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Millisecond pulsars are extremely precise celestial clocks: as they rotate, the beamed radio waves emitted
along the axis of their magnetic field can be detected with radio telescopes, which allows for tracking subtle
changes in the pulsars’ rotation periods. A possible effect on the period of a pulsar is given by a potential
coupling to dark matter, in cases where it is modeled with an “ultralight” scalar field. In this paper, we
consider a universal conformal coupling of the dark matter scalar to gravity, which in turn mediates an
effective coupling between pulsars and dark matter. If the dark matter scalar field is changing in time, as
expected in the Milky Way, this effective coupling produces a periodic modulation of the pulsar rotational
frequency. By studying the time series of observed radio pulses collected by the European Pulsar Timing
Array experiment, we present constraints on the coupling of dark matter, improving on existing bounds.
These bounds can also be regarded as constraints on the parameters of scalar-tensor theories of the Fierz-
Jordan-Brans-Dicke and Damour-Esposito-Farèse types in the presence of a (light) mass potential term.

DOI: 10.1103/PhysRevD.110.043033

I. INTRODUCTION

Elucidating the nature of dark matter (DM) remains as
one of the most pressing questions of modern physics. The
widely accepted cold dark matter (CDM) paradigm suc-
cessfully explains numerous aspects of the Universe’s
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large-scale structure but encounters difficulties in predict-
ing some observations on scales smaller than approxi-
mately a kiloparsec (∼kpc). Notably, observations indicate
a flat density profile in the inner regions of galaxies,
contradicting the pure CDM prediction of a steep power-
law-like behavior (cusp-core problem) [1–3]. Additionally,
known challenges arise from the mismatch between the
observed and expected number of satellites of the
Milky Way (MW) (missing satellite problem) [4,5], and
simulations based on ΛCDM theory suggest that the most
massive subhaloes of the MW would be too dense not to
host bright satellites (too-big-to-fail problem) [6]. Although
these issues may be mitigated by considering baryonic
feedback mechanisms, such as supernova feedback [7–12],
another possibility is to assume that DM is an ultralight
scalar field (with mass m ∼ 10−22 eV) with negligible self-
interactions [13,14]. In this scenario, the de Broglie wave-
length of the scalar field in galaxies can reach ∼kpc,
suppressing power on smaller scales while retaining all the
successes of CDM at large scales. Furthermore, the
presence of ultralight scalars is also motivated from a
theoretical standpoint by string theory [15–17]. In this
context, the mass range can be much broader, which
motivates considering very light bosons in a large span
of ultralight masses (including, but not restricted to,
m ∼ 10−22 eV) as natural candidates for theories beyond
the Standard Model.
Numerous studies have been conducted to investigate

the existence of ultralight DM (ULDM). Among them,
the integrated Sachs-Wolfe effect on the cosmic micro-
wave background (CMB) anisotropies excludes masses
m≲ 10−24 eV [18]. Lyman-α observations strongly sug-
gest a lower limit of m≳ 10−21 eV for ultralight candi-
dates accounting for more than ∼30% of the DM [19–23].
However, the susceptibility of non-CMB constraints to
uncertainties in the modeling of small-scale structure
properties [24,25] emphasizes the importance of comple-
mentary and independent investigations. In this context,
the rotation curves of well-resolved nearby galaxies also
disfavor masses m≲ 10−21 eV [26]. In addition, measure-
ments of stellar orbit kinematics in ultrafaint dwarf (UFD)
galaxies may potentially constrain the scalar field mass
to be m≳ 10−19 eV, although this remains a topic of
ongoing debate [27,28]. Dwarf galaxies can also be used
to set robust bounds m≳ 10−22 eV [14,29]. Given these
observations, the current lore is to consider that ULDM of
mass below m ∼ 10−22 eV cannot constitute 100% of the
dark matter, but masses below these bounds are certainly
possible if they constitute a fraction of the dark matter—
see Ref. [30]. This possibility is natural in the case of the
axiverse, where several ULDM candidates coexist at low
masses [31], and also for ultralow-mass particles that may
be cosmologically produced to significant values—see,
e.g., Ref. [32].
A completely independent method to probe these small

masses was suggested in Ref. [33], where it was pointed out

that the oscillating gravitational potential induced by the
presence of ULDM influences the light travel time of radio
signals emitted by pulsars. Pulsar Timing Array (PTA)
experiments [34–39] rely on the exquisite predictability of
the millisecond pulsar (MSP) spin period’s behavior. Each
time a MSP magnetic field axis points toward Earth, radio
waves are observed by radio telescopes. After measuring
and modeling consecutive pulses in decade-long observa-
tional campaigns, PTAs search for signals of physical
effects that affect all of the observed pulsars, including
the ULDM signal. Based on this principle, previous PTA
searches have established 95% upper limits on the local
energy density of ULDM, reaching ρ≲ 0.15 GeV=cm3 in
the mass range 10−24.0 eV≲m≲ 10−23.7 eV [40,41].
The ideas of Ref. [33] rely on the universal gravitational

coupling of DM to ordinary matter. However, ULDM may
also be coupled to the Standard Model fields [42,43].
Indeed, a natural possibility that respects the weak
equivalence principle is that ULDM may be universally
(conformally) coupled to gravity, or (equivalently, in the
Einstein frame) to the Standard Model. This universal
coupling, together with the oscillations of the scalar field
in the MW, would give rise to periodic orbital perturba-
tions in binary systems, which allows us to place con-
straints on the model [44–46]. In this context, ULDM
may be regarded as a scalar-tensor theory of the Fierz-
Jordan-Brans-Dicke [47–50] or Damour-Esposito-Farèse
type [51,52], in the presence of a (light) mass potential
term [53]. As a result of the strong gravitational fields
active inside neutron stars, the conformal coupling to
gravity gives rise to an effective (gravity-mediated) inter-
action between neutron stars (and thus pulsars) and the
scalar ULDM field [51,54–58]. This effect, known as the
Nordtvedt effect [54], violates the strong equivalence
principle, and it has long been constrained with binary
pulsar data [59–66].
In a recent companion paper [67], following former

