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We study the prospects for measuring the time variation of solar and atmospheric neutrino fluxes at
future large-scale xenon and argon dark matter detectors. For solar neutrinos, a yearly time variation arises
from the eccentricity of Earth’s orbit and, for charged current interactions, from a smaller energy-dependent
day-night variation due to flavor regeneration as neutrinos travel through Earth. For a 100-ton xenon
detector running for ten years with a xenon-136 fraction of ≲0.1%, in the electron recoil channel a time-
variation amplitude of about 0.8% is detectable with a power of 90% and the level of significance of 10%.
This is sufficient to detect time variation due to eccentricity, which has amplitude of ∼3%. In the nuclear
recoil channel, the detectable amplitude is about 10% under current detector resolution and efficiency
conditions, and this generally reduces to about 1% for improved detector resolution and efficiency, the
latter of which is sufficient to detect time variation due to eccentricity. Our analysis assumes both known
and unknown periods. We provide scalings to determine the sensitivity to an arbitrary time-varying
amplitude as a function of detector parameters. Identifying the time variation of the neutrino fluxes will be
important for distinguishing neutrinos from dark matter signals and other detector-related backgrounds and
extracting properties of neutrinos that can be uniquely studied in dark matter experiments.
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I. INTRODUCTION

Over the past several decades, direct dark matter detec-
tion experiments have made tremendous progress in con-
straining weak-scale particle dark matter [1,2]. Future
larger-scale detectors will be sensitive to not only particle
dark matter, but also astrophysical neutrinos and various
other rare-event phenomenology [3]. The most prominent
of the neutrino signals are from the Sun, the atmosphere,
and the diffuse supernova neutrino background (DSNB) [4].
Understanding these signals has important implications for
the future of particle dark matter searches, but also for
understanding the nature of the sources and the properties
of neutrinos [5].
Various methods have been proposed to distinguish

neutrinos and a possible dark matter signal. These include
exploiting the energy distribution of nuclear recoils between

neutrinos and dark matter [6,7], considering spectrum
of ionization of electrons from nuclear recoils [8], the
differences in arrival directions [9], and the differences in
the periodicities of the signal [10,11]. New physics in the
neutrino sector may also change the nature of the predicted
neutrino signal [12–14] and provide a method to discrimi-
nate from dark matter.
Here we examine the time variations of the neutrino

signals in more detail and study the prospects for measuring
these time variations. For solar neutrinos, the time variation
of the flux is due to the eccentricity of Earth’s orbit and the
day-night effect. The former is independent of the neutrino
flavor, while the latter, which results from neutrino inter-
actions with the matter as they pass through Earth, is flavor
dependent. Both effects are present in a dark matter
experiment through the nuclear recoil and electron recoil
channels. Beyond solar neutrinos, there may be detectable
time variation of other components of the astrophysical
neutrino flux. Because of the solar cycle, there is a time
variation of the atmospheric neutrino flux which is
∼10%–30% [15] depending on the detector location. We
present the first estimates of the detectability of the time
variation of the atmospheric neutrino flux given realistic
future detector configurations.
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Identifying the time variation for the different neutrino
sources is important for properly extracting the signal
and distinguishing it from dark matter [4,16]. In addition,
it is important to characterize these signals to constrain
neutrino properties. Previous studies of neutrinos in dark
matter experiments have only considered the time variation
of solar neutrinos as being due to the eccentricity of
Earth’s orbit and for idealized values of the nuclear recoil
threshold [10]. In addition to examining more realistic
and updated detector configurations, we consider the
prospects for measuring time variation of solar neutrinos
using the neutrino-electron elastic scattering channel for the
first time.
Solar neutrino experiments have previously searched for

time variations in their signals, including experiments that
have successfully established time variation due to the
eccentricity of Earth’s orbit [17,18] and the day-night
effect [19]. These experiments each used a range of
statistical techniques to identify the time-variable signal.
As part of our analysis, we rigorously compare the different
statistical methodologies for extracting the time-varying
signal. We present results for the sensitivity of given

experiments to time-varying amplitudes and quantify the
prospects for signal extraction as a function of experimental
sensitivity and background levels.
This paper is organized as follows. In Sec. II, we briefly

describe the signals and the models for the detector
efficiency. In Sec. III we describe the periodic signals used
in this work, and also we summarize the previous experi-
ments that have searched for neutrino periodicity. Next, in
Sec. IV, we review the statistical methodologies used in our
analysis. In Sec. V, we describe the simulation strategy,
compare statistical methods, and introduce the signal-to-
noise ratio as a convenient estimation tool. Then, in
Sec. VI, we present our resulting projections and, in
Sec. VII, the discussion and conclusions.

II. EVENT RATES AT DIFFERENT DETECTORS

A. Theoretical calculation

Figures 1 and 2 show the electron and nuclear recoil
spectra for the solar, atmospheric, and DSNB spectra
for xenon and argon targets. The nuclear recoil spectrum
uses the neutral current coherent elastic neutrino-nucleus

FIG. 1. Neutrino-electron ES spectra for xenon (left) and argon (right) for solar and experimental background components. For ES
argon, we consider 222Rn as the background [23].

FIG. 2. CEνNS spectra for xenon (left) and argon (right). Shown are the components of the solar, atmospheric, and DSNB spectra.
The atmospheric spectra are shown for the SURF detector location.
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scattering (CEνNS) channel, and the electron recoil channel
uses charged current neutrino-electron elastic scattering
(ES). We refer to previous literature for details of these
calculations [20]. Here we simply highlight the components
of the spectrum as a function of recoil energy to get a sense
of the recoil threshold required to detect each component.
For solar neutrinos, we used the high metallicity model
for the normalization [21]. We also show the appropriate
experimental background components [22].
In addition to the energy dependence shown in Figs. 1

and 2, for several of the neutrino components there is a time
variation to the flux. For solar neutrinos, since the time
variation due to the eccentricity of Earth’s orbit affects all
flavors, it will be present in both the CEνNS and the
ES channels. For charged current detection channels, the
day-night effect due to oscillations is present in the ES
channel. For atmospheric neutrinos, the time variation from
the solar modulation of the atmospheric neutrino flux [15]
affects all flavors and is detectable through CEνNS. Of
the spectra shown in Fig. 2, the only essentially steady-
state component is the DSNB, which has a cosmological
origin [24]. In the section below, we describe our param-
eterization of each of these time-varying components in
more detail.

B. Adding resolution and detector efficiency

To estimate the detector efficiency and resolution in
xenon, we use the noble element simulation technique
(NEST) [25] code. Neutrinos (or dark matter particles)
interact with the gas in the detector, producing a scintilla-
tion signal, S1, and ionization electrons, which then drift
along the electric field to produce a scintillation signal, S2.
The NEST code simulates the detection of events in the
space of S1 and S2. For the NEST configurations, we
compare several possible options. Similar to previous
studies, we consider the all enhanced parameters
“Xe100t-5”1 [26]. We also use the specific experimental

files LZ2 and G3.3 For all cases, we do not select a specific
region of interest (ROI), so the signal encompass all
available space for electron and nuclear recoils.
With this setup, we estimate the detector efficiency as

a function of the true nuclear or electron recoil energy.
To obtain the efficiency, we simulate 107 random recoil
energies uniformly over the range ½0 − 100� keV within the
detector. After processing through NEST, each simulated
energy corresponds to a specific S1 and S2. We bin the
detected events in recoil energy space, count the number of
events with both valid S1/S2 [27], and divide the valid
counts by the total number of events in each energy bin.
The results for the ES and CEνES efficiencies are shown

in Fig. 3. For comparison, we show the ES efficiency used
by Xenon1T [27], which is similar to our Xe100t-5, LZ,
and G3 curves, with the differences between them likely
explained by using different detector parameters, including
the ROI and the recoil energies simulated. For xenon, the
electron recoil efficiency drops to zero rapidly below
∼1 keV and is nearly 100% above this energy.
To obtain the event rate modified by resolution and

detector efficiencies, we integrate from a threshold energy
Ethrd to an end point energy Eend and obtain R ¼R Eend
Ethrd

ðdR=dErÞdEr, where

dR
dEr

¼ ϵðErÞ
Z

dE0
r
dRðE0

rÞ
dE0

r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðE0

rÞ
p e

−1
2

ðEr−E0rÞ2
σ2ðE0rÞ ;

where E0
r is the true recoil energy, Er is the detected recoil

energy, σðE0
rÞ is the resolution at the true recoil energy, and

ϵðErÞ is the detector efficiency at the detected recoil energy.
Different resolution and efficiency models for different

nuclear targets that we use for our analysis are summarized
in Tables I and II. For xenon our resolution and efficiency

FIG. 3. Different detector efficiency models from NEST simulations (LZ, G3, Xe100t-5) and current experiments (Argon-Darkside,
Xe1T). Left: solid curves are LZ, G3, and Xe100t-5 for xenon ES. The dotted curve is the efficiency from Xenon1T [27]. Right: solid
curves are LZ, G3, and Xe100t-5 for the xenon nuclear recoil CEνNS channel. The orange solid curve is the efficiency from Darkside-50
[28] for nuclear recoils in argon.

1https://zenodo.org/records/3653516“Detector_Xe100t_5.hh.

