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Pulsar-timing collaborations have recently reported evidence for the detection of an isotropic stochastic
gravitational-wave background (SGWB) consistent with one sourced by a population of inspiraling
supermassive black hole binaries. However, a certain degree of anisotropy and polarization may be present.
Thus, the characterization of the energy density and polarization of the background at different angular scales
is important. In this paper, we describe the signatures of linear polarization in the stochastic gravitational-
wave background on the timing residuals obtained with pulsar-timing arrays. We expand the linear
polarization map in terms of spin-weighted spherical harmonics and recast it into the E-mode (parity even)
and B-mode (parity odd) basis. We provide expressions for the minimum-variance estimators for the
coefficients of that expansion and evaluate the smallest detectable signal as a function of the signal-to-noise
ratio with which the isotropic GW signal is detected and the number of pulsars in the survey.We evaluate the
covariance between the estimators for the spherical-harmonic coefficients of the linear polarizationEmodes
and those for the intensity anisotropy. We also show that there is no covariance between the spherical-
harmonic coefficients for the Bmodes of the linear polarization and those for the circular polarization, even
though both have the same parity. Under the simplifying assumptions of our harmonic analysis, we show that
detection of the lowest-order linear-polarization anisotropies is only possible if the isotropic intensity
contribution is measuredwith a signal-to-noise ratio≥ 300, with a pulsar-timing network comprised ofmore
than ∼100 pulsars. We also show that, in this limit, the lowest order anisotropies in the E mode have a
negligible covariance with corresponding anisotropies in the SGWB intensity. Our approach results in
simple, elegant, and easily evaluated expressions for the overlap reduction functions for linear polarization.
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I. INTRODUCTION

Since the turn of the century, radio telescopes across the
world have been timing a network of millisecond pulsars
with the primary goal of gravitational-wave (GW) detec-
tion. Because the arrival times of the pulses are sensitive to
gravitational radiation, the observed network of pulsars,
called a pulsar timing array (PTA), behaves as a galactic-
scale GW detector. With more than a decade of timing data,
PTA collaborations [1–4] have finally reported evidence for
the detection of a stochastic gravitational-wave background
(SGWB) at ∼nHz frequencies, as expected from the
inspirals of merging supermassive black hole binaries
(SMBHBs) [5,6].
The SGWB signal contained in the difference between the

expected and actual arrival times of the pulses—called timing
residuals—can be extracted by correlating the residuals

observed from two different pulsars. If the origin of the
background is assumed to be cosmological or is sourced by a
large population of distant objects, the detected SGWBsignal
is expected to be isotropic. Under this assumption, the
resulting pulsar correlations vary with the angle between
the pulsars according to the so-called Hellings-Downs (HD)
curve [7]. Excess noise in pulse arrival timeswith a frequency
spectrum and amplitude consistent with a GW background
[8–11] had been noted for several years, but only nowhavewe
seen evidence for detection of the HD curve.
Given this recent evidence for an SGWB in the PTA

residuals, the next step will be to characterize the signal in
more detail. One approach is to further characterize the
isotropic signal, looking at additional information that can
be gained from the HD correlation detection [12–16] or
considering cross-correlation prospects with astrometric
observations of the SGWB [17]. Another approach is to
move beyond the detection of isotropy. Although the
assumption of statistical isotropy applies in certain regimes,*Contact author: nanilku1@jhu.edu
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some degree of anisotropy is expected. For example, if the
signal is dominated by ∼N sources, the anisotropy is
expected to have an amplitude ∼N−1=2 [18–21], i.e., if
the signal is dominated by a handful of nearby sources, the
observed signal can be anisotropic. Furthermore, given that
GWs from inspirals are most generally circularly and
linearly polarized, the SGWB is also expected to exhibit
circular- and linear-polarization anisotropies. Techniques
have been developed [22–26], and now applied [27,28], to
seek anisotropy in the intensity of the background with the
observed pulse arrival times. Moreover, measurement
prospects and detection methodologies for circular polari-
zation have been explored [29–31] with recent work also
discussing the linearly polarized component [32,33].
In this paper, we forecast the future ability to probe linear

polarization in the SGWB with the timing residuals
observed by PTAs, via the analysis of these residuals in
harmonic space. To do so, we expand the direction depend-
ence of the linear polarization of the SGWB in terms of
spin-weighted spherical harmonics. Recasting the linear
polarization into the more familiar E- and B-mode basis, we
then derive minimum-variance estimators (and their var-
iances) for the expansion coefficients in terms of the signal-
to-noise ratio (SNR) of the isotropic HD detection.
We present this derivation in harmonic space, using the

bipolar spherical harmonics (BiPoSH) formalism [34–37],
following the analogous derivations for intensity anisotro-
pies and circular polarization in Refs. [23,30]. Although
this formalism is less familiar in the PTA literature, it
facilitates straightforward analytic estimations of a PTA’s
sensitivity to linear polarization. Furthermore, it elucidates
how this sensitivity scales with various PTA specifications,
such as noise properties and the number of pulsars.
While some of our results reproduce those recently

obtained in Refs. [32,33], the methodology presented here
may offer a more streamlined derivation. Not only do we go
further by explicitly constructing the linear-polarization
estimators and forecasting the sensitivity of PTAs to linear--
polarization anisotropy,we also calculate the covariance
between estimators for the E-mode linear polarization and
those for the intensity anisotropies and show that there is no
covariance between the B-mode linear polarization and the
circular polarization, even though they have the same parity.
Saliently, the derivation presented here also allows us to
reveal a new expression for linear polarization overlap
reduction functions (ORFs) that is compact, easy to com-
pute, and applicable to any chosen coordinate system of
observation.1

The primary focus of this paper is the mathematical
description of the angular correlations across timing resid-
uals induced by a given SGWB angular linear-polarization
pattern. Therefore, we treat the time-sequence data simply,
assuming that it can be decomposed into frequency-domain
Fourier modes of some fixed frequency f (averaged over a
given observational frequency bin). As with previous work
on intensity anisotropy, the estimators and covariances
derived in this paper are obtained by initially assuming
measurements at a specific frequency f. The additional
steps needed to connect the results presented here with the
data are exactly the same as those for other analyses (see,
for example, Refs. [31,40]). How the estimators for differ-
ent frequencies are combined depends on the specific
model for the linear polarization. For example, if the
SGWB is a bona fide stochastic background and the linear
polarization is assumed to be frequency independent, then
the estimators for different frequencies can be added with
inverse-quadrature weighting in the noise. If, on the other
hand, the GW signal is due to a finite number of sources
[41,42], then the linear-polarization pattern may differ from
one frequency band to the next, with higher polarization
expected at higher frequencies.
This paper is organized as follows. We begin in Sec. II

by reviewing the timing residual induced in a single pulsar
by an SGWB. In Sec. III, we characterize the SGWB in
terms of the angular dependence of its intensity, linear
polarization, and circular polarization. We expand these
angular dependencies in terms of (spin-weighted) spheri-
cal harmonics for intensity and circular polarization
(linear polarization), introducing the expansion coeffi-
cients that will be the primary target for measurement.
Section IV contains a review of the BiPoSH formalism
and establishes the motivation for subsequent calcula-
tions. Section V presents our main results in harmonic
space. We first calculate the BiPoSH coefficients induced
by any given linear-polarization expansion coefficient. We
then derive the minimum-variance estimators for the
linear-polarization expansion coefficients, and we derive
expressions for their variances. We then discuss the
covariance between the estimators for the linear polari-
zation and those for the intensity anisotropy and circular
polarization. In Sec. VI, we leverage the BiPoSH
approach to derive new expressions for linear polarization
ORFs that are far more compact and elegant than those in
prior work. Finally, in Sec. VII, we calculate the sensi-
tivity of PTAs to linear polarization, computed using the
previously derived estimators. We present our concluding
remarks in Sec. VIII.