studies [56,58,68], two of us computed the effect of this
effective interaction on the rotational period of an isolated
pulsar. More specifically, Ref. [67] found that the effective
coupling between ULDM and pulsars produces a change in
the moment of inertia (and therefore in the rotational
period) of the pulsar. This change is proportional to the
rate of change (in time) of the scalar field, which—as
mentioned above—is expected to oscillate in the MW.
Deriving precise constraints from current observations on
the conformal ULDM coupling based on this effect is the
main objective of this work.
This work is structured as follows: In Sec. II, we define

the Lagrangian of our theory, and we briefly review some
general features of ULDM relevant to our analysis.
Section III will be devoted to a detailed description of
the dataset and the procedure used to carry out the analysis.
Finally, in Sec. IV, we will show how a nonminimally
coupled ULDM candidate affects the spin frequency of
MSPs. We constrain the coupling strength, resulting in
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bounds which are several orders of magnitude better than
what has been obtained from Cassini tests of general
relativity [44,69], or from the pulsar in a triple stellar
system [62–64] in the mass region to which PTAs are
sensitive. Our conclusions are presented in Sec. V. The
Appendix is devoted to technical details and plots.

II. CONFORMALLY COUPLED
ULTRALIGHT DARK MATTER

Light scalar and pseudoscalar fields emerge naturally
from string theory and from theories with pseudo-
Goldstone bosons (as the axions introduced to tackle the
strong CP problem) [31,70,71]. These fields are, in
principle, coupled to Standard Model fields. Hence, it is
natural to consider nonminimally coupled scenarios when
exploring their phenomenology. In this work, we consider a
scalar field ϕ with mass m. The action for this field in the
Einstein frame is given by1

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
− gμν∂μϕ∂νϕþm2ϕ2

�

þ Sm½ψm; g̃μν�; ð1Þ

where MP is the Planck mass, and the matter action Sm
includes a universal conformal coupling of the scalar field to
the matter content ψm through the (Jordan) effective metric
g̃μν ¼ A2ðϕÞgμν, normalized such thatA2ð0Þ ¼ 1. Note that
when reexpressed in the Jordan frame, this direct coupling to
matter disappears and is replaced by a conformal coupling to
gravity (i.e., to the Ricci scalar). In other words, this model
satisfies the weak equivalence principle. In particular, the
free-fall motion of nongravitating objects is universal (i.e.,
independent of the body composition) [72]. However, in
strongly gravitating objects (such as neutron stars), there
appears an effective (tensor-mediated) coupling between
matter and the scalar field.
As a first model, we consider the Fierz-Jordan-Brans-

Dicke (FJBD) theory [47–50], in which the conformal
coupling is linear:

AðϕÞ ¼ eαϕ ∼ 1þ αϕ: ð2Þ

The constant scalar coupling α is constrained by several
observations, notably by the Cassini mission to the level of
α2 ≲ 10−5 [69] and by the triple system PSR J0337þ 1715

to the level of α2 ≲ 4 × 10−6 [64]. A simple way to evade
this constraint is to consider masses generating a Yukawa
suppression at scales of the order of the typical distances
probed by these systems [53]. Since our focus is on the
PTA, and hence on DM masses with Compton wavelength

larger than ∼103 AU, this constraint applies to the models
we explore.2

As a second model, we also consider the Damour-
Esposito-Farèse (DEF) gravity theory [51,52], where the
conformal coupling is quadratic:

AðϕÞ ¼ eβϕ
2=2: ð3Þ

Notice that we have chosen to set the linear coupling of the
field in AðϕÞ to zero, so that the FJBD theory cannot be
recovered as a special case of DEF gravity; rather, the two
theories are part of a more general theory, where both linear
and quadratic couplings are nonzero. The absence of
significant deviations from the general relativity (GR)
predictions in binary pulsar data requires β ≳ −4.3
[depending on the exact equation of state (EOS) for the
neutron star model] in order to avoid nonperturbative
spontaneous scalarization phenomena [52,73], while the
value ϕ0 of the scalar field on cosmological scales is
constrained by the Cassini (pulsar in a triple stellar system)
bound to the level ðβϕ0Þ2 ≲ 10−5 and by the pulsar in a
triple stellar system to ðβϕ0Þ2 ≲ 4 × 10−6.
The energy-momentum tensor of the scalar field sourc-

ing the metric gμν on cosmological scales follows, in the
Einstein frame, from Eq. (1):

Tμν ¼ M2
P

�
2∂μϕ∂νϕ − gμν

�ð∂ϕÞ2 −m2ϕ2
��
: ð4Þ

In the Jordan frame T̃μν ¼ A−2ðϕÞTμν, it reduces to

T̃μν ¼ A−2ðϕÞTμν ≃
�
1 − 2αðϕÞ�Tμν; ð5Þ

where the effective scalar coupling is3 αðϕÞ ¼ d logA=dϕ,
and we work in the limit αðϕÞ ≪ 1. The mass of the scalar
field can be as small as m ∼ 10−22 eV and still be a viable
very light candidate for CDM. We will refer to models of
masses not far from this limit as ULDM. In these models,
the distances between particles are much smaller than the
corresponding de Broglie wavelength, which implies that
they can be treated as a classical superposition of free
waves with dynamical properties generated by galactic
dynamics. For the MW, this superposition has a very small
dispersion velocity (σϕ ∼ 10−3), and therefore the ULDM
field can be described as a standing wave4:

1Note that our scalar field ϕ is not canonically normalized, but
rather appears in the action multiplied by MP. This convention
makes comparisons with gravitational phenomena more straight-
forward.

2The center of mass of the inner binary in the triple system
PSR J0337þ 1715 completes a rotation around the center of
mass of the entire system in about 327 days [64], which
corresponds to a distance of ∼0.9 AU.