2https://github.com/NESTCollaboration/nest/blob/master/include/
Detectors/LZ_SR1.hh.

3https://github.com/NESTCollaboration/nest/blob/master/include/
Detectors/Detector_G3.hh.
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models rely on NEST simulations as described above. For
our argon ES resolution and efficiency model, we choose
Ethrd ¼ 100 keV in order to determine how our results are
affected by choosing a threshold characteristic of current
experiments.

III. PHYSICAL PERIODIC SIGNALS OF INTEREST

A. Solar yearly modulation

The slight eccentricity ϵ to Earth’s orbit around the Sun
induces a yearly variation in the neutrino flux. The time
dependence of the flux is parameterized as [29]

ϕðtÞ ¼ R⊙

4πr2ðtÞ ≈
R⊙

4πr20

�
1þ 2ϵ cos

�
2πðt − t0Þ

P

��
; ð1Þ

where P denotes the periodicity measured in years, rðtÞ is
the distance between Earth and the Sun at time t measured
in years (i.e., 0 ≤ t ≤ 1), r0 ¼ 1 A.U., and R⊙ is the
neutrino production rate in the Sun per unit time. The
second term, 2ϵ cosf2πðt − t0Þ=Pg, in Eq. (1) is respon-
sible for the small time variation. The amplitude of the
flux variation is approximately 0.03342 and has been
measured by several experiments, including recently by
Borexino [17]. t0 for the solar neutrino is approximately
3 days (peaked on January 4, [10]). For standard assump-
tions for the dark matter velocity distribution, this time
variation is out of phase with the standard modulation

signal predicted from dark matter t0 for dark matter is
approximately 152 days (peaked on June 2, [30]) and has
been proposed as a means to separate neutrinos from dark
matter signals [10].

B. Solar daily modulation

A second time variation in the solar neutrino flux is the
day-night effect, which is due to the regeneration of the
electron neutrino flux from matter effects as electron
neutrinos pass through Earth. The day-night asymmetry
is detectable for experiments sensitive to the electron neu-
trino flux through charged current interactions. Defining
ND and NN as the number of day and night events, the day-
night asymmetry ADN is parametrized as [17]

ADN ¼ ND − NN

0.5ðND þ NNÞ
¼ 2Ad;DNffiffiffi

2
p

R⊙
;

whereAd;DN is the amplitude of the daily modulation. Super-
Kamiokande has now established the day-night effect for
high energy 8B neutrinos [19] with a measured amplitude of
≲3% that is consistent with the LMA (large mixing angle)–
MSW (Mikheyev-Smirnov-Wolfenstein) solution.
At lower energies, where solar neutrinos transitions are

due to vacuum oscillations, the LMA-MSW solution
predicts that the day-night modulation is much smaller,
≲0.1%. The best limits on the day-night modulation at
these energies come from Borexino measurements of the

TABLE I. Target, resolution model, detector efficiency model, recoil energy threshold, recoil energy end point, components
experiencing time variation, and components that have constant rate constant in time in the ES channel. f2νββ is the fraction of the
remaining 2νββ background after depletion of 136Xe.

Channel Target Resolution model σðErÞ
Efficiency
model ϵðErÞ Ethrd (keV) Eend (keV)

Signal
components
(ton−1 yr−1)

Background
components
(ton−1 yr−1)

ES Xe Ideal Ideal 1 650 pp, 7Be 861,
7Be 384,
pep, CNO

f2νββ × 2νββ,
85Kr, 222Rn

�
0.31

ffiffiffiffiffiffi
Er
keV

q
þ 0.0035 Er

keV

�
keV [27] Xe100t-5 0 790

Ar Ideal Ideal 1 3400 222Rn
0.1Er Not applicable 100 3400

TABLE II. Same as Table I except for the CEνNS channel.

Channel Target Resolution model σðErÞ
Efficiency
model ϵðErÞ Ethrd (keV) Eend (keV)

Signal
components
(ton−1 yr−1)

Background
components
(ton−1 yr−1)

CEνNS Xe Ideal Ideal 1 4 8B Not
applicable

�
0.31

ffiffiffiffiffiffi
Er
keV

q
þ 0.0035 Er

keV

�
keV [27] Xe100t-5 0 9

LZ
G3

Ar Ideal Ideal 1 13
0.1Er Darkside 0 29
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7Be component [17]. Borexino is sensitive to electron
recoils ≳150 keV, so is not sensitive to the modulation
for the lower energy pp component. Since xenon- and
argon-based dark matter experiments are sensitive to lower
threshold, ∼few keV electron recoils, they will extend
limits on solar neutrino time variation and day-night effects
to lower energies than have been previously studied. In our
analysis, we simply compare the limits on daily modulation
from dark matter detectors to the limits on the modulation
obtained from Borexino.

C. Atmospheric neutrinos

We also study the prospects for identifying the time
variation of the atmospheric neutrino flux. Atmospheric
neutrinos are detected through the CEνNS channel, with a
modulation amplitude that depends on the detector loca-
tion. We model the atmospheric time variation with a
sinusoidal function in a similar manner to Eq. (1). In this
case, modulation of solar wind (solar cycle) has an 11-yr
period. The solar wind affects the amount of cosmic rays
entering the solar system, then entering Earth, where the
primary cosmic ray (mostly proton) interacts with the
atmosphere and produces atmospheric neutrinos and other
secondary particles. So the atmospheric neutrino flux is
also sensitive to the modulation with 11-yr period. And the
amplitudes are given by the maximum difference between
the solar minimum and maximum fluxes calculated in
Ref. [15]. The flux differs for different detector locations
because the geomagnetic field deflects the incoming
cosmic ray and is location dependent, which we consider
in our analysis below. For example, for the detector loca-
tions of China Jinping Underground Laboratory (CJPL),
Kamioka, Laboratori Nazionali del Gran Sasso (LNGS),
the Sanford Underground Research Facility (SURF),
and SNOlab, the maximum amplitudes for time variation
are Aatm ¼ ½0.0459; 0.0382; 0.0461; 0.1475; 0.1327� [15],
respectively, where Aatm and ω are defined through

ϕatmðtÞ ¼ ϕ̄f1þ Aatm sinðωtÞg;

ϕ̄ ¼ ϕ09 þ ϕ14

2
;

Aatm ¼ ϕ09 − ϕ14

2ϕ09

;

ω ¼ 2π

11 yr
:

The quantities ϕ09 and ϕ14 are the fluxes in the years of
2009 and 2014, corresponding to solar minimum and solar
maximum, respectively.

D. Previous experimental methods and results

Over the past several decades, multiple experiments have
searched for possible periodic signals in neutrino data. To
this point, the eccentricity has been measured by Borexino,

and the day-night modulation due to charged current
interactions has been established by Super-Kamiokande
(SK). An upper limit of the diurnal modulation has been set
by Borexino.
A typical data analysis procedure is to bin the observed

data in time bins. Then, a Fourier transform is performed, a
range of frequencies is scanned, and then peaks that corres-
pond to possible periodic signals are found. The peaks are
checked to determine if the power of the peak exceeds a
certain threshold, such that the probability of the peak coming
from noise (false-alarm probability) is low. The specific
details of turning time-binned data into the periodogram,
the error of the observed data, and the terminology describing
the methods differ among the experimental analyses.
In Table III, we summarize the results from experiments at

Homestake, Gran Sasso, Kamioka, Sudbury, Borexino, and
IceCube. We refer to each paper for more details on their
analysis methods. We characterize the experiments in terms
of their run-time T , assumed time binning Δt, frequency
range scanned, the periodic signal of interests, and the
results. These summarized results provide a point of com-
parison for our future projections for dark matter detectors.

IV. STATISTICAL METHODS FOR
TIME-VARYING ANALYSIS

This section establishes our statistical methods for
detecting solar and atmospheric neutrinos, specifically
describing our methods for constructing the likelihood
function. In this case, the null hypothesisH0 is defined as a
signal with a constant rate in time, while the alternative H1

is defined as a signal whose rate of events varies in time
with a period P and an amplitude Ad.
We use the following models under H0 and H1 to formu-

late our likelihood ratio test. Let ni be the number of
observed events in the time bin ðti; ti þ ΔtÞ. We assume that

ni ≡ nðtiÞ ∼
(
PoisðλΔtÞ underH0;

PoisðλiÞ underH1;

where the expected number of events in the time bin
ðti; ti þ ΔtÞ under the assumption of H1 is

λi ≡ λðtiÞ ¼ λ

Z
tiþΔt

ti

f1þ A cosðωuÞ þ B sinðωuÞgdu:

In the above formulation, λ, A, and B are unknown
parameters, and ω is an unknown frequency. In λi, the
background signal is λΔt and the time-varying signal is
λ
R tiþΔt
ti fA cosðωuÞ þ B sinðωuÞgdu. Note that H0 is a

special case of H1 as we obtain the null model by setting
A ¼ B ¼ 0 in λi.
First, we assume that ω is known for a gentle exposition

of the methodology. To test H0 against H1, we use
the generalized likelihood ratio (GLR) method. The term
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TABLE III. Summary of previous experimental results searching for time variation of solar neutrinos. The columns are (1) experiment,
(2) signal of interest experiment searched for, (3) experimental exposure, (4) time binning used in the analysis, (5) scanned frequency
range, (6) results of the analysis, along with specific comments where appropriate. Boxes are left blank in the experimental exposure and
time binning columns for Homestake because that information was not provided. Boxes are left blank in the scanned frequency range
column because in these cases the signal frequency is fixed at 1 yr and the amplitude (eccentricity) is obtained through the best fit.

