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We examine the thin accretion disk behaviors surrounding black holes embedded in cold dark matter
halos and scalar field dark matter halos. We first calculate the event horizons and derive the equations of
motion and effective potential in black hole geometries with different dark matter halos. We then compute
the specific energy, specific angular momentum, and angular velocity of particles moving along circular
orbits. We also derive the effective potentials to find the locations of the innermost stable circular orbit
(ISCO) and compare them to the Schwarzschild and Kerr black holes without the dark matter halos. We
also use the observed ISCO of the supermassive black hole at the Galactic Center of the Milky Way,
Sagittarius A*, to constrain the dark matter halos.
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I. INTRODUCTION

Einstein’s theory of general relativity has made numer-
ous accurate predictions from black holes to gravitational
waves [1–4]. In the meantime, dark matter and dark energy
need to be included to account for certain fundamental
phenomena [5–7]. It is important to note that the sign of
dark matter is only observed through its gravitational
effects so far [8]. Black holes are among the successful
predictions of general relativity and serve as excellent
objects for studying the interplay between matter, space-
time, and their gravitational interactions in astrophysical
contexts. Furthermore, the accretion disks surrounding
supermassive compact objects offer valuable insights into
strong gravity and the underlying nature of physical
processes [9].
In this study, we aim to provide insights into the

properties of the accretion disks of rotating black holes
surrounded by dark matter halos. By examining the
accretion disks associated with these black holes, we hope
to gain a deeper understanding of their behavior and
characteristics, particularly in comparison to the well-
known Schwarzschild and Kerr black hole geometries,
which do not take dark matter halos into account.
As the formation of supermassive black holes in galaxy

centers remains a mystery in high-energy astrophysics,

dark matter halos have been suggested as a solution,
especially in the early Universe [10,11]. However, the
nature of dark matter is still unclear, making their impact on
black hole formation uncertain. Several studies have
focused on the space-time geometry of dark matter halos
without black holes, assuming a flat geometry due to low
dark matter density and the absence of relativistic motion.
This approach allowed for the study of dynamic processes
like tidal disruption and stellar motion using geometric
methods [12–14]. The strong gravity of a supermassive
black hole can amplify dark matter densities, leading to
the ‘spike’ phenomenon [15–17]. On the other hand, the
Navarro-Frenk-White density profile encounters a chal-
lenge known as the ‘cusp’ problem, which contrasts with
observational evidence suggesting a flatter density distri-
bution [18]. Meanwhile, dark matter models like scalar
field dark matter, modified Newtonian dynamics dark
matter, and warm dark matter do not produce a ‘cusp’
on small scales. It is worth pointing out that the recent
review [19], offers a comprehensive analysis of dark matter
distribution within galaxies. This review illuminates the
intricate dynamics of dark matter and its impact on galactic
structures, emphasizing the ongoing endeavors to unravel
the mysteries surrounding dark matter and its role in
shaping the Universe.
It should be mentioned that recent findings have

enabled the study of black holes surrounded by dark
matter halos, allowing for the exploration of diverse
dynamical processes and the energy density of dark matter
in relativistic regimes [20–23]. In Ref. [24], the authors
derived the analytical form of black hole space-time in
dark matter halos, enabling the study of black hole-
dark matter interactions. They provided valuable insights
into the role of dark matter in shaping the black hole
environment. Furthermore, these kinds of studies open up
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opportunities for further exploration in astrophysics, includ-
ing the examination of accretion disks surrounding black
holes, the black hole shadow in dark matter halos, and the
dynamic processes influenced by dark matter [25–28].
Accretion disks surrounding astrophysical black holes are

crucial tools for understanding strong-field gravity and
testing modified theories. Black holes grow in mass through
accretion, and the accompanying disk forms as diffuse
material spirals toward the central object while radiating
away gravitational energy. Observed spectral features of
these disks, introduced by Shakura and Sunyaev [29] and
generalized by Page, Novikov, and Thorne [30,31], allow us
to infer properties of the central object. Notice that theo-
retical models of black hole accretion disks have been
extensively studied [9]. Investigating accretion disks of
black holes provides insights not only into the central object
but also offers a means to test modifications to general
relativity. Thin accretion disks and geodesic studies in
various background spaces have been well-studied, and
their properties hold significant implications for exploring
alternative theories [32–40].
In this study [41], the authors introduced a model

featuring a black hole surrounded by perfect fluid dark
matter. Later, it was revisited in the light of the observed
data of Milky Way galaxy [42] and studied the effects
of dark matter on black hole shadows [43,44] and
circular geodesics [45,46]. Moreover, some researchers
have examined the impact of dark matter on accretion disk
luminosity. They have investigated various scenarios,
including static black holes enveloped by dark matter
and black holes surrounded by isotropic/anisotropic pres-
sure dark matter [26,47,48]. A recent study [49] explored
the effects of dark matter on the electromagnetic character-
istics of slender disks, comparing the findings to those
obtained in general relativity for rotating black holes
without dark matter. In addition, several valuable research
in this regard can also be found [50–54].
In this paper, we analyze the accretion disks around the

