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Gravitational waves (GWs) induce correlated perturbations to the arrival times of pulses from an array of
galactic millisecond pulsars. The expected correlations, obtained by averaging over many pairs of pulsars
having the same angular separation (pulsar averaging) and over an ensemble of model universes (ensemble
averaging), are described by the Hellings and Downs curve. As shown by Allen [Phys. Rev. D 107, 043018
(2023)], the pulsar-averaged correlation will not agree exactly with the expected Hellings and Downs
prediction if the gravitational-wave sources interfere with one another, differing instead by a “cosmic
variance” contribution. The precise shape and size of the cosmic variance depends on the statistical
properties of the ensemble of universes used to model the background. Here, we extend the calculations of
the cosmic variance for the standard Gaussian ensemble to an ensemble of model universes which
collectively has rotationally invariant correlations in the GW power on different angular scales (described
by an angular power spectrum, Cl for l ¼ 0; 1;….). We obtain an analytic form for the cosmic variance in
terms of the Cl’s and show that for realistic values Cl=C0 ≲ 10−3, there is virtually no difference in the
cosmic variance compared to that for the standard Gaussian ensemble (which has a zero angular power
spectrum).
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I. INTRODUCTION

Recent observations taken by four worldwide pulsar
timing array (PTA) collaborations have shown weak to
compelling evidence of a low frequency (∼10−9 Hz)
correlated gravitational-wave (GW) signal [1–4]. These
observations have opened up a new window to gravita-
tional-wave astrophysics. For example, it potentially sheds
light on exotic physics such as cosmic inflation, cosmic
strings and dark matter in the Milky Way, etc. [5], and
provides an important test bed for alternative theories of
gravity [6,7]. The International Pulsar Timing Array’s
(IPTA) [8] third data release is currently under preparation.
This dataset will combine the 15-yr dataset from the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) with the latest datasets from the
Eurpoean [9], Indian [10], and Parkes [11] PTAs. This
combined dataset is expected to have better sensitivity due

to an increased number of pulsars and a longer effective
observation time.
PTAs employ arrays of galactic millisecond pulsars,

which are highly stable clocks. The observed pulsars emit
beams of radio waves, which intersect our line-of-sight
every rotational period. The arrival times of the pulses have
been observed for years to decades, and a timing model is
fit for each pulsar. When a GW passes between the Earth
and a pulsar, the arrival times deviate from the expected
values. The timing residuals or redshift of radio pulses from
pairs of pulsars are correlated to look for evidence of the
common underlying GW signal. The correlation ρ12 of the
redshifts z1, z2 observed in a pair of pulsars is defined as
the time-averaged product

ρ12 ≡ z1ðtÞz2ðtÞ≡ 1

T

Z
T=2

−T=2
dt z1ðtÞz2ðtÞ; ð1:1Þ

where T is the total observation time. The subscripts “1”
and “2” label the two pulsars. The correlation leads to an
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expected pattern that depends upon the Earth-source-pulsar
geometry.
The expected pattern is a quasiquadrupolar curve for

an unpolarized, isotropic stochastic GW background
(SGWB), depending only on the separation angle between
a pair of pulsars. This pattern is known as the Hellings-
Downs (HD) curve [12]. For an anisotropic background,
this pattern has different shapes for the different spherical
harmonic components of the anisotropy [[13], Fig. 2], as
observed by a pair of pulsars in the xz plane. But if we
average the correlation over many pairs of pulsars with
the same angular separation, one again recovers the HD
curve [14].
The PTA experiments use the HD curve as a template to

detect and infer the source properties. Recent findings by
Allen [15] have deepened our understanding of the HD
curve, and a few important facts are as follows:

(i) The HD curve denotes the expected correlation
between a pair of pulsars separated by angle γ. In
their seminal paper [12], Hellings and Downs
obtained this curve by averaging the correlations
for a fixed pair of pulsars over an isotropic distri-
bution of GW sources on the sky, assuming that the
GW sources did not interfere with one another.

(ii) Thirty years later, Cornish and Sesana [14] showed
that the HD curve also arises for a single GW point
source (deterministic sinusoidal signal), provided
the correlation is averaged over pulsar directions,
keeping the separation angle fixed, i.e., pulsar
averaging, hρ12i12∈ γ.

(iii) In the absence of noise, deviations of the measured
correlation away from its expected value have two
contributions: pulsar variance and cosmic variance.
Pulsar variance is due to the differing response of
pairs of pulsars pointing in different directions on
the sky, but having the same angular separation.
Although pulsar variance can be reduced by binning
and averaging the correlations of pulsar pairs having
(approximately) the same angular separation, the
cosmic variance due to interfering GW sources
cannot be removed; it can only be inferred.

Pulsar and cosmic variance due to an isotropic background
are also discussed in [16–18] using the harmonic-space
formalism [19].
Although previous works [14,20] have suggested that

deviations from the standard Gaussian ensemble would not
lead to significant deviations away from the HD mean,
Allen [15] argued that the second moment of the pulsar-
averaged correlations (i.e., the cosmic variance) also carries
important information about the statistical nature of the
ensemble from which our Universe is a single realization.
In this paper, we analytically determine how nontrivial
rotationally invariant correlations in the GW power on
different angular scales affect the cosmic variance. Such
correlations are typically described by an angular power

spectrum, Cl for l ¼ 0; 1;… [see (3.3) and (3.11)]. These
investigations will help us assess if the deviation of the
observations from the HD curve can be attributed to such
correlations.
For example, supermassive black-hole binaries