Experiment Signals of interest T Δt
Scanned frequency
range ðfmin; fmaxÞ Results

Homestake
[31]

Quasibiennial periodicity 1
2.2 yr−1,

Rieger periodicity 1
157

day−1
(0, 20) yr−1 No evidence

Solar rotation frequency (12.4, 13.1) yr−1 Peak at 12.88 yr−1

Significant at the 3% level

Gran Sasso
[32]

Blind search 1594 days (Gallex)
1713 days (GNO)

3307 days
(Gallex/GNO)

3 or
4 weeks

(0.04, 26) yr−1 Peak at 6.37 yr−1 (Gallex/GNO)
Peak at 2.9 yr−1 (GNO only)

Eccentricity 1 yr−1 Best-fit eccentricity ϵ ¼ 0.0165

Sudbury Blind search 572.2 calendar days
(D2O) 762.7
calendar days
(salt) [33,34]

1 day ( 1
10
, 365.25) yr−1 Peak at 0.296 day−1 (D2O),

0.971 day−1 (salt), 0.417 day−1

(combined)

( 1
10
, 182.625) yr−1 Peak at 0.408 day−1 (D2O),

0.429 day−1 (salt), 0.413 day−1

(combined)
7% amplitude 9.43 yr−1

Kamioka result
(9.33, 9.53) yr−1 Best-fit amplitude 1.3%

(combined)
Eccentricity 1 yr−1 Best-fit eccentricity ϵ ¼ 0.0143

Borexino Diurnal modulation 1 day−1 740.88 live days [35]
phase I

Day-night asymmetry ¼ 0.001

Eccentricity 1 yr−1 1456 astro days [36]
phase II

30.43 days Best-fit eccentricity ϵ ¼ 0.0174

1 day
7 days

Peak at 1 yr−1

Eccentricity 1 yr−1 ∼10 yr [17]
phase IIþ III

30 days Best-fit eccentricity ϵ ¼ 0.0184

Carrington rotation 13.4 yr−1,
diurnal modulation 1 day−1

8 hr (1, 547) yr−1 Day-night asymmetry ¼ 0.003

Kamioka Blind search 1871 elapsed days
SK-1 [18,37–40]

10 days (0.0002,
0.0987) day−1 [37]

Peak at 0.0726 day−1

(0, 50) yr−1 [18] Peak at 9.42 yr−1

(0, 100) yr−1 [38] Peak at 26.57 yr−1

(0, 40) yr−1 [38] Alias peak at 9.42 yr−1

5 days (0.0002,
0.19187) day−1 [37]

Peak at 0.1197 day−1

0.0726 day−1 removed
(0, 50) yr−1 [18,39] Alias peak of 9.42 yr−1 at

26.52 yr−1 possible solar rotation
Eccentricity 1 yr−1 [40] 1.5 months Best-fit eccentricity ϵ ¼ 0.021
Day-night difference [40] Day-night asymmetry ¼

− 0.021; − 0.017
Blind search 5803 live days [41]

SK-I, II, III, IV
5 days (4e−4, 0.2) day−1 Peak at 0.126 day−1

(10−6, 0.2) day−1 Peak at 0.143 day−1

Eccentricity 1 yr−1 365.25
12

days Best-fit eccentricity ϵ ¼ 0.0153

IceCube
[42]

Temperature-dependent variation of
atmospheric neutrino flux

May 2012–May
2017

1 day
30 days

High statistics at 140 day−1 in the
south region
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generalized is used when at least one of H0 and H1 is a
composite hypothesis; in our case, both are composite
hypotheses. Reference [34] used the GLR method for
identifying the periodicity of 8B solar neutrino flux released
by the SNO Collaboration. However, unlike [34], we obtain
the expected number of events within a time bin by
integrating the time-varying instantaneous rate function,
which is an appropriate method, especially when the bin
width is not very small. Moreover, besides applying to 8B
solar neutrinos, we use this model for all components of the
solar and atmospheric neutrino flux. The GLR statistic is

GLR ¼
maxλ

QNt
i¼1

λni e−λ
ni!

maxλ;A;B
QNt

i¼1

λ
ni
i e−λi

ni!

¼ maxλ
QNt

i¼1 λ
ni expð−λÞ

maxλ;A;B
QNt

i¼1 λ
ni
i expð−λiÞ

:

ð2Þ

The numerator of (2) is

ðλ̂0ΔtÞ
P

Nt
i¼1

ni expð−λ̂0ΔtNtÞ;

where λ̂0 ¼
PNt

i¼1 ni=NtΔt denotes the maximum likeli-
hood estimator of λ under H0. The denominator of (2) is

YNt

i¼1

λ̂nii expð−λ̂iÞ;

where λ̂i ¼ λ̂1
R tiþΔt
ti f1þ Â cosðωuÞ þ B̂ sinðωuÞgdu with

λ̂1, Â and B̂ being the solution of the following gradient
equations (obtained by differentiating the log-likelihood
function under H1):

0 ¼
XNt

i¼1

�
ni
λ
−
Z

tiþΔt

ti

f1þ A cosðωuÞ þ B sinðωuÞgdu
�
; ð3Þ

0 ¼
XNt

i¼1

�
ni
R tiþΔt
ti cosðωuÞduR tiþΔt

ti f1þ A cosðωtiÞ þ B sinðωuÞgdu − λ

Z
tiþΔt

ti

cosðωuÞdu
�
; ð4Þ

0 ¼
XNt

i¼1

�
ni
R tiþΔt
ti sinðωuÞduR tiþΔt

ti f1þ A cosðωtiÞ þ B sinðωuÞgdu − λ

Z
tiþΔt

ti

sinðωuÞdu
�
: ð5Þ

Equation (3) yields

λ ¼
PNt

j¼1 njPNt
j¼1

R tjþΔt
tj f1þ A cosðωuÞ þ B sinðωuÞgdu

;

and using this expression in (4) and (5) we obtain

0 ¼
XNt

i¼1

"
niR tiþΔt

ti f1þ A cosðωuÞ þ B sinðωuÞgdu −
PNt

j¼1 njPNt
j¼1

R tjþΔt
tj f1þ A cosðωuÞ þ B sinðωuÞgdu

#Z
tiþΔt

ti

cosðωvÞdv;

0 ¼
XNt

i¼1

"
niR tiþΔt

ti f1þ A cosðωuÞ þ B sinðωuÞgdu −
PNt

j¼1 njPNt
j¼1

R tjþΔt
tj f1þ A cosðωuÞ þ B sinðωuÞgdu

#Z
tiþΔt

ti

sinðωvÞdv: ð6Þ

To solve (6), we assume that data ni’s and the frequency ω are known and replace
R tiþΔt
ti sinðωvÞdv by ½cosðωtiÞ −

cosfωðti þ ΔtÞg�=ω and
R tiþΔt
ti cosðωvÞdv by ½sinfωðti þ ΔtÞg − sinðωtiÞ�=ω. The likelihood spectrum at ω is

SðωÞ ¼ − lnðGLRÞ ¼
"XNt

i¼1

fnilnðλ̂iÞ − λ̂ig − lnðλ̂0ΔtÞ
XNt

i¼1

ni þ Ntλ̂0Δt

#
; ð7Þ

where the expression of λ̂i is given before Eq. (3). For a given
value of ω, this is the key statistic used for the GLR test.
We can assume that the frequencyω is known or unknown

when analyzing data. If ω is known and Nt is large, then to

test the hypotheses (for detecting the signal), one can reject
H0 when 2SðωÞ> χ22;α, where χ22;α denotes the upper α
percentile of the χ-square distribution with 2 degrees of
freedom. For an unknown ω, we define the test statistic as
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Smax ¼ max
ω∈Ω

SðωÞ;

where Ω is set of set ofM distinct frequencies. In this case,
we reject H0 when Smax > Smax;α, where Smax;α denotes
the upper α percentile of the Smax distribution. Since the

analytical form of the distribution is unknown, the percen-
tile Smax;α is determined by a numerical procedure given in
the next section.
As an alternative to the GLR method, we also consider

the Lomb-Scargle method [43], hereafter referred to as LS.
The periodogram at a given frequency ω is

LSðωÞ ¼ 1

2σ2

 	PNt
i¼1 ni cosfωðti − τÞg
2PNt
i¼1 cos

2fωðti − τÞg þ
	PNt

i¼1 ni sinfωðti − τÞg
2PNt
i¼1 sin

2fωðti − τÞg

!

with τ ¼ ð1=2ωÞ tan−1 fPNt
i¼1 sinð2ωtiÞ=

PNt
i¼1 cosð2ωtiÞg

and σ2 ¼PNt
i¼1 n

2
i =ðNt − 1Þ. Like the GLR case, for

known ω, we reject H0 if 2LðωÞ > χ22;α and for the un-
known ω we reject H0 if Lmax ¼ maxω∈Ω LðωÞ > Lmax;α.
This Lmax;α is the upper α percentile point of Lmax. This
percentile (or the critical value of this test) can be calculated
analytically or numerically. Reference [34] approximated
the distribution of Lmax by the following probability density
function:

fXðxjνÞ ¼ νð1 − e−xÞν−1e−x; x > 0; ð8Þ

where ν is a function of the number of scanned frequencies
inΩ. Following [37], we take ν ¼ Mscan, and the details on

how to calculate Mscan are given in the next section. To be
specific, Eq. (8) is the density of the maximum of ν
independent standard exponential (χ22=2) random variables.
Therefore, we can determine the upper α percentile of
LSmax from the density given in Eq. (8). The upper α
percentile, denoted by LSmax;α;1 is − logf1 − ð1 − αÞ1=νg.
We use LSmax;α;2 to denote the percentile determined by a
simulation technique.