rotating black holes surrounded by two kinds of dark matter
halos. We calculate several parameters of the accretion
disks of the black holes surrounded by dark matter halos
and also compare theinnermost stable circular orbits
(ISCOs) of the black hole-dark matter spacetimes with
Schwarzschild and Kerr black holes. This paper is organ-
ized as follows. In Sec. II, we present and review the
spherically symmetric rotating black holes in spacetime
surrounded by cold dark matter halo and scalar field dark
matter halo, respectively. We also perform an analysis of
the horizon of these black holes. In Sec. III, we derive the
equations of motion and effective potential. In Sec. IV, we
calculate all parameters of the accretion disk of rotating
black holes surrounded by cold dark matter halo and scalar
field dark matter halo. In Sec. V, we present a numerical
analysis, including the location of ISCOs for these black
holes. Meanwhile, we determine the allowed parameter

ranges for the dark matter halo in our models, taking
into account the ISCO radius of Sagittarius A*. Finally,
in Sec. V, we summarize our findings and conclusions.
Throughout the paper, we set G ¼ c ¼ 1.

II. THE BLACK HOLE DARK MATTER
HALO SPACETIMES

In this section, we consider the spherical symmetric
rotating black holes in space-time surrounded by two kinds
of dark matter halos. We show the space-time metric of
both, respectively, derived by Ref. [24] and we evaluate the
horizons of these black holes by considering grr ¼ 0.
Notice we represent the horizons of Schwarzschild and
Kerr black holes in dimensionless conditions and the
complete details of the solutions of these black holes are
presented in [24]. In this paper, we focus on the thin
accretion disks of these black holes and some related issues.

A. Cold dark matter

In this stage, we commence with a rotating black hole
surrounded by a cold dark matter (CDM) halo [24].

ds21 ¼ −

 
1 −

r2 þ 2Mr − r2½1þ r
Rs
�χ

Σ2

!
dt2 þ Σ2

Δ1

dr2

þ Σ2dθ2 þ sin2θ
Σ2

�ðr2 þ a2Þ2 − a2Δ1sin2θ
�
dϕ2

þ
2ðr2 þ 2Mr − r2½1þ r

Rs
�χÞasin2θ

Σ2
dϕdt; ð1Þ

where

χ ¼ −
8πρcR3

s

r
;

Δ1 ¼ r2
�
1þ r

Rs

�
χ

− 2Mrþ a2;

Σ2 ¼ r2 þ a2cos2θ: ð2Þ

B. Scalar field dark matter

Subsequently, we consider the rotating black hole
surrounded by a scalar field dark matter (SFDM) halo [24].

ds22 ¼ −

 
1 −

r2 þ 2Mr − r2 exp½ϖ�
Σ2

!
dt2 þ Σ2

Δ2

dr2

þ Σ2dθ2 þ sin2θ
Σ2

�ðr2 þ a2Þ2 − a2Δ2sin2θ
�
dϕ2

þ 2ðr2 þ 2Mr − r2 exp½ϖ�Þasin2θ
Σ2

dϕdt; ð3Þ

where
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ϖ ¼ −
8ρcR2

π

sinðπrRÞ
πr
R

;

Δ2 ¼ r2 exp½ϖ� − 2Mrþ a2; ð4Þ

where ρc is the density of the Universe at the moment when
the halo collapsed. For CDM, ρc=ρNFW ¼ r

Rs
ð1þ r

Rs
Þ2 and

for SFDM, ρc=ρSFDM ¼ kr
sinðkrÞ. ρNFW and ρSFDM are the

density profile of CDM and SFDM, respectively, and k is
determined by the Compton relationship. Rs and R are the
characteristic radius for CDM and SFDM, respectively.
Furthermore, it should be mentioned that in the consid-

ered metrics, the coordinates r, θ, and ϕ represent standard
oblate spheroidal coordinates. The parameters M and a

denote the mass and angular momentum of the black holes,
respectively. By setting the radii of the dark matter halos,Rs
for CDM andR for SFDM, to zero, the metrics reduce to the
well-known Kerr black hole solution. Notably, the presence
of the cross-term dtdϕ indicates a coupling between time
and motion in the plane of rotation. This coupling vanishes
when the black hole’s angular momentum approaches zero
(a ¼ 0), resulting in the recovery of the Schwarzschild
metric. In the nonrelativistic limit, where the mass M
approaches zero, the metric transforms into the orthogonal
metric for oblate spheroidal coordinates [24,55,56].
We present the profiles of grr of those geometries in

Fig. 1. The figures show the event horizon positions of the
black holes for different values of Rs, R, and ρc.

(a) (b) (c)

(d) (e) (f)

FIG. 1. The graphs show the profiles of grr for the black holes. Event horizon radius can be found by solving grr ¼ 0 and the number
of crossings shows the number of horizons. (a) The red and blue curves show the event horizons of the Schwarzschild (rs ¼ 2) and Kerr
(r− ¼ 0.2 and rþ ¼ 1.8 by considering a2 ¼ 0.36) black holes in dimensionless conditions, respectively. (b) The graph shows the
profile of grr of Eq. (1) for the rotating black hole surrounded by a cold dark matter halo for different values of Rs with considering
ρc ¼ 0.50 × 10−29 and a2 ¼ 0.36. (c) The graph presents the profile of grr of Eq. (1) for the rotating black hole surrounded by a cold
dark matter halo for different values of ρc with considering Rs ¼ 2.78 × 1010 and a2 ¼ 0.36. (d) The graph shows the profile of grr