(SMBHBs) in the centers of merging galaxies are the most
natural source of the GWs to be observed by PTA experi-
ments, and the local unresolved SMBHBs can introduce a
departure from the predictions for a standard Gaussian
ensemble due to structure in the local universe [14,21,22].
The reason is as follows: the sky distribution of the
SMBHB population is expected to follow the galaxy
distribution, which is anisotropic, and angular correlations
are observed in galaxies embedded in cosmological large-
scale structure [23–25]. Predictions for the expected
anisotropies and angular correlations in the intensity dis-
tribution of the GW background in the LIGO frequency
band have also been explored [26–30]. A search for angular
correlations in the GW power was performed by the
NANOGrav collaboration using their 15-yr dataset [31],
but it did not find any significant evidence for a nonzero
angular power spectrum. However, the frequentist analysis
performed in that work did not account for cosmic
variance [15–17] and inter-pulsar-pair covariance [32,33].
The rest of the article is structured as follows: We start in

Sec. II with a brief introduction to the response of a PTA to
GWs. Section III provides the approach used to describe
ensembles of GW universes having nonzero angular power
spectra using a two-stage ensemble averaging process [34].
An expression for the cosmic variance for such ensembles
is derived in Sec. IV. We conclude in Sec. V with a brief
summary and possible future directions.

II. TIMING RESIDUAL RESPONSE
TO GRAVITATIONAL WAVES

The metric perturbations at a space-time point ðt; x⃗Þ can
be written as a sum of plane waves in the synchronous
transverse-traceless gauge as

hijðt; x⃗Þ ¼
X

A¼þ;×

Z
∞

−∞
df

Z
S2
d2Ω̂ h̃Aðf; Ω̂ÞeAijðΩ̂Þ

× ei2πfðt−x⃗·Ω̂=cÞ: ð2:1Þ
Here, h̃Aðf; Ω̂Þ is the Fourier domain component of the
metric perturbations having frequency f, propagation
direction Ω̂, and polarization eAijðΩ̂Þ. The timing residuals
depend upon the integrated projection of the metric
perturbations along the path traveled by a radio pulse from
the pulsar to Earth. The timing residual evaluated at time t
for a single pulsar in direction p̂ at a distance D from Earth
is given by [36]

ΔTðtÞ ¼ 1

2c
p̂ip̂j

Z
D

s¼0

ds hij½τðsÞ; x⃗ðsÞ�; ð2:2Þ
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where the space-time path between the pulsar and the Earth
is parametrized as

τðsÞ ¼ t − ðD − sÞ=c; x⃗ðsÞ ¼ ðD − sÞp̂þ r⃗2; ð2:3Þ

where r⃗2 is the position vector of the Earth at the time t
when the observation is made. Note that we can use this
straight line path since the metric perturbations are already
first-order small.
The redshift zðtÞ is related to the timing residual via

differentiation with respect to t:

zðtÞ≡ dΔTðtÞ
dt

¼ 1

2c
p̂ip̂j

Z
D

s¼0

ds
∂hij
∂t

½τðsÞ; x⃗ðsÞ�: ð2:4Þ

Performing the integration, we find [36]

zðtÞ ¼
X

A¼þ;×

Z
∞

−∞
df

Z
S2
d2Ω̂ h̃Aðf; Ω̂ÞRAðf; Ω̂; Dp̂Þ

× ei2πfðt−r⃗2·Ω̂=cÞ; ð2:5Þ

whereRAðf; Ω̂; Dp̂Þdenotes the redshiftpulsar response [36]:

RAðf; Ω̂; Dp̂Þ≡ FAðΩ̂; p̂Þ½1 − e
−2πifDð1þΩ̂·p̂Þ

c �;

FAðΩ̂; p̂Þ≡ 1

2

p̂ip̂j

1þ Ω̂ · p̂
eAijðΩ̂Þ: ð2:6Þ

The terms in square brackets are called the “Earth” and
“pulsar” terms, respectively. Being highly oscillatory relative
to FAðΩ̂; p̂Þ, the pulsar term can be ignored in most circum-
stances when correlating data from multiple pulsars, as
discussed in Allen [15]. Since this is also the case for pulsar
averaging, which we use to obtain the cosmic variance, most
of the key expressions that followwill involve theEarth-term-
only response function FAðΩ̂; p̂Þ for the redshift. The vector
r⃗2, which is the position vector of Earth in the Solar System
barycenter frame, can also be set to zero relative to the
wavelength of the GWs that PTAs are sensitive to (of order
10’s of light-years).
The redshift (2.5) can be evaluated for any GW source.

In the next section, we discuss a signal model that describes
a rotationally invariant ensemble of universes, which have
nontrivial correlations in the GW power on the sky.

III. CHARACTERIZATION OF ROTATIONALLY
INVARIANT CORRELATIONS IN GW POWER

The signal associated with a GW background may be
either deterministic or stochastic depending on the sources
that produce it. Some relevant parameters that determine
this outcome include the number and location of the
sources on the sky, their frequency evolution, and their
amplitude relative to competing instrumental and environ-
mental noise. In the absence of definitive knowledge of

these parameters, the best we can do is create ensembles of
model universes against which we can compare predictions
to the actual observations.
The standard Gaussian ensemble is one such ensemble of