V. SYNTHETIC DATA SIMULATION STRATEGY

A. General simulation strategy

We generated data under H0 and H1. The counts ni over
the time bin ½ti; ti þ ΔtÞ follow:

Pois
�ðRs þRbÞDΔt

�
underH0;

Pois
�
RbDΔtþRsD



Δtþ Ad

R tiþΔt
ti sin



2π
P u −Ψ

�
du
��

underH1:

Here, Rs is a constant signal event rate and Rb is a
constant rate for the background noise. Here, we have
chosen not to bin in recoil energy, so R ¼ Rs þRb
denotes the event rate at any given time integrated over
the entire recoil energy range and summing over all flux
components. For analyzing (testing of hypotheses) simu-
lated data, we employed the GLR and LS methods.
Note that we use a value of ω for data simulation.

However, at the analyses stage, ω is assumed to be once
known and then an unknown parameter. For unknown ω,
the statistic Smax and the critical value of Smax are
determined as follows. We take Ω as a set of Nentire ¼
noT =Δt evenly spaced frequencies on the entire range for
the scanned frequencies ½fmin; 1=Δt� for a given run-time
T , width of the time interval Δt, and oversample factor no
[44], so Ω ¼ fω1;…;ωNentire

g. We set no ¼ 10 for the
Monte Carlo simulation. We use the same Ω for both
Smax and Lmax. Another concept needed for deriving the
null distribution of Lmax is the effective number of scanned
frequencies over ½fmin; 1=Δt�. It is Mentire ¼ Nentire=fadj,
where fadj is an empirical result for the scanning density.

Note that we are interested in the frequency range
½fmin; fmax� with fmax ¼ minð1=Δt; 1 day−1Þ, and fmin ¼
1=365.25 day−1 for P ¼ 1 yr or 1 day, fmin ¼ 1=11 yr−1

for P ¼ 11 yr. Then we overscan Nentire × fscan=fentire
on ½fmin; fmax� where fentire ¼ 1=Δt − fmin and fscan ¼
fmax − fmin. Specifically, to be consistent with the fre-
quency range of interest, fadj for different Δt and T are
shown in the Appendix. The number of independent fre-
quencies scanned in a smaller frequency range [37] is
Mscan ¼ Mentire × fscan=fentire, and this Mscan is used to
approximate the distribution of Lmax given in Eq. (8).

1. Critical value Smax;α from the distribution of Smax

We found that the empirical density of Smax is somewhat
close to Eq. (8) for some choice of ν, which need not be the
same as the number of frequencies of Ω. However, it is not
easy to prove that the density of Smax has the form of Eq. (8)
because (1) for any two arbitrary frequencies ω and ω0,
both SðωÞ and Sðω0Þ are calculated on the same observed
data, just at two different frequencies, so they need not be
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independent, and (2) finding the distribution of the maxi-
mum of dependent χ2 random variables is not an easy task.
Therefore, the threshold Smax;α estimated after fitting
Eq. (8) to the Smax data will be an approximation of the
upper α percentile of Smax ’s distribution. For each 5000
simulated dataset under H0, we computed Smax, which
helps to obtain the empirical distribution of Smax. We then
fit model [Eq. (8)] to the Smax values denoted by
fSmax;r; r ¼ 1;…; 5000g and obtain the maximum like-
lihood estimates (MLE) of ν by maximizing the following
log-likelihood function:

X5000
r¼1

	
logðνÞ þ ðν − 1Þ logf1 − expð−Smax;rÞg − Smax;r



:

Let us denote the MLE of ν by ν̂. Since the cumulative
distribution function of the probability density [Eq. (8)] is
FðhÞ ¼ f1 − expð−hÞgν, we set f1 − expð−Smax;αÞgν̂ ¼
1 − α, and solving this equation we obtain the estimate
Smax;α;1 ¼ − logf1 − ð1 − αÞ1=ν̂g. Next, we use the upper
αth percentile of the 5000 Smax values as the second
estimate of Smax;α, call it Smax;α;2.

2. Results between GLR and LS methods under H0

In our simulation, we set α ¼ 0.1. The scanned frequen-
cies were taken between [fmin, fmax] with a bin width
of Δt, run-time T , and the detector size D ¼ 100 ton.
Computation of the threshold under the Lomb-Scargle
method was much faster as it did not involve any equation
solving, even when the number of frequencies was on the
order of 105. In contrast, the GLR-based approach was
time consuming. Specifically, the computing time of
GLR was proportional to the number of scanned frequen-
cies and the length of ni. We used scipy.root [45] and
astropy.timeseries.LombScargle [46] of PYTHON for
GLR and LS calculations, respectively. Table IV contains
the critical values for the GLR and LS methods when
T ¼ 10 yr.

3. Simulation procedure under H1

The power of the test is the probability of rejecting H0

when data are generated under the alternative hypothesis
H1. The simulated data under H1 is a Poisson distribution
with a time-varying rate determined by a given amplitude Ad
and period P. We choose Ψ ¼ P=4 such that the simulated
time variation starts at the extreme value. In addition to
studying signals with different periods, the knowledge of
phase can be used to split the signals with the same period
(dark matter yearly modulation and solar neutrino yearly
modulation) but different amplitudes and phases, especially
when one signal is well measured (solar neutrino) and the
other signal is undetermined (dark matter).
In this work, we are mainly interested in the periodic

signals in the neutrino flux from the Sun with a period of
P ¼ 1 day (due to Earth rotating itself), P ¼ 365.25 days
(due to Earth orbiting around the Sun), and atmosphere
P ¼ 11 yr (due to the 11 yr solar cycle, the changing
strength of the solar wind). All three periods should, in
principle, be observable. In the data generation process, we
considerP ¼ 1 day and 365.25 days withΔt < 1 day; P ¼
365.25 days with 1 day ≤ Δt < 365.25 days; P ¼ 11 yr
when Δt < 1 yr and T ≥ 11 yr.

When ni ∼
indPoissonðλiÞ; i ¼ 1;…; Nt, the power of the

tests is calculated under two scenarios:
(1) Known period P: Under such cases when the periods

are known, instead of searching for all possible
physical and theoretical peaks by finding a peak as is
being done in actual experiments, we calculate the
statistics SðωknownÞ and LSðωknownÞ at that known
ωknown ¼ 2π=P, instead of estimating ω. The powers
of the tests are

Power ¼
(
prf2SðωknownÞ > χ22;αg; for GLR;

prf2LSðωknownÞ > χ22;αg; for LS:

(2) Unknown period P: Experimentally, possible peri-
odic signals are searched by finding peaks over a

TABLE IV. This table shows the threshold values of the test statistic derived from (1) the Lomb-Scargle
periodogram and (2) the GLR for differentΔt, T ,Mscan and when the detector’s size is assumed to beD ¼ 100 ton,
Rs ¼ 100 ton−1 yr−1, andRb ¼ 0 ton−1 yr−1, and α ¼ 10%. The data are generated underH0. Under each method
two estimates of threshold are presented: (a) model based corresponds to the one with suffix 1 and (b) empirical
distribution based corresponds to the one with suffix 2. All results are based on simulation with 5000 replications.

