
Astrometric deflections from gravitational wave memory accumulation
over cosmological scales

Töre Boybeyi ,1,* Vuk Mandic ,1,† and Alexandros Papageorgiou 2,3,‡

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe,

Institute for Basic Science (IBS), 34126 Daejeon, Republic of Korea
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We study the impact of gravitational wave memory on the distribution of far away light sources in the
sky. For the first time, we compute the buildup of small, but permanent tensor distortions of the metric over
cosmological timescales using realistic models of compact binary coalescences whose rate of occurrence
is extrapolated at z ∼Oð1Þ. This allows for a consistent computation of the random-walk-like evolution
of gravitational wave memory which, in turn, is used to estimate the overall shape and magnitude of
astrometric deflections of far away sources of light. We find that, for pulsar or quasar proper motions, the
near-Earth contribution to the astrometric deflections dominates the result and the deflection is analogous to
a stochastic gravitational wave memory background that is generally subdominant to the primary stochastic
gravitational wave background. We find that this contribution can be within the reach of future surveys such
as Theia. Finally, we also study the deviation of the presently observed angular distribution of quasars from
perfect isotropy, which arises from the slow buildup of gravitational wave memory over the entire history of
the Universe. In this case, we find that astrometric deflections depend on the entire light trajectory from the
source to Earth, yielding a quadrupole pattern whose magnitude is unlikely to be within reach of the next
generation of astrometric surveys due to shot noise and cosmic variance limitations.
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I. INTRODUCTION

In the past few years, we have witnessed a flurry of
exciting discoveries in gravitational wave (GW) astrophys-
ics. Advanced LIGO (aLIGO) [1] and Advanced Virgo
(aVirgo) [2] observations of mergers of binary black holes
(BBHs) [3], binary neutron stars (BNSs) [4], and black
hole–neutron star systems [5], as well as pulsar timing array
(PTA) measurements of the stochastic gravitational wave
background [6–9] have established GW astrophysics on
firm ground. They have also paved the way for a host of
new tests of fundamental physics, such as tests of general
relativity [10,11], constraints on the nuclear matter equa-
tion of state in neutron stars [4], new measurements of the
Hubble constant H0 [12,13], estimates of the stochastic
gravitational wave background (SGWB) from BBH [14,15]
and BNS [16] systems, constraints on dark matter from
primordial BBHs (PBBHs) [17], early Universe scenarios
[18], and more.
Despite achieving nearly 100 detections of GWs from

BBH systems to date [19], at least one well-established

prediction of general relativity remains elusive: gravita-
tional wave memory (GWM). At its core, GWM is a
phenomenon that entails a permanent change in the dis-
placements of freely falling masses due to the passage of a
GW. Observing GWM with terrestrial GW detectors such
as aLIGO and aVirgo is challenging due to the relatively
low-frequency nature of GWM, below the sensitive band of
current terrestrial detectors while LIGO A# might detect
GWM and the next generation terrestrial detectors like
Einstein Telescope and Cosmic Explorer will certainly be
able to do so [20,21]. On the other hand, it is possible that
GWM could be detected using an ensemble of (∼2000)
BBH mergers with current terrestrial detectors [22,23].
Space-based detectors such as LISA have a higher potential
for detecting GWM [24–26], Also, PTA experiments have
already placed strong upper limits on the GWM strain [27].
The linear form of GWM has been known since the
1970s [28–30] with the nonlinear form discovered in the
1990s [31,32]. Since then, our understanding and modeling
of GWM has improved further [33–41] (see also [24]
for a review) and deeper relationships between GWM,
soft theorems, and Bondi-Metzner-Sachs transformations
(infrared triangle) have been unveiled [42].
Most of the literature on GWM has focused on inves-

tigating the properties of GWM arising from individual
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events such as from BBH mergers [43] or cosmic strings
[44], and these studies roughly suggest that the GWM
amplitude is expected to be an order of magnitude lower
than the magnitude of the parent GW signal. Only relatively
recently (beginning with [45]) several authors have begun
investigating the phenomenology of stacking multiple
GWM signals [45–48]. Unlike the previous studies, the
purpose of the present work is to investigate the properties
of the accumulated GWM in a patch of space arising from
all possible sources over cosmological timescales and their
impact on astrometric deflections. The basis of our work is
the fact that a single GW burst with memory will cause a
transient (primary GW) and permanent (GWM) change in
the metric within a patch of space under consideration.
Both effects consist of “stretching” one direction while
“shrinking” another. However, the transient, although a
stronger effect, will eventually decay away, while the
weaker contribution will leave a permanent metric dis-
tortion in the patch of space under consideration. One can
then consider the buildup of GWM over cosmological
timescales by adding the GWM contributions from all GW
sources in the history of the Universe, modeling each
contribution as a steplike, permanent, quadrupolar distor-
tion of spacetime. The effect described above can be
conceptualized as a Brownian motion of stretching and
shrinking of spacetime, with the mean metric distortion
averaging to zero, but with a standard deviation that scales
as the square root of the number of GW sources/events. The
sheer number of events over the entire cosmological history
of the Universe make it so this GWM accumulation could
lead to deviations from isotropic expansion [48], cause
redshift and deflections of light from distant sources such
as quasars [49], and even cause distortions of the cosmic
microwave background (CMB) [50]. Our work aims to
establish the foundations for a more systematic under-
standing of the phenomenology of cumulative GWM and,
to that end, we specifically focus on astrometric deflections
as a first step.
When embarking on the calculation of accumulated