II. SINGLE PULSAR TIMING RESIDUALS

A gravitational wave that propagates between the Earth
and a pulsar affects the arrival time of the pulses observed at
Earth. The fractional change in the pulse frequency of the
pulsar, as compared to the expected intrinsic frequency,

1A companion paper [38] generalizes this to intensity anisotro-
pies and circular polarizationand to the spin-1GWs thatmayarise in
alternative-gravity theories. Reference [39] also extends the for-
malism to describe correlations for a scalar SGWB, including the
effects of the pulsar term.We hope that the clear derivation here acts
as a supplement to the results summarized in the companion piece.
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induced by a metric perturbation hijðt; Ω̂;xÞ from a GW
propagating in the Ω̂ direction is given by [43,44]

zaðtjΩ̂Þ ¼
1

2

nian
j
a

1þ Ω̂ · n̂a
Δhij; ð1Þ

where we have used Einstein summation conventions. In
the above equation, the subscript of a labels a given pulsar,
and n̂a is the location of that pulsar in the sky. Furthermore,
we have defined Δhij ≡ hijðte; Ω̂;xeÞ − hijðtp; Ω̂;xaÞ as
the difference between the metric perturbation arriving at
the Solar System barycenter (located at xe), at time te, and
at the pulsar (located at xa) at time tp. To simplify the
analysis, we choose a coordinate system with the origin
located at the barycenter of the Solar System and the pulsar
placed at a distance La from it, such that te ¼ t, xe ¼ 0,
tp ¼ t − La, and xa ¼ Lan̂a.
To extend Eq. (1) to an SGWB, we express the GW

amplitude at location x, in the transverse-traceless gauge,
as a superposition of waves of all frequencies f coming
from all directions as follows:

hijðt;xÞ ¼
Z

df
Z

d2Ω̂
X

A¼þ;×

h̃Aðf; Ω̂ÞeAijðΩ̂Þe−2πifðt−Ω̂·xÞ;

ð2Þ

where index A∈ fþ;×g labels the polarization, and the
Fourier amplitudes h̃Aðf; Ω̂Þ are complex functions that
satisfy h̃�Aðf; Ω̂Þ ¼ h̃Að−f; Ω̂Þ. The polarization tensors
eAijðΩ̂Þ are given by

eþijðΩ̂Þ ¼ p̂ip̂j − q̂iq̂j; ð3Þ

e×ijðΩ̂Þ ¼ p̂iq̂j þ q̂ip̂j; ð4Þ

where p̂ and q̂ are unit vectors perpendicular to the
direction of propagation Ω̂.
We can plug in the expression for the SGWB amplitude

at location x from Eq. (2) into Eq. (1) to obtain the total,
fractional frequency shift from an SGWB:

zaðtÞ ¼
X

A¼þ;×

Z
df

Z
d2Ω̂h̃Aðf; Ω̂ÞFA

aðΩ̂Þe−2πift

× ½1 − e2πifLað1þΩ̂·n̂aÞ�; ð5Þ

where FA
aðΩ̂Þ is the antenna beam pattern, defined as

FA
aðΩ̂Þ ¼

1

2

nian
j
aeAijðΩ̂Þ

ð1þ Ω̂ · n̂aÞ
: ð6Þ

The explicit form of the antenna beam pattern, which
depends on the assumed coordinate system and the location

of the chosen pulsar (unit vector n̂a), has been calculated in
the Appendix. Therefore, the timing residual can be written
in frequency space as

zaðfÞ¼
X
A

Z
d2Ω̂ h̃Aðf;Ω̂ÞFA

aðΩ̂Þ
�
1−e2πifLað1þΩ̂·n̂aÞ�: ð7Þ

Assuming that timing-residual information zaðfÞ has
been collected for a large number of pulsars as a function of
f, the collective dataset represents a map of zðn̂Þ across the
sky at each frequency. Therefore, the angular structure of
these residuals can be expanded in terms of spherical
harmonics as

zðf; n̂Þ ¼
X∞
l¼2

Xl
m¼−l

zlmðfÞYlmðn̂Þ; ð8Þ

where the sum is only over l ≥ 2 since a transverse-
traceless SGWB only gives rise to timing-residual patterns
with l ≥ 2. The expansion coefficients can be obtained via
the inverse transform:

zlmðfÞ ¼
Z

d2n̂ zðn̂ÞY�
lmðn̂Þ: ð9Þ

It is vital to note that for linear polarization and uncorre-
lated GW modes, the time-domain Fourier amplitudes
zaðfÞ can be made to be real through a suitable choice
of phase, i.e., with the appropriate phase, zðf; n̂Þ is a real
map on the two-sphere. Therefore, in each frequency bin,
we have the constraint z�lm ¼ ð−1Þmzl;−m.

III. CHARACTERIZING THE SGWB

The correlation induced across the timing residuals of
pairs of pulsars heavily depends on the assumed SGWB
statistics. In this work, we assume a background that is
not only Gaussian and stationary but also possibly polar-
ized and anisotropic. When applied to the Fourier
decomposition presented in Eq. (2), our assumptions
characterize a background for which the Fourier amplitudes
for different modes are statistically independent, and
each is chosen from a random distribution with variance
given by

hh̃�Aðf; Ω̂Þh̃A0 ðf0; Ω̂0Þi ¼ δðf − f0Þδ2ðΩ̂; Ω̂0ÞPA;A0 ðf; Ω̂Þ;
ð10Þ

where the δ’s above represent Dirac delta functions. Here,
PA;A0 ðf; Ω̂Þ is the spectral density of the background, which
depends on the polarization of the two GW strains and their
propagation directions. This polarization tensor can be
expressed as
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PA;A0 ðf;Ω̂Þ¼
�

Iðf;Ω̂ÞþQðf;Ω̂Þ Uðf;Ω̂Þ− iVðf;Ω̂Þ
Uðf;Ω̂Þþ iVðf;Ω̂Þ Iðf;Ω̂Þ−Qðf;Ω̂Þ

�
:

ð11Þ

This is analogous to how the tensor is defined using Stokes
parameters in standard electromagnetism. For the SGWB,
we define the Stokes parameters in terms of the GW strain
as follows [45]:

Iðf; Ω̂Þ ¼ 1

2
hjh̃þj2 þ jh̃×j2i;

Qðf; Ω̂Þ ¼ 1

2
hjh̃þj2 − jh̃×j2i;

Uðf; Ω̂Þ ¼ Rehh̃�þh̃×i ¼
1

2
hh̃�þh̃× þ h̃�×h̃þi;

Vðf; Ω̂Þ ¼ Imhh̃�þh̃×i ¼
1

2i
hh̃�þh̃× − h̃�×h̃þi; ð12Þ

where Iðf; Ω̂Þ is the intensity, Vðf; Ω̂Þ is the circular
polarization, and Qðf; Ω̂Þ and Uðf; Ω̂Þ characterize the
linear polarization.
For our analysis, in both harmonic and configuration

space, we assume that the frequency and angular depend-
ence of the relevant Stokes parameters are separable. This
allows us to expand the angular dependence of the
parameters in terms of spherical-harmonic functions

