity has been proposed as a renormalizable and ghost-free quantum gravity model
candidate with an anisotropic UV-scaling between space and time. We present here a cosmological
background analysis of two different formulations of the theory, with particular focus on the running of the
parameter λ. Using a large dataset consisting of cosmic microwave background data from Planck,
Pantheonþ supernovae catalog, SH0ES Cepheid variable stars, baryon acoustic oscillations (BAO),
cosmic chronometers, and gamma-ray bursts (GRB), we arrive at new bounds on the cosmological
parameters, in particular λ, which runs logarithmically with energy and describes deviation from general
relativity, which corresponds to λ ¼ 1 For the detailed balance scenario we arrive at the bound
λ ¼ 1.0406� 0.0023, and for beyond detailed balance the limit reads λ ¼ 1.0064� 0.0002. We also
study the influence of different datasets and priors, and we find that removing low-redshift data generally
moves λ closer toward UV values, while simultaneously widening the error bars. In the detailed balance
scenario, this effect is more noticeable, and without prior λ ≥ 1 it takes on values that are significantly
below unity.
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I. INTRODUCTION

General relativity (GR), one of the most successful
physical theories, is widely known to be nonrenormaliz-
able; therefore, its application to very small distances and
high energies, such as at the very early Universe is expected
to be inconsistent. In light of this, a different theory of
gravity was recently proposed by Hořava [1] in order to
capture the quantum effects of the gravitational field in the
early stages of the Universe. This theory is a fascinating
proposal of modified gravity equipped with an anisotropic
scaling at the Planck scale given in term of a critical Lifshitz
exponent which contributed to the name Hořava-Lifshitz
(HL) gravity. This Lifshitz scaling in the ultraviolet (UV)
regime inevitably breaks Lorentz invariance explicitly.1

By giving up on the idea of invariance under four-
dimensional diffeomorphisms, it becomes possible to add
higher order spatial-derivative terms to the Lagrangian
without including higher-order time derivatives. Therefore,
one avoids the Ostrogradzky ghosts compromising unitarity
of the corresponding quantum theory. The resulting
Lagrangian is invariant under three-dimensional spatial
diffeomorphisms only, but the theory becomes renormaliz-
able at high energies. Due to the explicit lack of inva-
riance under four-dimensional diffeomorphisms, the HL
theory is naturally expressed using the Arnowitt-Deser-
Misner (ADM) 3þ 1 formulation [3].
The most straightforward option for a group which can

accommodate this property is the set of foliation-preserving
diffeomorphisms which includes time reparametrizations
and three-dimensional spatial diffeomorphisms. Under this
symmetry group, the kinetic term of the action acquires an
additional coupling denoted by λ. In GR, there is no need
for that coupling as the very specific linear combination of
curvature terms contained within the classical Hilbert-
Einstein action remains unchanged under general four-
dimensional diffeomorphisms. In HL theory, the limit
λ → 1 is supposed to recover GR, which should in theory
provide its low-energy limit in a straightforward manner,
but achieving this limit presents some issues. One one
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1See for example [2] for a discussion of explicit and sponta-
neous symmetry-breaking in gravity.
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hand, the critical Lifshitz exponent z and the (3þ 1)-
foliation parameter λ are the parameters of HL theory,
where λ is also associated with a restricted foliation
corresponding to z ¼ 1 in the Lifshitz scaling. As z
approaches unity in the low-energy limit, it is also
necessary that λ → 1 and consequently that Lorentz invari-
ance is restored. Additionally, the familiar ADM foliation
of GR is also recovered. Because the coupling constant λ
disrupts the general covariance in the presence of space-
time diffeomorphisms, it is thought that values of λ
different from 1 will cause the model to deviate from GR.
On the other hand, due to the reduced symmetry, the

action of HL gravity [1] differs from the classical Einstein-
Hilbert action even in the infrared limit, where only terms
up to second order in spatial derivatives are considered.
Even though the IR limit differs from GR, it is supposed
that one can still obtain it as an approximate solution at long
distances; however, it seems that this connection with GR is
problematic, since in order to obtain it, it is necessary to
disregard the higher order derivative terms in the action.
Additionally, the GR limit presents issues because HL
contains an extra degree of freedom present as a scalar
graviton, which causes a significant challenge in terms of
the credibility of the theory [4–8].
The first minimum formulation (also called the Hořava

toy model) was based on two conditions which minimised
the number of terms in the action, which are
(1) The detailed balance condition, which limits the

potential part of the action only to terms which may
be derived from a superpotential, and

(2) The projectability condition, which assumes that the
lapse function N depends only on time N ¼ NðtÞ.

In spite of its simplicity, this formulation from a lot of
problems and inconsistencies (see e.g., [4,9,10]) like the
existence of a parity violating term [4], wrong sign and very
large value of the cosmological constant [11,12], ghost
instabilities and problems with strong coupling at very low
energies [7,13] and problems with power counting renorm-
alization of the scalar mode [14,15]. Relaxing the detailed
balance condition in the so-called Sotiriou-Visser-
Weinfurtner (SVW) generalization [4] healed some of
the initial theory problems and provided a better IR limit,
but the resulting theory still enters into the strong coupling
regime at low energies, which causes problems with the
flow to GR. That might imply that either this formulation is
not theoretically valid [9], as it does not have a good GR
limit, or that the theory retains Lorentz violation even at
low energies but modifications brought by this are small
enough to fit the current observational data [8]. It is also
possible that flowing to GR requires nonlinear perturbative
analysis, as presented in the [16–18] where the IR limit
recovers GR with built-in dark matter.
The problematic low-energy limit of the theory led to the

formulation of the so-called healthy extension [9] which
abandons the projectability condition; in this formulation,

the lapse N is a dynamical field that depends on all space-
time coordinates, inducing a large number of additional
operators in the action. At low energies, it reduces to a
scalar-tensor gravity theory which exhibits deviations from
GR. These deviations can be suppressed by an appropriate
choice of parameters cosmological constraints on depar-
tures from Lorentz symmetry [19] and on preferred time
models [20]. Nonetheless, the dynamic lapse element of the
metric induces an instantaneous interaction that is prob-
lematic in the renormalizability analysis of the theory. On
the contrary, the projectable version has been demonstrated
to be perturbatively renormalizable [21,22] in a strict sense
in all space dimensions. In the context of 2þ 1 dimensions,
a calculation of its renormalization group (RG) flow was
conducted [23], revealing an asymptotically free UV fixed
point. This outcome signifies the UV completeness of the
2þ 1-formulation. In the case of 3þ 1 dimensions, partial
results regarding the RG flow of projectable HG were
obtained in [22], and a complete set of beta functions for
the six crucial couplings was derived in [24], where
potential candidates for asymptotically free UV fixed
points were found and analyzed. The existence of asymp-
totically free fixed points suggests that it is possible to treat
the problem of strong coupling in the IR in analogy to
QCD [23,25]. Therefore, the projectable theory might
require using nonperturbative techniques like lattice cal-
culations, in order to fully describe phenomenological
aspects of scalar mode decoupling at low energies. The
theoretical work on the renormalization aspects of the
theory is still being carried out, including on a nonproject-
able version. Preliminary results [26] showed that the
nonlocal divergences appearing as the result of instanta-
neous interaction induced by the dynamics of a full lapse
field (in the nonprojectable formulation) might be canceled
at all orders in the loop expansion; therefore, it seems that
both HL gravity versions are worth thorough investigation.
The simpler projectable version is now a realistic