3In order to avoid confusion, we stress that αðϕÞ is generally
different from α, but reduces to it in FJBD theory. Binary pulsars
have constrained jαðϕÞj to be ≲10−2 for neutron stars [66].

4Close to theGalactic Center, the distributionmay condense into
a different configuration known as a “soliton” or “Bose star” [24].
We will not deal with this situation, since the pulsars used by the
PTA are far from the Galactic Center.
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ϕðx; tÞ ¼ AðxÞ cos�mtþ θðxÞ�; ð6Þ

with AðxÞ determined by5

ρ̃ϕ ≈ ρϕ ¼ m2M2
PAðxÞ2 ¼ ρϕ̂ðxÞ2; ð7Þ

where we have used Eq. (5) to relate the stress-energy-
momentum tensor in the Einstein frame to the one in the
Jordan frame, and we have neglected the terms ∼ð∂iϕÞ2
which are suppressed by v2ϕ. Here, ρ is the average density of

the scalar field, and ϕ̂ðxÞ is a stochastic parameter extracted
from the Rayleigh distribution [Pðϕ̂2Þ ¼ e−ϕ̂

2

] [74]. This
parametrization takes into account the fact that the ULDM
configurations are built by the superposition of several
waves of random phases that interfere. For the average
density, we take ρ ¼ ρDM ¼ 0.4 GeV=cm3 as a benchmark
value for the average DM density expected at the Sun’s
position in the Milky Way [75]. As commented on in the
Introduction, massesm≲ 10−22 eV are strongly disfavored
to constitute all the darkmatter in ourGalaxy. As a result, for
these masses, one needs to focus on scenarios where ULDM
is a fraction fDM ≡ ρ=ρDM < 1. The factor ϕ̂ appears from
the interference caused by the wavelike nature of the scalar
field. It reproduces the expected random local value from the
superposition of the waves, and it makes the scalar field
density ρ̃ϕ approach ρ when averaging over timescales
longer than the ULDM coherence time:

τc ∼
2

mv2
¼ 2 × 105 yr

	
10−22 eV

m



; ð8Þ

or, equivalently, on a length scale larger than the ULDM
coherence length:

lc ∼
1

mv
∼ v · τc ∼ 0.4 kpc

	
10−22 eV

m



: ð9Þ

We have conveniently normalized the mass to values
relevant to PTA observations. In the Jordan frame, an
oscillating scalar field, such as the one presented in
Eq. (6), induces a temporal variation of Newton’s constant.
Its measured value is [51]

G ¼ ð8πM2
PÞ−1A2ðϕÞð1þ α2ðϕÞÞ; ð10Þ

where αðϕÞ ¼ A0ðϕÞ=AðϕÞ. In order to use this property of
scalar-tensor theories, we follow Ref. [67] and neglect the
scalar field mass on the typical length scale of a pulsar, a
valid approximation given our mass range for ULDM. In
turn, a variation of the local gravitational constant modifies

the gravitational mass and the radius of the neutron star [51].
This dependence is encoded in the sensitivities, which
represent the rate of change of these parameters with respect
to changes in the scalar field [72].
To explore this effect, one can recall that the conserva-

tion of angular momentum J relates the changes in the
moment of inertia I of the neutron star (depending on the
local value of G) to the observed pulse frequency Ωobs
through the relation J ¼ IΩobs. Particular attention has to
be paid to the frame used for the definition of the angular
momentum J, as the latter is only conserved in the Einstein
frame (see Ref. [67] for more details). We use the code
presented in Ref. [67] to compute the angular momentum
sensitivity, defined by

sI ¼ −
1

2αðϕÞ
d ln I
dϕ

����
N;J

¼ 1

2αðϕÞ
d lnΩobs

dϕ

����
N;J

; ð11Þ

where the pulsar’s baryon numberN and the Einstein-frame
angular momentum J are kept constant. With this sensi-
tivity at hand, a change in the scalar field value can be
directly related to a change in the frequency of the pulsar,
and consequently, to a change in the pulsar’s pulse time of
arrival (TOA). We will use this fact in Sec. IV to constrain
ULDM models.

III. DATASET AND METHODOLOGY

In this work, we analyze the second data release
(DR2) [76] of the European Pulsar Timing Array (EPTA)
Collaboration [37,77]. In particular, we use the EPTA-
DR2Full dataset,6 consisting of 24.7 years of collection
of the TOAs of radio pulses of 25 ms pulsars, surveyed
with an approximately biweekly cadence7 and observed
by five telescopes located in France, Germany, Italy, the
Netherlands, and theUnitedKingdom.The relation between
the time of emission of a radio pulse and its TOA at the Solar
System barycenter (SSB) is encoded in a pulsar-specific
timing model [78], which takes into account the pulsar
spindown, its position and propermotion, themotion around
a binary companion, etc. Any deviations between the
predicted TOAs and the actual measurements, referred to
as timing residuals, may include contributions from various
sources of noise, including stochastic dispersion measure
fluctuations and irregularities in pulsar rotation [79,80].
However, these residuals might also be indicative of proc-
esses of astrophysical significance, cf. the recent evidence of
a stochastic gravitational wave background (SGWB) in the
data of various PTA experiments [81–84].

5Notice that, as compared to field theory conventions, there are
factors of 2 in difference, arising from the noncanonical nor-
malization of the scalar field in Eq. (1).

6The dataset can be found at https://gitlab.in2p3.fr/epta/epta-
dr2.