of Eq. (3) for the rotating black hole surrounded by a scalar field dark matter halo for different values of R with considering
ρc ¼ 2.81 × 10−29 and a2 ¼ 0.36. (e) The graph shows the profile of grr of Eq. (3) for the rotating black hole surrounded by a scalar field
dark matter halo for different values of ρc with considering R ¼ 1.43 × 1010 and a2 ¼ 0.36. (f) The purple curve illustrates the event
horizons of the rotating black hole surrounded by a cold dark matter halo. The inner horizon is located r− ¼ 0.4 and the event horizon is
located rþ ¼ 1.6 by considering the values of a2 ¼ 0.64, Rs ¼ 2.78 × 1010, and ρc ¼ 0.50 × 10−29. The brown curve illustrates the
event horizons of the rotating black hole surrounded by a scalar field dark matter halo. The inner horizon is located r− ¼ 0.56 and the
event horizon is located rþ ¼ 1.44 by considering the values of a2 ¼ 0.81, R ¼ 1.43 × 1010, and ρc ¼ 2.81 × 10−29. The red and blue
curves are for the Schwarzschild, and Kerr black holes, respectively.
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According to Figs. 1 and 2, it should be noted that the
horizons of CDM and SFDM black holes do not change
compared to Kerr black hole by considering the same
values of a and using these values i.e., Rs ¼ 2.78 × 1010,
ρc ¼ 0.50 × 10−29, for CDM black hole, and R ¼
1.43 × 1010, ρc ¼ 2.81 × 10−29 for SFDM black hole.
For plotting Figs. 1 and 2, we considered M ¼ 1. In

the next sections, we introduced dimensionless parameters
to eliminate M. In the following paper, we use the
selected values from the Low Surface Brightness galaxy
ESO1200211 [55,56] which are Rs ¼ 5.7 kpc, ρc ¼
0.50 × 10−3M⊙ pc−3 for CDM and R ¼ 2.92 kpc and ρc ¼
13.66 × 10−3M⊙ pc−3 for SFDM.

III. EQUATIONS OF MOTION

Here, we present the equations of motion and effective
potential for evaluating the dynamics of the system. The
formation of accretion disks involves particles moving on
nearly geodesic orbits, with potential deviations influenced
by various physical effects, including electromagnetic
forces, pressure gradients, or nongravitational interactions.
In this study, we focus on the idealized scenario of purely

geodesic motion, neglecting these additional factors for
simplicity. In the equatorial plane θ ¼ π

2
, we have two

constants of motion which are the conserved energy E and
angular momentum L.

gttṫþ gtϕϕ̇ ¼ −E; ð5Þ

gtϕṫþ gϕϕϕ̇ ¼ L; ð6Þ

Note that a dot represents a derivative with respect to the
affine parameter τ. Indeed, τ serves as an affine parameter
along the geodesic, and we specifically choose it to
represent the proper time. The relationship between τ
and the coordinate time is given by dτ ¼ ffiffiffiffiffiffi

g00
p

dt [57].
According to Eq. (5) and Eq. (6), we can find t and ϕ
components of the 4-velocity ẋμ as

dt
dτ

¼ Egϕϕ þ Lgtϕ
g2tϕ − gttgϕϕ

; ð7Þ

dϕ
dτ

¼ −
Egtϕ þ Lgtt
g2tϕ − gttgϕϕ

: ð8Þ

Notice that from the normalization condition,
gμνẋμẋν¼−1, we have

Veffðr; θÞ ¼ grrṙ2 þ gθθθ̇
2; ð9Þ

so, the effective potential is given,

Vðr; θÞ ¼ −1þ E2gϕϕ þ 2ELgtϕ þ L2gtt
g2tϕ − gttgϕϕ

: ð10Þ

Here, we present the dimensionless quantities fromnowon,

r̃¼ r
M

; L̃¼ L
M

; ã¼ a
M

;

R̃s¼
Rs

M
; R̃¼ R

M
; ρ̃c ¼ ρcM2: ð11Þ

It isworthnoting that in termsofunit conversion,ρc¼ ρ̃c ×
ð4.86×1026ÞM⊙ pc−3 and Rs ¼ R̃s× ð2.048×10−10Þ kpc.
In the following, we present the effective potential and the
t andϕ components of the 4-velocity ẋμ for CDMand SFDM
black holes. We have calculated all these parameters in
dimensionless conditions which we introduced in Eq. (11).

A. Cold dark matter

�
dt
dτ

�
1

¼
½ã L̃ð2þ r̃Þ þ r̃3Eþ 2ã2ð1þ r̃ÞE�ð1þ r̃

R̃s
Þχ̃ − ã r̃ðL̃þ ãEÞ

r̃3 þ r̃ðã2 − 2r̃Þð1þ r̃
R̃s
Þχ̃ ; ð12Þ

FIG. 2. The graph shows the profiles of grr (the event horizons)
with respect to different values of a for the Kerr, CDM, and
SFDM black holes. Notice that the profiles of grr (the event
horizons) are the same for Kerr, CMD, and SFDM black holes by
the values we used for CDM black hole i.e., Rs ¼ 2.78 × 1010,
ρc ¼ 0.50 × 10−29, and for SFDM black hole R ¼ 1.43 × 1010,
and ρc ¼ 2.81 × 10−29.
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�
dϕ
dτ