Iðf; Ω̂Þ ¼ IðfÞ
X∞
L¼0

XL
M¼−L

cILMYLMðΩ̂Þ; ð13Þ

Vðf; Ω̂Þ ¼ IðfÞ
X∞
L¼0

XL
M¼−L

cVLMYLMðΩ̂Þ; ð14Þ

P�ðf; Ω̂Þ ¼ IðfÞ
X∞
L¼4

XL
M¼−L

c�LM�4YLMðΩ̂Þ; ð15Þ

where cXLM for X∈ fI; V;þ;−g are the expansion coef-
ficients, and we have defined the spin-four fields
P�ðf; Ω̂Þ≡ ðQ� iUÞðf; Ω̂Þ, expanded in terms of spin-
weighted spherical harmonics2 �sYLMðΩ̂Þ of spin s ¼ 4.
Assuming that the linear polarization and intensity maps
share the same frequency dependence, the prefactor IðfÞ
describes these maps averaged over the frequencies in a
frequency band centered at f. With the parametrizations in
Eq. (15), if there is any frequency dependence in the
polarization relative to the intensity, it is absorbed in the
frequency dependence of c�LM. Moreover, we normalize
IðfÞ such that cI00 ¼ 1. The primary focus of this work will

be the linear polarization Stokes parameters Qðf; Ω̂Þ and
Uðf; Ω̂Þ. Therefore, from this point on, we set every
instance of Vðf; Ω̂Þ to zero unless stated otherwise.
Since the intensity I is a real quantity, cILM ¼

ð−1ÞMðcIL;−MÞ�, indicating there are 2Lþ 1 independent
real numbers encoded in cILM for a given L. Although Q
and U are also real, the polarization Pþ ¼ ðQþ iUÞ is a
complex quantity. Therefore, there is no analogous relation
between cþLM and its complex conjugate. However,
we can still place a similar constraint by noting that P− ¼
ðQ − iUÞ is the complex conjugate of Pþ. This require-
ment, applied to their respective expansions, allows us to
place the constraint

cþLM ¼ ð−1ÞMðc−L;−MÞ�; ð16Þ

which follows from the relation �4Y
�
LM ¼ ð−1ÞM−4YL;−M.

Therefore, given a measurement of the real and imaginary
parts of cþLM, which amount to a total of 2ð2Lþ 1Þ real
numbers at fixed L, we can reconstruct both Q and U, as
expected.
Since Q and U are not coordinate invariant, it is

sometimes more convenient to define the scalar E and B
fields using spin-raising and -lowering operators, resulting
in the following expansions:

Eðf; Ω̂Þ ¼ IðfÞ
X
LM

cELMYLM; ð17Þ

Bðf; Ω̂Þ ¼ IðfÞ
X
LM

cBLMYLM; ð18Þ

where the expansion coefficients can be defined in terms of
c�LM as

cELM¼1

2
ðcþLMþc−LMÞ; cBLM¼−

i
2
ðcþLM−c−LMÞ: ð19Þ

The functions Eðf; Ω̂Þ and Bðf; Ω̂Þ are real functions on the
sphere, and so the expansion coefficients satisfy ðcELMÞ� ¼
ð−1ÞMcEL;−M and ðcBLMÞ� ¼ ð−1ÞMcBL;−M. The E modes
have even parity (as does the intensity), while the B modes
have odd parity (similar to circular polarization).
For a linearly polarized SGWB, the Stokes parameters I,

Q, and U are subject to the constraint jQj2 þ jUj2 ≤ I2.
Given the relations described in Eq. (19) and the expansion
in Eq. (15),Q and U can be represented as expansions with
coefficients dependent on cELM and cBLM. Therefore, the
constraint on the Stokes parameters can be used to place
constraints on the linear-polarization expansion coefficients
cE;BLM . To place a simplified set of constraints, let us consider
a background that has an isotropic intensity map, with
deviation from isotropy sourced only by a single, nonzero,
linear-polarization component cXL0 for X∈ fE;Bg. Then,

2Note that we use capitalized angular-momentum quantum
number LM for the expansions for the Stokes parameters and
lowercase lm for expansions of the timing residuals.
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the Stokes parameter constraint translates to

cXL0þ4YLMðΩ̂Þ ≤
1ffiffiffiffiffiffi
4π

p ; ð20Þ

where we have applied the assumed normalization of the
intensity map (cI00 ¼ 1). Since the above relation must
apply for any value of Ω̂, given the maximum of

þ4YLMðΩ̂Þ, one can derive the maximum allowed value
ðcE;BL0 Þmax. Note that, consistent with prior analysis [23,30],
we focus on the constraint for M ¼ 0. A roughly similar
bound applies to

ffiffiffi
2

p
Re cXLM and

ffiffiffi
2

p
Im cXLM for M ≠ 0.

IV. REVIEW OF BIPOLAR SPHERICAL
HARMONICS

We calculate our estimators in harmonic space, using the
BiPoSH formalism described in previous works such as
Refs. [23,30]. Although this formalism relies on our ability
to measure a well-distributed set of pulsars across the sky, it
clearly depicts the contributions from the expansion coef-
ficients of the Stokes parameters, revealing parameter
degeneracies and simplified expressions for the relevant
estimators.
As emphasized in Ref. [41], the polarization anisotropies

at different frequencies are not expected to be the same if
the GW sources are SMBHBs. Therefore, for our analysis,
we work in a single frequency bin, dropping any explicit f
dependence, assuming we are dealing with maps of the
timing residual zðn̂Þ across the sky.
The spatial two-point correlation function of the timing

residuals from two pulsars in directions n̂ and m̂ can (most
generally) be expanded as

hzðn̂Þzðm̂Þi ¼
X
l

2lþ 1

4π
ClPlðn̂ · m̂Þ

þ
X
ll0LM

ALM
ll0 fYlðn̂Þ ⊗ Yl0 ðm̂ÞgLM; ð21Þ

where Cl and ALM
ll0 are expansion coefficients and Pl are

Legendre polynomials. The second term in the equation
above represents an expansion in the set of basis functions:

fYlðn̂Þ⊗Yl0 ðm̂ÞgLM¼
X
mm0

hlml0m0jLMiYlmðn̂ÞYl0m0 ðm̂Þ;

ð22Þ

called bipolar spherical harmonics [34–37], where the
symbol hlml0m0jLMi is used to represent Clebsch-
Gordan coefficients. These BiPoSHs constitute a complete
orthonormal basis for functions of n̂ and m̂ in terms of total-
angular-momentum states of quantum numbers LM. The
BiPoSH coefficients ALM

ll0 are (anti)symmetric in l and l0

for lþ l0 þ L ¼ even (odd) when zðn̂Þ is a real map [37].

These parity relations also indicate that AL
ll0 must be zero

for lþ l0 þ L ¼ odd. Note that the sum in the second term
in Eq. (21) is over L ≥ 1, M ¼ −L to L, and for values of
l;l0 that satisfy the triangle inequality, jl − l0j ≤ L ≤
lþ l0.
Given that the same angular correlation hzðn̂Þzðm̂Þi can

also be represented via correlations of the spherical-
harmonic coefficients zlm introduced in Eq. (8), one can
also express the two-point function in harmonic space as
follows:

hz�lmzl0m0 i ¼ Clδll0δmm0

þ
X
L≥1

XL
M¼−L

ð−1Þmhl;−m;l0m0jLMiALM
ll0 :

