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Single gravitational-wave detectors face inherent limitations in detecting the anisotropy of the stochastic
background. In this work, we explore the sensitivity to anisotropic backgrounds with a network of space-
borne detectors. We find that the separation between detectors plays an important role in determining the
sensitivity. For the first time, we observe as large as three orders of magnitude enhancement in detection
sensitivity for multipoles with l ¼ 5 and 6, compared to coinciding detectors. Coordinating and optimizing
the separation between two space-borne detectors can significantly enhance the network’s sensitivity to
the multipole components of the stochastic background. For the TianQinþ Laser Interferometer Space
Antenna (LISA) network, benefiting from detector separation, it is possible to achieve sensitivity levels of
2–3 orders of magnitude better than those when using the TianQin or LISA detector alone. These findings
pave the way to uncover the underlying physics of anisotropy through gravitational-wave detections.
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I. INTRODUCTION

The detection of gravitational waves (GWs) has provided
a new way to observe the Universe, with almost a hundred
GWevents announced so far [1]. However, not all GWs can
be directly detected, leading to the existence of a large
number of independent and unresolved GWs that form a
stochastic GW background (SGWB) [2–4]. In the nano-
Hertz (nHz) band, a number of collaborations have
announced the successful detection of SGWBs [5–8].
Furthermore, there is great potential for future space-borne
detectors [9–11] and ground-based detectors [12–14] to
contribute to SGWB detection. An interesting aspect of
the SGWB is its potential anisotropy, where the intensity
exhibits spatial variations [15–21]. Among the various
possible anisotropic SGWBs, the most promising candidate
in the milli-Hertz (mHz) band is the foreground generated
by the galactic double white dwarf (DWD) [22,23].
Space-borne detectors are designed to detect GWs within

the mHz band [24–26], where laser noise is the dominant
noise and needs to be suppressed by orders of magnitude
to enable successful GW detection [27]. To achieve this
goal, a time delay interferometry (TDI) combination is
proposed [28,29], and among all the TDI combinations, the
orthogonal channel group AET is commonly used [30].

The A=E channels in this channel group are expected to
detect different polarization of the GW, through which the
GW can be fully characterized. The T channel, in contrast,
is much less sensitive to the GWat low frequencies than the
A=E channels are [31].
After the effective suppression of laser noise, secondary

noises, such as optical-path noise and acceleration noise,
become prominent in the detector channel [32]. To extract the
SGWB signal from these noises, correlation analysis using
either a null-channel method [31,33,34] or cross-correlation
method [2,3] is required. The null-channel method involves
using a signal-insensitive channel to monitor the secondary
noises of other channels, while the cross-correlation method
is applicable when there is no correlation between the
noises of the adopted channels. By performing auto- or
cross-correlation of the channel output, the correlation
measurement of the SGWB signal can be extracted, which
is related to the statistical property or, equivalently, the power
spectral density (PSD) of the SGWB [35]. Additionally, the
correlation measurement also includes the antenna pattern,
which is determined by the channel geometry and the
separationbetweendetectors [36].Accumulating the antenna
pattern for all spatial orientations allows the determination of
the overlap reduction function (ORF). The ORF represents
the reduction of the correlation measurement relative to the
PSD of the SGWB.
To further investigate the anisotropy of the SGWB, it is

possible to analyze the antenna pattern by decomposing it
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into spherical harmonics with multipole coefficients, which
are directly related to the multipole moments of the
anisotropic SGWB [37,38]. The analysis of the multipole
coefficients allows for assessing anisotropy detection from
two perspectives. First, by calculating the ORF correspond-
ing to each multipole coefficient and taking into account the
noise level of the channel, the detection sensitivity to the
anisotropic SGWB can be determined. This curve helps
determine the minimum detectable intensity of the multi-
pole moment within detectors. Second, one can estimate
the values of the multipole coefficients based on data. One
method is to compute the frequentist maximum-likelihood
estimators of these coefficients [39–46]. Another method is
to utilize Bayesian inference to construct their posterior
distributions given prior probability distributions for the
signal and noise parameters [47–51]. These methods
facilitate the creation of a “clean map” depicting the true
distribution of GW power across the sky [39,40,52].
Previous studies have highlighted the limitations of

a single space-borne detector in detecting multipole
moments beyond the monopole (l ¼ 0), quadrupole
(l ¼ 2), and hexadecapole (l ¼ 4) [36,53,54], necessitating
a loud SGWB signal to estimate other multipole coeffi-
cients [43,49]. In comparison to single detectors, the use
of a detector network introduces two additional factors,
namely, the detector plane angle and the detector separa-
tion, which have significant influence on SGWB detection.
For example, for an isotropic background (l ¼ 0), a pair of
detectors with smaller plane angles and shorter separations
would be associated with better sensitivities [55,56].
Extending beyond the isotropic background, multipole
moments with l ¼ 1 and 3 experience a substantial
enhancement in the signal-to-noise ratio (SNR) when using
a detector network compared to a single detector [57].
In this paper, we focus on investigating the sensitivity of

space-borne detector networks to anisotropy. Through a
detailed analysis, we quantitatively examine the factors
influencing anisotropy sensitivity. We derive a universal
correlation of the detector separation on the sensitivity to
the anisotropy of the SGWB. Our findings indicate that
increasing the detector separation can greatly enhance the
detection of specific multipoles within the SGWB.
Crucially, as the order of the multipole moment increases,
the benefits derived from larger detector separations
become even more pronounced. Building upon that prem-
ise, we demonstrate the detection sensitivity to the aniso-
tropic SGWB through realistic examples. We consider two
space missions, TianQin and Laser Interferometer Space
Antenna (LISA), as potential options for the detector
network: the TianQin Iþ II network and the TianQinþ
LISA network. In the TianQin Iþ II, network the first
detector, TianQin, will have a fixed pointing direction,
while the second detector, TianQin II, will maintain a
perpendicular orientation to TianQin [58]. On the other
hand, the TianQinþ LISA network will involve LISA