GWM, one should, in principle, sum over all possible
GW sources throughout the history of the Universe.
This would include contributions of SGWB from inflation
[51–57], early Universe phase transitions [58–66], addi-
tional “stiff” phases of cosmological evolution [67], cosmic
strings [68–78], and GWs produced by recent astrophysical
processes [14,16,79–102]. Performing a complete calcu-
lation that will include all possible sources is a daunting
task, as it would involve modeling sources of GWs with
very large uncertainties such as the cosmological SGWB
(from inflation, cosmic strings, and phase transitions). We
limit the scope of our analysis to contributions arising from
mergers of compact objects such as BBHs, supermassive
BBHs (SBBHs), and PBBHs, as the modeling of GWM
strain for such sources in terms of the parameters of the
primary GWs is well understood. In the case of BBHs of

stellar origin, the local merger rate is well measured by
aLIGO and aVirgo observations, and the redshift evolution
of the BBH population can be modeled well using star
formation rate [103,104]. In the case of SBBHs and
PBBHs, both the local merger rate and its extrapolation
to high redshifts are highly uncertain but constrained within
certain limits [105,106]. Keeping all this in mind, our
calculation of accumulated GWM should be understood as
a lower limit since we are neglecting a plethora of other
GW sources that would increase the overall GWM.
Given a model for the rate of accumulation of memory in

the patch of space of interest, perhaps the most immediate
and compelling phenomenological application is its poten-
tial impact on astrometric surveys of far away sources
such as those performed already by Gaia [107–111]
or the planned Telescope for Habitable Exoplanets and
Interstellar/Intergalactic Astronomy (Theia) [112–114]. As
is well established [49], a single gravitational wave burst
with memory causes a deflection in the angular distribution
of light sources in the sky. This deflection consists of two
terms, coined the “Earth” and “star” terms. For the primary
GW, the Earth term dominates, while the star term is
strongly suppressed. On the other hand, for GWM the Earth
and star terms can be comparable and the permanent
deflections induced by GWM may depend on the entire
history of the Universe. Our primary aim is to provide a
realistic calculation for the memory buildup over cosmo-
logical scales and hence for the total astrometric deflection
buildup which, in principle, could be imprinted in the
statistics of the distant light sources proper motions or
angular distributions. The physics of GWM in the context
of astrometric deflections is complementary to the astro-
metric deflections by primary SGWB that have been
studied extensively in the literature [115–119].
This work is organized as follows: In Sec. II, we outline

the formalism that allows us to compute the accumulation
of GWM over cosmological scales for different types of
black hole binaries. In Sec. III, we provide the details
needed for accurately modeling the binary merger rates and
mass distributions for the BBH, SBBH, and PBBH pop-
ulations. In Sec. IV, we show the results of our numerical
analysis, computing the GWM for different populations
of binaries. In Sec. V, we discuss detection prospects for
cumulative GWM focusing on astrometric deflections, and
we conclude in Sec. VI. We will set c ¼ 1.

II. GWM ACCUMULATION

As outlined above, one key difference between the
primary GW and GWM is that the former is transient,
while the latter is permanent. As a result, we expect the
latter to accumulate over time. We focus our attention to a
small patch of space whose memory accumulation, over
cosmological timescales, we want to compute. The patch of
space is sufficiently small compared to the distance to the
sources of GWs, so that we can assume the GWM to be
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homogeneous within it and the wavefronts to be planar.
In this context, every GW signal arriving from a random
direction and with random polarization will induce a
small, but permanent, change in the metric in the chosen
patch. Of course, such changes can have differing ampli-
tudes and signs, implying that cumulative GWM evolves
in a random walk fashion with zero mean and a standard
deviation that scales as the square root of the number of
GW sources. This cumulative random walk process results
in small permanent metric fluctuations (anisotropy) from
patch to patch [48], which may impact trajectories of light
from distant sources [49,50] and cause apparent deflec-
tions of these sources on the sky.
The basic ingredient necessary for our calculation is the

local merger rate per comoving volume in the source frame,
which we denote as RXðzÞwhere X ¼ BBH=SBBH=PBBH
is an index that specifies the source of GWs. The explicit
form of RXðzÞ depends on the type of BBH population we
consider, and we will specify it below for the three cases we
consider. We then convert the merger rate to the observer
frame by dividing by redshift and we further multiply
by the differential comoving volume dV=dz to obtain the
observer merger rate

RX;zðzÞ ¼
RXðzÞ
ð1þ zÞ

dV
dz

¼ RXðzÞ
ð1þ zÞ

4πD2ðzÞ
H0EðzÞ

; ð1Þ

where DðzÞ is the comoving distance to the source and
EðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
accounts for the expansion of

the Universe with the standard energy densities of matter,
Ωm ¼ 0.3, and dark energy, ΩΛ ¼ 0.7. Alternatively,
HðzÞ ¼ H0EðzÞ is the Hubble constant as a function of
time/redshift. We then generalize this rate into the merger
rate as observed at a redshift zo,

R̃X;zðzo; zsoÞ ¼
RXðzsÞ
ð1þ zsoÞ

4πD2ðzo; zsÞ
H0EðzsoÞ

; ð2Þ

where we have defined zso as the redshift of the source at zs
relative to the observing redshift zo,

1þ zso ¼
1þ zs
1þ zo

: ð3Þ

In order to compute the total GWM in the given patch
accumulated over the entire history, one needs to integrate
the GWM contributions generated by GWs arriving at
each observer redshift zo, which in turn depend on all
GW sources at redshifts zs > zo. The integration region is
depicted in Fig. 1.
In addition to the merger rate, one also needs the GWM

strain for each individual event. We will employ the so-
called “step model,” hðtÞ ¼ Θðt − tmÞhþ;memðzso;M; θÞ,
where ΘðtÞ denotes the Heaviside step function, tm is
the time of the merger, and hþ;mem denotes the amplitude of

the memory signal. This approximation is generally appro-
priate for timescales much larger than the merger timescale
that we will be interested in for compact binaries. For
compact binary mergers in circular orbits, the plus polari-
zation of the amplitude of GWM is typically dominant and
is well approximated by [41]

hþ;memðzso;M; θÞ ¼ GM
144Dðzo; zsÞ

ζðθÞ; ð4Þ

where Dðzo; zsÞ is the comoving distance to the GW
source to an observer at z ¼ zo, θ is the angle between
the binary’s orbital plane and the binary’s location in the
sky, and M is the mass of a component black hole of the
binary system, assuming the two component black holes
have the same mass. The angular factor is given in [41]
as ζðθÞ ¼ ffiffiffi

2
p ð17þ cos2 θÞ sin2 θ.

Note that, for simplicity, we multiplied the result due
to the inspiraling phase by a factor of 2 to model the
contribution of the ringdown phase. This is a rough
approximation that is sufficient to get the correct order
of magnitude and it significantly simplifies the expressions
we use below. Note also that we assumed the masses of the
two compact objects to be the same for simplicity.
Finally, in addition to the above, we need a mass

distribution from which we draw a random value for the
mass of the black holes for each event. We denote the
probability distribution as gXðMÞ and assume it to be
independent of the redshift for simplicity.
The elements outlined above can be used to sum the total

GWM over cosmological scales. Specifically, we assume

0.