7The cadence is nonuniform. EPTA combines observations
from several telescopes, so sometimes the EPTA-wide cadence
can be much shorter.
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Because the EPTA-DR2Full dataset does not yield a
strong evidence in favor of the hallmark Hellings-Downs
(HD) [85] interpulsar correlation (in contrast to the 10.3 yr
dataset [76,80,86,87]), we only account for possible con-
tributions from the SGWB via a PTA-wide spatially
uncorrelated but temporally correlated noise term, charac-
terized by an amplitude AGWB and a spectral index γGWB
(see Table I for more details). Such a signal appears as a
precursor to the SGWB [88–90], because of the stronger
autocorrelation of the Hellings-Downs process.
We utilize Bayesian inference to detect the ULDM-

induced deterministic8 signal, while simultaneously margin-
alizingover timingmodel parameters [76] and accounting for
all known sources of noise in the data [80]. Given the model
parameters θ, the likelihood function for the timing residuals,
denoted as LðδtjθÞ, is represented as [91–95]:

lnLðδtjθÞ ∝ −
1

2
ðδt − μÞTC−1ðδt − μÞ: ð12Þ

In this time-domain Gaussian likelihood, δt is a vector with
dimension corresponding to the number of observations. The
deterministic ULDMcontribution, whichwe derive below in
Eqs. (19) and (23), is taken into account in μ, which includes
contributions from both the timing model and noise proc-
esses, as analyzed in Ref. [80]. Temporally uncorrelated
“white” noise and other sources of uncertainty in TOA
measurements are factored into the diagonal components of
the covariancematrixC. Off-diagonal elements of thematrix
C could, in principle, contain contributions from temporally
correlated “red” noise; yet they are more commonly incor-
porated into μ for computational efficiency, following the
approach described in Refs. [92,93]. The priors πðθÞ of the
parameters used for the search are described in Table I.
Parameter estimations are carried out by evaluating posterior
distributions, denoted as PðθjδtÞ ∝ LðδtjθÞπðθÞ, produced
with the Parallel-Tempering Markov-Chain Monte-
Carlo sampler [96] implemented in ENTERPRISE [94] and
ENTERPRISE_EXTENSIONS [95], using the PTArcade [97,98]
wrapper and adapting it to the EPTA dataset.
In this work, we consider the effect of the scalar field on

the TOAs, and we constrain the conformal coupling by
looking at its effect on the timing residuals. Since the
duration Tobs ¼ 24.7 yr of the EPTA-DR2Full dataset is
much shorter than the coherence time in Eq. (8) for the
ULDM considered here, different coherence patches with
characteristic dimension lc will have different ρϕ values.
However, notice that if m is sufficiently small that lc > R,
where R is the characteristic radius probed by Galactic
rotation curves, we are really observing one single patch of
ULDM. We refer to this case as the correlated scenario.

Based on these premises, we thus distinguish three
different regimes [40], according to the interplay between
the mass of the ULDM candidate and the typical interpulsar
separation. In the uncorrelated regime, each of the pulsars
timed by the EPTA resides in a different coherent patch.
Therefore, each pulsar is characterized by its own ϕ̂ðxÞ
parameter. As the average interpulsar distance is OðkpcÞ,
the uncorrelated approximation holds for ULDM masses
m≳ 5 × 10−23 eV. For masses m≲ 2 × 10−24 eV (corre-
lated scenario), the coherence length described by Eq. (9)
encompasses the inner galactocentric ∼20 kpc, which is the
benchmark area examined by the most accurate measure-
ments of MW rotation curves [75], from which the local
DM abundance is inferred. Therefore, as the kinematic tests
of the DM halo explore the same coherence patch that hosts
all the EPTA pulsars, we can safely absorb the common
parameter ϕ̂ðxÞ into the measured value of the local ULDM
abundance. Equation (6) then reads

ϕðx; tÞ ¼
ffiffiffi
ρ

p
mMP

cos
�
mtþ θðxÞ�; ð13Þ

with ρ representing the value of the scalar field density ρϕ
in our Galaxy. Finally, for masses 2 × 10−24 eV≲
m≲ 5 × 10−23 eV, one ULDM coherence patch can
encompass all pulsars, but it does not reach the typical
radius explored by rotation curves. In this pulsar-corre-
lated scenario, the stochastic parameter ϕ̂ðxÞ is common
across all the pulsars. However, estimates of DM density
derived from rotation curves average over different coher-
ence patches. Hence, we maintain ϕ̂ðxÞ as an independent
parameter and marginalize over it, so that the constraints on
ρ derived from the following analysis can be compared to
the density estimated through rotation curves. Regardless
of the scenario, we always draw one phase parameter
θðxÞ per pulsar. This phase encodes the uncertainty on
current pulsar distance measurements [40,99,100] [see
below Eq. (16) in Sec. IV for more details].
We focus on the ULDM mass range m∈ ½10−24 eV;

10−21 eV�, since this is the interval where PTA constraints
are the most compelling. Notice that the low-mass end
corresponds to a frequency of flow ∼ 2.4 × 10−10 Hz,
which is far below the inverse of the EPTA-DR2Full
observation length fobs ¼ 1=Tobs ∼ 1.3 nHz. In this
regime, the ULDM-induced signal [see Eq. (19) later]
can still be expanded in powers of (mt) [42]. The first terms
in the expansion are degenerate, with the simultaneous
fitting of pulsar spin frequency derivatives [101–103];
therefore, the lowest-order term that PTAs are sensitive
to is ðmtÞ3. Although this introduces a sensitivity loss—
which is also confirmed, e.g., by Fig. 2—the ULDM-
induced signal amplitude is inversely proportional to the
particle mass [see Eqs. (18) and (19)]. Therefore, we can
still provide significant bounds at f ≲ 1=Tobs [104]. The

8The signal induced by ULDM is deterministic, as opposed to
the stochastic nature of, e.g., the common red noise process
describing the SGWB.
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upper end of the ULDM mass range instead corresponds to
fup ∼ 2.4 × 10−7 Hz, which is somewhat lower than the
observational cadence of f ∼ 1=2 weeks ∼ 8.3 × 10−7 Hz,
after which the PTA data are not sensitive. Finding no
evidence for a signal in the examined mass range, we
present 95% upper limits in the following sections.