ð23Þ

The coefficients Cl, appearing in both Eq. (21) and
Eq. (23), represent the isotropic contribution to the back-
ground. That is, if we were analyzing an unpolarized,
isotropic SGWB, then the only nonzero contribution to the
angular correlation function would come from the power
spectrum Cl ∝ ðl − 2Þ!=ðlþ 2Þ!, corresponding to the
harmonic expansion of the Hellings-Downs function
[17,21,46].
On the other hand, the BiPoSH coefficients ALM

ll0 quantify
departures from statistical isotropy [23], circular-polariza-
tion anisotropies [30], and (as we will show here) linear
polarization [32,33]. In other words, each term of given
LM, in Eqs. (13)–(15), gives rise to nonzero ALM

ll0 of the
same LM. As we will show in the following analysis,
intensity anisotropies and E-mode linear polarization are
scalars, and thus, have nonvanishing BiPoSH coefficients
only for lþ l0 þ L ¼ even, while B-mode linear polari-
zation and circular polarization are pseudoscalars and thus
are nonvanishing only for lþ l0 þ L ¼ odd. We will also
see that the distinction between intensity anisotropies and
E-mode polarization is found in the ll0 dependence of the
BiPoSH coefficients, while the B-mode polarization and
circular polarization are distinguished by whether the
timing-residual maps are real or imaginary.
Under the assumption of a full-sky map of uniform noise

properties, minimum-variance estimators for the BiPoSH
coefficients have been previously computed and are
given by

dALM
ll0 ¼

X
mm0

z�lmzl0m0 ð−1Þmhl;−m;l0m0jLMi: ð24Þ

Under the null hypothesis, corresponding to an isotropic,
unpolarized background, this estimator has variance [37],

hjdALM
ll0 j

2i ¼ ½1þ ð−1Þlþl0þLδll0 �ClCl0 : ð25Þ
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The above expression for the minimum variance has
been simplified given that the covariance between
BiPoSH coefficients hALM

ll0 ðALM
ll0 Þ�i is zero for fl;l0g ≠

fl;l0g [37].
In both the above equations, one can account for meas-

urement noise replacing zlm with the harmonic coefficients
of the observed timing residuals zdlm ¼ zlm þ znoiselm . For the
sake of our analysis, we assume a simplistic noise model in
which pulsar red noise is omitted, and the coefficients znoiselm
are uncorrelated, with variance given by the l-independent
noise power spectrumNzz. Thiswhite-noise power spectrum
is a good approximation in the limit that the timing-residual
noises in all pulsars are comparable. Consequently, to
account for the effects of uncorrelated, Gaussian, white
noise every occurrence of Cl in estimator variances can be
replaced by Cd

l ¼ Cl þ Nzz.
Note that the above expansion of the angular correlations

in map zðn̂Þ does not directly incorporate any specific
model of the SGWB. Therefore, we need to rederive an
expression for hz�lmzl0m0 i in terms of the relevant polari-

zation expansion coefficients to leverage the estimator dALM
ll0

and its previously computed variance in Eqs. (24) and (25).

V. HARMONIC-SPACE ANALYSIS

The next step is to determine the response of the signal
hz�lmzl0m0 i to the intensity anisotropies and polarization,
characterized by the expansion coefficients cILM and c�LM
[Eqs. (13) and (15)] in our model for the SGWB.
Following the derivations in Refs. [23,30], we begin by

considering a GW propagating in the direction Ω̂ ¼ ẑ.
Based on the imprint of a single GW on the pulse arrival
time in configuration space [Eq. (1)], we can derive the
pulsar redshift response to a GW propagating in the ẑ
direction as

zðn̂jẑÞ ¼ 1

2

�
h̃þð1 − cos θÞ cos 2ϕþ h̃×ð1 − cos θÞ sin 2ϕ�;

ð26Þ

where h̃þðẑÞ and h̃×ðẑÞ are the Fourier amplitudes for the
GW at a particular frequency f. Note that here, assuming
that the wavelength of the GWs is significantly shorter than
the Earth-pulsar distance (fL ≫ 1), we have dropped the
subdominant, exponential “pulsar-term” in Eq. (7) [47].
The above expression can be used to derive the spherical

harmonic coefficients

zlmðẑÞ ¼
zl
2

�ðh̃þ − ih̃×Þδm2 þ ðh̃þ þ ih̃×Þδm;−2
�
; ð27Þ

where δij is the Kronecker delta and we have defined the
symbol

zl ≡ ð−1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þðl − 2Þ!

ðlþ 2Þ!

s
: ð28Þ

One can generalize the above result to a GW propagating in
an arbitrary direction Ω̂ using Wigner rotation functions

DðlÞ
mm0 as follows [48]:

zðn̂jΩ̂Þ ¼
X∞
l¼2

X
mm0

YlmðΩ̂ÞDðlÞ
mm0 ðΩ̂Þzlm0 ðẑÞ; ð29Þ

where we have used DðlÞ
mm0 ðΩ̂Þ ¼ DðlÞ

mm0 ðϕ; θ; 0Þ with
Ω̂ ¼ ðθ;ϕÞ.3 Therefore, based on Eq. (8), we can see that
the expansion coefficients for single GW traveling in
direction Ω̂ can be expressed as

zlmðΩ̂Þ ¼
zlffiffiffi
2

p �
h̃LðΩ̂ÞDðlÞ

m2ðΩ̂Þ þ h̃RðΩ̂ÞDðlÞ
m;−2ðΩ̂Þ

�
; ð30Þ

where we have defined h̃RðΩ̂Þ≡ 1=
ffiffiffi
2

p ðhþ þ ih×ÞðΩ̂Þ and
h̃LðΩ̂Þ≡ 1=

ffiffiffi
2

p ðhþ − ih×ÞðΩ̂Þ for ease of notation. Given
this result, we can finally write the harmonic-space
response of the PTA system to a background of GWs as

zlm ¼ zlffiffiffi
2

p
Z

d2Ω̂
�
h̃LðΩ̂ÞDðlÞ

m2 þ h̃RðΩ̂ÞDðlÞ
m;−2

�
: ð31Þ

Now, to calculate the correlation between two distinct
harmonic coefficients, we plug in the statistical definition
of the background from Eq. (10) and use the definition of
the Stokes parameters [Eq. (12)] to split the result into three
separate contributions as follows:

hz�lmzl0m0 i ¼ zlzl0

2

�
ZI

ll0mm0 þ ZPþ
ll0mm0 þ ZP−

ll0mm0
�
; ð32Þ

where we have assumed that background has no circular
polarization. The first term corresponds to the contribution
from the intensity of the background IðΩ̂Þ whereas the
latter two terms represent the consolidated contributions
from the linear polarization parameters QðΩ̂Þ and UðΩ̂Þ.
Using Eqs. (13) and (15), one can write the separate
contributions in terms of the expansion coefficients cILM
and c�LM as

3Note that even though a standard Wigner rotation involves
three Euler angles, here we only rotate by θ and ϕ to ensure that
the two polarizations “+” and “×” remain aligned with θ̂ and ϕ̂.
This Wigner function thus also rotates the dependence of the
Fourier amplitudes hþ and h×.
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ZI
ll0mm0 ¼ IðfÞ

X
LM

cILM

Z
d2Ω̂YLM

�ðDðlÞ
m2Þ�Dðl0Þ

m02

þ ðDðlÞ
m;−2Þ�Dðl0Þ

m0;−2

�
; ð33Þ

ZP�
ll0mm0 ¼ IðfÞ

X
LM

c�LM

Z
d2Ω̂�4YLMðDðlÞ

m;�2Þ�Dðl0Þ
m0;∓2

;

ð34Þ

where we have suppressed the Ω̂ dependence of the
integrands for ease of notation. To calculate each indepen-
dent contribution, we will need to compute the angular
integrals over Ω̂.
Given the analysis in Refs. [23,30], where they compute

the term ZI
ll0mm0 above, we first focus on a background

with an isotropic intensity map and compute only the
ZP�

ll0mm0 contributions. The required angular integrals can
be computed by expressing theWigner rotation functions in
terms of spherical harmonics and then performing the
integral over three spin-weighted spherical harmonics
[49] which gives the following result:Z

d2Ω̂�4YLMðDðlÞ
m;�2Þ�Dðl0Þ

m0;∓2

¼
ffiffiffiffiffiffi
4π

p
ð−1ÞLþm

�
l l0 L

�2 �2 ∓ 4

�
hl;−m;l0m0jLMi:

ð35Þ

The above computation indicates that the two contributions
ZPþ

ll0mm0 and ZP−
ll0mm0 only differ in the lower line of the

Wigner 3j symbol. Given the symmetry properties of these
symbols, this is equivalent to a difference by a factor
of ð−1Þlþl0þL.
Therefore, for a linearly polarized background charac-

terized by Eq. (10), the above calculations indicate that the
anisotropic contribution from the Stokes parameters Q and
U can be expanded in terms of Clebsch-Gordan coeffi-
cients, appearing precisely like the BiPoSH expansion
introduced in Sec. IV. Comparing the expansion in
Eq. (23) to the calculations above, we can relate the
BiPoSH expansion coefficients ALM

ll0 to c�LM as follows:

ALM
ll0 ¼ IðfÞzlzl0

ffiffiffiffiffiffi
4π

p
HL

ll0

	
cELM; lþ l0 þ L ¼ even;

icBLM; lþ l0 þ L ¼ odd;

ð36Þ

where we have expressed c�LM in terms of cELM and cBLM
using Eq. (19), and we have defined

HL
ll0 ≡ ð−1ÞL

�
l l0 L

2 2 −4

�
: ð37Þ

Note that the lowest mode contributing to anisotropy in this
setup is L ¼ 4, since the linear combinations of Q and U
are expanded in terms of spin-four spherical harmonics.

A. Fixing the normalization

The sensitivity of a given PTA to anisotropy and/or
polarization will depend on the number Np of pulsars and
their noise properties. Strictly speaking, it will also depend
on the location of the pulsars. Here, we consider an
optimized survey in which the pulsars are spread uniformly
throughout the sky.4 Based on this setup, we follow
Refs. [23,30] in parametrizing the estimators of cE;BLM in
terms of the total SNR with which the isotropic signal is
detected. Subsequently, this will allow us to write the
normalization factor IðfÞ in terms of the noise power
spectrum and the isotropic SNR.
The measurement of the isotropic signal is contingent on

the detection of the Hellings-Downs correlation, or equiv-
alently, the power spectrum

Cl ¼
ffiffiffiffiffiffi
4π

p z2l
ð2lþ 1Þ IðfÞ; ð38Þ

where we have used Eqs. (32) and (33) to obtain the
normalization of Cl for our model of the SGWB [Eq. (10)].
The total SNR for this isotropic measurement can be
written as the sum in quadrature of the SNR of each
accessible multipole l ≤ lmax, where lmax ∼

ffiffiffiffiffiffi
Np

p
is the

largest accessible multipole. Assuming that the measure-
ment noise is given by the white-noise power spectrum Nzz
[introduced below Eq. (25)] this SNR can be written as

SNRf ¼

Xlmax

l¼2

ð2lþ 1ÞClðfÞ2
ðNzzÞ2

�1=2
≈
ð4πÞ3=2
6

ffiffiffi
3

p IðfÞ
Nzz ; ð39Þ

where the first equality has been previously derived in
Ref. [46], and the second equality has been derived
numerically [using Eq. (38), as done in Ref. [30] ] given
that the sum is dominated primarily by the lowest multi-
poles. This finally allows us to express the amplitude factor
IðfÞ as

IðfÞ ¼ 6
ffiffiffi
3

p

ð4πÞ3=2 SNRfNzz: ð40Þ

B. Harmonic space estimators

Given the relation between the BiPoSH expansion
coefficients ALM

ll0 and the coefficients defining the statistics

4Real-world complications like irregular sky coverage and
nonuniform noise will then only degrade the sensitivity relative to
this optimal case.
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of the background cE;BLM in Eq. (36), we can finally begin to
calculate the estimators that quantify our ability to measure
Q and U for a linearly polarized SGWB.
The estimators for the expansion coefficients character-

izing the Stokes parameters Q and U are most easy to

calculate in the E- and B-mode basis. Each dALM
ll0 provides

one estimator:

ðdcXLMÞl;l0 ¼ 1

iX
L
ll0

ffiffiffiffiffiffi
4π

p
dALM
ll0

HL
ll0IðfÞzlzl0

; ð41Þ

where X ¼ E when lþ l0 þ L is even and X ¼ B when
lþ l0 þ L is odd. For concise notation, we have also
defined XL

ll0 ≡ ð1=2Þ½1þ ð−1Þðlþl0þLÞ�. Given the vari-
ance of each BiPoSH amplitude [Eq. (25)], the variance in
each of the above estimators is

ðΔcXLMÞ2ll0 ¼
4π2

27

½1þ ð−1ÞXL
ll0 δll0 �Cd

lC
d
l0

ðzlzl0HL
ll0SNRfNzzÞ2 ; ð42Þ

where we have plugged in Eq. (40) and used
Cd
l ¼ Cl þ Nzz.
Since each unique pair l;l0 provides an estimator for the

expansion coefficients,5 we can combine them with inverse
variance weighting to construct the minimum variance
estimator

dcXLM ¼
P

l;l0 ðdcXLMÞll0 ðΔcXLMÞ−2ll0P
ll0 ðΔcXLMÞ−2ll0

; ð43Þ

with the minimum variance given by

ðΔcXLMÞ2 ¼

X

ll0
27

4π2
ðzlzl0HL

ll0SNRfNzzÞ2
½1þ ð−1ÞXL

ll0 δll0 �Cd
lC

d
l0

�−1
: ð44Þ

The above equation can therefore be used to obtain
the estimator and corresponding variance of cELM (cBLM),
by restricting the sums to unique pairs of l and l0 with
even (odd) lþ l0 þ L. Furthermore, in both the above
equations, the sum is over l;l0 < lmax such that
jl − l0j ≤ L ≤ lþ l0.
Finally, it turns out that the variance with which we can

probe the expansion coefficients cXLM can be written solely
in terms of the SNR with which the isotropic contribution is
measured. This can be achieved by using Eqs. (38) and (39)
to express

Cd
l ¼ Cl þ Nzz ¼ Nzz



6

ffiffiffi
3

p

4π

z2lSNRf

ð2lþ 1Þ þ 1

�
; ð45Þ

which eliminates the Nzz dependence in Eq. (44). This also
allows us to easily approximate how well we can measure
the linear polarization expansion coefficients in the limit of
low and high SNR. As the SNR → 0, i.e., as the isotropic
contribution of the background is measured with low
fidelity, the variance with which one can estimate the
expansion coefficients cXLM is

ðΔcXLMÞ2≈SNR−2
f

(X
ll0

27

4π2
ðzlzl0HL

ll0 Þ2
½1þð−1ÞXL

ll0 δll0 �

)−1

: ð46Þ

Conversely, as the SNR of the system becomes infinite, the
error in the estimated expansion coefficient is

ðΔcXLMÞ2 ≈
(X

ll0
ð2lþ 1Þð2l0 þ 1ÞðHL

ll0 Þ2
½1þ ð−1ÞXL

ll0 δll0 �

)−1

: ð47Þ

Although the minimum variance calculated in the above
analysis is purely real, it is important to remember that the
coefficients cXLM can have a nonzero imaginary part.
Therefore, the minimum-variance estimator [Eq. (43)]
should be interpreted as an estimator for the real or
imaginary part of the coefficients cXLM, each of which
can be measured with minimum variance given
by 1=2ðΔcXLMÞ2.

C. Covariances

The estimators calculated above show that the correla-
tions induced by the E-mode polarization anisotropies
differ from those of the B-mode component in the parity
of the BiPoSHs allowed. Therefore, we should expect no
covariance between the two components in a linearly
polarized SGWB.
However, these estimators were calculated assuming that

the SGWB is isotropic in intensity and not circularly
polarized. Most generally, the background may be aniso-
tropic and partially polarized, with nonzero I, Q, U, and V
Stokes parameters. Intensity anisotropies are a scalar and
give rise to nonzero ALM

ll0 with lþ l0 þ L ¼ even [23],
while circular polarization is a pseudoscalar, giving rise to
ALM
ll0 with lþ l0 þ L ¼ odd [30]. It is thus natural to

expect some covariance between the intensity-anisotropy
estimators and those for the linear-polarization Emode, and
we calculate this covariance below. We also show that the
covariance between the circular-polarization estimators and
the linear-polarization B-mode estimators vanishes, even
though they have the same parity.