quantum gravity model and has other interesting cosmo-
logical features which are not provided by a full theory, in
spite of its problems at low energies. Namely, it leads
naturally to cosmological dark matter [27,28], offers a
generation method of producing cosmological perturba-
tions that are scale-invariant, addressing the horizon prob-
lem [29] and presents a potential resolution to the flatness
problem [30]. In projectable HL gravity, the Hamiltonian
constraint is global rather than local, and it is possible
that integrating it over the whole space provides an
integration constant which in the IR limit behaves like
cold dark matter, without the need of adding extra ingre-
dients. Moreover, in the nonprojectable version the local
Hamiltonian constraint is enforced at every spatial point
within each local universe, therefore not allowing for a
global integration constant. Moreover, in quantum cosmol-
ogy there is the prominent Hartle-Hawking no-boundary
proposal, a hypothesis describing the quantum genesis of
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the universe from nothing, which has been recently for-
mulated within HL gravity [31]. This formulation involves
the utilization of the Lorentzian path integral, which, under
certain conditions gives rise to the no-boundary wave
function of the universe.
The nonprojectable version has a stable IR limit where

it may reproduce GR phenomenology along with that of
some remnant of Lorentz violation; this could be used to
set observational bounds on the theory in the IR. Black
holes within nonprojectable Horava gravity are particu-
larly intriguing as they exhibit a universal trapping
surface known as the universal horizon [32,33]. This
serves as a causal boundary for trajectories, irrespective
of their speed. Significant work has been done on
that subject and its consequences in terms of black hole
thermodynamics and Hawking radiation [34–36] as
well as resolving singularity problems [37]. Other
research direction in different formulations of HL gravity
include also the black-hole shadow [38,39] and formu-
lations of quantum gravity models [40–46]. Current state
of research on Horava gravity with an extensive list of
references is contained in the recent reviews [47,48].
Given current theoretical state-of-the-art, it is worth

investigating observational implications and parameter
bounds of both classes of Horava gravity from the phe-
nomenological point of view. At the moment this theory
keeps fulfilling different observational constraints, the
tightest coming from the propagation and emission of
gravitational waves from compact objects [49], numerical
studies of slowly moving binary black-hole solutions [50],
and observations of the damping of the period of quasicir-
cular binary pulsars and of the triple system PSR J0337þ
1715 [51]. However, although narrowing the allowed
parameter space, these constraints mainly provide bounds
on the tensor mode and PPN parameters which quantify
preferred-frame effects, leaving other parameters like λ
basically unconstrained. This comes from the interesting
fact [52] that the dynamics of gravitational collapse and the
perturbations of spherically symmetric metrics are indis-
tinguishable from those of GR; similar results were obtained
in [50] from slowly moving binary black hole solutions in
HL theories. Moreover, theories with asymptotically flat
spacetimes different from GR only when λ ≠ 1 (the so-
called λ − R, have been shown to be equivalent to GR [53].
It seems that the most meaningful constraint on λ, a

parameter that controls energy flow and in some approaches
Lorentz violation, comes from cosmological observations.
Indeed, some first rough bounds were obtained from big
bang nucleosynthesis (BBN) predictions for primordial
abundances, along with constraints on the ratio between
the “local” gravitational constantG and the “cosmological”
counterpart Gcosmo

2 [54], and was further more narrowed

from constraints on the quadratic cuscuton mode compar-
ing large scale structure with cosmic microwave back-
ground (CMB) data [55]. However, in such approaches all
the other parameters of the theory remain constant, and
therefore the resulting bounds are rather rough. More
general approaches include allowing variations of all
model parameters and systematic numerical investigations
of constraints from cosmological data, including super-
novae type Ia, (SNIa), baryon acoustic oscillations (BAO),
and CMB data. The first constraints on λ as well as other
parameters of the theory where obtained using such a
general approach in [56], reporting jλ − 1j≲ 0.02. Other
approaches include exploiting bounds on the Hubble
parameter tension by one of us [57], thereby providing
bounds 0.95 ≤ λ ≤ 1.16, and [58] investigated the effects
of a λ phase transition in AdS black holes. In the works by
one of us [59] and [60], the authors considered a constant
λ and reabsorbed it into other parameters.
The observational bounds on the nonprojectable version

are more complicated, as this theory implies that the
propagation speed of the scalar mode will generically
differ from that of the tensor mode, and therefore
Lorentz violations are generically present at all energies.
In order to be compatible with observational results some
parameters have to be tuned to specific ranges. Deviations
from Lorentz invariance in the matter sector are strongly
constrained as compared to the gravitational sector,
allowing a larger region of the parameter space in obser-
vational tests [49,51,61]. The work [61] is however based
on a flat model, and there is an ongoing discussion on the
possible nonzero value of the curvature parameter both in
the ΛCDM model [62] and its alternatives, including HL
cosmology. The papers [49,51] were mainly based on the
propagation and emission of gravitational waves from
compact objects which, does not provide good bounds
on λ; however, the results of [51] actually seem to favor
aether/ khronometric theories over GR (it was shown
in [63] that the khronometric model corresponds to the
low-energy limit of nonprojectable Hořava gravity).
Interesting results were obtained in [64] but this paper
required that the Lorentz-violating field be dark energy
only, whereas subsequent work [19] concerned Lorentz
violation in the dark matter sector, and therefore these
results cannot be applicable to the full theory. Both [64]
and [19] provided similar bounds on λ as the ones
mentioned above.
In this paper we set new bounds on HL parameters, while

λwhich in in previous studies is set to a constant, is allowed
to vary. We also perform a detailed examination regarding
how removing low-redshift data impact the obtained
bounds on this parameter. An intriguing matter comes to
light, whether higher redshift data could push λ further from
the classical limit at the value of unity, as would be
expected of HL or similar extensions of Einstein gravity
(with additional terms in the action). We focus first on a

2In general, these two are not the same in theories where
Lorentz invariance is broken.
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projectable version of HL whose quantum properties are
better understood, leaving the nonprojectable version with
a larger number of parameters for later studies. In order to
be phenomenologically viable we perform our analysis
with and without the detailed-balance condition, leaving
theoretical considerations favoring the latter model aside,
and including different datasets and priors on the value of λ.
This paper is organized as follows: We first give a brief

overview of the theory of HL cosmology in both scenarios
under consideration. We then go on to describe how we
rewrite the equations to allow for numerical analysis.
Finally, we present our results and discuss them.