IV. RESULTS

In this section, we apply the theoretical framework laid
down in Sec. II to constrain the FJBD and the DEF
conformal couplings.

A. FJBD conformal coupling

Let us focus on FJBD theory. In this case, by inspecting
Eq. (2) and recalling the definition of αðϕÞ, we find
αðϕÞ ¼ α. Moreover, the numerical analysis carried out
in Ref. [67] shows that the angular momentum sensitivity sI
has a very weak dependence on the scalar coupling α that
we neglect in this analysis. Depending on the context, we
can conveniently write sIðα;MÞ as sIðMÞ or sI to avoid
cluttering the notation.
For small scalar fluctuations such as the ones considered

in this article, it follows from Eq. (11) that

ΩobsðtÞ ¼ Ω̄
�
1þ 2αsIδϕðtÞ

�

¼ Ω̄
	
1þ 2αsI

ffiffiffi
ρ

p
MPm

ϕ̂ðxÞ cos�mtþ θðxÞ�


; ð14Þ

where we use Eq. (6), and we denote the spin frequency of
the pulsar in the absence of the scalar field by Ω̄. Notice that
Eq. (14) describes the correct frequency shift only under the
assumption that the oscillating timescale tosc ∼ 1=m is
much longer than the timescale on which a neutron star
adjusts its internal structure (tint). This is a reasonable
assumption. For instance, the Vela pulsar shows a fast core-
crust coupling with a timescale tint ∼ 10 s [105], which
would be larger than tosc only for ULDM masses
m≳ 10−16 eV, which are not discussed here (see Sec. III).
To find the TOA change induced by the scalar field, we

write Eq. (11) as

δΩobs

Ω̄
¼ 2αsIδϕ ¼ −

δP
P̄

; ð15Þ

where P̄ is the pulsar period in the absence of the scalar
field. The total timing residual ΔtðtÞ after a time t is the
integral of infinitesimal period variations over time:

ΔtðtÞ ¼ −
Z

dt
δΩobs

Ω̄

¼ 2αsI

ffiffiffi
ρ

p
MPm2

ϕ̂ðxÞ sin�mtþ θðxÞ�
����
tend−d

c

tstart−d
c

; ð16Þ

where we have highlighted the dependence on the retarded
time ti − d=c, with i ¼ start; end, and d referring to the
Earth-pulsar distance. As mentioned before, the pulsar
distance can be reabsorbed in a redefinition of the phase
θðxÞ → θðxÞ þmd=c. Present uncertainties on the pulsar
distances are Oð0.1 ÷ 1Þ kpc [99], implying that this
redefinition gives rise to an effective pulsar-dependent
random phase. Therefore, as mentioned in Sec. III, we
treat θðxÞ as a pulsar-specific random parameter, and we
neglect the distance in the retarded time from now on.
In analogy with the ULDM search results in Ref. [40],

where the timing residual for the model considered was
written as

δtDM ¼ Ψc

2m
½ϕ̂2

E sin ð2mtþ θEÞ − ϕ̂2
P sin ð2mtþ θPÞ�; ð17Þ

with E and P labeling the Earth and the pulsar,9 respec-
tively, we can define an effective amplitude

Ψ ¼ 2α

ffiffiffi
ρ

p
MPm

; ð18Þ

such that

ΔtðtÞ ¼ Ψ
m
sIϕ̂ðxÞ sinðmtþ θðxÞÞ

����
tend

tstart

: ð19Þ

This form helps us to understand what a sensible prior onΨ
may be. In fact, noticing that Eqs. (17) and (19) have the
same form [differing only for the presence of the Earth term
and some Oð1Þ factors], we can use the same prior for Ψ
and Ψc: i.e., Log10 − Uniform½−20;−12�. In other words,
the similarity between the two equations shows that what
we are really testing is whether the PTA data can constrain
the presence of a sinusoidal signal.
As previously stated, the sensitivity sI as a function of

the pulsar mass is computed from a fit to the models of
Ref. [67]. In particular, we consistently utilize the pulsar
gravitational mass as a parameter of the fit instead of the
inertial mass, because the former is the value measured by
experiments. We implement the pulsar masses in the
analysis in the following way:
(1) If a pulsar mass is determined from other experi-

ments as M � δM, we draw the mass from a normal
distribution centered onM, with uncertainty δM and
truncated for masses below Mmin ¼ 1.1M⊙ and
above Mmax ∼ 2M⊙. The precise value of Mmax
depends on the EOS considered (see the Appendix
for more details).

(2) If we have no determination of the pulsar mass,
we draw it from a uniform distribution (e.g.,

9The stochastic parameter ϕ̂P corresponds to ϕ̂ in our notation.
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M∈ ½1.1M⊙; 2.2M⊙� for the AP4 model; see the
Appendix for more details).

At this point, it is worth obtaining some analytical under-
standing of the results that we expect for α. In particular, in
writing the residual induced by an ULDM candidate of
mass m as ΔtðmÞ, we notice that

ΔtðmÞ ∼ δtDM

	
m
2



→ Ψ ∼Ψc

	
m
2



; ð20Þ

which, through Eq. (18), yields

α ∼
mMPffiffiffi

ρ
p Ψc

	
m
2



: ð21Þ

By substituting the upper limits for Ψc found in Fig. 1 of
Ref. [40], Eq. (21) gives us an approximate estimate of the
upper limits that we expect to find. Figure 1 shows the
comparison between the correlated limit and its theoretical
prediction based on Eq. (21), assuming for reference
ρ ¼ ρDM ¼ 0.4 GeV=cm3. As can be seen, our analytical
prediction captures the scaling and the overall shape of the
constraints, but there are deviations caused by the intrinsic
difference between the signals in Eqs. (17) and (19) (for
example, the fact that, in our scenario, the timing residual
depends on the mass of the pulsar through the sensitivity).