5It is important to restrict the estimator sums to unique pairs of
fl;l0g to account for the (anti)symmetry of ALM

l;l0 under l ↔ l0

for even (odd) parity BiPoSHs.
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1. Intensity and the E mode

Let us consider a linearly polarized SGWB with an
anisotropic intensity contribution. By evaluating the inte-
grals in Eq. (33), we can use the steps outlined for the
previous estimator calculations to also write ðdcILMÞll0 in
terms of the estimators of the BiPoSH coefficients as
follows:

ðdcILMÞll0 ¼ 1ffiffiffiffiffiffi
4π

p
zlzl0

dALM
ll0

GL
ll0IðfÞ

; ð48Þ

for even lþ l0 þ L, where we have defined the symbol

GL
ll0 ≡ ð−1ÞL

�
l l0 L

−2 2 0

�
: ð49Þ

Given the two estimator equations, presented in Eqs. (41)
and (48), the total covariance can be written as

hdcELM dcILMi ¼ 
X
ll0

27

4π2
ðzlzl0SNRfNzzÞ2HL

ll0GL
ll0

ð1þ δll0 ÞCd
lC

d
l0

�
× ðΔcELMÞ2ðΔcILMÞ2; ð50Þ

where the sum is only over even values of lþ l0 þ L and
we have used Eq. (40) to remove any frequency depend-
ence beyond the SNR of the isotropic measurement in the
specified frequency band.
We can then define a cross-correlation coefficient,

r≡ hdcELM dcILMi
ðΔcELMÞðΔcILMÞ

: ð51Þ

In the high-SNR limit, this becomes

r ¼

X

ll0

ð2lþ 1Þð2l0 þ 1ÞHL
ll0G

L
ll0

ð1þ δll0 Þ
�

× lim
SNRf→∞

ðΔcILMΔcELMÞ; ð52Þ

where limSNRf→∞ΔcELM can be obtained from Eq. (47), and
one can use the same steps to calculate

lim
SNRf→∞

ΔcILM ¼
(X

ll0
ð2lþ 1Þð2l0 þ 1ÞðGL

ll0 Þ2
ð1þ δll0 Þ

�−1=2

:

ð53Þ
Note that, throughout this subsection, we assume that all
sums are restricted to unique, even-parity pairs fl;l0g such
that lþ l0 þ L ¼ even. Furthermore, given a maximum
multipole of HD-correlation detection lmax [Eq. (39)], the
sums are over l;l0 < lmax such that jl − l0j ≤ L ≤ lþ l0.

2. Circular polarization and the B mode

To explore covariances across linear and circular polari-
zation, let us consider a partially polarized SGWB with an
isotropic intensity contribution and anisotropic linear- and
circular-polarization maps. Given the SGWB defined in
Sec. III, with nonzero Vðf; Ω̂Þ, one can write the estimator

for ðdcVLMÞl;l0 in terms of the estimators of the BiPoSH
coefficients as follows:

ðdcVLMÞl;l0 ¼ 1ffiffiffiffiffiffi
4π

p
zlzl0

dALM
ll0

GL
ll0IðfÞ ; ð54Þ

for lþ l0 þ L ¼ odd. Although this estimator appears
very similar to its intensity-map counterpart, there is a
key difference in the properties of the BiPoSH coefficients
appearing in the above equation.
An SGWB that has a circularly polarized component

results in a timing residual map zðn̂Þ that is, most generally,
complex. This means that the harmonic space expansion
coefficients zlm are not necessarily equal to ð−1Þmz�l;−m. As
a result, the odd-parity BiPoSH expansion coefficients ALM

ll0

are no longer antisymmetric under l ↔ l0, and ALM
ll can be

nonzero. Under these conditions, the odd-parity BiPoSH
coefficients have variance given by [30]

hjdALM
ll0 j

2i ¼ ClCl0 : ð55Þ

Therefore the variance in the estimator ðdcVLMÞl;l0 can be
written as

ðΔcVLMÞ2ll0 ¼
1

4π

ClCl0

½zlzl0GL
ll0IðfÞ�2

; ð56Þ

which is symmetric in l ↔ l0.
The complexity of the map, and the resulting loss of

symmetry in the odd-parity BiPoSHs has a direct impact on
the estimator for not only cVLM but also cBLM, since, in each
case, the estimator from the pair fl;l0g is not degenerate
with the estimator from fl0;lg. Therefore, when con-

structing the estimators dcVLM and dcBLM for an imaginary
timing residual map, we must include contributions from
all odd-parity l;l0 pairs with inverse variance weighting as
follows:

dcVLM ¼ ðΔcVLMÞ2
X
ll0

ðdALM
ll0 þ dALM

l0l Þffiffiffiffiffiffi
4π

p
zlzl0GL

ll0IðfÞðΔcVLMÞ2ll0
; ð57Þ

dcBLM ¼ ðΔcBLMÞ2
X
ll0

ðdALM
ll0 −

dALM
l0l Þ × iX

L
ll0ffiffiffiffiffiffi

4π
p

zlzl0HL
ll0IðfÞðΔcBLMÞ2ll0

; ð58Þ

where the sum is still over unique sets of l and l0 with
lþ l0 þ L ¼ odd. In each of the above equations, we have
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expanded the summation terms to account for the lack of
symmetry in ALM

ll0 , using properties of the Wigner 3j
symbols HL

ll0 and GL
ll0 . The above estimators, therefore,

indicate that the B mode is sourced by the antisymmetric
part of the odd-parity ALM

ll0 , whereas the circular polariza-
tion is sourced by the symmetric part of the same.

Therefore, the covariance between dcVLM and dcBLM must
be zero.

VI. CONFIGURATION-SPACE ANALYSIS:
OVERLAP REDUCTION FUNCTIONS

The harmonic-space estimators derived above are
uniquely useful because they allow for analytic estimates
of the best sensitivity that a given PTA can achieve.
However, realistic PTAs have irregular distributions of
pulsars on the sky, with nonuniform noises. A configura-
tion-space analysis allows one to account for these non-
uniformities. In this regime, it is straightforward to derive
constraints on linear-polarization anisotropies by repurpos-
ing pipelines that already exist to seek intensity anisotropy
(see, for example, Refs. [31,40]). The only additional step
required is the computation of the relevant ORFs.
Overlap reduction functions characterize the dependence

of the two-point correlation function on the angular distance
between the two chosen pulsars. The contribution from each
of the four maps [expanded in Eqs. (13)–(15)], to the total
timing-residual correlation, is modulated by a unique ORF.
Although these functions can be computed in configuration
space (see the Appendix), in this section, we leverage the
BiPoSH analysis above to derive the ORFs corresponding to
the linear-polarization moments cELM and cBLM.
As above, suppose that the SGWB has an isotropic

intensity contribution with an anisotropic linear polarization.
The two-point correlation function can then be written as

hzðn̂aÞzðn̂bÞi ¼ IðfÞζðθabÞ
þ IðfÞ

X
LM

�
cELM

ðabÞΓE
LM þ icBLM

ðabÞΓB
LM

�
;

ð59Þ

where ζðθabÞ is the HD correlation for two sources separated
by an angle θab; ðabÞΓE

LM and ðabÞΓB
LM are theoverlap reduction

functions forE- andB-mode linear polarization, respectively;
and the sum on L is over L ≥ 4. Comparing the above
expression with Eq. (21), we find that the ORFs can be
expressed as