changing the pointing direction over time. To assess the
detection sensitivity, we utilize the power-law integrated
sensitivity (PLIS) curve [59]. This specific sensitivity curve
allows us to estimate the minimum detectable energy
spectrum density of the SGWB.
This paper is structured as follows. In Sec. II, we review

the fundamental properties of stochastic gravitational-wave
background. We then discuss the analysis for detecting
the anisotropy of the SGWB in Sec. III. We analyze the
improvement in detection sensitivity to anisotropy with
detector separation in Sec. IV. Furthermore, in Sec. V, we
conduct the realistic case study involving TianQin and
LISA. Sec. VI is devoted to a conclusion and discussion.

II. THEORETICAL FUNDAMENTAL

In order to characterize the intensity of the SGWB,
we begin with the metric perturbation in the transverse-
traceless gauge. Since the SGWB is the superposition of
GWs, the metric perturbation hðt; x⃗Þ can be expressed as
follows:

hðt; x⃗Þ ¼
X

P¼þ;×

Z
∞

−∞
df

Z
S2
dΩ̂k̂h̃Pðf; k̂ÞePðk̂Þ

× ei2πf½t−k̂·x⃗ðtÞ=c�; ð1Þ

where k̂ is the wave vector of the GW, the polarization tensor
ePðk̂Þ refers to the polarization P of the GW, and c denotes
the light speed. In this work, we focus on the Gaussian-
stationary and unpolarized SGWBs, which allows us to
characterize the statistical properties of SGWBs through the
mean value and variance of the Fourier amplitude h̃Pðf; k̂Þ.
Based on the fact that the SGWB is composed of a large
number of GWs, it is reasonable to assume that the SGWB
has a zero-mean Fourier amplitude h̃Pðf; k̂Þ:

hh̃Pðf; k̂Þi ¼ 0: ð2Þ

On the other hand, the variance of h̃Pðf; k̂Þ is defined as the
PSD Ph of the SGWB:

hh̃Pðf; k̂Þh̃�P0 ðf0; k̂0Þi ¼ 1

4
δðf − f0ÞδPP0δ2ðk̂ − k̂0ÞPhðjfj; k̂Þ;

ð3Þ

where the factor 1=4 comes from the definition of one-side
PSD and the average of polarization.
In the case of an anisotropic SGWB, where the PSD

exhibits a directional preference, it is convenient to expand
the PSD in terms of spherical harmonics. By assuming that
the intensity of the SGWB has no dependence between
direction and frequency, one can focus on characterizing
the direction dependence of the SGWB through [37]
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Phðf; k̂Þ ¼
X∞
l¼0

Xl

m¼−l
plmðfÞYlmðk̂Þ; ð4Þ

with the multipole moment

plmðfÞ ¼
Z
S2
dΩ̂k̂Phðf; k̂ÞY�

lmðk̂Þ: ð5Þ

To obtain the all-sky PSD of the SGWB, Ph needs to be
integrated over all directions:

ShðfÞ ¼
Z
S2
dΩ̂k̂Phðf; k̂Þ

¼
ffiffiffiffiffiffi
4π

p
p00ðfÞ: ð6Þ

Equation (6) highlights that the all-sky PSD solely captures
the monopole moment p00, while the higher-order multi-
pole moments associated with the anisotropy remain
hidden. To study the anisotropy of the SGWB, it is crucial
to establish an estimator that incorporates the quadratic
form of Ph:

Z
S2
dΩ̂k̂jPhðf; k̂Þj2 ¼

X∞
l¼0

Xl

m¼−l
plmðfÞp�

lmðfÞ

¼
X∞
l¼0

ð2lþ 1ÞAlðfÞ; ð7Þ

where the angular PSD plays a significant role in providing
insights into the anisotropy across various scales [40]:

AlðfÞ ¼
1

2lþ 1

Xl

m¼−l
plmðfÞp�

lmðfÞ: ð8Þ

Especially, for an isotropic SGWB,

A0ðfÞ ¼
S2hðfÞ
4π

: ð9Þ

In addition, to characterize the distribution of energy
across different frequencies in SGWBs, the dimensionless
energy spectrum density Ωgw is commonly used. This
quantity allows us to specify the ratio of the GW energy
density dρgw within the frequency range [f,f þ df] to the
critical energy density ρgw [35]:

ΩgwðfÞ ¼
1

ρc

dρgw
dðln fÞ ; ð10Þ

where the critical energy density ρc ¼ 3H2
0c

2=ð8πGÞ, with
the gravitational constant G and the Hubble constant H0.

The relationship between Ωgw and Sh can be established
through [59]:

ΩgwðfÞ ¼
2π2

3H2
0

f3ShðfÞ: ð11Þ

III. DETECTION ANALYSIS

A. Detector design and channel

Currently, there are several proposed space missions
for detecting GWs, including LISA [25], TianQin [24],
Taiji [26], etc. In this paper, we limit our focus to TianQin
and LISA.
As shown in Fig. 1, TianQin is a space-borne GW

detector comprising three identical satellites orbiting the
Earth. These satellites have an orbital period of 3.64 days
and are positioned at a radius of approximately 105 km.
When in operation, the three satellites will form an equi-
lateral triangle with an arm length LTQ of about
1.7 × 105 km. The working mode of TianQin follows a
“three months onþ three months off" pattern. To ensure
continuous detection, a second mission called TianQin II is
proposed to bridge the detection gap [58]. The orbital
planes of TianQin and TianQin II are designed to be
perpendicular to each other, forming the TianQin Iþ II
network. In fact, the initial working mode does not allow
for overlapping operating time between TianQin and
TianQin II. To address this issue, we adopt the improved
working mode “four months onþ two months off” [60],
which allows for a four-month overlap between TianQin
and TianQin II within a year. It is crucial to account for the
time lag between the emissions of TianQin and TianQin II,
which results in a disparity in their respective initial phase
angles within their planes. To simplify subsequent analysis,
we introduce the following notation: α and α0 represent the
initial phase angles of both detectors, while γ0 is defined as
the phase angle difference, calculated as α0 − α.