In the following, we present results in terms of α
ffiffiffiffiffiffiffiffiffi
fDM

p
to

take into account the relative energy density of this ULDM
candidate, fDM. This is indeed the quantity constrained by
Eq. (18), and it allows for rapidly obtaining the relevant
bound on α once a value for the scalar field density ρ is
chosen. Figure 2 displays the upper limits for the corre-
lated, pulsar-correlated, and uncorrelated analyses.
We detect the existence of additional signal power above

the common red noise background for masses around
m ∼ 10−22.7 eV and m ∼ 10−21.4 eV across all the three
analyses. The first excess is consistent with what was
observed in recent searches [40,43], while the second one is
thought to be associated with unmodeled perturbations in
the orbital elements of Mercury, whose synodic period
matches the detected excess frequency [41]. While both of
them could in principle be interpreted as evidence of
nonminimally coupled ULDM candidates, the fact that
they can be accounted for by different physical models
makes us more cautious in drawing definitive conclusions.
In order for our results to be consistent, we also need to
ensure that the effect that we are constraining is not
subdominant with respect to the TOA induced by the purely
gravitational effect of the ULDM oscillations [33,40],
which we are neglecting in our analysis. To understand
the interplay between our analysis and the analysis à la
Khmelnitsky-Rubakov performed in Ref. [40], it is suffi-
cient to notice that a nonminimally coupled ULDM candi-
date of mass m described by the FJBD action [Eqs. (1) and
(2)] will in general produce both an α-dependent residual
and a propagation residual, described by Eqs. (16) and (17),
respectively. While the former has a dependence on the

FIG. 1. Upper limits on log10 α at 95% credibility compared to
the analytical estimate described by Eq. (21), for the AP4 EOS.
The solid line shows the upper limits on log10 α for the correlated
analysis, assuming that the background DM density is
ρDM ¼ 0.4 GeV=cm3, while the brown dashed line displays
the expected behavior described by Eq. (21). The dotted line
shows the degradation of the bounds when choosing
ρ ¼ minðρ̄; ρDMÞ, optimistically setting ρ̄ to the upper bounds
presented in Ref. [40]. Smaller ρ values yield a stronger
degradation of the limits.

FIG. 2. Upper limits on log10 ðα
ffiffiffiffiffiffiffiffiffi
fDM

p Þ at 95% credibility
versus the ULDM mass. We compare results for the correlated,
pulsar-correlated, and uncorrelated scenarios using solid,
dashed, and dotted lines, respectively. The results are obtained
using the AP4 EOS, and the priors on the parameters of the search
are presented in Table I. Bounds from the Cassini mission and
from the pulsar in a triple stellar system constrain α2 ≲ 10−5 and
α2 ≲ 4 × 10−6, respectively.
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scalar coupling α and has a characteristic frequency
2πf ¼ m, the latter only depends on the density of
the scalar field and has a characteristic frequency
2πf ¼ 2m [33,40]. Therefore, we only need to be careful
selecting a value of ρ which is not already excluded by the
analysis à la Khmelnitsky-Rubakov when extracting a
bound on α. Figure 1 shows the effect of this remark on
our bounds when we include the constraints on ρ found
in Ref. [40].
Additionally, we notice in passing that the form of the

signal in Eq. (19) is similar to Eq. (12) in Ref. [42], where
direct couplings between ULDM and ordinary matter were
also studied with PTA data, apart from Oð1Þ numerical
factors. Mapping our signal to Eq. (12) in Ref. [42], we find

that the limits obtained here are in general agreement with
their analysis. Although the two models induce a similar
TOA change, it is important to point out that they are
fundamentally different. Indeed, the model presented in
Ref. [42] introduces a direct and particle-dependent cou-
pling of the scalar tomatter, which implies a violation (albeit
small) of theweak equivalence principle. Instead, our model
relies on a universal conformal coupling of the scalar to
gravity, and the weak equivalence principle is satisfied
(although the strong equivalence principle is violated).

B. DEF theory

To study the DEF theory (quadratic conformal coupling),
we recall that it is characterized by αðϕÞ ¼ βϕ, cf. Eq. (3).

FIG. 3. Upper limits on jβj (β < 0) at 95% credibility versus the ULDM mass. The top-left panel shows the results for ρ ¼ ρDM, the
top-right panel assumes ρ ¼ 0.5ρDM, and the bottom panel displays the results for ρ ¼ 0.3ρDM. We compare results for the correlated,
pulsar-correlated, and uncorrelated scenarios in solid, dashed, and dotted lines, respectively. Whenever the bound is prior dominated,
the upper limits represent the upper end (in absolute value) of our prior. Priors on the parameters relevant for the search are chosen
according to the scheme presented in Table I.
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Therefore, the angular momentum sensitivity defined in
Eq. (11) becomes

sI ¼
1

2βϕ

d lnΩobs

dϕ

����
N;J

: ð22Þ

Here, we cannot neglect the dependence of sI on β; there-
fore, we write explicitly sI ¼ sIðβ;MÞ or sI ¼ sIðβÞ,
depending on the context. The induced timing residual
then reads

ΔtðtÞ ¼ −
Z

δΩobs

Ω̄
dt

¼ −2βsIðβÞ
Z

ρ

m2M2
P
ϕ̂2ðxÞcos2�mtþ θðxÞ�

¼ Ψ
2m

βsIðβÞϕ̂2ðxÞ sin�2mtþ θðxÞ�
����
tend

tstart

; ð23Þ

where we use Ψ ¼ ρ=ðm2M2
PÞ and again neglect the

dependence on the retarded time as well as the constant
term in the cosine expansion, as it yields a linear contribution
which is absorbed by the pulsar timingmodel [101–103]. As
sI ¼ sIðβÞ, Eq. (23) depends separately on the scalar field