II. HOŘAVA-LIFSHITZ COSMOLOGY

Here we briefly outline the equations governing cosmo-
logical evolution in Hořava-Lifshitz gravity [65,66]. For a
more in-depth discussion we refer to our recent paper [67],
and also to [47].
Hořava-Lifshitz gravity offers the possibility of creating

a theory of gravity which remains finite and well defined at
high energies, while also reproducing GR in the classical
regime. This is achieved by introducing a fixed point in the
UV region of the renormalization group, where time and
space behave differently under scale transformations.
Specifically, the scaling relations at the Planck scale should
satisfy t → b−zt, xi → b−1xi, i ¼ 1; 2; 3, where b is a
scaling parameter and z is the critical Lifshitz exponent
which characterizes the fixed point. As usual, t stands for
time and xi for spatial coordinates. Different models can be
identified by specific choices of z; for a pure gravity theory
in d spatial dimensions which is invariant under foliation-
preserving diffeomorphisms and is power-counting renor-
malizable, zmust be greater than or equal to d, equivalently
in 4-dimensional physical space-time to z ≥ 4 [47]. In order
to restore Lorentz invariance, z needs to be set to unity.
Due to the anisotropic scaling present in the theory, it is

useful to write down the metric using the ADM decom-
position:

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

where N and Nj are the lapse function and shift vector,
respectively, and gij is the spatial metric ði; j ¼ 1; 2; 3Þ.
Given this, we can express the most general form of the
theory as:

S ¼
Z

d3xdtN
ffiffiffi
g

p ½KijKij − λK2 − VðgijÞ�; ð2Þ

where g is the determinant of the spatial metric, λ is the
running coupling and V is a potential. Kij represents the
extrinsic curvature. The potential term contains only dimen-
sion 4 and 6 operators which can be constructed from the
spatialmetric gij. The squareKijKij and its trace-squaredK2

are individually invariant under the reduced symmetry
group, however for λ¼ 1 the full kinetic term KijKij−K2

acquires invariance under four-diffeomorphisms.

A. Detailed balance (DB)

The detailed-balance condition is a way to reduce the
number of terms in the action (2) by assuming that it should
be possible to derive V from a superpotential W [11,68]:

V ¼ EijGijklEkl; Eij ¼ 1ffiffiffi
g

p δW
δgij

;

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl: ð3Þ

which for λ ¼ 1 reduces to the standard Wheeler-DeWitt
metric. From this the most general action can be written as:

Sdb ¼
Z

d3xdt
ffiffiffi
g

p
N

�
2

κ2
ðKijKij − λK2Þ þ κ2

2ω4
CijCij

−
κ2μ

2ω2

ϵijkffiffiffi
g

p Ril∇jRl
k ð4Þ

þκ2μ2

8
RijRijþ κ2μ2

8ð1−3λÞ
�
1−4λ

4
R2þΛR−3Λ2

��
;

ð5Þ

where Cij is the Cotton tensor, ϵijk is the totally antisym-
metric tensor, and the parameters κ, ω, and μ have mass
dimension −1,0, and 1, respectively. This action has been
obtained from (2) by analytic continuation of the param-
eters μ ↦ iμ and ω2 ↦ −iω2, which enables positive
values of the bare cosmological constant Λ, which does
not happen in the original formulation. The coupling
constant λ runs with energy logarithmically. The reduced
symmetry of the action (compared to GR), induces propa-
gation of an extra scalar degree of freedom, which has a
positive-definite kinetic term in the UV for G > 0 and
λ∈ ð−∞; 1=3Þ ∪ ð1;∞Þ, therefore enabling ghost-free and
unitary formulation of the corresponding quantum theory.
However, this mode seems to exhibit pathological behavior
when approaching the limit λ → 1, thereby losing pertur-
bative stability [4–8]. This can be cured by fine tuning of λ
(set to 1 up to 10−61) or by expanding around a curved
vacuum, which still does not provide stable Minkowski
limit. Other results [16–18] show that if λ → 1 fast enough,
the projectable theory converts to GR in a way similar to the
Vainshtein mechanism whereas the scalar mode IR insta-
bility gets restrained [16]. Another possible mechanism to
address the problems of instabilities and strong coupling of
the scalar graviton is its condensation via a phase transition
analogous to the one in QCD [8,25]. Therefore, it seems the
only relevant scenario which permits a potential renorm-
alization flow toward general relativity (at λ ¼ 1) is when
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λ ≥ 1, as the region for values of λ less than or equal to 1=3
is separated by a problematic interval 1=3 < λ < 1 in
which a quantum version is not unitary due to existence
of gravitons with negative-definite kinetic terms in the UV.
RG flow calculated in 2þ 1 dimensions exhibits a UV
attractive and asymptotically free fixed point at λ ¼ 15=14
as well as the flow λ → 1þ in the IR. Another UV fixed
point is λ ¼ 1=2, and also quite counterintuitive IR flow
λ → ∞. The structure of the propagators and vertices in
3þ 1 dimensions is significantly more complicated than in
2þ 1 dimensions, providing at the moment only partial
results on the RG flow via studies of β-functions for G
and λ ([22]) as well as for the remaining independent
couplings [24]. The results of the latter work do not seem to
exhibit any asymptotically free fixed points for finite values
of λ in the interval λ∈ ð1;∞Þ, but shows four asymptoti-
cally fixed but UV repulsive points along the λ-direction in
the other unitary interval λ∈ ð0; 1=3Þ. It is not yet known if
they are attractive or not along the other directions. The
earlier paper [69] proposed a UV point λ → ∞ (which in
2þ 1 dimensions represented an IR point), that seemed to
be stable and resulted in nonsingular equations of motion at
the classical level. Therefore, the paper [24] also analyses
that limit while identifying eight fixed points with three o
them being both UVattractive and asymptotically free. The
full structure of the RG flow is not yet fully known, and he
existence of a finite and asymptotically free UV fixed point
in the region λ∈ ð1;∞Þ is neither excluded nor yet found.
As the present paper is a phenomenological one, we have

not imposed any condition on λ and let it be as free as
possible. The idea is that certain formulations of HL gravity
may be ruled out by the model preferring unphysical values
of λ when confronted with data. For completeness, we also
investigate the case when λ ≥ 1. However, in the initial
numerical results, we noted that while λ does indeed take on
values smaller than unity, it never gets close to 1=3 (which
is parameter singularity), and we therefore introduced the
λ > 1=3 prior to save computation time, without loss of
generality. There is a theoretical possibility [24] of the
existence of UV fixed points in the region λ < 1=3, but this
is unreachable with current data, which lies far from the
true UV regions.
We populate our model with the canonical matter and

radiation fields represented by the energy densities (and
pressures) ρm (pm) and ρr (pr), both of which are subject to
the continuity equation ρ̇þ 3Hðρþ pÞ ¼ 0. Here, an
overdot represents a time derivative. Moreover, we use
the projectability condition [68] N ¼ NðtÞ, and we use the
standard FLRW line element gij ¼ aðtÞ2γij, Ni ¼ 0, where
γij is the maximally symmetric constant curvature metric. It
is important to remember that in theories which violate
Lorentz symmetry the gravitational constant appearing in
the gravitational action Ggrav generally does not coincide
with the one which appears in the Friedmann equations,
Gcosmo [56,70]. This could in principle be used to set

bounds on λ (as was done in [57]), but we will not adopt
this approach in this paper.
Varying the action (4) with respect to N and a we arrive

at the Friedmann equations for the detailed balance
scenario:

�
ȧ
a

�
2

¼ κ2

6ð3λ − 1Þ ½ρm þ ρr� þ
κ2

6ð3λ − 1Þ
�

3κ2μ2K2

8ð3λ − 1Þa4

þ 3κ2μ2Λ2

8ð3λ − 1Þ
�
þ κ4μ2ΛK
8ð3λ − 1Þ2a2 ; ð6Þ

d
dt
ȧ
a
þ 3

2

�
ȧ
a

�
2

¼ −
κ2

4ð3λ − 1Þ ½pm þ pr�

−
κ2

4ð3λ − 1Þ
�

κ2μ2K2

8ð3λ − 1Þa4 −
3κ2μ2Λ2

8ð3λ − 1Þ
�

−
κ4μ2ΛK

16ð3λ − 1Þ2a2 : ð7Þ

We can therefore define Gcosmo ¼ κ2=ð3λ − 1Þ and
κ4μ2Λ ¼ 8ð3λ − 1Þ2 by requiring that (6), (7) coincide
with the standard Friedmann equations. Clearly, when
Lorentz invariance is restored, λ is set to unity and
Ggrav ¼ Gcosmo. Under detailed balance, and using the
units 8πGgrav ¼ 1, we are lead to κ2 ¼ 4, μ2Λ ¼ 2, and
by introducing the standard density parameters we arrive at
the Friedmann equation suitable for our analysis:

H2 ¼ H2
0

�
2

3λ − 1

�
Ωm0ð1þ zÞ3 þ Ωr0ð1þ z4Þ�

þΩK0ð1þ zÞ2 þ ωþΩ2
K0

4ω
ð1þ zÞ4

�
ð8Þ

where H denotes the Hubble parameter and the subscript 0
indicates the value as measured today. We have also
introduced a parameter ω¼Λ=ð2H2

0Þ.3 A characteristic
feature of HL theory is the appearance of a dark radiation
term in (8):Ω2

k0=4ω, and we can express this in terms of the
effective number of neutrino species ΔNeff present during
the BBN epoque (See Refs. [56,67,71]) as Ω2

k0=4ω ¼
0.13424ΔNeffΩr0. We can also obtain a constraint from
the z ¼ 0 limit, where Hjz¼0 ¼ H0, which reads:
ð1 −Ωk0 − ω −Ω2

k0=ð4ωÞÞð3λ − 1Þ=2 ¼ Ωm0 þ Ωr0. We
abbreviate the detailed balance case as DB.

B. Beyond detailed balance (BDB)

There has been an ongoing discussion in the literature
whether the detailed balance condition is too restrictive
[47,65,66], or if relaxing it can cure the theory from the
quantum instabilities of the scalar mode [6,9,72–74]. On

3Which is not to be confused with the IR-modification
parameter, which is usually also denoted by ω.
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one hand the detailed-balance condition introduces a
superpotential, which might simplify the quantization
process significantly; on the other hand, this condition is
not fundamental, but helps in, e.g., reducing the number of
independent couplings in the theory.
Therefore, we may safely consider the Sotiriou-Visser-

Weinfurtner (SVW) [4] generalization with this condition
relaxed, after which the potential V contains additional
terms. In this scenario the action includes quantities not
only up to quadratic in curvature, as in the original HL
formulation, but also cubic ones, while suppressing parity
violating terms. Applying the generalized action to the
maximally symmetric constant curvature metric results in
the following analog of the Friedmann equations [10,13]:

�
ȧ
a

�
2

¼ 2σ0
3λ − 1

ðρm þ ρrÞ þ
2

3λ − 1

�
Λ
2
þ σ3K2

6a4
þ σ4K

6a6

�

þ σ2
3ð3λ − 1Þ

K
a2

; ð9Þ

d
dt
ȧ
a
þ 3

2

�
ȧ
a

�
2

¼ −
3σ0

3λ − 1

ρr
3
−

3

3λ − 1

�
−
Λ
2
þ σ3K2

18a4

þ σ4K
6a6

�
þ σ2
6ð3λ − 1Þ

K
a2

; ð10Þ

where σi are arbitrary constants. As in the detailed balance
scenario we find Gcosmo ¼ 6σ0=ð8πð3λ − 1ÞÞ, where
σ0 ¼ κ2=12. Using the same procedure as for detailed
balance in units where 8πGgrav ¼ 1 we rewrite (9) to read:

H2¼H2
0¼

�
2

3λ−1
ðΩm0ð1þzÞ3þΩr0ð1þzÞ4

þω1þω3ð1þzÞ4þω4ð1þzÞ6�þΩk0ð1þzÞ2
�
; ð11Þ

where we have, for convenience, introduced the
following dimensionless parameters, ω1 ¼ σ1=ð6H2

0Þ,
ω3 ¼ σ3H2

0Ω2
k0=6, ω4 ¼ −σ4Ωk0=6. Additionally, we

impose ω4 > 0 in order for the Hubble parameter to be
real for all z. Moreover, we can extract a constraint
from the z ¼ 0 limit of (11), which then reads
ð1 −Ωk0Þð3λ − 1=2 ¼ Ωm0 þ Ωr0 þ ω1 þ ω3 þ ω4. Much
like for detailed balance, we can eliminate another
parameter through constraints by considering that the ω4

term corresponds to a quintessence-like kinetic field.
Therefore it is shown in [71] and references therein that
we get the following constraint at the time of BBN: ω3 ¼
0.13424ΔNeffΩr0 − ω4ð1þ zBBNÞ2. Here zBBN ≈ 4 × 104

is the redshift at BBN. We abbreviate the beyond detailed
balance case as BDB.

III. CONSTRAINTS FROM
COSMOLOGICAL DATA

A. The data

In order to carry out the parameter estimation we used a
Markov-Chain Monte Carlo (MCMC) method with a large
cosmological dataset. Since we are interested in the running
of λ with energy, we include here a short discussion of the
different energy levels of the cosmological probes we use.
It is not a priori clear whether (or how) the running of λ
depends on this energy.
Starting at high redshift (early times), our probes are the

cosmic microwave background (CMB) and baryon acous-
tic oscillations (BAO). The CMB originates from the
surface of last scattering at redshift z⋆ ∼ 1100, when the
temperature of the Universe was around T ≥ 3000 K,
corresponding to an energy of around 0.26 eV. This is
complemented by BAO observations, which also originate
from recombination and manifest as acoustic peaks in the
CMB power spectrum; however, they also affect the
distribution of local galaxies and are therefore sensitive
to different parameters compared to the CMB while still
being an early Universe probe.
The astrophysical sources we used have different proper-

ties, in that they originate in the lateUniverse, and while the
emission energies are in general higher than CMB and
BAO, they do not offer any information about the state of
the Universe at early times. Supernovae type 1a are used as
standard rulers and outputs more energy than the rest of its
host galaxy in a very short time. Their energy is less
important in this context as they are used as distance rulers
by fitting their spectra; however, they are certainly high-
energy events, emitting neutrinos with energies up to
∼40 MeV having been detected [75]. The cosmic chro-
nometer (CC) dataset is based on passively evolving
galaxies, and we only sample the expansion history with
these objects. Last and most energetic, we also have
gamma-ray bursts, which are the most violent explosions
in the known Universe; photons from gamma-ray bursts
have been found to reach energies up to 96 GeV [76]. For
all details about the datasets and their implementation, see
Appendix A and references therein.