0.0005

0.0010

0.0015

0.0020

FIG. 1. Cumulative GWM calculation integrates all GWM
contributions from all sources over the entire history of the
Universe, as depicted by the shaded triangular region. Here we
display the merger rate for stellar BBH population defined
in Eq. (2).
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that strain hþ occurs at a rate R̃X;zðzo; zsoÞ, with a uniformly
distributed inclination angle θ and direction in the sky and
with a mass drawn from distribution gXðMÞ.
We use the formalism in [120] to express the SGWB in

terms of merger rate as observed at a redshift zo,

Ωmemðf;zoÞ

¼ f
ρcH0

Z
∞

0

dzso
RXðzsÞhdEmem

df ðfs;zsoÞi
ð1þzsoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛþΩMð1þzsoÞ3

p ; ð5Þ

where ρc ¼ 3H2
0=8πG and fs ¼ fð1þ zsÞ is frequency

of the GW evaluated at the source. The ensemble
average denoted by brackets means averaging over the
mass and angular distributions given by h…i ¼R
dϕdθ sinðθÞ R dMgXðMÞ. In the step model and using

Eq. (4), we have

hðfÞ ¼ 1

2πif
GM

144Dðzo; zsÞ
ζðθÞ ð6Þ

up to a Dirac-δ function at f ¼ 0, which is not relevant for
the following derivations, and [121]

dEmem

df
ðfs; zsoÞ ¼

π2

G
D2ðzo; zsÞð1þ zsÞ2f2jhðfð1þ zsÞÞj2:

ð7Þ

Combining these,

Ωmemðf; zoÞ ¼ f
2πG2

3H3
0

σ2θ
ð1442Þ

Z
dMM2gXðMÞ

×
Z

∞

0

dzso
RXðzsÞ

ð1þ zsoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMð1þ zsoÞ3

p ;

ð8Þ

where

σ2θ ¼
Z

π

0

dθ sinðθÞζðθÞ2 ≃ 627; ð9Þ

denoting the angular contribution. The lower limit of the
dzso integral is chosen to be zero, which implies that the
patch under consideration, whose memory can be under-
stood as homogeneous, is infinitesimal in size. If one wants
to consider finite size patches, the lower limit should be
adjusted to ensure that the sources of gravitational waves
are much farther away than the characteristic patch size.
In the next section, we compute the Ωmemðf; zoÞ for

different populations of binaries and then use it to numeri-
cally compute the total memory accumulation over cos-
mological scales.

III. SOURCES OF GWM AND MERGER RATES

We dedicate this section to computing the merge rates
and mass distribution for three types of binary black holes:
BBHs, PBBHs, and SBBHs. In particular, for each of the
three populations we specify the model and parameters for
the merger rate RXðzÞ and the mass distribution gXðMÞ,
enabling the computation of Eq. (8). Table I lists the ranges
of relevant parameters used in the three population models.

A. Binary black hole mergers

Binary black hole systems of stellar origin are well
constrained by ground-based GW detectors and their proper-
ties are relatively well understood. We assume that the BBH
merger rate follows the star formation rate (SFR) [122],

RBBHðzÞ ¼ ν
peqðz−zmÞ

ðp − qÞ þ qepðz−zmÞ
; ð10Þ

with the parameter ν normalizing the merger rate to the
observed merger rate at z ¼ 0.2. The peak of the SFR is
defined by zm, while p − q and q define slopes of SFR at
high and low redshifts. We have chosen the range of these
parameters (see Table I) so that they are consistent with the
LIGO third observing run (O3) results [123]. We draw free

TABLE I. Population model parameters. Here N ðμ; σÞ
denotes normal distribution, whereas U½a;b� denotes the uniform
distribution.

Parameters Range=value

BBH parameters
νðGpc−3 yr−1Þ N ð150; 102Þ
p N ð2.37; 0.12Þ
zm U ½2.0;2.4�
q N ð1.8; 0.12Þ
m U ½2.0;2.4�
M̄ 30M⊙
σm 5M⊙
Ml 5M⊙
Mh U ½80;100�M⊙

PBBH parameters
Mc U ½25;30�M⊙

σM U ½0.1;0.3�M⊙

fsup 10−3

α U ½1.0;1.6�
fPBH U ½0;1�

SBBH parameters
log10

ṅ0
ðMpc−3 Gyr−1Þ N ð−3; 1Þ

αM U ½−2;2�
log10

M�
M⊙

U ½6.5;8.5�
βz U ½0;7�
zc U ½0;5�
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parameters of the BBH merger rate model from their
distributions given in Table I, calculate RBBHðzÞ for each
parameters choice, and plot the 68% confidence region of
computed RBBHðzÞ curves in Fig. 2 (right).
The BBH mass distribution is assumed to follow the

power-law peak model with the lower cutoff at 5M⊙ and
high cutoff around ½80; 100�M⊙,

gBBHðMÞ ¼
�
ð1 − λÞM

−m

λ1
þ λ

e−ðM−M̄Þ2=ð2σ2MÞ

λ2

�
× ΘðMh −MÞΘðM −MlÞ: ð11Þ

Here, λ1, λ2 are normalization constants of the two
distribution components and λ ¼ 0.08 is the mixing factor.
We assume the mass distribution does not evolve with
redshift. Typical ranges of these parameters are given in
Table I. Again the ranges of parameters are chosen to be in
agreement with the LIGO O3 results [123].
Similar to the merger rate, we draw free parameters of the

BBH mass model from their distributions given in Table I
and calculate gBBHðMÞ for each parameter choice, then plot
with the corresponding 68% confidence region on the left
side of Fig. 2.

B. Primordial binary black hole mergers

The primordial black hole mass distribution is highly
uncertain. The lower limit on the primordial black holes
masses today is the so-called Hawking evaporation
limit (10−18M⊙), while binaries larger than 102M⊙ are
highly constrained by CMB and other indirect observa-
tions (cf. Fig. 1 of [124]). Here, we will take the best
case scenario and assume that the PBBH merger mass
distribution is between 100M⊙ and 102M⊙, as these are
the most massive primordial black holes that may enjoy
large abundances in the present and recent past (and
hence greater merger rates as we will show below).