FIG. 1. Schematic diagram of TianQin and LISA missions in
the ecliptic coordinate.
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LISA is planned to be positioned in an orbit around the
Sun, trailing approximately 20° behind the Earth and
maintaining a fixed angle of 60° with the ecliptic plane.
It will consist of three satellites separated by a distance of
∼2 × 106 km, which serves as the arm length LLISA of the
detector. These three satellites will complete one orbit in
the detector plane over the course of one year. The
operating period and detection frequency band of LISA
are similar to those of TianQin, which opens up the
possibility of establishing a network of TianQinþ LISA.
The triangular formation of the three satellites faces

challenges in maintaining an equilateral shape due to detec-
tor motion, making it difficult to construct an equal-arm
Michelson. This poses a challenge in canceling the laser
noise. An effective solution to address this issue is by
utilizing a TDI combination [28]. The primary TDI
channels, namely, X, Y, and Z, can be established through
each satellite and its adjacent link. It is important to note
that the angle between these three channels is 60°, resulting
in a correlation. To address this correlation and eliminate its
impact, we can construct two orthogonal and independent
channels based on the three primary TDI channels. One
possible option is to incorporate the A=E channels, which
are commonly combined with the totally symmetrized

channel T [30]. Unlike the A=E channels, the T channel
is specifically constructed to be insensitive to GWs in the
low-frequency band, making it useful for monitoring
channel noise in GW detection. The channel group AET
can be constructed as follows [61]:

A ¼ 1ffiffiffi
2

p ðZ − XÞ;

E ¼ 1ffiffiffi
6

p ðX − 2Yþ ZÞ;

T ¼ 1ffiffiffi
3

p ðXþ Yþ ZÞ: ð12Þ

B. Detection measurement

The SGWB signal hIðtÞ in the detector channel I is the
convolution of the metric perturbations hðt; x⃗Þ and the
impulse response Dabðt; x⃗Þ [62]. Although the channel
response will inevitably change due to the detector motion,
we can simplify the measurement process without signifi-
cantly compromising its accuracy by restricting our analy-
sis to the short time scale of ½t0 − T=2; t0 þ T=2�:

hIðt; t0Þ ¼ DP
I ½t; x⃗ðt0Þ� � hP½t; x⃗ðt0Þ�

¼
X

P¼þ;×

Z
∞

−∞
df

Z
S2
dΩ̂k̂F

P
I ðf; k̂; t0Þh̃Pðf; k̂Þei2πf½t−k̂·x⃗ðt0Þ=c�; ð13Þ

where x⃗ denotes the position of the measurement at time t. The response function of channel is the double contraction of the
channel tensor and the polarization tensor [63]. For more details, interested readers are referred to [56]. In this paper, we will
not extensively discuss these details but instead proceed to present the response function of the AET channel group:

FP
Aðf; k̂; t0Þ ¼

1ffiffiffi
2

p
h
FP
Zðf; k̂; t0Þe−i2πfk̂·A0C0

���!
ðt0Þ=c − FP

Xðf; k̂; t0Þ
i
;

FP
Eðf; k̂; t0Þ ¼

1ffiffiffi
6

p
h
FP
Xðf; k̂; t0Þ − 2FP

Yðf; k̂; t0Þe−i2πfk̂·A0B0

���!
ðt0Þ=c þ FP

Zðf; k̂; t0Þe−i2πfk̂·A0C0

���!
ðt0Þ=c

i
;

FP
Tðf; k̂; t0Þ ¼

1ffiffiffi
3

p
h
FP
Xðf; k̂; t0Þ þ FP

Yðf; k̂; t0Þe−i2πfk̂·A0B0

���!
ðt0Þ=c þ FP

Zðf; k̂; t0Þe−i2πfk̂·A0C0

���!
ðt0Þ=c

i
; ð14Þ

where A0, B0, and C0 denote the satellites of space-borne
detector, i.e., laser interference sites in the X, Y, and Z
channels. To accurately define the separation vector be-
tween two channels or detectors in our subsequent analysis,
we establish the vertex A0 of the X channel as the reference
position for the detector.
In the frequency domain, the SGWB signal

h̃Iðf; t0Þ ¼
X

P¼þ;×

Z
S2
dΩ̂k̂F

P
I ðf; k̂; t0Þh̃Pðf; k̂Þ

× e−i2πfk̂·x⃗ðt0Þ=c ð15Þ

and the PSD of the SGWB signal can be defined as

hh̃Iðf; t0Þh̃�Jðf0; t0Þi ¼
1

2
δðf − f0ÞPhIJðjfj; t0Þ: ð16Þ

Here, I ¼ J refers to the auto-PSD of one channel, while
I ≠ J refers to the cross-PSD of two channels.1 Combined

1To simplify, PhII reduces to PhI .
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with Eqs. (15) and (16), we can establish the following
connection between PhIJ and Ph:

PhIJðf; t0Þ ¼
Z
S2
dΩ̂k̂YIJðf; k̂; t0ÞPhðf; k̂Þ; ð17Þ

where the antenna pattern involves both the channel
response and the separation vector Δx⃗ ¼ x⃗I − x⃗J between
detectors:

YIJðf; k̂; t0Þ ¼
1

2

X
P¼þ;×

FP
I ðf; k̂; t0ÞFP�

J ðf; k̂; t0Þ

× e−i2πfk̂·½x⃗Iðt0Þ−x⃗Jðt0Þ�=c: ð18Þ

To describe the directional dependence of the antenna
pattern, it is necessary to further expand it in terms of
spherical harmonics:

YIJðf; k̂; t0Þ ¼
X∞
l¼0

Xl

m¼−l
almIJ ðf; t0ÞY�

lmðk̂Þ; ð19Þ

with the multipole coefficient

almIJ ðf; t0Þ ¼
Z
S2
dΩ̂k̂YIJðf; k̂; t0ÞYlmðk̂Þ: ð20Þ

Substituting Eqs. (4) and (19) to Eq. (17), the PSD of the
SGWB signal is calculated as the sum of the product of the
multipole coefficient and the corresponding multipole
moment [53]:

PhIJðf; t0Þ ¼
X∞
l¼0

Xl

m¼−l
almIJ ðf; t0ÞplmðfÞ; ð21Þ

which allows for the determination of the angular PSD by
taking into account the contributions from various multi-
pole components.

C. Signal-to-noise ratio

In addition to the SGWB signal hI, the output from
channel sI is also contributed by the channel noise, denoted
as nI. Hence, the complete expression for the output is
given by sI ¼ hI þ nI. The PSD of the output can
be obtained by summing the signal PSD Ph and the noise
PSD Pn:

hs̃Iðf; t0Þs̃�Jðf0; t0Þi
¼ hh̃Iðf; t0Þh̃�Jðf0; t0Þi þ hñIðfÞñ�Jðf0Þi

¼ 1

2
δðf − f0Þ½PhIJðjfj; t0Þ þ PnIJðjfjÞ�; ð22Þ

where the channel noise is assumed to be stationary.
Furthermore, the SGWB signal and the channel noise
are considered to be uncorrelated.
In the presence of noise, extracting the SGWB signal

from the output becomes a challenging task. It requires
careful management and monitoring of the channel noise.
One effective approach to mitigate the impact of channel
noise is to employ cross-correlation between two channels
with uncorrelated channel noise. Ideally, the cross-
correlation should result in a zero-value noise PSD PnIJ
[2,3]. Alternatively, for a single space-borne detector, the
null channel could be utilized to monitor the channel
noise [31,33]. By utilizing the above methods, the optimal
SNR for SGWB detection [56] is as follows:

ρIJðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

1þ δIJ

Z
fmax

fmin

df
jPhIJðf; t0Þj2

PnIðfÞPnJðfÞWIJðf; t0Þ

s
;

ð23Þ

where T and ½fmin; fmax� denote the correlation time and the
detection band, respectively. In the context of the channel
group AET of space-borne detectors, the noise PSD is
given by

PnA=EðfÞ ¼
2sin2

� f
f�

�
L2

��
cos

�
f
f�

�
þ 2

	
SpðfÞ þ 2

�
cos

�
2f
f�

�
þ 2 cos

�
f
f�

�
þ 3

	
SaðfÞ
ð2πfÞ4

�
;

PnTðfÞ ¼
8sin2

� f
f�

�
sin2

� f
2f�

�
L2

�
SpðfÞ þ 4sin2

�
f
2f�

�
SaðfÞ
ð2πfÞ4

	
; ð24Þ

which takes into account detector arm length L, optical-
path noise Sp, and acceleration noise Sa. For more detailed
information on the parameters of TianQin and LISA,
readers can refer to Refs. [64] and [65], respectively.
The correction function WIJ plays an important role when
the SGWB signal exceeds the channel noise [56].

If one specifically considers the contribution of different
multipole moments to the SNR, where each m is derived
from the same Gaussian statistics [54], i.e.,

AlðfÞ ¼ plmðfÞp�
lmðfÞ; ð25Þ
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then based on the definition of ORF [54],

Γlm
IJ ðf; t0Þ ¼

almIJ ðf; t0Þffiffiffiffiffiffi
4π

p ¼ 1

4π

Z
S2
dΩ̂k̂YIJðf; k̂; t0Þ

Ylmðk̂Þ
Y00ðk̂Þ

; ð26Þ

the l-dependent SNR can be defined by substituting Eq. (21) into Eq. (23):

ρðlÞIJ ðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

1þ δIJ

Z
fmax

fmin

df
Xl

m¼−l

almIJ ðf; t0Þalm�
IJ ðf; t0ÞplmðfÞp�

lmðfÞ
PnIðfÞPnJðfÞWlm

IJ ðf; t0Þ

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

1þ δIJ

Z
fmax

fmin

df
jΓðlÞ

IJ ðf; t0Þj24πð2lþ 1ÞAlðfÞ
PnIðfÞPnJðfÞ

s
: ð27Þ

Here the l-dependent ORF

ΓðlÞ
IJ ðf; t0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2lþ 1

Xl

m¼−l

jΓlm
IJ ðf; t0Þj2

Wlm
IJ ðf; t0Þ

vuut ; ð28Þ

with the correction function

Wlm
IJ ðf; t0Þ ¼ 1þ Plm

hI
ðfÞPnJðfÞ þ Plm

hJ
ðfÞPnIðfÞ

PnIðfÞPnJðfÞ

þ Plm
hI
ðfÞPlm

hJ
ðfÞ þ ð1 − δIJÞjPlm

hIJ
ðf; t0Þj2

PnIðfÞPnJðfÞ
:

ð29Þ

The SNR formula allows us to analyze and quantify the
impact of each multipole component on SGWB detection,
taking into account their statistical properties.
Without loss of generality, the SNR corresponding to the

total correlation time T tot

ρðlÞIJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T tot

1þ δIJ

Z
fmax

fmin

df
jΓ̄ðlÞ

IJ ðfÞj24πð2lþ 1ÞAlðfÞ
PnIðfÞPnJðfÞ

s
; ð30Þ

where the time-averaged ORF [10]

Γ̄ðlÞ
IJ ðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T tot

Z
T tot

0

dt0jΓðlÞ
IJ ðf; t0Þj2

s
: ð31Þ

In particular, when l ¼ 0, Eqs. (30) and (31) correspond to
an isotropic SGWB.