LS GLR

T years Δt days D tons
Average number of

events per bin Mscan LSmax;α;1 LSmax;α;2 ν̂ Smax;α;1 Smax;α;2

10 30 100 821 202 7.56 7.24 133 7.14 7.39
10 10 100 273 608 8.66 8.4 463 8.39 8.49
10 5 100 136 1217 9.35 9.23 946 9.1 9.26

1=6 0.2 100 5 404 8.25 8.05 329 8.05 8.14
1=6 0.2 500 27 404 8.25 8.03 328 8.04 8.16
1=6 0.2 2000 109 404 8.25 8.12 325 8.03 8.22

PROSPECTS FOR MEASURING THE TIME VARIATION OF … PHYS. REV. D 110, 043037 (2024)

043037-9



wide frequency range. The scanned frequency range
and frequency number are mentioned in the third
paragraph of this section. In this case, Smax may be
located at the alias of the input frequency instead of
at the input frequency. The powers of the tests are

Power ¼
(
prðSmax > Smax;αÞ; for GLR;

prðLSmax > LSmax;αÞ; for LS:

We define β ¼ 1 − Power as the probability of failing to
reject the null hypothesis when the alternative is true (i.e.,
the type-II error). For the empirical power (power obtained
via simulation), we first fix ðRb;Rs;D; T ; P;Ψ;ΔtÞ.
Then we change Ad over a grid of values. For every choice
of ðRb;Rs;D;T ; P;Ψ;Δt; AdÞ, we generate Poisson data
fn1;…; nNt

g under H1. We calculate SðωknownÞ or
LSðωknownÞ or Smax or LSmax for this simulated data. We
repeat this procedure 5000 times, then calculate the
proportion of times these quantities are larger than χ22;α
or Smax;α or LSmax;α accordingly. This proportion is an
estimate of the power [Eq. (9)]. This procedure is repeated
for every combination of the parameters. Next we draw
the power curves against Ad for a fixed value of
ðRb;Rs;D; T ; P;Ψ;ΔtÞ and we denote the amplitude
Ad as Ad;α;β when the probability of type-I error rate of
a hypothesis test being α and type-II error being β.
Figure 4 shows an example when the detecting period

P ¼ 365.25 days using the run-time T ¼ 10 yr and binned
in Δt ¼ 0.2, 10, 30 days. The left histograms are under the

“known period” condition, where H0 is the χ22 distribution
and H1 is 2LSðωknownÞ. The right histograms are under the
“unknown period” condition, where H0 and H1 are LSmax.
The amplitude for H1 is Ad ¼ 0.024. The vertical line in
each panel is the critical value χ22;α (left column) and
LSmax;α;1 (right column) when α ¼ 0.1. The power (1 − β)
is the proportion of 2LSðωknownÞ (or LSmax) greater than the
threshold χ22;α (or LSmax;α;1) out of the 5000 realizations
under H1, where ωknown ¼ 2π=P.

4. Comparing Ad;α;β between GLR and LS methods

For a fixed value of ðRb;Rs;D; T ; P;Ψ;ΔtÞ, we want to
compare Ad;α;β between LS and GLR methods, under
known period and unknown period scenarios. We also test
the performance for a small time bin and a small number
of events [17]. For these purposes, we set Rs ¼ 100

and Rb ¼ 0 ton−1 yr−1. We consider T ¼ 1=6 yr with
Δt ¼ 0.2 days, and T ¼ 10 yr with Δt ¼ 10, 30 days
and control the number of events in each time bin by
changing D. One example is shown in Fig. 5, and results
are shown in Table V. Under the known period scenarios,
the results from GLR and LS are similar. However, under
the unknown period scenario, the power of GLR is
generally better than the LS method, especially when the
number of events in time bins is small. Both methods
become equivalent in power as the number of events in each
bin increases. We adopt LS in the rest of the analyses as it is
computationally more efficient than GLR, especially for
small time bin Δt and long run-time T .

FIG. 4. Example of histograms for the assumptions of known periods (left) and unknown periods (right) under the null hypothesisH0

and the alternative hypothesis H1. Assumed parameters are run-time T ¼ 10 yr, time binnings Δt ¼ 0.2, 10, 30 days, period of
P ¼ 365.25 days, amplitude Ad ¼ 0.024, Rs ¼ 100 ton−1 yr−1, and no experimental backgrounds Rb ¼ 0 ton−1 yr−1. Left: the solid
curve is the χ22 distribution, the vertical line is the critical value χ

2
2;α with α ¼ 0.1. The dotted histogram in each panel is the distribution of

5000 simulated values of 2LSmax under the alternative hypothesis. Right: the filled histogram in each panel is the empirical distribution
of 5000 simulated values of LSmax under the null hypothesisH0 using the LS method as described in the text. The solid curve is fXðxjνÞ
with ν ¼ Mscan, the vertical line is the critical value LSmax;α;1 with α ¼ 0.1. The dotted histogram in each panel is the distribution of
5000 simulated values of LSðωknownÞ under the alternative hypothesis with ωknown ¼ 2π=P at the detection period P ¼ 365.25 days.
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B. Estimating Ad;α;β for arbitrary (Rs,Rb,D) and fixed
(T ,Δt, P) via the signal-to-noise ratio

In the previous section, Ad;α;β is obtained via a simulation
process for a given ðRb;Rs;D; T ; P;Ψ;ΔtÞ. This process
is time intensive. It is desirable to obtain an analytical
expression for the variation of Ad;α;β when (Rs,Rb,D) take
on different values. The signal rate Rs depends on flux
uncertainty, sin θ2w, nuclei, physical process, energy thresh-
old Ethrd, detector efficiency ϵðErÞ, and resolution σðErÞ.
The background rate Rb depends on the background
depletion and physical process to generate the background.
The detector size D depends on the experiment. In this
section, after obtaining Ad;α;β for ðRb;Rs;D; T ; P;Ψ;ΔtÞ,
we find an efficient way to obtain A0

d;α;β for
ðR0

b;R
0
s;D0; T ; P;Ψ;ΔtÞ so that the test maintains the

same power.
We set α ¼ 0.1 and ð1 − βÞ ¼ 0.9 for the “90% detec-

tion,” then the corresponding detectable amplitude is
denoted by Ad;α¼0.1;β¼0.1. The signal for the detectable
amplitude Ad;α;β in the time bin ½ti; ti þ Δt� under H1 is

RsDAd;α;β

R tiþΔt
ti sin ð2πu=PÞdu. Here α, β, P, Δt, and T

are assumed to be fixed (not changing). Also, the back-
ground is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRs þRbÞDΔt
p

, representing the Poisson

standard deviation under the null model for the number
of occurrences in one interval. Since the time-dependent
parameters (T , Δt, P) are fixed, the critical value
stays the same during the scaling. In addition, the signal
function deviated from the background on interval
½ti; ti þ Δt� is Ad;α;βRsD

R tiþΔt
ti sin ð2πu=PÞdu. The com-

ponent
R tiþΔt
ti sin ð2πu=PÞdu determines the shape of the

signal on ½0; T�. When time-dependent parameters (T , Δt,
P) are fixed, the shape of this signal function over ½0; T �
may remain the same, but its magnitude may be different,
depending on the parameters (Ad;α;β, Rs, D). In this case,
the power of the tests only depends on the signal’s
magnitude, because the shape’s effect is the same. The
squared signal-to-noise ratio (SNR2) is

SNR2jRs;Rb;D ¼ A2
d;α;β ×Rs ×D ×

1

ð1þRb=RsÞ
× FðP; T ;ΔtÞ;

where FðP; T ;ΔtÞ contains parameters only describing
time information of the signal and is some suitable effect
due to the shape on the squared signal-to-noise ratio. Note
that the signal-to-noise ratio for amplitude Ad;α;β when there
is no constant background (Rs;Rb ¼ 0;D) is

SNR2jRs;Rb¼0;D ¼ A2
d;α;β ×Rs ×D × FðP; T ;ΔtÞ:

Therefore, for any ðRs;Rb;DÞ,

SNR2jRs;Rb¼0;D ¼ SNR2jRs;Rb>0;D ×

�
1þRb

Rs

�
: ð9Þ

Next,

TABLE V. This table shows the amplitude Ad;α;β when α ¼ 0.1, β ¼ 0.1 for scenarios (1) known period and (2) unknown period and
methods (1) the Lomb-Scargle periodogram and (2) the GLR, for differentD, T ,Δt and whenRs ¼ 100,Rb ¼ 0 ton−1 yr−1. Under the
known period scenario, the critical value is χ22;α for LS and GLR. Under the unknown period scenario, the critical values are LSmax;α;1,
LSmax;α;2 for LS and Smax;α;1 and Smax;α;2 for GLR.

Ad;α;β

Known period scenario Unknown period scenario

T years Δt days Period days D tons
Average number of

events per bin LS GLR LSmax;α;1 LSmax;α;2 Smax;α;1 Smax;α;2

10 30 365.25 100 821 0.015 0.015 0.023 0.023 0.021 0.022
10 10 365.25 100 273 0.015 0.015 0.023 0.023 0.023 0.023

1=6 0.2 1 100 5 0.12 0.12 0.195 0.193 0.188 0.189
1=6 0.2 1 500 27 0.055 0.054 0.087 0.086 0.084 0.084
1=6 0.2 1 2000 109 0.027 0.027 0.043 0.043 0.042 0.042

FIG. 5. Power curves (the probability of rejecting H0) for the
GLR and Lomb-Scargle methods when α ¼ 0.1 and P ¼ 1 yr
and under the unknown period scenario. The critical values are
LSmax;α;1, LSmax;α;2 for LS and Smax;α;1 and Smax;α;2 for GLR. The
vertical line is Ad;α¼0.1;β¼0.1 under the LS method and when the
critical value is LSmax;α;1.
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SNR2jRs;Rb¼0;D ¼ A2
d;α;β ×Rs ×D × FðP; T ;ΔtÞ

¼ A2
d;α;β ×Rs

�
R0

s

R0
s

�
×D

�
D0

D0

�
× FðP; T ;ΔtÞ

¼
 
Ad;α;β

ffiffiffiffiffiffi
Rs

R0
s

s ffiffiffiffiffi
D
D0

r !
2

×R0
s ×D0

× FðP; T ;ΔtÞ: ð10Þ

Now, suppose that for another set of values of ðR0
s;R0

b ¼ 0;
D0Þ the signal-to-noise ratio is the same as for ðRs;Rb ¼ 0;
DÞ while all other parameters except the amplitude are
fixed for both cases, i.e.,