FIG. 4. Upper limits on β (β > 0) at 95% credibility versus the ULDMmass. The top-left panel shows the results for ρ ¼ ρDM, the top-
right panel assumes ρ ¼ 0.5ρDM, and the bottom panel displays the results for ρ ¼ 0.3ρDM. We compare results for the correlated,
pulsar-correlated, and uncorrelated scenarios in solid, dashed, and dotted lines, respectively. Whenever the bound is prior dominated,
the upper limits represent the upper end of our prior. We notice that the pulsar-correlated case yields valid bounds almost only when the
scalar field density is ρ ¼ ρDM, while it is completely unconstraining when ρ ¼ 0.3ρDM. Priors on the parameters relevant for the search
are chosen according to the scheme presented in Table I.
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density, parametrized in terms of Ψ, and on the DEF scalar
coupling β. Therefore, unlike the FJBD case, ρ and β (or,
equivalently, Ψ and β) must be two independent parameters
of the search.
This is a crucial observation: in the FJBD case, we

constrained a combination of ρ and α—namely,Ψ—and we
rephrased the results into bounds on α a posteriori,
choosing a reference value of ρ only in postprocessing.
Here, instead, we are forced to impose an explicit prior on
ρ. Therefore, we focus on two reference values for the
scalar field density—namely, ρ ¼ 0.5ρDM and ρ ¼ ρDM.
Moreover, the deterministic residual in Eq. (23) depends on
the sign of β, and not only on its absolute value. While one
might naively think that a sign flip β → −β could be
absorbed by a redefinition of the random phase θðxÞ, the
sensitivity sI does actually depend on the sign of β, as
shown in Ref. [67] (see, e.g., Figs. 5 and 6 of that work).
Hence, in the following, we present results for both positive
and negative values of β. As for negative β, values β ≲ −4.3
would generate nonperturbative strong-field effects induc-
ing Oð1Þ variations from GR [52] and are therefore not
considered in the present work (being ruled out by binary
pulsars [73]). Figure 3 displays the upper bounds on jβj for
the correlated, pulsar-correlated, and uncorrelated limits
and for the selected MPA1 EOS, showing that our analysis
implies jβj ≲ 2.2 in the range 10−24 eV≲m≲ 10−23.5 eV
for ρ ¼ ρDM. We also plot the constraints obtained for a
scalar field constituting 50% or 30% of DM in Fig. 3.
Whenever our analysis is prior dominated, the upper limits
represent the upper end (in absolute value) of our prior—
namely, jβj ¼ 4.3. As expected from the form of the signal
in Eq. (23), larger values of the scalar field density yield
stronger (and wider) constraints. For positive β, instead, we
focus on β < 150, as the code provided in Ref. [67] to
compute the sensitivities is unstable for higher values of β.
The results are presented in Fig. 4 for the same choices of
scalar field density. Even in this case, larger values of the
scalar field density translate into more constraining upper
bounds, which can be as low as β ≲ 20 for ρ ¼ ρDM. Again,
the upper bounds are chosen to coincide with the upper end
of our prior—namely, β ¼ 150—whenever our analysis is
prior dominated. Finally, let us recall that the analysis in
Ref. [40] excludes ultralight scalar field densities ρ≳
0.3ρDM for masses 10−24 eV≲m≲ 10−23.7 eV and ρ≳
0.7ρDM in the mass range 10−23.7 eV≲m≲ 10−23.4 eV.
This remark should be taken into account when interpreting
the results in Figs. 3 and 4.

V. CONCLUSIONS

Conformally coupled ULDM induces periodic variations
in the gravitational mass and in the radius of pulsars [67],
with a timescale given by the mass of the particle. By the
conservation of angular momentum, this translates into an
oscillating behavior of the pulsar spin frequency, which is
accurately measured by the PTACollaborations. This effect
can be used to set constraints on the coupling of ULDM to

matter, characterized by the conformal factor AðϕÞ linking
the Einstein and Jordan frame metrics. In this work, we
have analyzed the FJBD and the DEF scalar-tensor theories
with an ultralight scalar mass, under the assumption that the
scalar field constitutes (part of) the DM, thus exploiting
different functional forms of the conformal factor AðϕÞ.
In the FJBD theory, where AðϕÞ ∼ 1þ αϕ, we find

log10 α≲ −4.5 across the entire frequency range considered,
vastly overperforming both Cassini bounds [69] and the
constraints from the pulsar in a triple stellar system [62–64].
Moreover, for massesm ∼ 10−23 eV, our analysis yields the
even tighter bound, log10 α≲ −7. Let us recall, however,
that the previously mentioned bounds have a wider range of
applicability than ours, since they also constrain massless
scalar-tensor theories.
In the DEF theory, where A ≃ 1þ βϕ2, we distinguish

between positive and negative values of β, which yield a
different expression for the sensitivity sI. In the low-mass
range, we find −2≲ β ≲ 20 for a scalar field density
ρ ¼ ρDM. We also explore how this bound relaxes when
the scalar field density constitutes 50% or 30% of the
DM density ρDM. Once again, this is competitive with
respect to existing bounds that can be found in the
literature [73,106,107].
In summary, we have shown that PTA data alone can

constrain conformal ULDM couplings for masses below
∼10−21 eV at levels not yet explored by other observations.
These models include scenarios where the ULDM consti-
tutes all the darkmatter in the Universe, and scenarios where
the ULDM is a fraction of the total dark matter content. All
the future improvements of PTA searches (e.g., those related
to SKA [108]) will impact the searches we performed in this
work. Furthermore, it was recently emphasized in [109] that
the effects coming from the interference of the different
modes comprising the ULDM field [recall Eq. (6) and the
velocity dispersion σϕ ∼ 10−3] will generate a signal at
frequencies below mσϕ that may allow our current analysis
to access ULDM models of higher masses.
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APPENDIX: PARAMETERS OF THE SEARCH

Table I summarizes the parameters used in the search
along with their priors. We add the label F if the parameter

TABLE I. Parameters employed for the search alongwith their respective priors. In the correlated limit, the parameter ϕ̂2
P is accounted for

by a redefinition of Ψ, while in the pulsar-correlated regime ϕ̂2
P ¼ ϕ̂2 is a common free parameter. Only the pulsars whose masses have

been measured from other experiments are presented, along with the relevant reference. For the other pulsars, we choose uniform priors
with support ½Mmin;Mmax� (see main text for more details).We display the priors on theDEF scalar coupling β both for β < 0 and β > 0.U
stands for the uniform distribution, andN stands for the TruncNorm distribution (see main text). Thewhite noise parameters EFAC (TOA
error Excess FACtor) and EQUAD (TOAError excess in QUADrature) are introduced for every receiver-back-end system in every pulsar.