�
1

¼
r̃ðL̃þ ãEÞ − ½2L̃þ ãð2þ r̃ÞE�ð1þ r̃

R̃s
Þχ̃

r̃3 þ r̃ðã2 − 2r̃Þð1þ r̃
R̃s
Þχ̃ ; ð13Þ

ṼðeffÞ1 ¼
½2L̃2 þ 2ã L̃ð2þ r̃ÞEþ r̃2ð2þ r̃E2Þ þ ã2ð2ð1þ r̃ÞE2 − r̃Þ�ð1þ r̃

R̃s
Þχ − r̃

�
r̃2 þ ðL̃þ ãEÞ2�

r̃3 þ r̃ðã2 − 2r̃Þð1þ r̃
R̃s
Þχ̃ : ð14Þ

B. Scalar field dark matter

�
dt
dτ

�
2

¼ ½ã L̃ð2þ r̃Þ þ r̃3Eþ 2ã2ð1þ r̃ÞE� exp½ϖ̃� − ã r̃ðL̃þ ãEÞ
exp½ϖ̃�ðã2 − 2r̃Þr̃þ r̃3

; ð15Þ

�
dϕ
dτ

�
2

¼ r̃ðL̃þ ãEÞ − exp½ϖ̃�½2L̃þ ãð2þ r̃ÞE�
exp½ϖ̃�ðã2 − 2r̃Þr̃þ r̃3

; ð16Þ

ṼðeffÞ2 ¼
exp½ϖ̃�	2L̃2 − ã2r̃þ 2r̃2 þ 2ã L̃ð2þ r̃ÞEþ �r̃3 þ 2ã2ð1þ r̃Þ�E2



− r̃
�
r̃2 þ ðL̃þ ãEÞ2�

exp½ϖ̃�ðã2 − 2r̃Þr̃þ r̃3
: ð17Þ

IV. THIN ACCRETION DISKS

In this stage, we can calculate all parameters of the thin
accretion disks of black holes. Therefore, the specific energy
Ẽ, the specific angular momentum L̃, the angular velocityΩ
and the flux of the radiant energy F, over the disk of the
particles which move in circular orbits, can be obtained. The
physical properties of the accretion disk can be derived from
fundamental structure equations that ensure the conservation
of mass, energy, and angular momentum. Notably, the
kinematic quantities depend on the orbital radius and can
be determined using general expressions presented in
references [30,31,58].Additionally,we utilize dimensionless
quantities, as defined in Eq. (11), to calculate all relevant
parameters,

L̃ ¼ gtϕ þ gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕΩ − gϕϕΩ2

q ; ð18Þ

Ẽ ¼ −
gtt þ gtϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕΩ − gϕϕΩ2
q ; ð19Þ

Ω ¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtϕ;rÞ2 − gtt;rgϕϕ;r

q
gϕϕ;r

: ð20Þ

Furthermore, the radiant energy flux emanating from the
accretion disk can be calculated by applying the conservation
equations of restmass, energy, and the angularmomentumof
the disk particles,

FðrÞ ¼ −Ṁ0

4π
ffiffiffiffiffiffi−gp Ω;r

ðẼ −ΩL̃Þ2
Z

r

rISCO

ðẼ − ΩL̃ÞL̃;rdr; ð21Þ

where the Ṁ0 is the mass accretion rate.

A. Cold dark matter (CDM)

We have obtained the specific angular momentum L̃1,
the specific energy Ẽ1, and the angular velocity Ω1 of the
thin accretion disk of the rotating black hole surrounded by
a cold dark matter halo in dimensionless conditions, as
below;

L̃1 ¼
½−ã r̃ð1þ ãΩ1Þ þ ðãð2þ r̃Þ þ r̃3Ω1 þ 2ã2ð1þ r̃ÞΩ1Þð1þ r̃

R̃s
Þχ̃ �ð1þ r̃

R̃s
Þχ̃

r̃½−ð2þ 2Ω1ãð2þ r̃Þ þ ½r̃3 þ 2ã2ð1þ r̃Þ�Ω2
1Þr̃−1 þ ð1þ ãΩ1Þ2ð1þ r̃

R̃s
Þχ̃ �12 ; ð22Þ

Ẽ1 ¼
½r̃þ ã r̃Ω1 − ðΩ1ãðr̃þ 2Þ þ 2Þð1þ r̃

R̃s
Þχ̃ �ð1þ r̃

R̃s
Þχ̃

r̃½−ð2þ 2Ω1ãð2þ r̃Þ þ ½r̃3 þ 2ã2ð1þ r̃Þ�Ω2
1Þr̃−1 þ ð1þ ãΩ1Þ2ð1þ r̃

R̃s
Þχ̃ �12 ; ð23Þ
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Ω1 ¼ −
�
4ãπr̃