We assume their distribution to be log-normal as com-
monly done [125,126],

gPBBHðMÞ ¼ 1ffiffiffiffiffiffi
2π

p
σMM

exp

�
−
log2ðM=McÞ

2σ2M

�
ð12Þ

where Mc is the peak mass of MgðMÞ and σM character-
izes the width of the mass function. Log-normal distri-
bution is usually motivated by baryonic dark matter
models as proposed in [127].
While the mass distribution is different from the

stellar BBH case, the more important difference is in the
binary merger rate as a function of redshift. The PBBH
systems do not follow the evolution of stellar material
and are instead related to the evolution of dark matter halos.
The PBBH merger rate has been studied in several works
[125,128–132]. As an example, the formalism of [131]
assumes a simple power-law dependence of the merger rate
with redshift,

RPBBHðzÞ ¼ RPBBHð0Þð1þ zÞα; ð13Þ

with α ∼ 1.3 for a Poisson spatial distribution of the PBBH
systems [106]. In this scenario, the local merger rate for
equal mass black holes is given by [125,133]

RPBBHðz ¼ 0Þ
Gpc−3 yr−1

¼ 4 × 105fsupf
53=37
PBH

�
M
M⊙

�
−32=37

; ð14Þ

where fPBH is the fraction of dark matter in the form of
primordial black holes (≤1 by definition) and fsup is a
suppression factor that depends on the effects from other
PBBHs and the matter distribution surrounding it. In [133],
the value of fsup ∼ 10−3 (chosen to be a benchmark
number) was argued to be consistent with current LIGO
observations giving consistent merger rates and also
motivated by N-body simulations.

0 20 40 60 80 10010–3

10–2

10–1

100

101

0 2 4 6 8 10100

101

102

FIG. 2. Mass distribution (left) and merger rate (right) for BBHs using the models in Eqs. (11) and (10) with values in Table I. Bands
denote the 1-σ (68%) confidence region, computed as described in the text.
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Ranges for all of the free parameters of the PBBH model
are chosen to be consistent with the SGWB estimates from
LIGO in [131] and are given in Table I. The 68% confidence
regions for the merger rate and mass models for PBBH are
calculated in the same way as for the stellar BBH model
and are plotted in Fig. 3. The resulting mass distribution in
Fig. 3 is somewhat tight, likely due to the fact that LIGO
sensitivity is optimal for binaries around the individual
mass window of ð30; 60ÞM⊙ combined with the log-normal
assumption that favors a narrow range of PBBHs. In fact,
studies on individual loud events as in [134] also predict a
similar distribution.

C. Supermassive binary black hole mergers

There are various models for SBBH mergers. The two
most common models used in the literature are the
so-called astrophysically informed [135] [dimðθiÞ ¼ 16]
and the agnostic/minimal [136] [dimðθiÞ ¼ 5] models.
Parameters of these models are constrained by PTA experi-
ments, for example, in [137].

We will use the agnostic model outlined in [136–138]
as it captures the essential properties of SBBH population
while retaining simplicity. In this model, merger rate is
given by a Schechter function,

RSBBHðzÞ ¼ ṅ0ð1þ zÞβze−z=zc ð15Þ

with mass probability density

gSBBHðMÞ ¼ 1

M

�
M

107M⊙

�
−αM

e−M=M⋆ : ð16Þ

The agnostic model is based on the assumption that
binary systems undergo mergers in circular orbits, influ-
enced only by radiation reaction. The density of these
mergers, denoted by ṅ0, is measured per unit of rest-frame
time and comoving volume. For the distribution’s charac-
teristics in terms of M, the parameters αM and M⋆ specify
the slope and the cutoff point, respectively. Meanwhile,
the distribution in z is similarly defined by the parameters

0 20 40 60 80 10010–3

10–2

10–1

100

101

0 2 4 6 8 10100

101

102

103

FIG. 3. Mass distribution (left) and merger rate [withM ¼ M⊙ in Eq. (14)] (right) for PBBHs using the models in Eqs. (12)–(14) with
values in Table I. Bands denote the 1-σ (68%) confidence region, computed as described in the text.

5 6 7 8
–12

–10

–8

–6

–4

–2

0 2 4 6 8 1010–4

10–3

10–2

10–1

100

101

FIG. 4. Mass distribution (left) and merger rate (right) for SBBHs using the models in Eqs. (15) and (16) with values in Table I. Bands
denote the 1-σ (68%) confidence region, computed as described in the text.
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βz and zc, which represent the same features for the
merger rate.
The ranges of all free parameters of the SBBH model

are chosen to obey the PTA constraints [136–138] and are
given in Table I. The 68% confidence regions for the SBBH
merger rate and mass models are calculated in the sameway
as in the previous cases and are plotted in Fig. 4.

IV. CUMULATIVE GWM ESTIMATES

Memory accumulation can be characterized by a 1D
random walk. The step size at each time is a Gaussian
random variable with zero mean and a time-dependent
variance σðtÞ. Probability of accumulating memory strain h
after time t is given by

PðhÞ ∝ exp

�
−

h2

2σ2ðtÞ
�
: ð17Þ

We define the so-called diffusion constant, which is an
invariant characterization for random walks, by DðtÞ ¼ σ̇σ,
where the dot represents the time derivative.
We note that the diffusion constant is itself a function of

time in our case. The time evolution and the amplitude
of the diffusion constant depend on the parameters of the
population/merger rate model outlined in the previous
section. Each realization of the population is a set of
random parameters drawn from the distributions given in
Table I. Therefore, each realization yields a different
curve DðzoÞ.
We relate the diffusion constant to the stochastic gravi-

tational wave background due to memory. The power
spectral density for a random walk is given by

SmemðfÞ ¼
D

π2f2
; ð18Þ

valid for frequencies lower than the merger timescale of
the binaries. Combining this with the standard relationship
between the strain power spectrum and the energy density
of the stochastic background,