B. Results

In order to derive constraints on the parameters we
used (8) and its associated constraint equations in our
MCMC analysis. As we are mainly interested in the
running of λ we present here only the marginalized
posteriors of this parameter. We include all parameter fits
in Table I and II which can be found in Appendix B, where
we are specifically interested in Ωk0 and ΔNeff , since
previous work ([56,67,71]) suggests that it is possible
to differentiate between the two scenarios using these
quantities.
In our analysis we find that in the detailed-balance

scenario using all available data, λ takes the value
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λ ¼ 1.02726� 0.00012 at 1σ confidence level, when not
imposing the hard prior λ ≥ 1; its marginalized posterior is
shown in Fig. 1(b).4 After imposing the prior on λ, we
instead obtain λ ¼ 1.046� 0.0023, and note that this value
is a few percent larger, but the 1σ error bars are one order of
magnitude larger, which can be seen in Fig. 1(a). In order to
investigate the possible running of λ with energy, we carry
out the same analysis by systematically removing data in
two steps: in the first step, we remove the Hubble parameter
measurements from cosmic chronometers (CC), and in the
second step we remove everything except the truly early-
Universe probes, CMB and BAO. For λ, the results are
displayed in Fig. 1, and we observe that the results are
different depending on whether we impose the detailed-
balance condition or not. First of all, λ generally seems to
take on higher values under detailed balance; for this case,
removing CC data pushes λ to take values close to unity, but
further removing data moves it back up toward higher
values, but with much larger error bars. For both DB and
BDB, the CMBþ BAO combination seems to give the

largest errors by far; this is especially pronounced in DB
(no prior) and BDB (prior).
The case with the fewest assumptions and priors is the

BDB (no prior) case shown in Fig. 1(c), and the situation
here is somewhat reversed compared to the other three;
here, removing CC data produces a higher value of λ than
with the full dataset, which is in contrast to our other
results. Also, the case with all data overlaps significantly
with that of CMBþ BAO, both of which have means
firmly in the λ < 1 region. In almost all presented scenar-
ios, in DB and BDB with the prior λ ≥ 1 imposed and in
DB with no prior we observe that removing Hubble data
from CC strongly pushes λ close to its IR limit. Only in the
BDB scenario with no imposed prior does removing that
data result in λ changing sign and increasing jλ − 1j.
Furthermore, removing supernovae type 1a pushes λ even
further into UV, except in the BDB with no prior scenario.
Another interesting quantity to analyse is the difference

between Ggrav and Gcosmo which can be inferred directly
from λ through the quantity jGcosmo=Ggrav − 1j. Here, we
find that for detailed balance, the difference between
local G and cosmological G is in general smaller than
∼5.8%, the largest discrepancy being in the case of all
data when including a prior on λ, where we find

FIG. 1. Normalized posterior distribution functions for λ. Here, SNe1a includes Cepheid-calibrated supernovae.

4The MCMC chains which generated the posteriors passed the
standard convergence criteria detailed in [77].
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jGcosmo=Ggrav−1j¼0.0574�0.0030. For beyond detailed
balance, this quantity takes on smaller values, generally
< 2%, which is of course directly linked to the values
obtained on λ.
As in our previous work [67] we find here that Ωk0 is

distinctly nonzero in the detailed balance formulation of
HL cosmology, which is the same as was found in [59,60].
We also briefly point out our results on the Hubble
constant, which are somewhat different from those of
previous background analysis [60,67], where values close
to h ¼ 0.71were found for the case of all data, which eased
the Hubble parameter tension. In our present results, we
find values closer to that of ΛCDM, with h ¼ 0.6488�
0.0012 for DB and h ¼ 0.6813� 0.048 for BDB, both
with all data; the BDB value closely resembles that
obtained by Planck (h ¼ 0.6844� 0.091) using TEþ
lowE spectra while assuming a base ΛCDM model. On
the other hand, the DB case takes values close to the Planck
TTþ TEþ EEþ lowEþ lensing results when consider-
ing a ΛCDM model extended by allowing for a nonzero
ΔNeff [78]. A full analysis of the Hubble tension lies
beyond the scope of this paper.
Another interesting result is the value of ΔNeff , which

takes on values greater than 0.2 in almost all cases, and a 1σ
upper limit ofΔNeff ≤ 0.75 for BDB (prior, all data). As this
is slightly surprising it is worth reiterating that this chain
passed all convergence criteria detailed in [77]. Therefore,
with all other parameters taking on reasonable values (and
similar results found in [60,67]) one may have to entertain
the possibility of a fourth neutrino species present in HL
cosmology. Indeed, it was recently suggested that a fourth
neutrino might solve the H0 tension problem [79]; in this
paper, the authors arrive at a value of Neff ≈ 4 (effective
number of neutrino species), which is far higher than our
results. Moreover, our results fall outside BBN limits as
reported in [80,81] (−1.7 ≤ ΔNeff ≤ 2.0), but seem to agree
somewhat with limits from CMB (ΔNeff < 0.2) [82]. The
fact thatΔNeff ≠ 0 in both scenarios fits with the nonflatness
results indicated by Ωk0. In fact, a closed Universe Ωk0 has
been found in several different analyses of Hořava-Lifshitz
cosmology [59,60,67], and it now seems that themodel does
indeed prefer a closed Universe. Other studies have reported
a strong preference for a closed Universe in the Planck
data [83], a result which is sensitive to the amount of lensing
in the sample. Other datasets, primarily BAO, strongly
favor a closed Universe (under the assumption of
ΛCDM) to the extent that the tension in Ωk0 has been
estimated at 2.5 − 3σ [62].

IV. DISCUSSION AND CONCLUSIONS

The focus of this paper is exploring the significance of
the parameter λ in HL cosmology, which is believed to play
a crucial role in determining or characterizing the extent of
Lorentz violation present in the theory. Our primary
objective was to examine the impact of incorporating or

omitting data sources corresponding to different energy
levels on the estimated value of λ. In other words, we
wanted to investigate whether there is a correlation between
the energy level and the value of λ.
In the detailed-balance scenario, our findings indicate

that the parameter λ consistently exceeds unity at a 1σ level;
however, if we exclude low-energy sources, such as Hubble
parameter measurements, the value of λ tends to shift closer
to the ultraviolet region. In the case of beyond detailed
balance, we observed a mean value below unity in two
instances. While the relationship between energy flow and
λ is not as evident here as in the detailed-balance scenario,
we can still observe a clear trend: when the lowest-energy
data is removed, λ is pushed below unity. The trend
observed in the behavior of λ when excluding low-energy
sources is more important than its specific values and seems
to be consistent with the underlying theory. We have also
performed the same calculations when considering the hard
prior λ ≥ 1, since the parameter range 1=3 < λ < 1 results
in nonunitary quantum evolution and therefore is generally
avoided in the theoretical considerations. Nonetheless, we
present general results both with and without that prior on λ
in order to have a more complete picture of the theory. In
the case when the prior λ ≥ 1 is imposed, excluding low
energy data changes the BDB case more, since this model
has a stronger tendency to flow to λ < 1without a prior, but
also the DB case sees changes, especially on the form of
larger errors on the case with all data, although the reason
for this is not clear. The key takeaway point of this paper is
that we observe statistically different bounds on λ depend-
ing on the probe used, and in the DB case, λ is consistently
larger than unity when no prior on λ is imposed. Although
this may be an artefact of picking datasets, the results imply
that taking the running of λ into account may be necessary
even in relatively low-energy regime. We expect this effect
to become pronounced in truly UV environments such as
the early Universe.
The phenomenological results obtained suggest the poten-