D. Sensitivity curve

Detection SNR is commonly used to assess the detection
capability of the detector and detector network for the
SGWB. However, in scenarios where one aims to demon-
strate the detection sensitivity, the PLIS curve serves as a

more suitable indicator [59]. This type of sensitivity curve,
specifically tailored for power-law SGWB, offers a robust
method to assess the detection sensitivity to the SGWB,
regardless of the intensity level of the SGWB.
To elaborate on the PLIS curve, let us begin with the

power-law energy spectrum density:

ΩðlÞ
gwðfÞ ¼ ΩðlÞ

0 ðϵÞðf=frefÞϵjϵ¼ϵ0
; ð32Þ

where Ω0 is normalized by the reference frequency fref, ϵ
denotes the spectral index, and, to be consistent with
Eq. (11) at l ¼ 0, we have

ΩðlÞ
gwðfÞ ¼ 2π2

3H2
0

f3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1ÞAlðfÞ

p
: ð33Þ

Here, the angular power spectrum Al of the SGWB at

different scales l can be calculated using ΩðlÞ
gw, which is, in

particular, numerically equal to the energy spectral density
Ωgw of the SGWB when l ¼ 0.
Substituting Eq. (33) into Eq. (30) and setting the SNR

equal to the threshold ρ0 required for detection, one can

determine the energy spectrum densityΩðlÞ
gw for each index ϵ

through inverse solving. At each frequency, the maximum

value of ΩðlÞ
gw corresponding to a specific index ϵ can be

selected, enabling the construction of the PLIS curve:

ΩPLISðfÞ ¼ maxϵ½ΩðlÞ
gwðfÞ�: ð34Þ

In particular, if we assume that the SGWB is significantly
weaker than the channel noise, the process of inverse

solving ΩðlÞ
gw can be simplified by extracting ΩðlÞ

0 from the
integral:

ΩðlÞ
0 ¼ ρ0

"
2T tot

1þ δIJ

Z
fmax

fmin

df
ðf=frefÞ2ϵ
½ΩðlÞ

nIJðfÞ�2

#−1=2

; ð35Þ
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where the l-dependent effective sensitivity

ΩðlÞ
nIJðfÞ ¼

2π2

3H2
0

f3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnI ðfÞPnJðfÞ

p
Γ̄ðlÞ
IJ ðfÞ

: ð36Þ

If the energy spectrum density ΩðlÞ
gw of a multipole moment

is located above the PLIS curve, it indicates that the
corresponding SNR is expected to exceed the preset
threshold. In such cases, the multipole moment is likely

to be detected successfully. Conversely, if ΩðlÞ
gw falls below

the PLIS curve, it suggests that the detection is highly likely
to fail. Therefore, the lowest point on the PLIS curve
denotes the minimum detectable energy spectrum density,
which is referred to as “sensitivity” when discussing the
detection capability. Furthermore, the total SNR with
multiple pairs of channels, denoted as ρtot, is the root
sum square of each individual SNR: ρtot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
IJ ρ

2
IJ

p
[10].

Then the total effective sensitivity for single detectors or
detector networks is given by

ΩðlÞ
ntotðfÞ ¼

(X
IJ

"
1

ΩðlÞ
nIJðfÞ

#
2
)−1=2

¼ 2π2

3H2
0

f3
(X

I;J

jΓ̄ðlÞ
IJ ðfÞj2

PnIðfÞPnJðfÞ

)−1=2

: ð37Þ

IV. IMPLEMENTATION FOR DETECTION
IMPROVEMENT

A single space-borne detector is capable of detecting
the monopole (l ¼ 0), quadrupole (l ¼ 2), and hexa-
decapole (l ¼ 4) of the SGWB, but it encounters challenges
in detecting additional multipole moments [36,53,54].
Hence, this section aims to investigate whether a detector
network can expand the range of detectable multipole
moments.
Let us start with the ORF, which is conveniently used to

characterize the correlation of the SGWB between different
detector channels [2,3]. To maintain the inherent consis-
tency in the analysis, we initially assume that the separation
between detectors, denoted as jΔx⃗j, is much larger than the
arm length L of the detector. This assumption allows us to
utilize the approximation f ≪ c=ð2πjΔx⃗jÞ ≪ c=ð2πLÞ.
Furthermore, we focus on channel combinations denoted
as fAA0;AE0;EA0;EE0g. Here, the prime symbol ( 0) is
employed to distinguish between the two detectors. This
selection ensures the ORF’s invariance with respect to
rotations of the detector channels within the detector
plane [9]. Assuming that the A=E channels of the same
detector share the same noise PSD, the total ORF of
fAA0;AE0;EA0;EE0g at the low-frequency limit is as
follows:

ΓðlÞ
totðfÞ ∝

8>><
>>:

f2; l ¼ 0; 2; 4
jΔx⃗j
c f3; l ¼ 1; 3; 5

jΔx⃗jl−4
c fl−2; l ≥ 6

; f ≪ c=ð2πjΔx⃗jÞ:

ð38Þ

From Eq. (38), it becomes clear that, aside from the
instances where l ¼ 1, 2, and 4, the presence of detector
separation can significantly enhance the ORF for other
multipole moments at lower frequencies. Furthermore, as
the order of the multipole moment increases, the improve-
ment facilitated by detector separation becomes increas-
ingly noticeable. However, the total ORF is suppressed by
the detector separation at a high-frequency limit:

ΓðlÞ
tot ∝

1

jΔx⃗j ; f ≫ c=ð2πjΔx⃗jÞ: ð39Þ

Additional details regarding Eqs. (38) and (39) are pro-
vided in the Appendix. Furthermore, to mitigate the
influence of the frequency-dependent factor introduced
by the TDI, one can normalize the ORF by CTDIðfÞ ¼
4 sin ½2πfL=c� sin ½2πfL0=c�, where L ¼ L0 for a single
detector [55,56]. Unless otherwise specified, we will adopt
this presentation method for the ORF in this paper.
The space-borne detectors can allow for detector sepa-

ration with a wide selectable range [24–26], which ensures
that the space-borne detector network meets the condition
stated in f ≪ c=ð2πjΔx⃗jÞ ≪ c=ð2πLÞ. As an illustrative
example, let us consider the TianQinþ LISA network [10].
The separation jΔx⃗j between TianQin and LISA is approx-
imately equal to 2 sinðκ=2Þ A:U: [66], where κ represents
the angle at which LISA is positioned behind the Earth. To
demonstrate the influence of detector separation on the
ORF, we select specific values of κ: 0°, 6°, 20°, and 60°,
corresponding to jΔx⃗j values of 0, 0.1, 0.35, and 1 A.U.,
respectively. For visual clarity, we maintain TianQin and
LISA perpendicular to each other, i.e., θr ¼ π=2, with the
unit separation vector Δx̂ ðθ ¼ 0;ϕ ¼ 0Þ.
Figure 2 shows the ORF of the TianQinþ LISA network

for varying detector separations, demonstrating a close
correspondence with Eqs. (38) and (39). For multipole
moments with l ¼ 0, 2, and 4, increasing detector separa-
tion has a negligible impact on the ORF at low frequencies.
In particular, within the mHz frequency band, the ORF for
l ¼ 0 and 2 is suppressed due to increased detector
separation. On the other hand, for l ¼ 1, 3, 5, and 6,
increasing the detector separation can provide a positive
effect on the ORF at low frequencies.
The next step involves incorporating detector noises to

determine the sensitivity. In Fig. 3, we present the PLIS
curve for different detector separations, considering an SNR
of ρ0 ¼ 1 and a correlation time T tot ¼ 0.5 year. For
multipole moments with l ¼ 0, 2, and 4, it can be concluded
that the detector separation does not significantly improve
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detection sensitivity. However, for the remaining cases,
introducing detector separation results in enhanced detection
sensitivity. For multipole moments with l ¼ 1 and 3, the
minimum detectable energy density can be reduced from
∼10−12 to ∼10−13. Additionally, for l ¼ 5 and 6, this value
can be further reduced from ∼10−11 and ∼10−10, respec-
tively, to less than 10−12. It is worth noting that, among all
the scenarios shown in Fig. 3, the detector separation of
0.35 A.U. (corresponding to κ ¼ 20°) enables relatively
optimal detection sensitivity.

V. REALISTIC CASE STUDY

In this section, we focus on demonstrating the detection
sensitivity to the anisotropic SGWB by presenting numeri-
cal results for the planned TianQin Iþ II and TianQinþ
LISA networks. To ensure a comprehensive comparison,

we also add the results of single detectors, namely, TianQin
and LISA individually.
For a single detector, all possible correlations of the

channels can be utilized, including autocorrelation within
the same channel and cross-correlation between different
channels. Since the ORF exhibits symmetry in the channels,

where ΓðlÞ
AA ¼ ΓðlÞ

EE and Γ
ðlÞ
AT ¼ ΓðlÞ

ET, we only need to consider
the performance of four pairs of channels. When analyzing
detector networks and aiming to emphasize the improvement
achieved by multiple detectors in comparison to a single
detector, the focus shifts to solely considering the cross-
correlation between different detectors while disregarding
the correlations within each individual detector. The channel
combinations are classified into three categories based on the
presence of a null channel: those without null channels (0N),
those with one null channel (1N), and those with two null
channels (2N). These categories are consistently labeled
throughout the paper. Table I provides a list of the correlation
channel combinations used for our analysis. To simplify the
notation, we may use shorthand labels such as “tt” for
TianQin Iþ II and “tl” for TianQinþ LISA in the following
figures and equations.

A. Overlap reduction function

1. Single detectors

Figure 4 illustrates the ORFs of a single TianQin and
LISA. Due to the symmetry of the spherical harmonic,

FIG. 3. PLIS curve of the TianQinþ LISA network for each multipole moment, considering different detector separations jΔx⃗j. Note
that the Hubble constant h ¼ 0.674 [67].

FIG. 2. The ORF of the TianQinþ LISA network is evaluated
for different detector separations: jΔx⃗j ¼ 0, 0.1, 0.35, and 1 A.U.
The dashed gray line represents the characteristic frequency
below which the low-frequency limit fails. It is worth noting that
when the separation jΔx⃗j is equal to 0 A.U., the characteristic
frequency turns to c=ð2πLÞ.

TABLE I. The combination of channels for correlation in
TianQin and LISA, and the TianQin Iþ II and TianQinþ
LISA networks. The prime symbol ( 0) is employed to distinguish
the channels of different detectors in a detector network.