SNR2jR0
s;R0

b¼0;D0 ¼ A02
d;α;β ×R0

s ×D0 × FðP; T ;ΔtÞ
¼ SNR2jRs;Rb¼0;D: ð11Þ

Now, using Eqs. (9) and (11) we obtain

SNR2jR0
s;R0

b>0;D
0 ×

�
1þR0

b

R0
s

�
¼ SNR2jR0

s;R0
b¼0;D0

¼ SNR2jRs;Rb¼0;D; ð12Þ

and using Eqs. (10) in (12) we have

ðA0
d;α;βÞ2 ×R0

s ×D0 ×
1

ð1þR0
b=R

0
sÞ
× FðP; T ;ΔtÞ

¼
 
Ad;α;β

ffiffiffiffiffiffi
Rs

R0
s

s ffiffiffiffiffi
D
D0

r !
2

×R0
s ×D0 × FðP; T ;ΔtÞ;

which yields the amplitude for other setting
ðR0

s;R0
b ¼ 0;D0Þ,

A0
d;α;β ¼ Ad;α;β ×

ffiffiffiffiffiffi
Rs

R0
s

s ffiffiffiffiffi
D
D0

r
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0

b

R0
s

s
: ð13Þ

As an example, for T ¼ 10 yr, Δt ¼ 10 days, P ¼
365.25 days, Rs ¼ 100 ton−1 yr−1, Rb ¼ 0 ton−1 yr−1,
and D ¼ 100 ton, the detectable amplitude with a power
of 90% and a level of significance 10% is Ad;α¼0.1;β¼0.1 ¼
0.02357377 (results in Fig. 5). Using Eq. (13), we can
now obtain the detectable amplitude A0

d;α¼0.1;β¼0.1 ¼
0.1292 for D0 ¼ 100 ton, R0

s ¼ 474.367 ton−1 yr−1

(ES xenon resolutionþ efficiency), and R0
b ¼

50060.5 ton−1 yr−1 (all backgrounds). This calculation is
done without running a time-consuming simulation. The
detectable amplitudes for other possible values of R0

s and
R0

b are given in the “signal components” and “background
components” column in Tables I and II. Moreover, when
the eccentricity A0

d;α¼0.1;β¼0.1 ¼ Aecc ¼ 0.03342, using

Eq. (13) we obtain the detector’s size D0,

D0 ¼ D
�
Ad;α¼0.1;β¼0.1 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0

b=R
0
s

p
Aecc

�2�Rs

R0
s

�
;

interpreted as the detector size required for the eccentricity
to be 90% detected.
Further estimations for different (T , Δt, P) are derived

from Figs. 6 and 7. Figures 8 and 9 show the amplitudes for
different combinations of ðT ;Δt; P; α; βÞ. For example,
running simulations we obtain Ad;α¼0.1;β¼0.1 ¼ 0.0291161,
Ad;α¼0.05;β¼0.1 ¼ 0.03 for T ¼ 10 yr, Δt ¼ 0.2 days,
P ¼ 1 day, Rs ¼ 100 ton−1 yr−1, Rb ¼ 0 ton−1 yr−1,
D ¼ 100 ton. Then using Eq. (13) we obtain
A0
d;α¼0.1;β¼0.1, A

0
d;α¼0.05;β¼0.1 for the same T , Δt, P and

different choices of ðR0
s;R0

b;D
0Þ. We also consider the

cases (T ¼ 10 yr, Δt ¼ 0.2 days, P ¼ 1 day),
(T ¼ 10 yr, Δt ¼ 10 days, P ¼ 1 yr), and (T ¼ 10 yr,
Δt ¼ 30 days, P ¼ 1 yr).

C. Estimating Ad;α;β to have the required
power with different Δt and T

We now fix Rs ¼ 100 ton−1 yr−1, Rb ¼ 0 ton−1 yr−1,
D ¼ 100 ton and explore the relation between the ampli-
tude Ad;α;β and the time-dependent parameters (T ;Δt; P).
For a given ðT ;ΔtÞ, we scan a series of frequencies (P)
to obtain Ad;α;β;P for each P. Then we find the P range
where Ad;α;β is roughly constant Ad;α;β;P ≈ Ād;α;β where we
use Ād;α;β to denote the average of the amplitudes over
different Ps.
The simulations show how different T and Δt affect the

strength of signal Ad;α;β to maintain 90% power of the test.

With the requirement that P ≫ Δt,
R tiþΔt
ti sinðωvÞdv≈

Δt sinðωtiÞ. Therefore, when Rb ¼ 0, the signal-to-noise
ratio SNR2

Rs;Rb¼0;D is approximated by A2
d;α;β ×Rs ×D×

Δt × FsinðT ; PÞ, where FsinðT ; PÞ represents the effect on
the signal-to-noise ratio due to different parameters T and
P, considering a signal with the shape of sinðωtÞ. The
sample size of observations is Nt ¼ T=Δt. The sample can
differ with T and Δt. When all other parameters are fixed,
but Δt decreases, the signal-to-noise ratio decreases, while
the sample size Nt increases. Consequently, the expected
power shall remain the same.
The simulation results showing how Ad;α;β depends on

different parameters as a function of P are given in Figs. 6
and 7. Each panel is the Ad;α¼0.1;β¼0.1;P for a series of
scanned frequencies (P) under a given ðT ;ΔtÞ.
Ad;α¼0.1;β¼0.1;P is roughly constant whenΔt is small enough
such that the reached Ad is the same as the input Ad,
10Δt < P < T =4 when Δt ≥ 10 days and 20Δt < P <
T =4 when Δt < 10 days. In addition, we found an inter-
esting empirical relationship that by an equation
y ¼ ax2 þ bxþ c, where y ¼ logðĀ2

d;α;βRsDΔtÞ and x
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depends on the sample size of observation Nt and the
critical value. Specifically, x ¼ logfτðMscanÞ=Ntg, where
τðMscanÞ ¼ maxð1; logðMscanÞÞ. Under the known period
scenario,Mscan ¼ 1 and x ¼ logð1=NtÞ. For a given α, the
critical value is constant under the known period scenario,
and for the unknown period scenario, with Mscan ≫ 1, the
critical value LSmax;α;2 ≈ CONST þ logðMscanÞ. The cor-
responding x and the fitted a, b, c for different parameters
are showed in Table VI.
Using the above empirical relations, to summarize the

procedure to find Ad;α;β, first, we select the properΔt and T
based on possible P such that Ad;α;β;P ≈ Ād;α;β. Adjust
Mscan such that LSmax;α;1 ≈ LSmax;α;2 to ensure H0 is
consistent with the model and obtain Mscan and x, then

obtain Ād;α;β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eax

2þbxþc

RsDΔt

q
using parameters in Table VI

and obtain

Ā0
d;α;β ¼ Ād;α;β ×

ffiffiffiffiffiffi
Rs

R0
s

s ffiffiffiffiffi
D
D0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR0

b

R0
s

s
ð14Þ

via Eq. (13). Then, the nearby amplitudes are scanned for
more accurate simulations. The detector size D0 can be

obtained similarly via D0 ¼ D × ðĀd;α;β

Aecc
Þ2 Rs

R0
s
ð1þ R0

b
R0

s
Þ.

While Fig. 10 shows how the power increases with the run
time T under fixing α and fixing amplitude, Figs. 11, 13, and
15 are the application of this method and show what
amplitude needs to be under different run time T to reach
a fixing power and fixing α to estimate Ā0

d;α¼0.1;β¼0.1 as a
function of run-time T . We choose Δt ¼ 0.05 days for
P ¼ 1 day, andΔt ¼ 10 days forP ¼ 1 and 11 yr, such that
A0
d;α;β;P ≈ Ā0

d;α;β for these periods. The minimum run-time T
when Ā0

d;α¼0.1;β¼0.1 meets Aecc ¼ 0.03342 or Ad;DN;max ¼
0.00891 or Aatm can be interpreted as the above physical

FIG. 6. The unknown period scenario plot for 90% detection (α ¼ 0.1, β ¼ 0.1) amplitude Ad;α;β;P as a function of P for different
(T , Δt) and when Rs ¼ 100 ton−1 yr−1, Rb ¼ 0 ton−1 yr−1, and D ¼ 100 ton in the simulation study. First column: T ¼ 10 yr,
Δt varies from 5 to 30 days. Second column: Δt ¼ 0.2 days and T varies from 1 to 10 yr. Third column: Δt ¼ 10 days and T varies
from 2 to 20 yr. Fourth column: Δt ¼ 10 days and T varies from 22 to 77 yr. In each panel, the white region is where the amplitude
Ad;α;β;P can be approximated by the average of the amplitudes over different frequencies Ād;α;β, and the red horizontal line is Ād;α;β.
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amplitudes are the 90% detectable amplitudes. Though the
empirical results are fitting within [xmin, xmax], the results
from simulating the nearby run-time T is consistent with
these estimated T when x < xmin or x > xmax.