tial existence of Lorentz violation in astrophysical probes at
higher energies; however, it is important to note that the
existing bounds on Lorentz violation in the matter and
electromagnetic sectors are significantly stronger than those
in the gravity sector [84–86]. Several theoretical studies have
been dedicated to addressing this issue [87–90], proposing
additional terms to the action aimed at preventing the
leakage of symmetry violations from the gravity sector to
the matter sector or suppressing them in the low-energy
regime of thematter sector. Recent results of [51] on Einstein
aether/ khronometric theories, with the IR limit of non-
projectable Hořava gravity being equivalent to the khrono-
metric theory, [63] actually seem to favor the preferred frame/
foliation theories over GR, or at least fitting observational
data just as well. Obtained constrains on PPN parameters
describing preferred-frame effects, although very tightly
constrained, seem to have probability distributions at 1σ
bounded away from zero, its GR value.
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A natural question which also arises is how the param-
eter λ would vary in different nonprojectable extensions of
HL gravity, which have been proposed to address some
of its shortcomings. While work on these scenarios is
ongoing, it is important to note that relaxing projectability
conditions leads to a more complex theory with a higher
number of parameters and interpretation issues. For now,
we present our current findings, which are intriguing and
merit further theoretical and observational investigation.
These results could offer new insights into the underlying
HL theory.
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APPENDIX A: THE DATA

1. Planck CMB

The nonperturbative CMB information is contained in
the shift parameters, describing the location of the first peak
in the temperature angular power spectrum. Here, we use
the shift parameters extracted from the final Planck 2018
data release [78]. For a vector θ containing the model
parameters, the geometrical CMB shift parameters read

RðθÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0h2

q
dcAðz�;θÞ

c
; laðθÞ ¼ π

dcAðz�;θÞ
rsðz�;θÞ

;

ðA1Þ

which together with ωb ¼ Ωb0h2 makes up the CMB
distance priors. In the above equations, dcAðz�; θÞ and
rsðz�; θÞ are the comoving angular-diameter distance and
the sound horizon, respectively, defined as

dcAðz;θÞ¼

8>>>>><
>>>>>:

c
H0

1ffiffiffiffiffiffi
Ωk0

p sinh
h ffiffiffiffiffiffiffiffi

Ωk0
p R

z
0

dz0
Eðz0;θÞ

i
; Ωk0>0

c
H0

R
z
0

dz0
Eðz0;θÞ ; Ωk0¼0

c
H0

1ffiffiffiffiffiffiffi
jΩk0j

p sinh
h ffiffiffiffiffiffiffiffiffiffijΩk0j
p R

z
0

dz0
Eðz0;θÞ

i
; Ωk0>0;

ðA2Þ
and

rsðz; θÞ ¼ H0

Z
∞

z

csðz0Þdz0
Eðz0; θÞ ; ðA3Þ

where Eðz; θÞ≡Hðz; θÞ=H0 and csðzÞ is the sound speed

csðzÞ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3½1þRb=ð1þ zÞ�p ; Rb ¼ 31500ωb

�
TCMB

2.72

�
−4
:

ðA4Þ
The above relations are defined at the photon-decoupling
redshift z�, which is defined as [91]

z� ¼ 1048½1þ 0.00124ω−0.738
b �½1þ g1ω

g2
b �

g1 ¼ 0.0783ω−0.238
b ½1þ 39.5ω−0.763

b �−1
g2 ¼ 0.560½1þ 21.1ω1.81

b �−1: ðA5Þ
In themodel we are considering, the number of relativistic

species are no longer equal to the ΛCDM value of
Neff ¼ 3.046, and since the value of this quantity have
several effects on the CMB, we need now to incorporate this
into the analysis. Following the procedure in [92], we add the
CDM density parameter ωc ¼ ðΩm0 −Ωb0Þh2 and Neff ¼
3.046þ ΔNeff , and the full CMB distance priors read
v ¼ ðR;la;ωb;ωc; NeffÞ. We use the values found in [92]

v ¼

0
BBBBBB@

1.7661

301.7293

0.02191

0.1194

2.8979;

1
CCCCCCA

ðA6Þ

as well as the associated covariance matrix

Cv ¼ 10−8

0
BBBBBB@

33483.54 −44417.15 −515.03 −360.42 −274151.72
−44417.15 4245661.67 2319.46 63326.47 4287810.44

−515.03 2319.46 12.92 51.98 7273.04

−360.42 63326.47 51.98 1516.28 92013.95

−274151.72 4287810.44 7273.04 92013.95 7876074.60

1
CCCCCCA

ðA7Þ
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and the CMB χ2 finally reads

χ2CMB ¼ ðΔvÞ TC−1
v Δv; ðA8Þ

where Δv is the difference between the theoretical and
observed values of the distance priors v.

2. Pantheon+ and Cepheid variable stars

The Pantheonþ sample is a set of 1701 light curves of
1550 distinct supernovae type Ia (SNeIa) in the redshift
range 0.001 < z < 2.26 [93,94]. Compared to the previous
catalog Pantheon, this update features an increased redshift
range of cross-calibrated photometric systems of sources
and improved treatment of systematic effects; all together,
this results in an factor of 2 improvement in cosmological
constraining power [94]. Also contained in this catalog are
those SNeIa from host galaxies with known Cepheid
distances, providing a robust calibration of the SNeIa light
curve (known as “anchoring”) and enables the simulta-
neous determination of expansion-history parameters (for
example Ωm0) and the local expansion rate H0, which are
degenerate when using SNeIa alone.
In order to form the χ2 for Pantheon, we write down the

luminosity distance as (all details can be found in [94])

dLðz; θÞ ¼ ð1þ zhelÞdcAðz; θÞ; ðA9Þ

where zhel is the redshift measured in the heliocentric
frame. From this we can define distance modulus as

μðz; θÞ ¼ mðz; θÞ −M; ðA10Þ

where m and M is the apparent and fiducial absolute
magnitude, respectively. From this expression, we can write
the apparent magnitude as

mðz; θÞ ¼ 5 log dLðz; θÞ þ 25þM; ðA11Þ

where dLðz; θÞ is now expressed in Mpc. Note here that we
are not able to simply write the distance modulus as μ ¼
m −M ¼ 5 log dL þ μ0 and marginalize over μ0; when
using SNeIa alone, M can indeed be marginalized over,
but including Cepheids breaks the degeneracy between M
andH0, and the fiducial absolute magnitudeM becomes an
extra free parameter in our numerical analysis. As such, we
write the distance residuals as [94]

ΔDi ¼
	
μi − μCi ; i∈Cepheids

μi − μmodel
i others;