ΩmemðfÞ ¼
4π2f3SmemðfÞ

3H2
0

ð19Þ

yields

ΩmemðfÞ ¼
4Df
3H2

0

: ð20Þ

This in our case generalizes to

Ωmemðf; zoÞ ¼
4DðzoÞf
3H2

0

; ð21Þ

where Ωmemðf; zoÞ is given by Eq. (8).
On the left side of Fig. 5, we show the evolution of the

diffusion constant for the three GW source populations:
BBHs, PBBHs, and SBBHs. The bands of each source
correspond to 1-σ interval, i.e., the regions in which the
central 68% of the DðzoÞ curves lie. The central solid
curves are the mean of the realizations. The present time
diffusion constant values Dð0Þ are comparable to previous
results [47], which did not investigate the redshift depend-
ence of the memory accumulation process. Our results,
therefore, extrapolate Dð0Þ to high redshifts.
Having the full DðzoÞ, one can make an estimate of

the typical strain accumulation hc, which is given by the
symmetric Gaussian distribution defined in Eq. (17).
More precisely, the typical magnitude of hc is given by
the diffusion length, defined as

hc ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
z¼0

zo¼10

DðtÞdt
s

: ð22Þ
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FIG. 5. Diffusion constant D as a function of redshift along with its 1-σ (68%) confidence region (left) and corresponding diffusion
length probability distribution (right).
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Figure 5 (right) shows the probability distribution of hc
for different sources. We note that SBBH sources would
dominate the cumulative memory effects (reaching the
effective strain 10−11–10−9) as compared to the BBH and
PBBH models, with ∼4 orders of magnitude uncertainty in
the diffusion length today due to the large uncertainty in the
SBBH population model.

V. ASTROMETRIC DEFLECTIONS

One compelling application for the GWM accumulation
derived in the preceding section is the contribution
to astrometric deflections of far away objects such as
pulsars or quasars. Our work is based on the treatment
of astrometric deflections by GWs and GWM by Madison
[49], which makes use of the formalism of Book and
Flanagan [139]. The observed angular deflection of a
distant light source located at ni, due to a propagating
tensor perturbation, can be expressed as Eq. (35) of [139],

δni ¼ Piknj
�
−
hjkð0Þ
2

þ pknl
2ð1þ p · nÞ hjlð0Þ

þ 1

λs

Z
λs

0

dλ

�
hjkðλÞ −

pknl
2ð1þ p · nÞ hjlðλÞ

��
ð23Þ

with Pik ¼ δik − nink being the transverse-traceless pro-
jector and hijðλÞ ¼ ϵAijðpÞhðt − λð1þ p · nÞÞ is the strain
evaluated on the unperturbed path at an earlier time with pi

denoting the wave direction. Here, λs is the proper distance
to the light source and the source of the tensor perturbation
is assumed to be much further away than λs so that the
plane wavefront approximation holds. The expression
coincides with the one for an expanding Universe [139]
up to an overall scale factor correction, which we take
to be 1 since we will consider only gravitational wave
sources with Oð1Þ redshift. This can be simplified and
subsequently split in terms of Earth and star contributions
[Eq. (5) of [49] ],

δniðtÞ ¼ Vi;A
⨁ ðpÞhðtÞ þ Vi;A

⋆ ðpÞHðtÞ −Hðt − λsð1þ p · nÞÞ
λsð1þ p · nÞ

ð24Þ

with

Vi;A
⨁ ðpÞ ¼ −

njϵi;Aj
2

þ nlnjϵAjl

�
pi þ ni

2ð1þ p · nÞ
�
; ð25Þ

Vi;A
⋆ ðpÞ ¼ njϵi;Aj −

ninlnjϵAjl
2

− nlnjϵAjl

�
pi þ ni

2ð1þ p · nÞ
�
; ð26Þ

where H ¼ R
hðλÞdλ and A ¼ þ;× is the polarization

index. The star term encapsulates propagation effects, while
the Earth term captures the deflection due to the strain at the

observer location. The deflection patterns of the Earth term
Vi;A
⨁ for different polarizations are shown in Fig. 6.

One interesting limit, which will be referred to as the
“saturation limit,” is defined as δnis ≡ δnið∞Þ and corre-
sponds to the final deflection configuration, long after the
gravitational wave has passed over the local patch of space
spanning the light source and observer. It is straightforward
to calculate this limit from Eq. (24); letting hðtÞ ¼ A0ΘðtÞ,
one obtains

δnisð∞Þ ¼ A0ðVi;A
⨁ ðpÞ þ Vi;A

⋆ ðpÞÞ ¼ A0

2
PijϵAjkn

k: ð27Þ

Paying particular attention to the memory part of the
signal, it is important to note that its size is highly unsup-
pressed compared to the nonmemory part at late times. More
specifically, From Eq. (24) one can see that unlike for regular
GWs whose star term is suppressed by ∼1=λs, the star term
for GWM grows as ∼t=λs and gradually becomes OðhÞ.
This in turn implies that, for GW signals that passed over
Earth in recent years, one would expect the Earth term to
yield the greatest contribution to the total astrometric
deflection of a far away source. On the other hand, for
GWs that passed over Earth long ago, the contribution of
the star term is greater—i.e., in general, it can increase even
after the primary wavefront has propagated beyond Earth.
Eventually, if we consider GWs that passed over the patch of
space defined by the light source and Earth even before the
light was emitted (that we observe today), the overall effect
of the astrometric deflection would be precisely the satu-
ration limit we defined above. In that case, the light
propagated through the already perturbed metric from the
moment it was emitted until it finally arrived at Earth.
Because of the considerations outlined above, we sep-

arate our analysis into two distinct observational scenarios.
(i) Observations of the proper motion of far away

sources through astrometric deflections during the
observation time. In such a scenario, one would

FIG. 6. Top two figures depict deflection patterns of þ and ×
polarization of Vþ;×

⨁ , respectively, for a GW propagating in the ẑ

direction. The bottom figure depicts a realization of deflection
for many such GWs uniformly distributed in direction and
polarization.
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compare how the location of sources of light, such as
pulsars or quasars, changes over the timescale of the
observations [e.g., Oð10Þ yr]. The dominant con-
tribution to this measurement will arise from the
Earth term of GWs that propagate by Earth within
the time of observation while the star term provides a
small, low-frequency correction.

(ii) Observations of the angular distribution of far
away sources, such as quasars, based on a single
time snapshot. Deviation of this distribution
from perfect isotropy could then be attributed to
GWM, and we will analyze the statistics of such a
deviation. In this scenario, the Earth and star
terms contribute on the same order and GWs
emitted throughout the history of the Universe
are important.