GW universes. Each universe in this ensemble is aniso-
tropic, but the collection of all such universes is rotationally
invariant (this is sometimes called “statistically isotropic”
in the CMB community). In addition, the two-point
correlation function, which describes correlations in the
GW power on the sky, is especially simple for the standard
Gaussian ensemble; namely, it has the same value inde-
pendent of the angular separation between the two different
directions [37].
To test if our universe has nontrivial correlated GW

power—i.e., that the two-point function has different values
depending on the angular separation between two direc-
tions on the sky, we construct the following (non-Gaussian)
ensemble defined by the following two-stage ensemble
averaging process: (i) The first stage consists of averaging
over Gaussian (sub)ensembles for fixed anisotropic dis-
tributions of GW power on the sky ψðΩ̂Þ; (ii) the second
stage consists of averaging over a rotationally invariant
ensemble of such ψðΩ̂Þ’s. More explicitly, given an
anisotropic distribution of GW power ψðΩ̂Þ, we first
assume that the Fourier domain strain coefficients obey
a multivariate Gaussian distribution with zero mean

hh̃Aðf; Ω̂Þi ¼ 0; ð3:1Þ

and quadratic expectation values:

hh̃Aðf; Ω̂Þh̃�A0 ðf0; Ω̂0Þi
¼ ψðΩ̂ÞHðfÞδAA0δðf − f0Þδ2ðΩ̂; Ω̂0Þ; ð3:2Þ

where HðfÞ is the real (2-sided, HðfÞ ¼ Hð−fÞ) power
spectrum of the GW signal having sky distribution ψðΩ̂Þ.
Here, hi without any subscript denotes averaging over the
Gaussian ensemble of Fourier coefficients for a fixed ψðΩ̂Þ.
Stationarity in time and homogeneity in space introduce the
delta functions in frequency and angular parameters [36].
The fact that the rhs depends on the polarization compo-
nents only via δAA0 means that the polarization components
are statistically equivalent and independent of one another.
The nontrivial correlations in the GW power are encoded

in the assumptions we make on the statistical distribution of
the allowed set of functions ψðΩ̂Þ. We will assume (on
average) that these functions have no preferred direction on
the sky, and that the covariance between the GW power in
two different directions Ω̂, Ω̂0 depends only on the angular
separation between those two directions

hψðΩ̂Þiψ ¼ 1;

hψðΩ̂ÞψðΩ̂0Þiψ − hψðΩ̂ÞiψhψðΩ̂0Þiψ ¼ CðΩ̂ · Ω̂0Þ. ð3:3Þ
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Here, hiψ denotes the ensemble average over the set of

allowed functions ψðΩ̂Þ. Using (3.2) and (3.3), it immedi-
ately follows that

⟪h̃Aðf; Ω̂Þh̃�A0 ðf0; Ω̂0Þ⟫ψ

¼ HðfÞδAA0δðf − f0Þδ2ðΩ̂; Ω̂0Þ; ð3:4Þ

where the left-hand side (lhs) is obtained by first applying
the Gaussian ensemble average hi over the h̃Aðf; Ω̂Þ’s

and then the ensemble average hiψ over the ψðΩ̂Þ’s.
Note that the final result is the same as the quadratic
expectation value of the h̃Aðf; Ω̂Þ’s for the standard
Gaussian ensemble.
Since the cosmic variance calculation that we perform

will involve at most 4th-order expectation values of the
h̃Aðf; Ω̂Þ’s, it suffices to know only the first two moments
of the ψðΩ̂Þ’s. To illustrate this statement, let us use the
following shorthand notation

h1 ≡ h̃A1
ðf1; Ω̂1Þ; h�2 ≡ h̃�A2

ðf2; Ω̂2Þ; H1 ≡Hðf1Þ; ψ1 ≡ ψðΩ̂1Þ; C12 ≡CðΩ̂1 · Ω̂2Þ;
δ12 ≡ δA1A2

δðf1 − f2Þδ2ðΩ̂1; Ω̂2Þ; δ�13 ≡ δA1A3
δðf1 þ f3Þδ2ðΩ̂1; Ω̂3Þ; etc: ð3:5Þ

Then

⟪h1h�2h3h
�
4⟫ψ ¼ ⟪h1h�2ihh3h�4i þ hh1h3ihh�2h�4i þ hh1h�4ihh�2h3⟫ψ

¼ hδ12H1ψ1δ34H3ψ3iψ þ hδ�13H1ψ1δ
�
24H2ψ2iψ þ hδ14H1ψ1δ23H2ψ2iψ

¼ δ12δ34H1H3hψ1ψ3iψ þ δ�13δ
�
24H1H2hψ1ψ2iψ þ δ14δ23H1H2hψ1ψ2iψ

¼ δ12δ34H1H3ðC13 þ 1Þ þ δ�13δ
�
24H1H2ðC12 þ 1Þ þ δ14δ23H1H2ðC12 þ 1Þ

¼ hh1h�2h3h�4igauss þ δ12δ34H1H3C13 þ δ�13δ
�
24H1H2C12 þ δ14δ23H1H2C12: ð3:6Þ

Note that we first do the hi Gaussian ensemble average over
the four h’s for fixed ψðΩ̂Þ, using Isserlis’s theorem for zero-
mean Gaussian random variables to expand hh1h�2h3h�4i. We
then do the hiψ ensemble average over the ψðΩ̂Þ’s to obtain
the third and fourth equalities using (3.3). The expression
hh1h�2h3h�4igauss in the final line is the equivalent 4th-order
expectation values for the standard Gaussian ensemble.
Furthermore, it is generically useful to decompose the

GW power on the sky in terms of spherical harmonics. For
example, the expectation values (3.3) for the ψðΩ̂Þ’s can be
expressed in terms of the spherical harmonic components
ψ lm of a given sky map ψðΩ̂Þ defined by:

ψðΩ̂Þ ¼
X∞
l¼0

Xl

m¼−l
ψ lmYlmðΩ̂Þ;

ψ lm ¼
Z

d2Ω̂ψðΩ̂ÞY�
lmðΩ̂Þ; ð3:7Þ

where we adopt the normalization of spherical harmonics
used by Arfken 2005 (p. 791, [38]). Since spherical
harmonics satisfy the following orthonormality condition
and addition theorem,Z

d2Ω̂YlmðΩ̂ÞY�
l0m0 ðΩ̂Þ ¼ δll0δmm0 ; ð3:8Þ

Xl

m¼−l
YlmðΩ̂ÞY�

lmðΩ̂0Þ ¼ 2lþ 1

4π
PlðΩ̂ · Ω̂0Þ; ð3:9Þ

it follows that

hψ lmiψ ¼
ffiffiffiffiffiffi
4π

p
δl0δm0;

hψ lmψ
�
l0m0 iψ − hψ lmiψ hψ�

l0m0 iψ ¼ Clδll0δmm0 ; ð3:10Þ

where PlðxÞ in (3.9) is the lth order Legendre polynomial.
The angular power spectrum Cl is defined in terms of CðΩ̂ ·
Ω̂0Þ via

CðΩ̂ · Ω̂0Þ ¼
X∞
l¼0

2lþ 1

4π
ClPlðΩ̂ · Ω̂0Þ or

CðΩ̂ · Ω̂0Þ ¼
X
l;m

ClYlmðΩ̂ÞY�
lmðΩ̂0Þ; ð3:11Þ

where we have introduced the notationP
l;m ¼ P∞

l¼0

P
l
m¼−l. A white angular power spectrum

has Cl ¼ const for all l values up to some lmax. A scale-
invariant angular power spectrum, which has equal vari-
ance per logarithmic spacing in l, has lðlþ 1ÞCl ¼ const.
Finally, we note that hψðΩ̂ÞψðΩ̂0Þiψ ¼ CðΩ̂ · Ω̂0Þ þ 1 has
Legendre polynomial coefficient Cl þ 4πδl0.
Since the spectrum HðfÞ and the angular power spec-

trum Cl for l ¼ 0; 1;… are sufficient to describe rotation-
ally invariant correlations in GW power, we are now ready
to derive the expected behavior of the redshift correlation
curve for PTA experiments.
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IV. COSMIC VARIANCE CALCULATION

Here, we are interested in accounting for the effect of
nontrivial correlations in GW power on the mean and
variance of the pulsar pair correlation

ρ12 ¼ z1ðtÞz2ðtÞ

¼
X
A;A0

Z
df

Z
df0

Z
S2
d2Ω̂

Z
S2
d2Ω̂0 h̃Aðf; Ω̂Þh̃�A0 ðf0; Ω̂0Þ

×RA
1 ðf; Ω̂ÞRA0�

2 ðf0; Ω̂0Þsinc½πTðf − f0Þ�; ð4:1Þ

where we used (2.5) for the redshifts, with RA
aðf; Ω̂Þ≡

RAðf; Ω̂; Da p̂aÞ for a ¼ 1, 2 labeling the two pulsars. We
will assume that we have access to an infinite number of
noise-free pulsar redshift measurements, which we can bin
by the separation angle between pairs of pulsars and then
average the correlations together. This averaging over
pulsar directions, denoted hi12∈ γ , keeps the separation
angle γ ≡ cos−1ðp̂1 · p̂2Þ between the two pulsars fixed.
This averaging is appropriate when constructing estimates
of the GWB that are rotationally invariant, i.e., that depend
only on the angular separation between two points on the
sky. If, instead, we wanted to map the anisotropy ψðΩ̂Þ of
the GWB in our particular realization of the Universe, then
we should not average the correlation measurements having
the same angular separation.
As mentioned earlier, pulsar averaging removes the

pulsar variance, leaving only the cosmic variance. It also
removes any dependence of the correlated response on the
distance to the pulsars, provided the correlation length of
the GW background is much shorter than the Earth-pulsar
and pulsar-pulsar distances [15]. For this case, RA

aðf; Ω̂Þ
can be replaced by FA

aðΩ̂Þ≡ FAðΩ̂; p̂aÞ, leading to

ΓðγÞ≡ hρ12i12∈ γ

¼
X
A;A0

Z
dfdf0

Z
d2Ω̂d2Ω̂0 h̃Aðf; Ω̂Þh̃�A0 ðf0; Ω̂0Þ

× μAA0 ðγ; Ω̂; Ω̂0Þsinc½πTðf − f0Þ�; ð4:2Þ

where μAA0 ðγ; Ω̂; Ω̂0Þ is the Hellings and Downs two-point
function [15]:

μAA0 ðγ; Ω̂; Ω̂0Þ≡ hFA
1 ðΩ̂ÞFA0

2 ðΩ̂0Þi12∈ γ: ð4:3Þ

In terms of the pulsar-averaged correlation Γ, the cosmic
variance is defined as

σ2cosmic ¼ ⟪Γ2⟫ψ − ⟪Γ⟫2
ψ ; ð4:4Þ

where the averaging is taken over the two-stage ensem-
ble ⟪⟫ψ .