�
−1þ Log

�
1þ r̃

R̃s

��
R̃3
s ρ̃c þ 4ãπLog

�
1þ r̃

R̃s

�
R̃4
s ρ̃c þ ðr̃þ R̃sÞ

�
1þ r̃

R̃s

�
−χ̃

×

�
ãþ r̃

�
r̃þ 4πr̃

�
1þ r̃

R̃s

�
χ̃

R̃3
s ρ̃c

�
r̃

�
Log

�
1þ r̃

R̃s

�
− 1

�
þ Log

�
1þ r̃

R̃s

�
R̃s

�
ðr̃þ R̃sÞ−1Þ12

��

×

�
ðã2 − r̃3Þ

�
1þ r̃

R̃s

�
−χ̃
ðr̃þ R̃sÞ þ 4ã2R̃3

sπ

�
r̃

�
Log

�
1þ r̃

R̃s

�
− 1

�
þ Log

�
1þ r̃

R̃s

�
R̃s

�
ρ̃c

�
−1
: ð24Þ

In Fig. 3, the specific angular momentum L̃1, the specific
energy Ẽ1 and the angular velocity Ω1 of the CDM rotating
black hole of the thin accretion disk versus r̃ are plotted for
two values of ã ¼ −0.9 (retrograde) and ã ¼ 0.6 (direct).
From an overall perspective, the most striking feature of

Fig. 3(a) is that the specific angular momentum L̃1

witnessed three phases. In the first phase, the specific
angular momentum increased sharply between r̃ ¼ 2 and
r̃ ¼ 5 towards small r. The second phase is the lowest level
of specific angular momentum which is around r̃ ¼ 3 for
retrograde i.e., ã ¼ −0.9, and around r̃ ¼ 7 for direct i.e.,
ã ¼ 0.6. In the third phase, the specific angular momentum
increases gradually for both cases. Regarding the specific
energy Ẽ1 in Fig. 3(b), it should be mentioned that they

increase sharply between r̃ ¼ 3 and r̃ ¼ 4 towards small r
for both cases of retrograde and direct. Then they remain
unchanged. Concerning the angular velocityΩ1 in Fig. 3(c),
it is obvious that the graphs start to grow from the location
of r̃ ¼ 10 sharply towards small r. In the following, the
increasing trend continues strongly for both cases ã ¼ −0.9
and ã ¼ 0.6 near the event horizons.

B. Scalar field dark matter

We have determined the specific angular momentum L̃2,
the specific energy Ẽ2, and the angular velocity Ω2 of the
thin accretion disk of the rotating black hole surrounded in
a scalar field dark matter halo under dimensionless con-
ditions as below;

L̃2 ¼
ãr̃−2ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þ þ ½2ã2ð1þ 1

r̃Þ þ r̃2 − ã2 exp½ϖ̃��Ω2

½1 − ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2 − 2ãΩ2ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2 − ð2ã2ð1þ 1
r̃Þ þ r̃2 − ã2 exp½ϖ̃�ÞΩ2

2�
1
2

; ð25Þ

Ẽ2 ¼ −
−1þ ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2 þ ãΩ2ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2

½1 − ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2 − 2ãΩ2ð2r̃þ r̃2 − r̃2 exp½ϖ̃�Þr̃−2 − ð2ã2ð1þ 1
r̃Þ þ r̃2 − ã2 exp½ϖ̃�ÞΩ2

2�
1
2

; ð26Þ

Ω2 ¼
4ãR̃2ðR̃ sin½πr̃

R̃
� − πr̃ cos½πr̃

R̃
�Þρ̃c þ π exp½−ϖ̃�

h
ãπ þ r̃

�
r̃π2 þ 4r̃R̃2ρ̃cðR̃ sin½πr̃

R̃
� − πr̃ cos½πr̃

R̃
�Þ�12i

exp½−ϖ̃�π2ðr̃3 − ã2Þ þ 4ã2R̃2ðπr̃ cos½πr̃
R̃
� − R̃ sin½πr̃

R̃
�Þρ̃c

: ð27Þ

(a) (b) (c)

FIG. 3. The graphs depict the changing parameters of the thin accretion disks of a rotating black hole surrounded by a cold dark matter
halo, by considering the values of R̃s ¼ 2.78 × 1010, and ρ̃c ¼ 0.50 × 10−29. (a) Changes of the specific angular momentum
L̃1. (b) Changes of the specific energy Ẽ1. (c) Changes in the angular velocity Ω1.
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In Fig. 4, the specific angular momentum L̃2, the specific
energy Ẽ2 and the angular velocity Ω2 of the SFDM
rotating black hole of the thin accretion disk versus r̃
are illustrated for two values of ã ¼ −0.9 (retrograde) and
ã ¼ 0.6 (direct).
According to Fig. 4(a), one can immediately find out that

the specific angular momentum L̃2 rises for both cases of ã
towards small values of r̃ around r̃ ¼ 2 and r̃ ¼ 4 for
retrograde and direct motion, respectively. Moreover, the
graphs reached the minimums which are approximately
r̃ ¼ 3 and r̃ ¼ 7. In the larger values of r̃, the angular
momentum L̃2 increases. Furthermore, Fig. 4(b) shows the
specific energy Ẽ2 for both cases. Specific energies increase
mildly at long distances but as they approach the black hole,
they reach a minimum value around r̃ ¼ 2 and r̃ ¼ 7 for
retrograde and direct cases, respectively. Then they reach
their maximum values near the horizons. Finally, Fig. 4(c)
presents the changes of the specific angular momentumΩ2.
The specific angular momentum rises towards the horizon.
It is worth pointing out that at the ISCOs, the specific

energy and angular momentum reach their minimum values
for stable orbits.
While the behavior of the specific angular momentum in

both the CDM and SFDM cases exhibits similarities, there
are notable differences in the specific energy and angular
velocity as r varies. Regarding the specific energy in the
case of CDM, it’s worth noting that the minimum values for
both retrograde and direct motions are found around r ¼ 3

to r ¼ 4, whereas in the SFDM case, they are located
around r ¼ 2 to r ¼ 7.
Additionally, it is intriguing to highlight the subtle

differences in the angular velocity between the two cases.
Although the general forms are comparable, the locations
of the maximum values differ. In the CDM case, the
maximum values of the angular velocity lie within the
range of r ¼ 2 to r ¼ 3, while in the SFDM case, they are
found within the range of r ¼ 5 to r ¼ 6.