VI. RESULTS

We now move on to presenting the results for the time-
varying analysis, focusing first on solar neutrinos. As
above, we consider the electron neutrino scattering channel
(ES) and nuclear recoil channels (CEνNS) separately, and
the results are split into known period and unknown period

scenarios. Starting with the ES channel, we take the end
point energy of 7Be and calculate R⊙ in Eq. (1) by summing
all the components of the solar neutrino flux (pp, CNO,
7Be, and pep) over a range [1 keV, 650 keV] for the ideal
resolutionþ ideal efficiency case and [0 keV, 790 keV] for
the smear þ efficiency case, since the contribution outside
of this range is dominated by 2νββ. The flux within these
ranges is dominated by pp neutrinos.
We first show the results as a function of different

depletion of backgrounds for ES and as a function of
different energy thresholds for CEνNS, under the fiducial

TABLE VI. Fitted values of a, b, c for the empirical relationship y ¼ ax2 þ bxþ c within [xmin, xmax] assuming
Rs ¼ 100 ton−1 yr−1, Rb ¼ 0, D ¼ 100 ton.

xmin xmax α β a b c

Known period −10.218 −4.291 0.1 0.1 3.004 × 10−3 1.049 3.251
0.05 0.1 5.168 × 10−3 1.077 3.529

Unknown period −7.5 −2.755 0.1 0.1 2.344 × 10−2 1.309 3.037
0.05 0.1 2.598 × 10−2 1.345 3.224

FIG. 7. Same as Fig. 6 but for known periods.
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case of a 100-ton detector, with a run-time of ten years and
a fixed time-bin Δt (Figs. 8 and 9). Then we show the
results as a function of detector run-time for a fixed time bin
Δt, detector size D for ES and CEνNS (Figs. 10–15).

Figure 8 shows the required amplitude at which the
probability of detecting the signal is 1 − β ¼ 0.9, at
α ¼ 0.1. Indicated on the figure as the upper horizontal
line is the modulation amplitude induced by the eccentricity.

FIG. 8. 90% detection (α ¼ 0.1, β ¼ 0.1) amplitude A0
d;α;β for solar components through electron scattering obtained from Eq. (13) as

a function of 2νββ fraction f2νββ. The top horizontal dashed line shows the expected amplitude due to the eccentricity Aecc ¼ 0.03342
and the bottom horizontal line shows the bound on the amplitude of the day-night modulation from Borexino Ad;DN;max ¼ 0.00891. The
label “BG” indicates “background components” and “allBG” includes 2νββ, 222Rn, and 85Kr backgrounds. The assumed run-time is
T ¼ 10 yr, and the detector size D ¼ 100 ton. The time binnings and periods are Δt ¼ 0.2 days for P ¼ 1 day, Δt ¼ 10 days for
P ¼ 1 yr. The curves show the spectrum including energy resolution and Xe100t-5 detector efficiency for xenon (Fig. 3) and 10%
energy resolution with recoil energy threshold 100 keV only for argon. Each curve is for a different time binning Δt, as indicated.

FIG. 9. 90% detection (α ¼ 0.1, β ¼ 0.1) amplitude A0
d;α;β for 8B solar components through CEνNS obtained from Eq. (13) as a

function of recoil energy threshold, using Δt ¼ 10 days. The assumed run-time is T ¼ 10 yr, and the detector size is D ¼ 100 ton.
Curves are shown for different detector and efficiency models as indicated. The dashed line is the amplitude of yearly
modulation Aecc ¼ 0.03342.
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FIG. 10. The power for detecting time variation of solar components (summing over pp, 7Be, CNO, and pep components) through
electron scattering, under the assumption of the known period (left) and unknown period (right) scenarios described in the text. We take
α ¼ 0.1 and plot the results as a function of detector run-time T . The yearly modulation has an amplitude of Aecc ¼ 0.03342, due to the
eccentricity of Earth’s orbit, and the daily modulation has an amplitude of Ad;DN;max ¼ 0.00891, which matches the Borexino upper
limits on the daily modulation. The assumed detector size is D ¼ 100 ton. Top row: xenon detection of Ad;DN;max for a time binning of
Δt ¼ 0.2 days. Middle row: xenon detection of Aecc with Δt ¼ 10 days. Bottom row: argon detection of Aecc with Δt ¼ 10 days, and
Ad;DN;max with Δt ¼ 0.2 days. For xenon, all BG includes 2νββ, 222Rn, and 85Kr. For argon, the background includes 222Rn.

FIG. 11. The detectable amplitude for solar components through electron scattering with 90% power and 10% level of significance
(α ¼ 0.1, β ¼ 0.1), estimated from Eq. (14) as a function of detector run-time T forD0 ¼ 50 ton, under known period and unknown period
scenarios. Dashed lines are the amplitude of yearly modulation Aecc ¼ 0.03342 and the day-night modulation Ad;DN;max ¼ 0.00891. Top
row: xenon detection of Ad;DN;max for a time binning ofΔt ¼ 0.05 days. Middle row: xenon detection of Aecc withΔt ¼ 10 days. Bottom
row: argon detection of Aecc withΔt ¼ 10 days and of Ad;DN;max with Δt ¼ 0.05 days. Points indicate the run-time T when Ā0

d;α¼0.1;β¼0.1

reaches Aecc or Ad;DN;max. For xenon, all BG includes 2νββ, 222Rn, and 85Kr. For argon, the background includes 222Rn.
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We see that for a 2νββ fraction ≲10% at the assumed
exposure the experiment will be sensitive to the time
variation from eccentricity. Also shown as the lower
horizontal lines are the upper limits on the day-night
modulation of the 7Be component from Borexino, Ad ¼
ADN=

ffiffiffi
2

p
≈ 0.009 [17]. This shows that a 2νββ fraction

in xenon at a level ∼1% has a detectable amplitude with
90% power similar to the best-fit amplitude Ad from

Borexino.4 The xenon measurements are sensitive to the
lower energy pp component, for which there are no strong
bounds on the time variation.

FIG. 12. The power of detecting time variation of 8B through CEνNS under known period (left column) and unknown period (right
column) scenarios with α ¼ 0.1, as a function of detector run-time T . The assumed detector size is 100 ton. For xenon, assumptions are
for an ideal detector and the Xe100t-5, LZ, and G3 detector efficiencies, and for argon, an ideal detector and the Darkside detector
efficiency.

FIG. 13. The detectable amplitude for 8B neutrinos through CEνNS with 90% power and 10% level of significance (α ¼ 0.1, β ¼ 0.1),
estimated from Eq. (14) as a function of detector run-time T , for D0 ¼ 50, 100 ton, under known period and unknown period scenarios,
when Δt ¼ 10 days. The dashed line is the amplitude of yearly modulation Aecc ¼ 0.03342. Crosses indicate the run-time T when
Ā0
d;α¼0.1;β¼0.1 reaches Aecc. Configurations of (R0

s, R0
b, D

0) from different detector target, resolution, and efficiency are indicated.

4Although these two amplitudes are similar, they cannot be
compared directly since the Borexino result comes from fitting
the binned data and our result comes from the likelihood
ratio test.
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Moving on to the CEνNS channel using the 8B flux,
Fig. 9 shows the required amplitude for the 90% detection
at α ¼ 0.1, as a function of nuclear recoil energy threshold.
Shown are the results for different assumptions of the
efficiency, in one case showing both perfect efficiency and
in the remaining cases using the detector efficiency and
energy resolution modeled from NEST simulations (Fig. 3).
From Fig. 9 we see that the eccentricity is clearly detectable
for the assumed exposure of 100 ton and 10 yr for the ideal
case. For the case with the efficiency and resolution
corrections added, for thresholds ≲1 keV there is a
saturation and the eccentricity is nearly detectable given

the specifications used. Note that since 8B neutrinos are
detected via a neutral current interaction, there is no
sensitivity to the day-night effect in the CEνNS channel
(there could be sensitivity if radiative corrections were
detectable [47]).
Figure 10 shows the power of detecting daily and yearly

time variation through electron recoils as a function of
detector run-time, for an assumed 100-ton detector size. We
see that even for large 2νββ fractions, the eccentricity will
be detectable at 90% chance under the known period
scenario with an exposure of ≲10 yr. Here we choose a
time binning of Δt ¼ 10 days, though we find that our

FIG. 14. Power for detecting atmospheric neutrino time variation at SURF and SNOlab through nuclear recoils under known period
(left) and unknown period (right) scenarios for α ¼ 0.1, as a function of detector run-time T . The assumed detector sizesD are 200, 600,
1000 ton. Bands indicate the differences between Δt ¼ 10 and Δt ¼ 30 days for assumptions of an ideal detector.