A. Earth-term-only response function and HD
two-point function in harmonic space

The Earth-term-only response functions FAðΩ̂; p̂Þ which
appear in (4.3), can be written in harmonic space with
respect to pulsar directions on the sky

FAðΩ̂; p̂Þ ¼
X
l;m

FA
lmðΩ̂ÞYlmðp̂Þ;

where

FA
lmðΩ̂Þ ¼

Z
d2p̂FAðΩ̂; p̂ÞY�

lmðp̂Þ: ð4:5Þ

Note that FA
lmðΩ̂Þ is complex, satisfying FA�

lmðΩ̂Þ ¼
ð−1ÞmFA

l;−mðΩ̂Þ as a consequence of Y�
lmðΩ̂Þ ¼

ð−1ÞmYl;−mðΩ̂Þ. As shown in Bernardo and Ng [39], the
integral in (4.5) can be evaluated as

FA¼þ;×
lm ðΩ̂Þ ¼ −2πið−iÞ2l−12l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s �
−2Y

�
lmðΩ̂Þe−i2αðΩ̂Þ

� 2Y
�
lmðΩ̂Þei2αðΩ̂Þ

�
for l ≥ 2: ð4:6Þ

We note that due to a difference in our definition for the
metric perturbations, an extra term of ð−iÞ2l−12l appears in
the above equation. (The notation ð−iÞ2l−12l means raise −i
to the power of 2l − 1 for A ¼ þ and 2l for A ¼ ×.)
Here, αðΩ̂Þ is the polarization angle for the GW propa-
gating in direction Ω̂. It turns out to be a nuisance
parameter for us, as our observables are independent of
this parameter.
In terms of the FA

lmðΩ̂Þ’s, the Hellings and Downs two-
point function can be written as

μAA0 ðγ; Ω̂; Ω̂0Þ ¼ 1

4π

X
l;m

FA
lmðΩ̂ÞFA0�

lm ðΩ̂0ÞPlðcos γÞ; ð4:7Þ

where we used [16,40]

hYlmðp̂1ÞY�
l0m0 ðp̂2Þi12∈ γ ¼ δll0δmm0

Plðcos γÞ
4π

; ð4:8Þ

for the pulsar-averaged product of two spherical harmonics.
The Hellings and Downs curve μuðγÞ can also be written
in terms of the FA

lmðΩ̂Þ’s using (4.7) and the first line of
(B1) as
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μuðγÞ≡
X
A

μAAðγ; Ω̂; Ω̂Þ

¼ 1

4π

X
l;m

X
A

FA
lmðΩ̂ÞFA�

lmðΩ̂ÞPlðcos γÞ

¼ 2π
X
l

ðl− 2Þ!
ðlþ 2Þ!

X
s¼−2;2

X
m

sY
�
lmðΩ̂ÞsYlmðΩ̂ÞPlðcos γÞ

¼ 2π
X
l

ðl− 2Þ!
ðlþ 2Þ!

X
s¼−2;2

2lþ 1

4π
Plðcos γÞ

¼
X
l

alPlðcos γÞ; ð4:9Þ

where

al ≡ 2lþ 1

ðlþ 2Þðlþ 1Þlðl − 1Þ : ð4:10Þ

This Legendre polynomial expansion can be derived using
expressions from Appendix B. The fourth line is obtained
by using the addition theorem for spin-weighted spherical
harmonics (see (2.61) p. 56, [41]). These al coefficients
appear in multiple expressions that follow. We note that the
HD curve μuðγÞ is independent of the direction of the
source in the sky [15].

B. First moment of the pulsar-averaged correlation

Since the quadratic expectation values of the h̃Aðf; Ω̂Þ’s
for ensembles having nonzero angular power spectra are the
same as for the standard Gaussian ensemble (3.4),
it is also true for the mean of the pulsar-averaged correlation:

μcosmic ¼ ⟪Γ⟫ψ ¼
X
A1;A2

Z
df1df2

Z
d2Ω̂1d2 Ω̂2 sinc½πTðf1 − f2Þ�μA1A2

ðγ; Ω̂1; Ω̂2Þhh̃A1
ðf1; Ω̂1Þh̃�A2

ðf2; Ω̂2Þiψ

¼
X
A1;A2

Z
df1df2

Z
d2Ω̂1d2 Ω̂2 sinc½πTðf1 − f2Þ�μA1A2

ðγ; Ω̂1; Ω̂2ÞHðf1ÞδA1A2
δðf1 − f2Þδ2ðΩ̂1; Ω̂2Þ

¼
X
A1

Z
df1

Z
d2Ω̂1 μA1A1

ðγ; Ω̂; Ω̂ÞHðf1Þ

¼ h2μuðγÞ ð¼hΓigaussÞ; ð4:11Þ

where h2 ≡ 4π
R
dfHðfÞ. The last equality is obtained by using (4.9).

C. Second moment and variance of the pulsar-averaged correlation

Next, we obtain an expression for the second moment of Γ

⟪Γ2⟫ψ ¼
X

A1;A2;A3;A4

Z
df1df2df3df4

Z
d2Ω̂1d2Ω̂2d2Ω̂3d2Ω̂4

× sinc½πTðf1 − f2Þ�sinc½πTðf3 − f4Þ�μA1A2
ðγ; Ω̂1; Ω̂2ÞμA3A4

ðγ; Ω̂3; Ω̂4Þ
× ⟪h̃A1

ðf1; Ω̂1Þh̃�A2
ðf2; Ω̂2Þh̃A3

ðf3; Ω̂3Þh̃�A4
ðf4; Ω̂4Þ⟫ψ : ð4:12Þ

To facilitate the calculation, we will use the shorthand
notation introduced in (3.5) supplemented with