V. NUMERICAL ANALYSIS

Now we would like to focus on the ISCOs. Notice that
the ISCOs can be obtained by setting to zero the second
derivative of the effective potential. Therefore, the dimen-
sionless radius of the innermost stable circular geodesic
orbits can be obtained.
It is worth pointing out that to have circular orbits, we

should have Ṽeff ¼ 0, and dṼeff
dr ¼ 0. Furthermore, inner-

most circular orbits occur at the local minimum of the
effective potential, thus the innermost (marginally) stable

circular geodesic orbit is obtained from d2Ṽeff
dr2 ¼ 0. Also, it is

obvious that the ISCO is the transition between stable and
unstable circular orbits [30,40,59].
In Fig. 5, we explore the concept of ISCOs by illustrating

the second derivative of the effective potential of Kerr and
Schwarzschild black holes with respect to r̃, for three
different cases; retrograde motion with ã ¼ −0.9, direct
motion with ã ¼ 0.6, and nonrotating black holes with

(a) (b) (c)

FIG. 4. The graphs depict the changing parameters of the thin accretion disks of a rotating black hole surrounded by a scalar field dark
matter halo, by considering the values of R̃ ¼ 1.43 × 1010 and ρ̃c ¼ 2.81 × 10−29. (a) Changes of the specific angular momentum L̃2

(b) Changes of the specific energy Ẽ2. (c) Changes in the angular velocity Ω2.

FIG. 5. The second derivative of the effective potential of Kerr
andSchwarzschild blackholes shows the locationsof the ISCOs for
the cases, ã ¼ −0.9 (Retrograde), ã ¼ 0.6 (Direct), and ã ¼ 0.
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ã ¼ 0. The figure illustrates the connection between the
second derivative of the effective potential and the ISCOs,
which are characterized by the solutions to the equation
d2Ṽeff
dr̃2 ¼ 0. Our study reveals that the ISCOs for retrograde
motion occur at r̃ISCO ¼ 8.75, while those for direct motion
occur at r̃ISCO ¼ 3.83. Schwarzschild black hole has ISCO
at r̃ISCO ¼ 6. To show the validity of the method, we solely
derived the standard ISCOs for Kerr and Schwarzschild
black holes in dimensionless form, which are completely
consistent with the results [60,61].
Furthermore, we show the ISCOs for Kerr and

Schwarzschild black holes in Fig. 6, schematically with
some details.
In Table I, we present the locations of the event horizons

and ISCOs in dimensionless form for various black hole
models, including the Schwarzschild black hole, Kerr black
hole, CDM black hole, and SFM black hole. The table
covers two types of orbital configurations: retrograde

motion and direct motion. This compilation allows for a
straightforward comparison of the properties of these black
holes and their ISCOs.

A. CDM and SFDM black holes

In this step, demonstrated in Fig. 7, we investigate the
ISCOs for the rotating black holes surrounded by the cold
dark matter halo and the scalar field dark matter halo,
considering two cases; retrograde motion with ã ¼ −0.9
and direct motion with ã ¼ 0.6. To obtain the locations of
the ISCOs, we set the second derivative of the effective
potentials to zero, utilizing Eqs. (14) and (17). The resulting
second derivative of the effective potentials with respect to
r̃ is plotted in Fig. 7 for both cases of CDM and SFDM.
Notice that their results are completely similar. The figure
reveals that the ISCOs for the retrograde and direct cases
are located at different positions compared to the Kerr black
hole. Specifically, the ISCOs for retrograde motion are

(a) (b) (c)

FIG. 6. Innermost stable circular orbits of Schwarzschild and Kerr black holes. (a) The black region is the event horizon of the
Schwarzschild black hole (r̃s ¼ 2 in dimensionless condition) and the green circle is the ISCO (r̃ISCO ¼ 6) in dimensionless condition.
(b) The black region is the event horizon (r̃K ¼ 1 in dimensionless condition). The green circle is the ISCO (r̃ISCO ¼ 9) in dimensionless
condition. All these regions are shown by considering the ã ¼ −1 (retrograde orbit). (c) The gray region is the inner horizon (r̃− ¼ 0.2 in
dimensionless condition) and the black region is the event horizon (r̃þ ¼ 1.8 in dimensionless condition). The green circle is the ISCO
(r̃ISCO ¼ 3.83) in dimensionless condition. All these regions are shown by considering the ã ¼ 0.6 (direct orbit).

TABLE I. Locations of the event horizons and the ISCOs in dimensionless conditions by considering the
ã ¼ −0.9, and ã ¼ 0.6 (retrograde orbit and direct orbit, respectively) for Schwarzschild black hole, Kerr black hole
and CDM, and SFM black holes by considering the values of R̃s ¼ 2.78 × 1010, ρ̃c ¼ 0.50 × 10−29 for a CDM and
R̃ ¼ 1.43 × 1010 and ρ̃c ¼ 2.81 × 10−29 for SFDM.