FIG. 15. The detectable amplitude for atmospheric neutrinos through CEνNS with 90% power and 10% level of significance (α ¼ 0.1,
β ¼ 0.1), estimated via Eq. (14) as a function of detector run-time T , for D0 ¼ 200, 600 ton, under known period and unknown period
scenarios, when Δt ¼ 30 days. The dashed horizontal lines are Aatm in Sec. III C, and each color is a different location as indicated.
Crosses indicate the run-time T when Ā0

d;α¼0.1;β¼0.1 reaches Aatm at the corresponding location. A xenon detector with ideal resolution
and efficiency is assumed.
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results are relatively insensitive to the time binning.
Similarly, under the known period scenario, the
Borexino sensitivity can be achieved at 90% chance for
run times ∼7 yr when background includes only 2νββ and
is depleted to 0.1%.
Figure 11 shows the 90% detection amplitude of

detecting time variation through electron recoils as a
function of detector run-time for Δt ¼ 0.05 days and an
assumed 50-ton exposure. The 3% eccentricity will be
detectable with 90% power under the known period
scenario within ∼13 yr for large 2νββ fractions and other
backgrounds, while 2νββ needs to be depleted down to
≲0.1% to achieve the similar result under the unknown
period scenario. For daily variations, a nearly fully depleted
detector will be able to match the Borexino upper limits on
daily time variation for a run-time of ≲13 yr under the
known period scenario.
Figure 12 shows the power of detecting time variation of

8B as a function of detector run-time, for an assumed
detector size of 100 ton. Here we see that for an idealized
detector, yearly time modulation is detectable at 90% for a
run-time of ∼3 yr under the known period scenario and
∼5 yr under the unknown period scenario. We note that
this is similar to the time for detection of eccentricity using
the electron recoil channel, for a low 2νββ fraction. For
the Xe100t-5 efficiency model, the detection timescale
increases to ≲15 yr.
Figure 13 shows amplitude for 90% detection of time

variation of an arbitrary amplitude for 8B as a function of
detector run-time for Δt ¼ 10 days and an assumed 50- or
100-ton exposure. From this we again see that the eccen-
tricity will be detectable with 90% power under the known
period scenario within ≲10 yr for idealized detector or
the resolutionþ Xe100t-5 efficiency detector. Under the
unknown period scenario, an idealized detector is needed to
achieve the similar run-time for a 50- or 100-ton detector.
We finally checked the prospects for detection of time

variation of atmospheric neutrinos. The resulting power for
detecting the modulation of atmospheric neutrinos from
Sec. III C at each location (the amplitude Aatm is 0.0459 at
CJPL, 0.0382 at Kamioka, 0.0461 at LNGS, 0.1475 at
SURF, and 0.1327 at SNOlab) is shown in Fig. 14, for the
case of an ideal detector with no efficiency or energy
resolution correction. Given that the signal is weaker than
the signal for solar neutrinos, in this case we consider larger
detector volumes of 200, 600, and 1000 ton and plot the
power as a function of the experimental run-time. Figure 15
shows the 90% amplitude of detecting time variation of
atmospheric neutrinos as a function of detector run-time for
Δt ¼ 30 days and an assumed 200- or 600-ton exposure.
Though the experimental volumes considered in Figs. 14
and 15 are larger than that in our solar neutrino analysis,
they provide a sense of what will be required to detect the
atmospheric time variation.

VII. CONCLUSIONS

In this paper, we have studied the prospects for detecting
time variation of solar and atmospheric neutrinos in future
large-scale xenon and argon dark matter detectors. We have
developed rigorous statistical methods for detecting a time-
varying signal and compared the statistical methods under
the assumptions that we are searching for a known
periodicity or an unknown periodicity.
For time-varying signals, we have focused on detecting

solar neutrinos through ES and CEνNS. In the ES channel,
for a 100-ton xenon detector running for ten years with a
xenon-136 fraction of ≲0.1%, a time-variation amplitude
of ∼1% is detectable for the experimental configurations
that we study. This is sufficient to detect time variation
due to eccentricity. For this same run-time, xenon experi-
ments will achieve similar sensitivity to the Borexino
experiment for daily modulations that will be induced
from the propagation of electron neutrinos through Earth.
Both of these results will hold if the 2νββ fraction can be
reduced to ≲0.01.
In the CEνNS channel, we find that for a threshold of

1 keV, a detector with ideal efficiency and energy resolution
will be sensitive to a yearly variation in the flux. For a
detector with efficiency and resolution similar to current
xenon experiments, detectors will approach sensitivity to
the eccentricity for thresholds ≲1 keV. In comparison to
previous studies that considered the time variation in the
nuclear recoil channel due to the eccentricity [10], we add
the more realistic detector scenarios to our modeling. The
detector modeling effects most strongly affect the CEνNS
channel, whereas the ES channel is most strongly affected
by the 2νββ fraction, as discussed above.
Dark matter experiments provide the unique possibility

to measure the time variation of the solar neutrino flux
through multiple detection channels. Detecting eccentricity
in both channels would be important because it confirms
the solar origin of the signal. Further, it provides a test
for the long term stability of the detector and provides a
means to identify possible time-varying signals of unknown
origin.
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APPENDIX: CRITICAL VALUES FOR
DIFFERENT VALUES OF Δt AND T

Table VII shows the critical values LSmax;α;1 and
LSmax;α;2 for Δt ¼ 0.2 days and T from 1 to 20 yr.
Table VIII shows the critical values LSmax;α;1 and

LSmax;α;2 for Δt ¼ 5 days and T from 1 to 22 yr.
Table IX shows the critical values LSmax;α;1 and LSmax;α;2

for Δt ¼ 10 days and T from 1 to 22 yr.
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TABLE VIII. Critical values for Δt ¼ 5 days, fscan ¼ [1=365.25 day−1, 1=5 day−1], no ¼ 10.

α ¼ 0.1 α ¼ 0.05 α ¼ 0.02

fadj T (yr) Mentire Mscan LSmax;α;1 LSmax;α;2 LSmax;α;1 LSmax;α;2 LSmax;α;1 LSmax;α;2

7 1 104 104 6.9 6.79 7.61 7.44 8.55 8.39
6 2 243 243 7.74 7.68 8.46 8.43 9.4 9.53
6 3 365 365 8.15 8.66 8.87 9.92 9.8 12.29
6 4 487 487 8.44 8.55 9.16 9.32 10.09 10.66
6 5 608 608 8.66 8.44 9.38 9.14 10.31 9.96
6 6 730 730 8.84 9.31 9.56 10.56 10.49 12.83
6 7 852 852 9.0 8.96 9.72 9.67 10.65 10.62
6 8 974 974 9.13 9.14 9.85 9.94 10.78 10.92
6 9 1095 1095 9.25 9.14 9.97 9.85 10.9 10.84
6 10 1217 1217 9.35 9.23 10.07 9.98 11.01 11.03
6 11 1339 1339 9.45 9.48 10.17 10.3 11.1 11.34
6 12 1461 1461 9.54 10.0 10.26 11.05 11.19 13.2
6 13 1582 1582 9.62 9.58 10.34 10.4 11.27 11.26
6 14 1704 1704 9.69 9.71 10.41 10.52 11.34 11.64
6 15 1826 1826 9.76 9.83 10.48 10.59 11.41 11.56
6 16 1948 1948 9.82 9.94 10.54 10.68 11.48 11.63
6 17 2069 2069 9.89 10.12 10.61 10.9 11.54 11.98
6 18 2191 2191 9.94 9.8 10.66 10.59 11.59 11.51
6 19 2313 2313 10.0 9.91 10.72 10.63 11.65 11.57
6 20 2435 2435 10.05 10.03 10.77 10.77 11.7 11.68
6 21 2556 2556 10.1 10.16 10.82 10.87 11.75 12.0
6 22 2678 2678 10.14 10.12 10.86 10.83 11.79 11.9

TABLE VII. Critical values for Δt ¼ 0.2 days, fscan ¼ [1=365.25 day−1, 1 day−1], no ¼ 10, fadj ¼ 1.5.

α ¼ 0.1 α ¼ 0.05 α ¼ 0.02

T (yr) Mentire Mscan LSmax;α;1 LSmax;α;2 LSmax;α;1 LSmax;α;2 LSmax;α;1 LSmax;α;2

1 12175 2429 10.05 9.83 10.77 10.56 11.7 11.37
2 24350 4859 10.74 10.42 11.46 11.25 12.39 12.27
3 36525 7288 11.14 10.98 11.86 11.71 12.8 12.87
4 48700 9718 11.43 11.18 12.15 11.89 13.08 12.68
5 60875 12148 11.66 11.39 12.38 12.15 13.31 13.07
6 73050 14577 11.84 11.73 12.56 12.47 13.49 13.28
7 85225 17007 11.99 12.05 12.71 12.84 13.64 13.84
8 97400 19437 12.13 11.89 12.85 12.7 13.78 13.79
9 109575 21866 12.24 12.01 12.96 12.76 13.89 13.58
10 121750 24296 12.35 12.14 13.07 12.87 14.0 13.83
11 133925 26726 12.44 12.34 13.16 13.11 14.1 14.0
12 146100 29155 12.53 12.49 13.25 13.24 14.18 14.33
13 158275 31585 12.61 12.62 13.33 13.32 14.26 14.24
14 170450 34015 12.68 12.78 13.4 13.53 14.34 14.46
15 182625 36444 12.75 12.54 13.47 13.23 14.41 14.2
16 194800 38874 12.82 12.61 13.54 13.33 14.47 14.21
17 206975 41304 12.88 12.66 13.6 13.37 14.53 14.22
18 219150 43733 12.94 12.77 13.66 13.51 14.59 14.3
19 231325 46163 12.99 12.75 13.71 13.45 14.64 14.53
20 243500 48593 13.04 12.97 13.76 13.69 14.69 14.65
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