ðabÞΓX
LM¼

X
ll0

zlzl0
ffiffiffiffiffiffi
4π

p
HL

ll0 fYlðn̂aÞ⊗Yl0 ðn̂bÞgLM; ð60Þ

where for X ¼ E (X ¼ B) we sum over pairs l;l0 with
lþ l0 þ L ¼ even (odd). Here, we have to be careful about
the summation terms, given that the ORF results are

independent of the assumed polarization content of the
SGWB. That is, these expansions hold true in the most
general case of a polarized SGWBwith contributions from all
four Stokes parameters. As a result, to get appropriately
normalized ORFs for the E- and B-mode expansion coef-
ficients, we sum over all pairs l;l0 that satisfy the triangle
inequality jl − l0j ≤ L ≤ lþ l0.
This expression is far more economical and elegant than

expressions for these ORFs in the prior literature. This form
can be roughly explained as follows: If the anisotropy is
decomposed into spherical harmonics of quantum numbers
LM, rotational invariance (essentially, the Wigner-Eckart
theorem) dictates that the two-point correlation function
must take the form of something like Eq. (60), as a sum
over BiPoSHs with quantum numbers LMll0. The physics
is then entirely in the L;l;l0 dependence of the coefficient.
Although Eq. (60) is written formally as an infinite series, it
is easily coded and numerically evaluated. For a survey
with Np pulsars, the infinite series in l;l0 can be cut off at
lmax ∼

ffiffiffiffiffiffi
Np

p
. The simplicity of this result (and analogous

results for intensity anisotropy and circular polarization)
reduces the prospects of coding errors that may arise with
complicated analytic formulas or inconsistencies between
conventions used when taking results from different papers.
Since the above expansion is independent of any

assumptions on the polarization content of the SGWB,
the methodology presented here can be extended to
intensity and circular polarization ORFs as well. While
this work shows a clearly derived example of the simplified
ORF expressions for an anisotropic, linearly polarized
background, Ref. [38] shows how Eq. (60) generalizes
to intensity anisotropy and circular polarization and also
provides the ORFs for a SGWB with the spin-one GW
polarizations that may arise in an alternative-gravity theory.

VII. FORECASTS AND RESULTS

In this section, we use the estimators from Sec. V B to
forecast future measurement prospects of the coefficients
cELM and cBLM for a given PTA observation. We parametrize
the experiment in terms of the maximummultipole moment
lmax used in the analysis; this is expected to scale roughly
as lmax ∼ N1=2

p with the number of pulsarsNp in the survey.
We parametrize the noise in terms of the SNR with which
the isotropic HD correlation is detected in the given
frequency bin.
We begin by presenting the ORFs for both the E and B

mode in Fig. 1. The ORFs plotted are for the lowest-order
linear polarization anisotropy (L ¼ 4) at various values of
M. These results were obtained by computing Eq. (60) for
lmax ¼ 10 in the computational frame, i.e., assuming that
one of the pulsars is in the ẑ direction and the other in the
x-z plane. Given the transformation from between the
E- and B-mode basis to the P� basis [summarized in
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Eq. (19)], our results agree with those previously calculated
[32,33] directly in the configuration space.
Our forecasts on future PTA sensitivity to linear polari-

zation anistotropies are presented in Fig. 2. Consistent with
the displayed ORFs, we present measurement prospects of
the coefficients cE;BLM at L ¼ 4. The figure comprises two
subplots, each demonstrating the minimum detectable
amplitude of the real or imaginary components of the
expansion coefficients cE;BLM for a detection threshold of
three sigma.
The anticipated error margins for these measurements

are calculated based on Eq. (44), under the null hypothesis,

corresponding to an isotropic and unpolarized SGWB. The
dashed lines in the figure represent the high-SNR thresh-
olds, indicating the smallest linear-polarization anisotropy
detectable by a PTA with a given number of pulsars. The
shaded area in gray represents the region in which the
minimum detectable polarization anisotropy ðcE;B4M Þmin is
greater than the maximum allowed value ðcE;B40 Þmax calcu-
lated according to the constraint in Eq. (20). Our findings
align with those for intensity anisotropy and circular
polarization, indicating that the detection of linear polari-
zation is challenging. Successful detection typically
requires a high-SNR detection of the HD curve and a

FIG. 1. Left: overlap reduction functions for the E-mode polarization in the computational frame as a a function of pulsar separation
angle for L ¼ 4. Right: the same for the B-mode ORFs. The above results are calculated using the harmonic expansion presented in
Eq. (60). Although the expression is coordinate independent, the results are plotted in the commonly used computational frame (defined
in the Appendix) to allow for easy comparison with previous, configuration-space evaluations of the same ORFs.

FIG. 2. Left: smallest detectable (at 3-σ level) E-mode amplitude cE4M (real/ imaginary part) as a function of the SNR with which the
Hellings-Downs curve is established. Results are shown for different values of lmax ∼ N1=2

p (where Np is the number of pulsars). The
dashed curves represent the high SNR limits, i.e., they show the smallest E-mode polarization anisotropy detectable by a PTA with a
given number of pulsars at L ¼ 4. Right: the same results for cB4M. In both the plots, the shaded area in gray represents the region in
which the minimum measurable polarization anisotropy ðcE;B4M Þmin is greater than the maximum allowed value of this expansion
coefficient ðcE;B40 Þmax [Eq. (20)].
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larger number of pulsars. Specifically, under the simplify-
ing assumptions of our harmonic analysis, the measurement
of an individual component cE;B4M is only possible if the
number of pulsars allows for an lmax > 8 and the isotropic
intensity contribution is measured with SNR≳ 300.
We also evaluate the cross-correlation coefficient r

[Eq. (51)] for L ¼ 4, which quantifies the expected
covariance between the intensity anisotropy correspond-
ing to cI4M and the lowest order E-mode anisotropy
characterized by cE4M. The results of this computation
are presented in Fig. 3, where the solid lines represent the
value of r calculated using Eqs. (50) and (51) as a function
of the isotropic-detection SNR for various values of lmax.
The results indicate that, when the HD correlation is
measured with low SNR (SNRf ≲ 100), a larger number
of pulsars does not alleviate the covariance between the
two coefficients. Fortunately, this means that a PTA
network can achieve a covariance below 5% with a lower
number of pulsars as long as lmax ≥ 8. However, the SNR
of the isotropic detection must be at least 20. The dashed
lines in the same plot indicate the value of r under the
high-SNR limit, calculated using Eq. (52). Although there
is a separation in the results depending on the number of
pulsars in the PTA, the expected covariance is small across
all the assumed configurations, typically on the order of a
few percentages. Note that the required HD-detection
SNR for the measurement of any individual linear-
polarization anisotropy cE4M smaller than ðcE40Þmax is higher
than 100 [Fig. 2]. Therefore, we conclude that with
better measurements of the isotropic HD curve, the
linear polarization and intensity anisotropy will be
distinguishable.