For each of these scenarios, it is required to calculate the
so-called geometric correlation function. We define it in the
following way:

ΓA
ij;⨁ðn; n0Þ ¼

Z
d2pVi;A

⨁ ðn; pÞðVj;A
⨁ ðn0; pÞÞ� ð28Þ

for the Earth term and

ΓA
ij;⨁þ⋆ðn; n0Þ ¼

Z
d2pðVi;A

⨁ ðn; pÞ þ Vi;A
⋆ ðn; pÞÞ ð29Þ

× ðVj;A
⨁ ðn0; pÞ þ Vi;A

⋆ ðn; pÞÞ� ð30Þ
for the saturation limit. The above quantities are tensors,
but for practical reasons it is more useful to expand them in
a suitable basis with scalar coefficients. Let us define the
following basis:

uy ¼
ðn × n0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðn · n0Þ2

p ux ¼ uy × n; ð31Þ

uϕ ¼ uy uθ ¼ uϕ × n0: ð32Þ
There are four possible projections, for example, ΓA

xθ;⨁ ≡
ΓA
iju

i
xu

j
θ, ΓA

xθ ≡ ΓA
iju

i
yu

j
ϕ, etc. The nonzero projections of

ΓA
ij;⨁ and ΓA

ij;⨁þ⋆ are shown in Fig. 7 with the definition

cosðΘÞ ¼ n · n0. Using these, one can reconstruct these
tensor geometric two-point correlations as

ΓA
ij⨁

ðΘÞ ¼
X

xi¼x;y:

X
θj¼θ;ϕ:

ΓA
xiθj⨁

ðΘÞuixiujθj ; ð33Þ

ΓA
ij⨁þ⋆

ðΘÞ ¼
X

xi¼x;y:

X
θj¼θ;ϕ:

ΓA
xiθi⨁þ⋆

ðΘÞuixiujθj : ð34Þ

FIG. 7. Correlation function for the Earth term (top) given in Eq. (25) and the saturation limit (bottom) given in Eq. (27) are shown
after expansion in orthogonal basis functions as defined in Eq. (31).
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We observe that, in the case of the Earth term, the Γxθ
and Γyϕ correlation functions (with the polarizations
exchanged) are identical. In the case of the star term, this
degeneracy is broken and all contributions are distinct. As a
final note, in this paper we are using conventions in [117] to
set the basis vectors (see Refs. [117,139] for an analytical
derivation of the Earth correlation function). The star term
is usually neglected in the literature as it is multiplied by
HðtÞ, which saturates to a finite value for oscillatory waves
and as a result the star term is suppressed byHðtÞ=λs. In the
case of the memory, however, the star term remains
unsuppressed until it saturates to a final value comparable
to the Earth term, as described by the saturation limit
defined above.

A. Impact on the proper motions of far away objects

We dedicate this section to analyzing the first of the two
scenarios to constrain GWM accumulation. We will focus
on the dominant SBBH source. As mentioned above, the
strategy is to compare the change of astrometric data of
celestial objects in a certain data collection interval. An
ideal source for such data is Gaia and Theia measurements
with observation time T ∼ 10 yr. In this scenario, the star
term can be neglected. Starting from Eq. (23) and defining
ωi
gw ¼ δṅi, the equal-time two-point correlation of the

proper motions due to a Gaussian isotropic stochastic
background is given by [139]

hωi
gwðn; tÞωj

gwðn0; tÞi ¼ Γij;⨁ðΘÞω2
rms; ð35Þ

where

Γij;⨁ðΘÞ≡ X
A¼þ;×

ΓA
ij;⨁ðΘÞ ð36Þ

and

ω2
rms ≡H2

0

Z
fhigh

flow

d ln fΩmemðfÞ ð37Þ

gives the rms of proper motions. Here, ΩmemðfÞ ¼
Ωmemðf; zo ¼ 0Þ is the energy density per unit logarithmic
interval in gravitational wave background due to the
memory as of now, related to the strain power spectrum
via Eq. (19) [139]. Before going into further details of
how this effect can be analyzed in a given dataset, it is
beneficial to make a comparison between nonmemory
and memory contributions to the SGWB, both of which
contribute to the two-point correlation in the same way
and with the same Γij;⨁ðΘÞ. We note that, for a SGWB
sourced by SBBH mergers,

ΩnonmemðfÞ ¼ A0ðf=yr−1Þ2=3 flow ≤ f ≤ fhigh;

ΩmemðfÞ ¼
4Dð0Þ
3H2

0

f flow ≤ f ≤ fhigh; ð38Þ

where A0 ≃ 10−9 [140] and Dð0Þ ¼ 10−38�2 s−1 as shown
in the z0 → 0 limit forDðz0Þ for SBBH in Fig. 5 (left). We
note that the model (38) for GWM is only an approxi-
mation that holds for frequencies smaller than inverse
merger timescale.
The low-frequency cutoff is not relevant for this calcu-

lation since the integral of Eq. (37) is dominated by the
high-frequency cutoff. For the high-frequency cutoff,
we note that Gaia outputs data for a single proper motion
over T. Therefore, motions above the frequency 2=T will be
suppressed. Hence, we take fhigh ¼ 2=T ∼ 10−8 Hz to be
the same for nonmemory and memory as well. We also
point out that inverse merger timescale for an equal mass
M ¼ 1010M⊙ binary is c3

2GM ∼ 10−5 Hz, which is much
larger than the cutoff we are using above; therefore, the step
model should be a good approximation in the frequency
range we are considering.
With these definitions, we proceed to evaluate Eq. (37)

using Eq. (38) and obtain ω2
rms ∼ 1.5 × 10−7ðμas=yrÞ2 for

nonmemory and ω2
rms ∼ 10−9�2ðμas=yrÞ2 for the memory.