Z
1;2;3;4

≡ X
A1;A2;A3;A4

Z
df1df2df3df4

×
Z

d2Ω̂1d2Ω̂2d2Ω̂3d2Ω̂4; ð4:13Þ

as well as sinc12 and μ12, etc., for the sinc and HD two-point
functions, respectively. In this notation

⟪Γ2⟫ψ ¼
Z
1;2;3;4

sinc12sinc34 μ12μ34⟪h1h�2h3h
�
4⟫ψ

¼ hΓ2igauss þ
Z
1;3

μ11μ33H1H3C13

þ 2

Z
1;2

sinc212 μ
2
12H1H2C12; ð4:14Þ

where we used (3.6) and symmetry properties of the sinc
function and HD two-point function to get the second line
of (4.14) (the first two terms on the second line of (4.14)
correspond to the first two terms of (3.6) with the delta
functions enforcing that indices 2 and 4 are replaced by 1
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and 3; while the final term on the second line of (4.14)
comes from combining the last two terms of (3.6) with
the delta functions enforcing that indices 3 and 4 are
replaced by 1 and 2 and 2 and 1, respectively.) Since
⟪Γ⟫ψ ¼ hΓigauss, it follows that

σ2cosmic ¼ σ2cosmic;gauss þ
Z
1;3

μ11μ33H1H3C13

þ 2

Z
1;2

sinc212 μ
2
12H1H2C12; ð4:15Þ

where

σ2cosmic;gauss ≡ hΓ2igauss − hΓi2gauss ¼ 2h4 eμ2ðγÞ ð4:16Þ

is the cosmic variance for the standard Gaussian ensemble.
Here,

h4 ¼ ð4πÞ2
Z

df1

Z
df2sinc2½πTðf1 − f2Þ�Hðf1ÞHðf2Þ:

ð4:17Þ

We now evaluate the two “integrals” on the right-hand
side (rhs) of the (4.15). The first is equal to

I1 ≡
Z
1;3

μ11μ33H1H3C13

¼ μ2uðγÞh4
Z

d2Ω̂1

4π

Z
d2Ω̂3

4π
CðΩ̂1 · Ω̂3Þ:

ð4:18Þ

Recall that μuðγÞ¼
P

AμAAðγ;Ω̂;Ω̂Þ and h2≡4π
R
dfHðfÞ.

The double integral over sky directions can be simply
evaluated since CðΩ̂1 · Ω̂2Þ depends only on the dot
product of Ω̂1 and Ω̂2:Z

d2Ω̂1

4π

Z
d2Ω̂3

4π
CðΩ̂1 · Ω̂3Þ ¼

1

2

Z
1

−1
dxCðxÞ

¼ 1

2

Z
1

−1
dx

X∞
l¼0

2lþ 1

4π
ClPlðxÞ

¼ 1

4π
C0: ð4:19Þ

Thus, I1 ¼ ðh4=4πÞC0μ
2
uðγÞ. The second integral is equal to

I2 ≡ 2

Z
1;2

sinc212 μ212H1H2C12

¼ 2ð4πÞ2
Z

df1

Z
df2 sinc2½πTðf1 − f2Þ�Hðf1ÞHðf2Þ

×
Z

d2Ω̂1

4π

Z
d2Ω̂2

4π

X
A1;A2

μ2A1A2
ðγ; Ω̂1; Ω̂2ÞCðΩ̂1 · Ω̂2Þ

¼ 2h4

Z
d2Ω̂1

4π

Z
d2Ω̂2

4π

X
A1;A2

μ2A1A2
ðγ; Ω̂1; Ω̂2ÞCðΩ̂1 · Ω̂2Þ:

ð4:20Þ
To evaluate the integral over sky directions, we express the
HD two-point function in harmonic space [see (4.7)] and
expand CðΩ̂1 · Ω̂2Þ in terms of spherical harmonics [see
(3.11)]. This yields

Z
d2Ω̂1

4π

Z
d2Ω̂2

4π

X
A1;A2

μ2A1A2
ðγ; Ω̂1; Ω̂2ÞCðΩ̂1 · Ω̂2Þ

¼
X
L;M

CL

X
l;m

X
l0;m0

Plðcos γÞ
4π

Pl0 ðcos γÞ
4π

���� 1

4π

Z
d2Ω̂YLMðΩ̂Þ

X
A
FA
lmðΩ̂ÞFA�

l0m0 ðΩ̂Þ
����2

¼
X
L;M

CL

X
l;m

X
l0;m0

Plðcos γÞ
4π

Pl0 ðcos γÞ
4π

πalal0 ð2Lþ 1Þ
�

l l0 L

−m m0 M

�
2

½1þ ð−1Þlþl0þL�2
�
l l0 L

2 −2 0

�
2

¼ 1

8π

X
L

ð2Lþ 1ÞCL

X
l;l0

alPlðcos γÞal0Pl0 ðcos γÞ½1þ ð−1Þlþl0þL�
�
l l0 L

2 −2 0

�
2

; ð4:21Þ

where we used (B2) and (4.10) to get the second equality,
and X

m;m0
ð2Lþ 1Þ

�
l l0 L

−m m0 M

�
2

¼ 1; ð4:22Þ

which is a consequence of (A5), to get the third equality.
Combining the above results, the cosmic variance takes its
final form:

σ2cosmic ¼ 2h4 eμ2ðγÞ þ h4

4π
C0μ

2
uðγÞ

þh4

4π

X
L

ð2Lþ 1ÞCL

X
l;l0

alPlðcos γÞal0Pl0 ðcos γÞ

× ½1þ ð−1Þlþl0þL�
�
l l0 L

2 −2 0

�
2

: ð4:23Þ
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The first term is the cosmic variance for the standard
Gaussian ensemble, while the other two terms, proportional
to C0 and the summation over the Cl’s, are the additional
contributions to the cosmic variance due to nonzero values
for the angular power spectrum Cl. If desired, the cosmic
variance can be expressed completely in terms of harmonic

coefficients using (B4) and (B5) for μuðγÞ and eμ2ðγÞ.
Plots of the expected cosmic variance for the different

ensembles are shown in Fig. 1. For making these plots, we
assumed: (i) h2 ¼ 1 and h4 ¼ 0.5. (ii) For a white angular
power spectrum, CL ¼ C0 for L ≤ Lmax ¼ 8. (iii) For a
scale-invariant angular power spectrum, LðLþ 1ÞCL ¼
const ¼ C0 for 1 ≤ L ≤ Lmax ¼ 8. We used l values up
to lmax ¼ 50 to construct the detector response. We note
that for large values of the angular power spectra (i.e.,
C0 ¼ 1), the expected cosmic variance differs visually
from that for the standard Gaussian ensemble, while for
more realistic values (i.e., C0 ¼ 10−3), there is no visual
distinction.

V. DISCUSSION

The aim of this article was to assess how nontrivial
correlations in the GW power on the sky affect the recovery
of the HD correlation curve, assuming an infinite number of
noise-free pulsars. We utilized a harmonic space decom-
position of the detector response to facilitate the analytical
calculation of the first two moments of the pulsar-averaged
correlation curve, i.e., its mean and (cosmic) variance. We
constructed a simplistic two-stage ensemble process for
characterizing the correlations in the GW power, specified
by a monopole HðfÞ and angular power spectrum Cl.

We found that the mean correlation (4.11) carries no
information about the correlations, while the variance
(4.23) has additional contributions if the angular power
spectrum Cl describing the correlations in GW power is
nonzero. For the Gaussian ensemble, the variance arises
solely due to interference of the GW sources. Plots of the
expected cosmic variance for the different ensembles
described in this paper are given in Fig. 1.
To further quantify the effect of a nonzero angular power

spectrum, we construct an estimator of the deviation in the
cosmic variance for both types of ensembles discussed in
this paper via

Δχ2 ¼
����1 − 1

N

XN
i¼1

σ2cosmic;i

σ2cosmic;gauss;i

����; ð5:1Þ

which is motivated by a χ2 statistic. Recall that a χ2 statistic
is often employed to compare the observation of a measured
curve with a theoretical curve, which in this case is the HD
correlation curve. If the separation angles for pulsar pairs
are divided into N bins, we can compare the squared
deviation of the measured and expected correlations xi and
μcosmic;i to the cosmic variance for both ensembles

χ2 ¼
XN
i¼1

ðxi − μcosmic;iÞ2
σ2cosmic;i

;

χ2gauss ¼
XN
i¼1

ðxi − μcosmic;iÞ2
σ2cosmic;gauss;i

. ð5:2Þ

The expected fractional difference in these two χ2 statistics
is then

FIG. 1. Expected correlation and cosmic variance for the standard Gaussian ensemble and ensembles described by nonzero angular
power spectra. The mean (4.11) of the correlation curve (HD curve) is shown by the red solid line setting h2 ¼ 1. The dashed black,
dashed-dotted magenta, and dotted green lines represent the 1-sigma expected deviation (4.23) from the HD curve for the standard
Gaussian ensemble and for ensembles having white (CL ¼ const) and scale invariant (LðLþ 1ÞCL ¼ const) angular power spectra,
respectively. We have set h4=h4 ¼ 1=2, and used detector modes up to lmax ¼ 50 and signal modes up to Lmax ¼ 8. (The choice
h4=h4 ¼ 1=2 is appropriate for GW sources all radiating in a single frequency bin with that frequency commensurate with the inverse of
the total observation time.) The scale of the angular power spectrum is set by C0 ¼ 1 and C0 ¼ 10−3 in the left and right panels,
respectively.

DEEPALI AGARWAL and JOSEPH D. ROMANO PHYS. REV. D 110, 043044 (2024)

043044-8



Δχ2 ¼
j⟪χ2 − χ2gauss⟫ψ j

⟪χ2⟫ψ
; ð5:3Þ

which can be written in terms of cosmic variance (5.1). We
plot this difference as a function of the signal parameters in
Fig. 2 using N ¼ 100 bins. The difference lies in the range
Δχ2 ∼ 5 × 10−4 − 0.62.
Although the effect of a nonzero angular power spectrum

on cosmic variance is probably negligible for realistic
values of the Cl’s, the actual scale of the Cl’s is uncertain.
Predictions for the angular power spectrum associated with
large-scale galaxy clustering are underway [42]. The
expression we provide for the cosmic variance (4.23) for
an ensemble of universes having rotationally invariant
correlations in GW power is general. This expression
can be used to estimate the cosmic variance given a model
for the angular power spectrum. However, issues like shot
noise due to a finite number of galaxies and/or a finite
number of GW sources [43–45], as well as noise sources in
PTA observations might be hurdles in uncovering these
angular correlations. With future high-precision PTA
experiments coming online, it is crucial to account for
all fundamental contributions to the variance while evalu-
ating the timing residual correlations, e.g., the presence of
nonzero angular power spectra, anisotropies, polarized
GWs, non-Einstein gravity modes, etc.
Note: As this paper was being completed, we became

aware of similar work by Bruce Allen [46], where (among
other related topics) he also calculates the cosmicvariance for
an ensemble of universes having nonzero angular power

spectra. The paper of Allen is more extensive in its scope and
presentation, e.g., he carefully lays out the ensemble averag-
ing process and derives expressions for the full covariance
matrix for a finite number of pulsar pairs, etc. [46]. The final
expressions are the same for the subset of topics where our
analysis and the analysis by Allen overlap.
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APPENDIX A: PROPERTIES OF SPHERICAL
HARMONICS AND WIGNER-3J SYMBOLS