VIII. CONCLUSIONS

Over the last decade, PTA collaborations have tirelessly
worked toward the construction of a rigorous PTA network
with increasingly precise timing residuals. Recently, these
observations finally led to evidence for the existence of a
stochastic signal, with correlations across pulsars following
the expected Hellings-Downs curve [7]. These recent
discoveries, alongside the prospects of expanding detection
networks [50,51] and uncovering new physics, call for a
more detailed characterization of the SGWB.
Previous work has shown how intensity anisotropies and

circular polarization can be sought with PTAs, both in
terms of a formal harmonic-space description and in terms
of the configuration-space ORFs used in data analysis.
Here we have extended this earlier work to show how the
linear polarization of the SGWB can be characterized.
We provided economical derivations of results presented
earlier [32,33] and extended that work by providing
estimators for the anisotropy amplitudes and the variances
with which they can be measured. We use this formalism to
forecast the minimum measurable amplitude of the linear
polarization coefficients cELM and cBLM (at L ¼ 4) as a
function of the SNR with which the isotropic background is
detected, for different values of lmax. These results show
that the linear polarization of the SGWB will only be
accessible once the isotropic SNR is far larger, with the
minimum detectable linear polarization decreasing with the
square root of the number of pulsars.
In addition, we also show that there is a cross-correlation

between the estimators for the intensity anisotropy and
those for the E-mode linear polarization, but none between
the circular-polarization estimators and those for the
B-mode polarization, even though they have the same
parity. We find that the cross-correlation between the
intensity anisotropy and linear polarization is small once
the SNR becomes large, so it should be possible to separate
the effects of the two polarization maps. Finally, we also
provide a simple and elegant alternative for the computa-
tion of the linear-polarization ORFs.
Measurement of the linear polarization of the SGWB can

offer additional information about the astrophysical sources
of the background. It can be used as a tool to identify
whether a small number of sources dominates the SGWB
signal, possibly allowing for the identification of nearby
individual binary systems. Since this contribution can
naturally be present in PTA observations, characterizing
the additional polarization components in the SGWB will
become an important step in maximizing the useful
information recovered from timing residual datasets.
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APPENDIX: OVERLAP REDUCTION FUNCTIONS
FROM INTEGRALS

For completeness, we calculate here the ORFs in
configuration space, as in previous work. It can be checked
numerically that these expressions agree with the simpler
representation in Eq. (60).
For an SGWB with statistical properties defined in

Eq. (10), with the power-spectral-density tensor given in
Eq. (11), the correlation induced across the timing residuals
of two pulsars a and b is given by

hzðn̂aÞzðn̂bÞi ¼
Z

d2Ω̂κabðΩ̂Þ
	
IðΩ̂ÞFI

abðΩ̂Þ

þ 1

2
PþðΩ̂ÞFPþ

ab ðΩ̂Þ þ
1

2
P−ðΩ̂ÞFP−

ab ðΩ̂Þ
�
;

ðA1Þ
where we have suppressed the frequency dependence for
ease of notation and we defined

FI
abðΩ̂Þ ¼ Fþ

a F
þ
b þ F×

aF×
b

FQ
abðΩ̂Þ ¼ Fþ

a F
þ
b − F×

aF×
b

FU
abðΩ̂Þ ¼ Fþ

a F×
b þ F×

aF
þ
b

FP�
ab ðΩ̂Þ ¼ FQ

abðΩ̂Þ ∓ iFU
abðΩ̂Þ; ðA2Þ

as well as

κabðf; Ω̂Þ≡
�
1 − e−2πifLað1þΩ̂·p̂aÞ��1 − e2πifLbð1þΩ̂·p̂bÞ�:

ðA3Þ

Note that the individual beam patterns FþðΩ̂Þ and
F×ðΩ̂Þ are real for any chosen pulsar, and thus so are
FX
abðΩ̂Þ (X∈ fI; Q;Ug). However, FP�

ab ðΩ̂Þ are complex
and are conjugates of each other. Consistent with prior
analysis in the field, we work in the approximation that
the period of the GWs in the nHz band is much smaller than
the time taken for the signal to travel between Earth and the
pulsar. This allows us to set κab → ð1þ δabÞ.
As our next step, we plug in the angular expansions of

the Stokes parameters presented in Eqs. (13) and (15). This
allows us to separate the frequency dependence of the
background maps from the angular integral presented in
Eq. (A1). To simplify the resulting expression for the
correlations, we characterize the ORFs:

ðabÞΓX ¼
X
LM

cXLM
ðabÞΓX

LM; ðA4Þ

where X∈ fI; Pþ; P−g, and we have defined

ðabÞΓI
LM ¼

Z
d2Ω̂YLMðΩ̂ÞκabFI

abðΩ̂Þ;

ðabÞΓ�
LM ¼ 1

2

Z
d2Ω̂�4YLMðΩ̂ÞκabFP�

ab ðΩ̂Þ: ðA5Þ

At this point, it is worth explicitly pointing out that since
FPþ
ab ¼ ðFP−

ab Þ� and 4Y
�
LM ¼ ð−1Þm−4YL;−M, one can derive

ðabÞΓ−
LM ¼ ð−1Þm½ðabÞΓþ

L;−M��: ðA6Þ

Using the above ORFs, we can finally express the timing-
residual correlation induced across pulsars a and b as

hz�aðfÞzbðf0Þi ¼ δðf − f0Þ


IðfÞ

X
L;M

cILM
ðabÞΓI

LM þ IðfÞ
X
L;M

cþLM
ðabÞΓþ

LM þ IðfÞ
X
L;M

c−LM
ðabÞΓ−

LM

�
¼ δðf − f0Þ



IðfÞ

X
L;M

cILM
ðabÞΓI

LM þ IðfÞ
X
L;M

cELM
ðabÞΓE

LM þ iIðfÞ
X
L;M

cBLM
ðabÞΓB

LM

�
: ðA7Þ

To directly compare the above ORF calculations to their
harmonic-space counterparts, in the second line of the
equation above, we recast the correlation in terms of
coefficients cELM and cBLM using Eq. (19), with new ORF
expansion functions,

ðabÞΓE
LM ¼ ðabÞΓþ

LM þ ðabÞΓ−
LM;

ðabÞΓB
LM ¼ ðabÞΓþ

LM − ðabÞΓ−
LM: ðA8Þ

To calculate the ORFs in configuration space, a coor-
dinate system must be specified to define the pulsar
positions and the gravitational-wave propagation vector.
This geometry defines the coordinate-dependent beam
patterns [Eq. (6)] that contribute to the integrand of the
ORF expansion functions. The calculations are most
straightforward in the computational frame, in which the
ẑ axis is aligned with one pulsar, with the other located on
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the x-z plane, with an angular separation of ζ. In this frame,
the pulsar locations, GW propagation direction, and polari-
zation are

n̂a ¼ ð0; 0; 1Þ
n̂b ¼ ðsin ζ; 0; cos ζÞ
Ω̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ
p̂ ¼ ðsinϕ;− cosϕ; 0Þ
q̂ ¼ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ: ðA9Þ

In this geometry, the individual pulsar beam pattern
functions take the following form [31]:

Fþ
a ðΩ̂Þ¼−

1

2
ð1−cosθÞ

F×
a ðΩ̂Þ¼0

Fþ
b ðΩ̂Þ¼

ðsinϕsinζÞ2−ðsinζcosθcosϕ−sinθcosζÞ2
2ð1þcosθcosζþsinθsinζcosϕÞ

F×
b ðΩ̂Þ¼

ðsinϕsinζÞðcosθsinζcosϕ−sinθcosζÞ
1þcosθcosζþsinθsinζcosϕ

: ðA10Þ

In the computational frame, the ORF expansion functions
are completely real, and therefore the integral numerically
computed to obtain ðabÞΓ�

LMðζÞ is

ðabÞΓ�
lmðζÞ ¼

Z
d2Ω̂½FQ

abRef�4Ylmg � FU
abImf�4Ylmg�;

ðA11Þ

where the Ω̂ dependence of the integrand has been sup-
pressed for ease of notation. The ORFs computed in the
computational frame must then be rotated back into the
cosmic-rest frame.
Reference [32] computes these ORFs analytically in the

computational frame. Their results match the plots pre-
sented in Fig. 4, which display the linear polarization ORFs
in the Pþ and P− basis computed in the computational
frame using numerical integration techniques in Python.
Given Eq. (A8), these results are consistent with the ORFs
plotted in Fig. 1 using the harmonic expansion methodol-
ogy from Eq. (60).
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