Detector/detector network Channel combination

TianQin or LISA AA;AE;AT;TT
TianQin Iþ II or TianQinþ LISA fAA0;AE0;EA0;EE0g

fAT0;ET0;TA0;TE0g;fTT0g
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which states that Ylmðk̂Þ ¼ ð−1ÞlYlmð−k̂Þ, the odd multi-
pole moments in the auto-correlation cancel, denoted as

ΓðlÞ
II ¼ ð−1ÞlΓðlÞ

II [54]. Consequently, the auto-correlation of
a single channel, represented by ΓAA and ΓTT, is unable
to capture odd multipole moments. To overcome this
limitation, cross-correlation between different channels
becomes necessary. Even for the dipole (l ¼ 1), relying
solely on the cross-correlation of the A=E channels is
insufficient due to the dependency of the antenna pattern
YIJ on the detector’s plane symmetry. It is necessary to
incorporate the T channel, which serves as a null channel in
GW detection [9]. By combining the null channel and the
signal-sensitive channel, the presence of the dipole can be
observed through the cross-correlation between these two
channels, represented by ΓAT. Additionally, it is important
to consider the limitations of the low-frequency limit
for a single detector. This approximation fails when the
frequency scale reaches the characteristic frequency
f� ¼ c=ð2πLÞ, where L represents the arm length of the
detector [55]. As LISA has a longer arm length compared to
that of TianQin, the ORF of LISA will start to decline at
lower frequencies than that of TianQin.

2. TianQin I + II network

In order to streamline the detection analysis for the
TianQin Iþ II network, the calculation of the ORF can be
simplified as follows:

8>><
>>:

Γ0NðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

IJ jΓIJðfÞj2
p

; IJ ¼ fAA0;AE0;EA0;EE0g
Γ1NðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
IJ jΓIJðfÞj2

p
; IJ ¼ fAT0;ET0;TA0;TE0g

Γ2NðfÞ ¼ ΓTT0 ðfÞ
ð40Þ

where we assume that the A/E/T channels share identical
arm lengths and secondary noises.
Given the inherent complexity of detector networks

compared to single detectors, it is essential to examine
the influence of network design on the ORF. As mentioned
in Ref. [10], the difference in initial angles between
TianQin and TianQin II, denoted as γ0 ¼ α − α0 (as
illustrated in Fig. 1), can affect the ORF of the TianQin
Iþ II network. However, for an isotropic SGWB, this
impact is generally considered negligible under the low-
frequency limit [9]. In this study, we further investigate the
situation when dealing with the anisotropic SGWB. To
narrow down our analysis, we take advantage of the fact
that the null channel T is insensitive to the SGWB at
frequencies much lower than the characteristic frequency,
which allows us to focus on the Γ0N.
In Fig. 5, we present the normalized Γ0N for different

multipoles with γ0 set to 0. To maintain the validity of the
low-frequency limit, the frequency is set to 0.01 Hz. As
explained in Refs. [9,10], by summing over four pairs of
TDI channels, the total ORF for the monopole (l ¼ 0)
remains independent of γ0 in the low-frequency limit. This
independence primarily stems from the fact that detector
separation does not influence the ORF for l ¼ 0, as
indicated by Eq. (38). Conversely, for multipoles with l
values other than 0, 2, or 4, the detector separation has a
significant impact on the ORF. For the TianQin Iþ II
network, there is a rotational symmetry with a period of
2π=3 concerning the phase angle γ0. Consequently, the
detector separation undergoes a periodic change with a
period of 2π=3. Figure 5 presents the variations within this
period in the ORF of the TianQin Iþ II network. For l ¼ 0,
2, and 4, the ORF remains unchanged regardless of the
value of γ0. However, for l ¼ 1, 3, 5, and 6, the ORF
exhibits periodic fluctuations with a period of 2π=3. It can

FIG. 5. ORF of the TianQin Iþ II network within different
initial phase angle differences γ0 normalized by the case γ0 ¼ 0.
To comply with the low-frequency limit, we set the frequency f to
0.01 Hz. It is important to note that for l ¼ 0, 2, and 4, the ORFs
are not affected by γ0. As a result, they coincide and appear as a
single straight line in the plot.

FIG. 4. ORF for a single TianQin and LISA, taking into account
the channel combinations AA, AE, AT, and TT. The solid line
and the dot-dashed line denote TianQin and LISA, respectively.
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be observed that the influence of the phase angle on the
ORF decreases as the order increases. Even for the dipole,
the range of ORF only exhibits a modest difference of
approximately 20% between the maximum and minimum
values. To maximize the ORF of the dipole, we set the
initial phase angle difference γ0 to 0 and illustrate the time-
average ORF of the TianQin Iþ II network in Fig. 6. Due
to the noncoplanarity of TianQin and TianQin II, the ORF
of the TianQin Iþ II network for dipoles can be consid-
erably better than that of a single TianQin. However, the
separation between TianQin and TianQin II can be even
smaller than their arm lengths. Therefore, the improvement
in the ORF resulting from the separation will be subject to
certain limitations.
In order to demonstrate the impact of separation on the

ORF of the TianQin Iþ II network, we performed simu-
lations with different separations between TianQin and
TianQin II while keeping them perpendicular to each
other. Figure 7 depicts the corresponding ORF for the
A channel of TianQin and the A0 channel of TianQin II.
As the separation increases, the characteristic frequency

experiences continuous suppression. In frequency bands
well below the characteristic frequency, the increase in
separation does not have a noticeable effect on the ORF for
l ¼ 0, 2, and 4. However, for the remaining multipole
moments, particularly when l ¼ 6, increasing the separa-
tion leads to a significant improvement in the ORF.

3. TianQin +LISA network

For the TianQinþ LISA network, it is important to
consider the difference in orbital periods between TianQin
and LISA. The orbital period of LISA is approximately 100
times longer than that of TianQin, allowing LISA to effec-
tively remain stationary during one orbital period of TianQin.
This averaging effect helps mitigate the impact of the initial
phase angle difference. However, it is important to note that
the plane angle between TianQin and LISAwill change over
time, necessitating closer attention to the effect of the plane
angle on the ORF for the TianQinþ LISA network.
In Fig. 8, we present the normalized ORF of the

TianQinþ LISA network, with respect to the case where

FIG. 6. Time-average ORF for the TianQin Iþ II network, where 0N, 1N, and 2N denote the channel combinations
fAA0;AE0;EA0;EE0g, fAT0;ET0;TA0;TE0g, and fTT0g, respectively.