ðA12Þ

where the theoretical value is replaced by the correspond-
ing Cepheid-calibrated value for the host galaxy distance,
hence providing the anchoring and breaking the degeneracy
between Ωm0 and M. The statistical and systematic

uncertainties are contained in the covariance matrix
CSNþCepheids
statþsys , and the χ2 measure becomes

χ2PantheonþCepheids ¼ ðΔDÞT�CSNþCepheids
statþsys

�−1ðΔDÞ ðA13Þ

3. Gamma-ray bursts

Gamma-ray bursts are one of the most energetic events in
the Universe, and may be used as a probe complementing
SNeIa [95]. This sample consists of 79 long gamma-ray
bursts (the Mayflower sample) calibrated using the Padé
approximant method. This approach avoids the circularity
problem usually present when trying to use gamma-ray
bursts as cosmological rulers [96]. The χ2 for this dataset is
found by considering the distance modulus (as for SNeIa,
but we can nowmarginalize over μ0), and wewrite the χ2 as

χ2GRB ¼ aþ log
e
2π

−
b2

e
; ðA14Þ

where a ¼ ðΔμÞTC−1
GRBðΔμÞ, b ¼ ðΔμÞTC−1

GRB · 1, and
c ¼ 1T · C−1

GRB · 1. Here we have defined Δμ ¼ μtheory −
μobs where μobs is the observed distance modulus, and
μtheory comes from the Padé method after calibration. The
full details of this calibration and the data can be found
in [95].

4. Cosmic chronometers (CC)

We use Hubble-parameter measurements from pas-
sively-evolving early-type galaxies (ETG), which have
low star-formation rate and old stellar populations. The
spectral properties of ETGs can be traced along cosmic
time t by measuring the Hubble parameter HðzÞ¼
dz=dtð1þ zÞ independent of the cosmological model [97],
making them a type of standardisable clock, or cosmic
chronometer. We use a sample covering the redshift
range 0 < z < 1.97 [98–100]. To construct a covariance
matrix for the CC data points we follow the procedure
in [101,102], which includes the following sources of
uncertainty

CCC ¼ Cstat
CC þ Cyoung

CC þ Cmodel
CC þ Cmet

CC ; ðA15Þ

where Cstat
CC, C

young
CC , and Cmodel

CC correspond to uncertainty
from statistical errors, sample-contamination by younger
(and hotter) stars, model dependence, and stellar metal-
licity. In these considerations, the largest source of error
comes from the Cyoung

CC contribution [102]. The model
uncertainty Cmodel

CC can be further broken down into

Cmodel
CC ¼ CSFH

CC þ CIMF
CC þ Cstlib

CC þ CSPS
CC ; ðA16Þ
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denoting star-formation history (SFH), initial mass func-
tion (IMF), stellar library (st.lib.), and stellar population
synthesis (SPS). We use the accompanying code5 [102] to
generate the final covariance matrix for our data points,
after which the χ2 reads

χ2CC ¼ ðΔHÞTC−1
CCðΔHÞ; ðA17Þ

where ðΔHÞi ¼ HtheoryðziÞ −HobsðziÞ.

5. Baryon acoustic oscillations

We include seven different BAO datasets in our analysis,
as shown below
WiggleZ:We include data from theWiggleZDark Energy

Survey at redshift points zW ¼ f0.44; 0.6; 0.73g [103].
Here, the observables are

Aðx;θÞ¼ 100
ffiffiffiffiffiffiffi
ωm

p DVðz;θÞ
cz

; Fðz;θÞ¼ dcAðz;θÞHðz;θÞ
c

;

ðA18Þ
where Aðx; θÞ is the acoustic parameter, Fðz; θÞ is the
Alcock-Paczynski distortion parameter, and ωm ¼ Ωm0h2.
DVðz; θÞ is the volume distance, defined as

DVðz; θÞ ¼
�
dcAðz; θÞ2

cz
Hðz; θÞ

�
1=3

; ðA19Þ

and we find the χ2 as

χ2W ¼ ðΔFWÞTC−1
W ΔFW; ðA20Þ

where ΔFW ¼ FW;theory − FW;obs, and FW ¼ fAðzWÞ;
FðzWÞg. For all the other BAO probes, we find the χ2 in
the same way.
SDSS-BOSS: we include data from the SDSS-II BOSS

DR12 and SDSS-IV DR16 LRG (Luminous Red Galaxy
growth-rate sample) at redshifts zB ¼ f0.38; 0.51; 0.61g.
For this data, we use the quantities

dcAðz; θÞ
rfids ðzdÞ
rsðzd; θÞ

; Hðz; θÞ rsðzd; θÞ
rfids ðzdÞ

; ðA21Þ

evaluated at the dragging redshift zd, which we approxi-
mate as [104]

zd ¼ 1291
ω0.251
m

1þ 0.659ω0.828
m

ð1þ b1ωb
b2Þ

b1 ¼ 0.313ω −0.419
m ð1þ 0.607ω 0.6748

m Þ
b2 ¼ 0.238ω 0.223

m : ðA22Þ

In Eq. (A21) rfids is the sound horizon at the dragging
redshift evaluated for a fiducial cosmological model; here,
we take rfids ðzdÞ ¼ 147.78 Mpc [105,106].
SDSS QSO: From the SDSS IV BOSS DR14 quasar

sample, we have the following data points at redshifts zQ ¼
f0.978; 1.23; 1.526; 1.944g [107]

dcA
rfids ðzdÞ
rsðzd

¼ f1586.18� 284.93; 1769.08� 159.67; 1768.77� 96.59; 1807.98� 146.46g

H
rsðzdÞ
rfids ðzdÞ

¼ f113.72� 14.63; 131.44� 12.42; 148.11� 12.75; 172.63� 14.79g

DV
rfids ðzdÞ
rsðzdÞ

¼ f2933.59� 327.71; 3522.04� 192.74; 3954.31� 141.71; 4575.17� 241.61g: ðA23Þ

From the eBOSS DR16 QSO release [108,109], we also
have the following data points at redshift z ¼ 1.480

c
HrsðzdÞ

¼ 13.23�0.47;
dcA

rsðzdÞ
¼ 30.21�0.79: ðA24Þ

eBOSS ELG: from the eBOSS DR16 Emission Line
Galaxy sample (ELG) we have, at the effective redshift
zeff ¼ 0.845 [110,111]

c
HrsðzeffÞ

¼ 19.6þ2.2
−2.1 ;

dcAðzeffÞ
rsðzdÞ

¼ 19.5� 1 ðA25Þ

eBOSS CMASS: from void-galaxy cross-correlations in
redshift-space distortion corrected data from the DR12

LRG CMASS sample, we have, at the effective sample
redshift of zeff ¼ 0.69 the following [112]

c
HrsðzeffÞ

¼ 17.48�0.23;
dcAðzeffÞ
rsðzdÞ

¼ 20.10�0.34:

ðA26Þ
Lyman-α: using the autocorrelation of Lyman-α absorp-

tion in quasars and Lyman-α cross correlation in the eBOSS
DR16 quasar sample [113] we have (at the effective redshift
zeff ¼ 2.33)

c
HrsðzeffÞ

¼ 8.99�0.19;
dcAðzeffÞ
rsðzdÞ

¼ 37.5�1.1: ðA27Þ

All the χ2 measures for the above BAO points are
included in our analysis.5https://gitlab.com/mmoresco/CCcovariance.
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APPENDIX B: ALL PARAMETER CONSTRAINTS

TABLE I. Parameter constraints at 1σ for the detailed balance case, with and without a hard prior on the parameter λ. † implies a one-
sided upper bound resulting from a hard uniform prior, and bold indicates a particularly noisy parameter.