Black hole Inner horizon r̃− Event horizon r̃þ Innermost stable circular orbits

Schwarzschild (ã ¼ 0) � � � 2 6
Kerr (retrograde, ã ¼ −0.9) 0.56 1.44 8.75
Kerr (retrograde, ã ¼ −1) � � � 1 9
Kerr (direct, ã ¼ 0.6) 0.2 1.8 3.83
CDM (retrograde, ã ¼ −0.9) 0.56 1.44 2.32
CDM (direct, ã ¼ 0.6) 0.2 1.8 7.85
SFDM (retrograde, ã ¼ −0.9) 0.56 1.44 2.32
SFDM (direct, ã ¼ 0.6) 0.2 1.8 7.85
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found at r̃ISCO ¼ 2.32 for CDM and SFDM, while the
ISCOs for direct motion are located at r̃ISCO ¼ 7.85 for
both cases of CDM and SFDM. Figure 8 schematically
shows the ISCOs of the rotating black holes surrounded by
the cold dark matter halo and scalar field dark matter halo.
These values indicate that the ISCOs decrease compared to
the Kerr black hole. These results suggest that the presence
of dark matter affects the stability of circular orbits near
the black hole, leading to differences in the location of the
ISCOs. In Fig. 9, we have also shown the ISCOs of the

FIG. 7. The second derivative of the effective potentials of the
rotating black holes surrounded by cold dark matter halo and
scalar field dark matter halo shows the locations of the ISCOs for
two cases, ã ¼ −0.9 (Retrograde) and ã ¼ 0.6 (Direct), by
considering the values of R̃s¼2.78×1010, and ρ̃c¼0.50×10−29

for CDM and R̃ ¼ 1.43 × 1010, ρ̃c ¼ 2.81 × 10−29 for SFDM.

(a)

(b)

FIG. 8. Innermost stable circular orbits of rotating black
holes surrounded by cold dark matter halo and scalar field dark
matter halo. (a) The retrograde case, ã ¼ −0.9. (b) The direct
case, ã ¼ 0.6.

FIG. 9. The range of r̃ISCO for varying values of ã (with ã < 0
indicating retrograde motion, ã > 0 indicating direct motion, and
ã ¼ 0 indicating nonrotating motion) can be determined by
considering the points where the second derivative of the effective

potential with respect to r̃ becomes zero (i.e., d2Ṽeff1;2

dr̃2 ¼ 0) for
rotating black holes surrounded by a cold dark matter halo
and a scalar field dark matter halo. The figure encompasses both
the CDM and SFDM cases within a single plot. The color
schemes on the right-hand side of the figure correspond to

different values of d2Ṽeff
dr̃2 , with distinct colors indicating their

respective ranges on the contour plots. These graphs are per-
formed using the values of R̃s ¼ 2.78 × 1010, ρ̃c ¼ 0.5 × 10−29

for CDM, and R̃ ¼ 1.43 × 1010, ρ̃c ¼ 2.81 × 10−29 for SFDM.
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rotating black holes surrounded by the cold dark matter
halo and the scalar field dark matter halo for different
values of ã.
As we pointed out in Table I, the ISCOs of CDM and

SFDM are the same by considering the selected values for
R̃s, R̃ and ρ̃c. We also have shown this issue in Figs. 7–9.

B. Constraints from Sagittarius A*

We now turn our attention to imposing constraints from
the supermassive black hole at the Galactic Center of the
Milky Way, Sagittarius A*. Notably, the diameter of the
ISCO of Sagittarius A* is estimated to be around 10 light
minutes [62–64], which implies a radius of approximately 5
light minutes. Given the total mass of Sagittarius A* is
4.3 million solar masses [65], we can calculate its ISCO
radius using its Schwarzschild radius, which yields 7.14
times its own Schwarzschild radius, or it could be written
7.14ð2GMS�

c2 Þ [by using GMS�=c2, one transform of obtained
dimensionless parameters into values with dimension, from
Eq. (11)]. We then substitute this value into the second
derivative effective potential equations for the two models
and apply constraints on the dark matter halo parameters.
Specifically, we set the ISCO radius equal to r̃ in the

equation d2Ṽeff
dr̃2 and determine the allowed values of R̃s, R̃

and ρ̃c for which the equation becomes zero, i.e., d
2Ṽeff
dr̃2 ¼ 0.

Our goal is to identify the permissible parameter ranges for
the dark matter halo in our models given the ISCO radius of
Sagittarius A*.

1. CDM black hole

In the first case, one can set the ISCO radius of
Sagittarius A* equal to r̃ into the second derivative effective

potential equation of CDM case d2Ṽeff1
dr̃2 and determine the

allowed values of R̃s, and ρ̃c for which the equation

becomes zero, i.e., d2Ṽeff1
dr̃2 ¼ 0.