Again, we note that we consider only the SBBH model in
this calculation, and that other GW contributions would
further increase these estimates.
We construct an estimator based on survey data, lever-

aging the above geometric correlation factor. Suppose we
have Np number of celestial objects, I ¼ 1; 2;…; Np, of
which we have the data of proper motions: ωi

IðtpÞ with the
corresponding error σIðtpÞ, p ¼ 1; 2;…; Nt. The data may
be recorded as a function of time or could be averaged over
an observation period T to a single data point per object
(which is the case for Gaia/Theia). We assume that

ωi
IðtpÞ ¼ ωi

I;gwðtpÞ þ biIðtpÞ; ð39Þ

where biIðtpÞ is the uncorrelated intrinsic motion of the
celestial object not related to gravitational waves and
ωi
IðtpÞ is the proper motion data. Here, we clarify the

notation. The Latin lowercase indices (i, j) are referring to
the directions on sky. The Latin uppercase indices (I, J) are
referring to different celestial objects with specific direc-
tions ðn; n0Þ and we define cosΘIJ ¼ n · n0.
We note that each spatial component of biIðtpÞ is a

Gaussian random variable with standard deviation given
by σIðtpÞ with a possible time dependence. Finally, we
assume that biIðtpÞ ≫ ωi

I;gwðtpÞ. A consequence of this last
assumption is that

hωi
IðtpÞωj

JðtqÞi ≪ hωi
IðtpÞωi;IðtpÞi ¼ σ2I ðtpÞ ð40Þ
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because hωi
IðtpÞωj

JðtqÞi ∼ hbiIðtpÞbjJðtqÞi ∼ 0 and
hωi

IðtpÞωi;IðtpÞi ∼ hbiIðtpÞbi;IðtpÞi ∼ σ2I ðtpÞ. We then con-
struct a likelihood function given by

L ∝
Y
IJ;p

exp½−½ωiIðtpÞωjJðtpÞ − cω2Γij;⨁ðθIJÞ�

× ½ωi
IðtpÞωj

JðtpÞ − cω2Γij
⨁ðθIJÞ�=ð2σ2IJðtpÞÞ�; ð41Þ

where cω2 is what we are trying to estimate [to be compared
with Eq. (37)] and σIJðtpÞ is denoting the error in the
two-point correlation which we relate to ωi

IðtpÞ below.
To give an expression for σIJðtpÞ, we start with

σ2IJðtpÞ ¼ hðωi
IðtpÞωj

JðtpÞωi;IðtpÞωj;JðtpÞi
− hωi

IðtpÞωj
JðtpÞihωi;IðtpÞωj;JðtpÞi: ð42Þ

Then, utilizing Isserlis’s theorem in the first term, we write

hðωi
IðtpÞωj

JðtqÞωi;IðtpÞωj;JðtqÞi
¼ 2hωi

IðtpÞωj
JðtqÞihωi;IðtpÞωj;JðtqÞi

þ hωi
IðtpÞωi;IðtpÞihωj

JðtqÞωj;JðtqÞi: ð43Þ

Finally, utilizing Eq. (40), we only retain hωi
IðtpÞωi;IðtpÞi

hωj
JðtqÞωj;JðtqÞi to write σ2IJðtpÞ ≃ σ4I ðtpÞ. As a simplifi-

cation, we take time-independent σIðtpÞ ¼ σ. This relation
allows one to relate the confidence interval of Eq. (41)
in terms of the number of observed objects and σ̄. Since
the signal-to-noise ratio is expected to scale as

ffiffiffiffi
N

p
=σ, in

general, we have

σbω2
≃

σ̄2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NtNpðNp − 1Þ=2p : ð44Þ

Table II summarizes the predicted sensitivities for Gaia
and Theia surveys. We assume for both surveys that the
dataset consists of a single proper motion measurement for

each object over the observation time T ∼ 10 yr, hence
setting Nt ¼ 1. In particular, we estimate the sensitivities

to cω2 at the level of 3.0 × 10−2 μas=yr for Gaia and
7.0 × 10−8 μas=yr for Theia.
These sensitivities are to be compared with the SBBH

estimates of ω2
rms ∼ 1.5 × 10−7 ðμas=yrÞ2 for nonmemory

and ω2
rms ∼ 10−9�2 ðμas=yrÞ2 for the memory. Therefore,

the size of the effect we are considering here is potentially
comparable to the nonmemory part and can be potentially
detected by Theia.
Two comments are in order. First, the estimate above for

Gaia and Theia assumes that all the sources have the same
correlated root-mean-square motion. This is certainly not
true for a realistic datasets. Second, the usual stochastic
nonmemory gravitational wave background contribution
has the same angular correlation function as the memory
contribution. Therefore, it is not possible to isolate the
memory contribution just from the correlation analysis we
did above. If the survey samples the peculiar motion many
times Nt ≥ 1 (instead of a single averaged measurement), it
would be possible to analyze the two-point correlation
in different frequency bins and hence distinguish the
memory and nonmemory contributions. In particular, at
low frequencies the memory part starts dominating over
the nonmemory part due to the different power indices
in Eq. (38).

B. Single snapshot analysis

At very low frequencies, the star term (Ω⋆
mem ∼ 1=f)

becomes comparable to the Earth memory term (Ωmem ∼ f)
and cancels it out partially (saturation limit). This relation
basically comes from the fact that star term is proportional
to the antiderivative of the Earth term which was given by
Eq. (20) and the fact that ΩðfÞ ∝ h2c. The second scenario
outlined before consists of analyzing the very low-
frequency limit where the Earth and the star term partially
cancel out and we are left with the saturation limit δnisð∞Þ,
defined in Eq. (27).
The single snapshot analysis consists of treating the

observed angular distribution of the quasars in a CMB-like
manner where the quasar density field is characterized by a
mean, isotropic density plus a small anisotropic deviation
from the mean. The statistics of the two-point correlation of
these fluctuations would depend on the galaxy clustering
at the time of emission of light as well as propagation
effects such as lensing and of course also on the memory
accumulation we analyze in this paper. In lieu of a complete
analysis hat would take into account all possible sources
of quasar clustering, we focus here on a simple estimation
of the clustering due to memory and compare it to the
expected shot noise due to the finite sample size (number of
quasars) available. In this second scenario, since most
astrometric deflections will be in the saturation limit, it is
straightforward to predict the density pattern (as opposed to

TABLE II. Proper motion uncertainties in Gaia/Theia datasets
for quasistellar objects (QSOs).a For Gaia estimates, see Fig. 6
in [141], and for Theia, we use the improvement factors over Gaia
in [114,119].

Gaia Theia

Np 106 108

σ ðμas=yrÞ 200 3
σbω2

ðμas=yrÞ2 3.0 × 10−2 7.0 × 10−8

aThe numbers Np here are smaller than the total number of
objects in these datasets. However, the full dataset has a larger σ
as well. We are considering the subset of the data classified as
QSO candidates which have the smallest intrinsic proper motions.