Parameter Description Prior Occurrence

White noise ðσ ¼ E2
f σ

2
TOA þ E2

qÞ
Ef EFAC Uð0; 10Þ 1 per pulsar
Eq EQUAD Log10 − Uð−10;−5Þ 1 per pulsar

Red noise (RN)

Ared RN power-law amplitude Log10 − Uð−20;−11Þ 1 per pulsar
γred RN power-law spectral index Uð0; 10Þ 1 per pulsar

ULDM (F)

Ψ ULDM signal amplitude Log10 − Uð−20;−12Þ 1 per PTA
m [eV] ULDM mass Log10 − Uð−24;−21Þ 1 per PTA
ϕ̂2 Pulsar factor e−x 1 per pulsar
θ Pulsar signal phase Uð0; 2πÞ 1 per pulsar

ULDM (D)

fDM ULDM fraction Uð0.01; 0.30Þ 1 per PTA
β DEF scalar coupling Uð−4.3; 0Þ or Uð0; 150Þ 1 per PTA
m [eV] ULDM mass Log10 − Uð−24;−21Þ 1 per PTA
ϕ̂2 Pulsar factor e−x 1 per pulsar
θ Pulsar signal phase Uð0; 2πÞ 1 per pulsar

Common spatially Uncorrelated Red Noise (CURN)

AGWB CURN strain amplitude Log10 − Uð−18;−11Þ 1 per PTA
γGWB CURN spectral index Uð0; 7Þ 1 per PTA

Pulsar Masses

MJ0030 [113] PSR J0030þ 0451 mass N ð1.44; 0.15Þ 1 per PTA
MJ1012 [114] PSR J1012þ 5307 mass N ð1.72; 0.16Þ 1 per PTA
MJ1713 [115] PSR J1713þ 0747 mass N ð1.3; 0.2Þ 1 per PTA
MJ1738 [116] PSR J1738þ 0333 mass N ð1.47; 0.07Þ 1 per PTA
MJ1909 [117] PSR J1909-3744 mass N ð1.438; 0.024Þ 1 per PTA
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is used only in the FJBD analysis, while the label D
signals parameters used only in the DEF analysis. As
stated in the main text, if a pulsar mass is measured from
other experiments to be M � δM, we sample the mass
parameter from a normal prior distribution centered
on M, with uncertainty δM and truncated below Mmin ¼
1.1M⊙ and above Mmax ¼ð2.2M⊙;2.4M⊙;2.2M⊙Þ for the

(AP4 [110], MPA1 [111], and SLy [112]) EOSs, respec-
tively. We label this TruncNorm(μ, σ), where μ ¼ M and
σ ¼ δM. Otherwise, we just assume a uniform prior
between Mmin and Mmax for the three EOS choices. We
also plot in Fig. 5 the constraints on the FJBD scalar
coupling α for the different EOSs of the pulsar interior
presented in Ref. [67].

[1] Ricardo A. Flores and Joel R. Primack, Observational
and theoretical constraints on singular dark matter halos,
Astrophys. J. Lett. 427, L1 (1994).

[2] Ben Moore, Evidence against dissipation-less dark matter
from observations of galaxy haloes, Nature (London) 370,
629 (1994).

[3] E. V. Karukes, P. Salucci, and G. Gentile, The dark matter
distribution in the spiral NGC 3198 out to 0.22 Rvir,
Astron. Astrophys. 578, A13 (2015).

[4] Anatoly Klypin, Andrey V. Kravtsov, Octavio Valenzuela,
and Francisco Prada, Where are the missing galactic
satellites?, Astrophys. J. 522, 82 (1999).

[5] Ben Moore, Sebastiano Ghigna, Fabio Governato, George
Lake, Thomas Quinn, Joachim Stadel, and Paolo Tozzi,
Dark matter substructure within galactic halos, Astrophys.
J. Lett. 524, L19 (1999).

[6] Michael Boylan-Kolchin, James S. Bullock, and Manoj
Kaplinghat, Too big to fail? The puzzling darkness of
massive Milky Way subhaloes, Mon. Not. R. Astron. Soc.
415, L40 (2011).

[7] J. F. Navarro, V. R. Eke, and C. S. Frenk, The cores of
dwarf galaxy haloes, Mon. Not. R. Astron. Soc. 283, L72
(1996).

[8] F. Governato, A. Zolotov, A. Pontzen, C. Christensen,
S. H. Oh, A. M. Brooks, T. Quinn, S. Shen, and J. Wadsley,
Cuspy no more: How outflows affect the central dark
matter and baryon distribution in Λ cold dark matter
galaxies, Mon. Not. R. Astron. Soc. 422, 1231 (2012).

[9] Alyson M. Brooks, Michael Kuhlen, Adi Zolotov, and Dan
Hooper, A baryonic solution to the missing satellites
problem, Astrophys. J. 765, 22 (2013).

[10] T. K. Chan, D. Kereš, J. Oñorbe, P. F. Hopkins, A. L.
Muratov, C.-A. Faucher-Giguère, and E. Quataert, The
impact of baryonic physics on the structure of dark matter
haloes: The view from the FIRE cosmological simulations,
Mon. Not. R. Astron. Soc. 454, 2981 (2015).

[11] Jose Oñorbe, Michael Boylan-Kolchin, James S. Bullock,
Philip F. Hopkins, Dušan Kereš, Claude-André Faucher-
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