Detailed balance, prior λ ≥ 1 Detailed balance, no prior on λ

Parameter

CMBþ BAOþ HðzÞ þ
SNe1aþ Cepheidsþ

GRB

CMBþ BAOþ
SNe1aþ Cepheidsþ

GRB CMBþ BAO

CMBþ BAOþ HðzÞ þ
SNe1aþ Cepheidsþ

GRB

CMBþ BAOþ
SNe1aþ Cepheidsþ

GRB CMBþ BAO

Ωb ……… 0.0049768� 0.0000016 0.04898þ0.00055
−0.000053 0.05104� 0.00080 0.049236� 0.000070 0.04907� 0.00058 0.05139þ0.00019

−0.00020
Ωbh2 ……… 0.020952� 0.000074 0.02227� 0.00018 0.02192þ0.00019

−0.00021 0.02158� 0.00012 0.02217� 0.00017 0.02187� 0.00011
Ωm ……:: 0.3336� 0.0018 0.3153þ0.0057

−0.0055 0.3398� 0.0083 0.3204� 0.0030 0.3170� 0.0056 0.34437þ0.00010
−0.00012

Ωmh2 ……… 0.14043þ0.00024
−0.00025 0.14335� 0.00090 0.1458þ0.0011

−0.0010 0.14047þ0.00030
−0.00033 0.14323� 0.00092 0.14657� 0.00023

Ωk10
4 …… −4.1364� 0.0040 −6.116þ1.55

−0.30 −11.60þ2.61
−1.76 −4.254� 0.019 −5.745� 0.029 −13.5030þ0.0088

−0.0086
Ωr10

5 …… 9.937þ0.036
−0.035 9.20� 0.12 9.74þ0.19

−0.18 9.543þ0.070
−0.065 9.259þ0.012

−0.011 9.83þ0.012
−0.018

h ……… 0.6488� 0.0012 0.6743þ0.0043
−0.0044 0.6553þ0.0061

−0.0063 0.6621þ0.0023
−0.0024 0.6722� 0.0040 0.65239� 0.00040

M ……… −19.5051� 0.0013 −19.437þ0.012
−0.013 � � � −19.4783� 0.0075 −19.442� 0.012 � � �

ΔNeff …… 0.0046750� 0.0000076 0.1104þ0.0011
−0.0049 0.038þ0.013

−0.015 0.005099� 0.000060 0.009670� 0.000062 0.05195� 0.00019
λ ……… 1.0406� 0.0023 < 1.0032† 1.0146þ0.055

−0.053 1.02726� 0.00012 1.0065� 0.0018 1.0159� 0.0014

j Gcosmo
Ggrav

− 1j 0.0574� 0.0030 < 0.0035† 0.0214þ0.0078
−0.0077 0.03928� 0.00017 0.00997þ0.0026

−0.0025 0.0232� 0.0020

χ2min ……… 1778.27 1635.41 27.30 1705.04 1638.49 27.76

TABLE II. Parameter constraints at 1σ for the Beyond Detailed Balance case, with and without a hard prior on the parameter λ. †
implies a one-sided upper bound resulting from a hard uniform prior.

Beyond detailed balance, prior λ ≥ 1 Beyond detailed balance, no prior on λ

Parameter

CMBþ BAOþ HðzÞ þ
SNe1aþ Cepheidsþ

GRB

CMBþ BAOþ
SNe1aþ Cepheidsþ

GRB CMBþ BAO

CMBþ BAOþ HðzÞ þ
SNe1aþ Cepheidsþ

GRB

CMBþ BAOþ
SNe1aþ Cepheidsþ

GRB CMBþ BAO

Ωb ……… 0.049371þ0.00049
−0.00048 0.05024� 0.00049 0.05116þ0.00062

−0.00063 0.04900� 0.00040 0.05034þ0.00017
−0.00016 0.05034� 0.00016

Ωbh2 …… 0.022922� 0.00023 0.02262� 0.00020 0.02226� 0.00018 0.022864� 0.00011 0.02250� 0.00011 0.02250� 0.00011
Ωm ……… 0.3198� 0.0053 0.3194þ0.0056

−0.0054 0.3349� 0.0073 0.3109þ0.0038
−0.0041 0.3232� 0.0031 0.3284þ0.0093

−0.0091
Ωmh2 …… 0.1484� 0.0017 0.14386þ0.00095

−0.00096 0.1458� 0.0011 0.14509þ0.00015
−0.00016 0.14442þ0.00046

−0.00049 0.1458þ0.0030
−0.0027

Ωk10
3 …… −9.71þ1.73

−1.83 −4.98þ0.77
−0.46 −3.93� 0.15 −5.399þ0.022

−0.023 −4.338� 0.080 −6.32� 2.56

Ωr10
5 …… 9.01� 0.13 9.29� 0.11 9.61þ1.63

−1.61 8.97þ1.06
−1.11 9.36� 0.61 9.431þ0.028

−0.030
h ………:: 0.6813� 0.0048 0.6711þ0.0039

−0.0040 0.6599þ0.0056
−0.0055 0.6831þ0.0043

−0.0040 0.6685þ0.0022
−0.0021 0.6660þ0.0109

−0.0096
M ……… −19.414þ0.014

−0.015 −19.446� 0.0011 � � � −19.412þ0.012
−0.011 −19.4525� 0.0040 � � �

ΔNeff …… 0.61� 0.14 0.258þ0.028
−0.048 0.198� 0.015 0.2578þ0.0042

−0.0044 0.2166� 0.0070 0.31þ0.19
−0.15

λ ……… 1.00644� 0.00020 < 1.0068† 1.0065� 0.0025 0.9949þ0.0045
−0.0046 1.00578� 0.00086 0.9972þ0.0081

−0.0088

j Gcosmo
Ggrav

− 1j 0.00957� 0.00029 < 0.010† 0.0096� 0.0037 0.0078þ0.0070
−0.0053 0.0086� 0.0013 < 0.019

ω1 ……… 0.69957� 0.00039 0.6909þ0.0063
−0.0062 0.6789þ0.0070

−0.0075 0.6866� 0.0036 0.6898þ0.0044
−0.0043 0.6898� 0.0043

ω310
6 …… 7.07þ1.62

−1.71 1.77þ0.10
−0.15 1.5201þ0.068

−0.071 2.9109þ0.047
−0.0049 1.80� 0.15 1.79� 0.15

χ2min …… 1634.37 1632.36 23.82 1635.54 1633.85 21.85
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[47] A. Wang, Hořava gravity at a Lifshitz point: A progress
report, Int. J. Mod. Phys. D 26, 1730014 (2017).

[48] M. Herrero-Valea, The status of Hořava gravity, Eur. Phys.
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theories, Phys. Rev. D 103, 084012 (2021).

[53] R. Loll and L. Pires, Role of the extra coupling in the
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