ASTROMETRIC DEFLECTIONS FROM GRAVITATIONAL WAVE … PHYS. REV. D 110, 043047 (2024)

043047-11



the deflection pattern, since we only have access to a single
snapshot). Using Eq. (27) we obtain

ρþ ≡▽ · δnþs ð∞ÞðẑÞ ¼ −
3

2
A0 cosð2ϕÞ sin2ðθÞ; ð45Þ

ρ× ≡▽ · δn×s ð∞ÞðẑÞ ¼ −
3

2
A0 sinð2ϕÞ sin2ðθÞ; ð46Þ

where the angles are standard spherical coordinates and
we assumed a GW signal propagating in the ẑ direction.
A0 is the strength of a single GWM signal. In reality, the
overdensity will be a sum of many such signals coming
from different directions and the full effect will be on the
order of the memory as estimated in the right part of Fig. 5,
i.e., A0 ≃ hc.
Assuming an isotropic initial distribution, we plot the

correlation functions for this limit defined in Eq. (34) in the
bottom row of Fig. 7. We also plot a random realization
of these density perturbations in the saturation limit in
Fig. 8. The fact that there is a ρ ∝ sin2ðθÞ dependence on
the right-hand side implies that the astrometric deflections
in the saturation limit are contributing only at the l ¼ 2
multipole level in the spherical harmonic expansion of
the density fluctuation field. More specifically, expanding
the smoothed quasar overdensity in spherical harmonics,
we get

ρA ¼ aAlmYlmðθ;ϕÞ; ð47Þ

where haAlmi ¼ 0 and Cl ¼ hjaþlmj2 þ ja×lmj2i. The strain
memory we estimated in Sec. IV is around 10−ð10–11Þ for the
dominant SBBH contribution. That implies a value for the
C2 coefficient of about C2 ∼ 10−ð20–22Þ. The measurement
of this coefficient is limited by the Poisson shot noise due
to the limited sample size. For finite angular distributions,
the shot noise is l independent and given by [142]
Cl;shot ¼ 4π

N ð1 − δl0Þ, which implies that one would need
at least 1020 number of light sources to sufficiently suppress
it. Since even the most ambitious astrometric observations

such as Theia have a projected sample size of about 109

astronomical objects, we conclude that it is unlikely that
such an anisotropy could be detected. Additionally, since
the memory affects the low multipole moment, the
measurement of C2 is cosmic variance limited and, hence,
any other more significant effect that modifies the C2

coefficient cannot be subtracted from the theoretical
expectation to a greater than Oð1Þ precision. This makes
the measurement of a subdominant effect, such as due to
the memory, unlikely. For this reason, our calculation can
be understood as a proof of principle about the potential
of the memory to affect the anisotropy of the Universe,
but realistically, an observable signature would require a
much more powerful source of memory than the ones we
study in the present work.
Before closing this section, we would like to stress the

limits of our calculation. Our implicit assumption of GW
planar wavefronts implies that the GW sources are at a
much greater redshift than the sources of light we consider.
However, in the list of the presently observed quasars, most
are at a distance of z ∼Oð1Þ [119]. As a result, considering
sources of GWs even further away would dramatically
decrease the overall memory buildup. Instead, the better
option would be to limit a potential analysis to the subgroup
of quasars that are closer than z ≤ 1, therefore allowing
for a longer memory buildup while our approximation
of planar wavefronts holds. This overall would imply a
decrease of the total quasars available to 25% which would
decrease the result estimated above by an order of magni-
tude. Understanding the optimal trade-off between the
number of quasars and duration of memory buildup or
performing an improved calculation with spherical wave-
fronts as in [139] is left for future work.

VI. DISCUSSION AND CONCLUSIONS

The memory effect is one of the most intriguing, as
of now unconfirmed, predictions of general relativity.
Unfortunately, direct detection efforts of the memory effect
have been hampered so far due to the low-frequency
insensitivity of current ground-based detectors. Alternative
approaches that have been suggested for exploring the
effects of memory focus on space-based detectors or
astrometry. In either case, one is faced with the challenge
of isolating the memory signal in the face of a typically
dominant primary GW signal. In this work, we explore
whether one can leverage one of the fundamental
differences between the primary and the memory signals
to distinguish their phenomenology: namely, the primary
signal is transient, whereas the memory signal is perma-
nent. One would expect that, over a long period of time, the
small but permanent memory signals coming from different
sources from different directions in the sky would add up in
a random walk fashion and produce an effect that is ever
increasing and potentially greater than even the present
primary signals. We refer to this concept as “accumulating

FIG. 8. Top row: density patterns of þ and × polarization of
δnþ;×

s , respectively, for a GW propagating in the ẑ direction.
Bottom: a realization of the density pattern for many such GWs
uniformly distributed in direction and polarization.
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memory” and the purpose of this work was to explore the
consequences of such an effect in the case of astrometry.
Even though, in principle, every possible GW source

should contribute to the effect described above, we focused
in this work on GWs coming from compact binary
coalescences because these mergers produce some of the
strongest GWs possible and also because their merger rates
and mass distributions can be modeled even at high
redshift, which is necessary for computing the GWM
accumulation. Using this information, we provided the
formalism for computing the accumulated GWM strain and
derived the total GWM accumulation over the history of the
Universe from compact binary coalescences.
Subsequently, we expanded upon the work of Madison

[49] on astrometric deflections from GWM by estimating
the effect arising from many GW sources over the entire
Universe and separated the detection prospects into different
scenarios: observations of the proper motions of distant
objects and a single snapshot observation of the angular
distribution of very far away sources such as quasars. For
the first case, we found that the Earth term dominates and
indicated that the angular correlation function of the proper
motion of light sources should be the conventional one
originally derived by Book and Flanagan [139]. Within this
scenario, we constructed memory SGWB sampled from
realistic models of various binary populations and estimated
the amplitude of apparent proper motions that would be
induced by gravitational wave memory. In the latter scenario,

we found that both the Earth and star terms (analogous to the
integrated Sachs-Wolfe effect for the CMB) contribute at the
same level and the overall deflection would be dominated by
GWs in the saturation limit, which consists of the Earth and
star terms obtaining their maximum value. We derived the
new angular correlation function for this limit and assessed
the detection prospects with experiments such as Gaia and
Theia. Our findings indicate that, while it may be possible to
detect the memory contribution to the proper motion of
distant light sources, it is highly unlikely that the second
scenario could be observationally confirmed.
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