In Fig. 10, we demonstrated the possible parameter
ranges for the cold dark matter halo given the ISCO radius
of Sagittarius A*. Moreover, we presented these ranges for
direct motion ã ¼ 0.36.
The acceptable regions for R̃s, and ρ̃c are depicted in the

accompanying figures. Observing the graphs, one can note
an inverted association between R̃s, and ρ̃c, whereby an
increase in R̃s leads to a decrease in the permissible values
of ρ̃c and vice versa.
To transform obtained dimensionless parameters into

values with dimension, we should use GMS�
c2 . As

r ¼ r̃ × GMS�
c2 , it seems that to calculate ρc in the dimension

version, we should consider ρc ¼ ρ̃c ×
MS�

ðGMS�
c2

Þ3, so, we have

ρc ¼ ρ̃c × ð0.033 × 109Þ kg
m3 or ρc ¼ ρ̃c × ð4.86 × 1026ÞM⊙

pc3.

In addition, we can transform Rs and R by considering
Rs ¼ R̃s ×

GMS�
c2 and R ¼ R̃ × GMS�

c2 .

2. SFDM black hole

To determine the allowed values of R̃, and ρ̃c for the
scalar field dark matter halo, we can follow a similar
approach by setting the ISCO radius of Sagittarius A* equal
to r̃ in the second derivative effective potential equation of

the SFDM case d2Ṽeff2
dr̃2 . By solving for zero, we find the

permitted values of the halo parameters. This analysis is
depicted in Figs. 11, where we demonstrate the feasible
parameter ranges for the SFDM halo given the ISCO radius
of Sagittarius A* for ã ¼ 0.36.
The acceptable ranges for R̃ and ρ̃c are depicted in the

accompanying figures. Generally, observing the graphs
reveals an interesting correlation between the two variables;
as the value of R̃ increases, the permissible range of ρ̃c
decreases, and vice versa.
As it is mentioned, to transform obtained dimensionless

parameters into values with dimension, one can use GMS�
c2 . In

the CDM and SFDM cases, the acceptable ranges for R̃s, R̃
and ρ̃c exhibit an inverted relationship. As R̃s and R̃
increases, the allowed values of ρ̃c decrease, and vice versa.

FIG. 10. The acceptable ranges for R̃s and ρ̃c in the case of the
rotating black hole surrounded by a cold dark matter halo yield
the ISCO radius of Sagittarius A*. Specifically, for the direct case
ã ¼ 0.36. The color schemes presented on the right-hand side of

the figure correspond to distinct values of d2Ṽeff1
dr̃2 , with each color

representing a specific range on the contour plots.
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The distinction between the CDM and SFDM cases lies
in the nature of the dark matter halo and the resulting
permissible parameter ranges. While the acceptable regions
for R̃s and R̃ to achieve the ISCO radius of Sagittarius A*
are the same in the two models, the acceptable values
of ρ̃c exhibit differences. According to the obtained graphs,
the acceptable values of ρ̃c in the CDM case lie within
the range of ρ̃c ¼ 2 × 10−29 to ρ̃c ¼ 10−28. In contrast, the
acceptable values of ρ̃c in the SFDM case fall within the
range of ρ̃c ¼ 2 × 10−28 to ρ̃c ¼ 10−27. At the final of this
stage, it is worth pointing out that the possible ranges for
R̃s, R̃ and ρ̃c are completely in agreement with other
researchers [55,56].

VI. CONCLUSIONS

This work investigates the thin accretion disks around
rotating black holes in spacetimes surrounded by cold dark
matter halo and scalar field dark matter halo. Specifically,
we study distinctions between these black holes and
conventional cases, namely Schwarzschild and Kerr black
holes.
Our analysis begins with an examination of the event

horizons of the rotating black holes surrounded by dark
matter halos, then the derivation of the equations of motion
and effective potential for both geometries. We then
computed the specific energy, specific angular momentum,
and angular velocity of particles traversing circular orbits
around the rotating black holes engulfed by cold dark
matter halo and scalar field dark matter halo. Notably, we
have demonstrated how the flux of radiant energy relates to
the disk.
We plot the second derivative of the effective potential

with respect to the radial coordinate, ensuring that the
necessary condition for the existence of marginally stable

orbits, d2Ṽeff
dr̃2 ¼ 0, is met. We also present variations in

specific energy, specific angular momentum, and angular
velocity versus r̃. Furthermore, we have pinpointed the
locations of stable circular orbits and displayed them along
with the event horizons in a table with different values of ã.
Notably, we recover the Schwarzschild black hole and its
corresponding radius when ã ¼ 0. Under certain circum-
stances, we have regained the event horizons and ISCOs of
the Kerr black hole as well. We have compared the
locations of event horizons and ISCOs of rotating black
holes surrounded by dark matter halos with Schwarzschild
and Kerr black holes.
Moreover, we have considered the constraints from

the supermassive black hole at the Galactic Center,
Sagittarius A*.
Its ISCO radius is approximately 5 light minutes [62–64],

and we found its ratio to the observed Schwarzschild radius.
Substituting this value into the second derivative effective
potential equations, we can put constraints on the dark
matter halo parameters. Our goal was to identify the
permissible parameter ranges for the dark matter halo in
our models given the ISCO radius of Sagittarius A*.
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FIG. 11. The acceptable ranges for R̃ and ρ̃c in the case of the
rotating black hole surrounded by a scalar field dark matter halo
yield the ISCO radius of Sagittarius A*. Specifically, for the
direct case ã ¼ 0.36. The color schemes presented on the right-

hand side of the figure correspond to distinct values of d
2Ṽeff2
dr̃2 , with

each color representing a specific range on the contour plots.
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