The triple integral for spin-weighted spherical harmon-
ics, when s1 þ s2 þ s3 ¼ 0, is given as

FIG. 2. Top left panel: Expected fractional difference Δχ2 in the χ2 statistic for correlations in GW power defined by a white angular
power spectrum with a range of values for C0 and Lmax. Top right panel: Zoom-in of the top-left panel plot for Lmax between 0 and 10.
Bottom left panel: Cross-section of the plot in the top left/top right panel for fixed Lmax ¼ 10. Bottom right panel: Cross section of the
plot in the top-left panel for fixed C0 ¼ 10−2.
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Z
d2p̂ s1Yl1m1

ðp̂Þ s2Yl2m2
ðp̂Þ s3Yl3m3

ðp̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
−s1 −s2 −s3

�
×

�
l1 l2 l3
m1 m2 m3

�
; ðA1Þ

where �
a b c

d e f

�
is a Wigner-3j symbol. The Wigner 3j symbol�

l1 l2 l3
m1 m2 m3

�
vanishes unless jl1−l2j<l3<l1þl2 and m1þm2þm3¼0.
If m1 ¼ m2 ¼ m3 ¼ 0, then l1 þ l2 þ l3 must be an even

integer. The Wigner-3j symbol satisfies a “reflection”
symmetry�

l1 l2 l3
m1 m2 m3

�
¼ ð−1Þl1þl2þl3

�
l1 l2 l3

−m1 −m2 −m3

�
:

ðA2Þ

Some other properties that we will use are�
l l0 0

m −m0 0

�
¼ ð−1Þlþmffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p δll0δmm0 ; ðA3Þ

X
m

ð−1Þl−m
�

l l L

m −m 0

�
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

δL0; ðA4Þ

X
m1;m2

ð2Lþ 1Þ
�

l1 l2 L

m1 m2 M

��
l1 l2 L0

m1 m2 M0

�
¼ δLL0δMM0 :

ðA5Þ

APPENDIX B: USEFUL EXPRESSIONS INVOLVING THE EARTH-TERM-ONLY RESPONSE
FUNCTIONION FA

lmðΩ̂Þ
Using (4.6), it follows that

X
A¼þ;×

FA
lmðΩ̂ÞFA�

l0m0 ðΩ̂Þ ¼ 8π2ð−1Þlþl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðl0 − 2Þ!
ðlþ 2Þ!ðl0 þ 2Þ!

s X
s¼−2;2

sY
�
lmðΩ̂ÞsYl0m0 ðΩ̂Þ

¼ 8π2ð−1Þlþl0þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðl0 − 2Þ!
ðlþ 2Þ!ðl0 þ 2Þ!

s X
s¼−2;2

−sYl;−mðΩ̂ÞsYl0m0 ðΩ̂Þ: ðB1Þ

Using this last equation, the identity for the integration of three spin-weighted spherical harmonics (A1), and the reflection
symmetry of the Wigner-3j symbol (A2), we getZ
S2
d2Ω̂ YLMðΩ̂Þ

X
A

FA
lmðΩ̂ÞFA�

l0m0 ðΩ̂Þ ¼ 8π2ð−1Þlþl0þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðl0 − 2Þ!
ðlþ 2Þ!ðl0 þ 2Þ!

s X
s¼−2;2

Z
S2
d2 Ω̂ YLMðΩ̂Þ−sYl;−mðΩ̂ÞsYl0m0 ðΩ̂Þ

¼ 8π2ð−1Þlþl0þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!ðl0 − 2Þ!
ðlþ 2Þ!ðl0 þ 2Þ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r �
l l0 L

−m m0 M

�
× ½1þ ð−1Þlþl0þL�

�
l l0 L

2 −2 0

�
: ðB2Þ

Recall that the Wigner-3j symbol vanishes unless −mþm0 þM ¼ 0 (which implies M ¼ m −m0) and
jl − l0j < L < lþ l0.
A useful special case of the previous equation for L ¼ 0, M ¼ 0 isZ

S2
d2Ω̂

X
A

FA
lmðΩ̂ÞFA�

l0m0 ðΩ̂Þ ¼ ð4πÞ2δll0δmm0
ðl − 2Þ!
ðlþ 2Þ! : ðB3Þ

Using this equation and expressions for FAðΩ̂; p̂Þ and μAA0 ðγ; Ω̂; Ω̂0Þ in terms of FA
lmðΩ̂Þ given in Sec. IVA, one can

show that
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μuðγÞ≡
Z

d2Ω̂
4π

X
A

FA
1 ðΩ̂ÞFA

2 ðΩ̂Þ ¼
X
l≥2

alPlðcos γÞ; ðB4Þ

eμ2ðγÞ≡ Z
d2Ω̂
4π

Z
d2Ω̂0

4π

X
A

X
A0

μ2AA0 ðγ; Ω̂; Ω̂0Þ ¼
X
l≥2

a2l
2lþ 1

P2
l ðcos γÞ; ðB5Þ

where al are given in (4.10). The above two quantities appear in the expressions for the mean and cosmic variance for the
ensembles discussed in this paper.
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