FIG. 7. Effect of the detector separation jΔx⃗j on the ORF for the TianQin Iþ II network, where we conducted an analysis
with α ¼ α0 ¼ 0.
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TianQin is perpendicular to LISA. Due to the working
mode of TianQin, TianQin and LISA simultaneously detect
the SGWB for only half of the year; the dotted line in the
graph corresponds to the period when TianQin is off duty.
As shown in Fig. 1, TianQin is fixed at an angle of −4.7°
relative to the ecliptic plane, while LISA maintains a 60°
angle with respect to the ecliptic plane as it orbits the Sun.
As a result, there is a varying plane angle between the two
detectors, ranging from 35° to 155°, with the minimum
and maximum values asymmetrically located around 90°.
Due to this nonsymmetrical configuration, differences can
arise in the ORF of the TianQinþ LISA network between
the two annual peaks. Specifically, considering the case
where l ¼ 0, the ORF exhibits lower values when the
detector planes are closer to being perpendicular to each
other. Consequently, there is a notable different in the
magnitudes of the two peaks within the ORF. Furthermore,
it becomes evident that setting the plane angle θ0 ¼ π=2
(perpendicular design) is not the optimal choice for
detecting the monopole (l ¼ 0) and hexadecapole

(l ¼ 4). However, the situation varies for other multipole
moments. In particular, for the quadrupole (l ¼ 2), the best
results are achieved when the two detectors are positioned
perpendicular to each other. It is crucial to highlight that
the detector separation of the TianQinþ LISA network
varies over time. After six months, when the two detectors
become perpendicular again, the detector separation will no
longer be the same as it was half a year ago. Consequently,
the ORFs at two perpendicular times are not exactly equal,
particularly for multipole moments with l ¼ 1, 3, 5, and 6.
Figure 9 further illustrates the time-average ORF of the

TianQinþ LISA network. Due to the differences in arm
lengths between TianQin and LISA, the channel combi-
nation fAT0;ET0;TA0;TE0g should be divided into two
groups, fAT0;ET0g and fTA0;TE0g, denoted as 1NI and
1NII, respectively. Note that the separation between
TianQin and LISA, jΔx⃗j ≈ 0.35 A:U:, is much longer than
the arm lengths of the two detectors. Consequently, the
characteristic frequency of the TianQinþ LISA network is
further lowered to ∼1 mHz [10]. In the frequency band
below 1 mHz, noticeable gaps exist between the ORFs for
different multipole moments. However, as the frequency
increases beyond 1 mHz, these gaps tend to significantly
narrow. When the frequency surpasses 10 mHz, the ORFs
for different multipole moments will converge to a similar
magnitude, indicating a comparable level of response
across the multipole moments.

B. Antenna pattern

The ORF, or the cumulative effect of the antenna pattern
across the whole sky while considering both positive and
negative values, is a crucial aspect. Our objective in this
section is to plot the antenna pattern using Eq. (18). This
visualization can allow us to observe and understand how

FIG. 8. The ORF of the TianQinþ LISA network undergoes
time-dependent changes, which is normalized by comparing
them to the case when the two detector planes are perpendicular
for the first time. The dashed lines in the plot correspond to
two specific time points when the two detector planes are
perpendicular. To ensure the validity of the analysis, the fre-
quency is set to 1 × 10−5 Hz, which prevents the low-frequency
limit from failing. It is crucial to emphasize that, in this paper,
the detector separation is defined as the distance between the
reference positions of the two detectors, specifically the vertices
of the X channel. It is not simply determined by a direct
connection between the centers of the two detectors. As a result,
the detector separation in the TianQinþ LISA network will
experience changes over time.

FIG. 9. Time-average ORF for the TianQinþ LISA network,
where 0N, 1NI, 1NII, and 2N denote the channel combinations
fAA0;AE0;EA0;EE0g, fAT0;ET0g; fTA0;TE0g, and fTT0g,
respectively.
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the channel pair responds to the SGWB from different
positions.
Due to the 45° rotation angle difference between the A

and E channels of a single detector [9], it is preferable to
focus on the autocorrelation of the A channel within a
single detector and the cross-correlation of different A
channels in the detector network when visualizing the
antenna pattern. To illustrate the antenna pattern, we will
use both TianQin and the TianQinþ LISA network as
examples. For this purpose, we refer to Fig. 8 and select the
reference moment t ¼ 0. It is important to note that, in
order to account for the additional factor of 4 sin2ðf=f�Þ
introduced by TDI [56], the antenna pattern is normalized
accordingly.
Figure 10 exhibits the antenna pattern for TianQin. In the

low-frequency limit, the hot spots of the antenna pattern
align with the fixed direction of TianQin, identified by the
coordinates (lon, lat)¼ ð120.5°;−4.7°Þ in ecliptic coordi-
nates. Nonetheless, as the frequency exceeds the character-
istic frequency of c=ð2πLÞ, the hot spots shift towards the
sides where TianQin is pointing. Similar findings are
presented in Ref. [62] regarding LISA. Furthermore, the
response function FP

I mentioned in Eq. (14) weakens with
increasing frequency. This decrease in intensity of the
antenna pattern leads to the reduction in the ORF.
Unlike the autocorrelation of one channel, the cross-

correlation of two channels can introduce the imaginary
part of the antenna pattern. In Fig. 11, we depict the antenna

FIG. 10. Antenna pattern of TianQin plotted on a Mollweide
projection of the sky in ecliptic coordinates. In this representa-
tion, the black star signifies the direction of TianQin. The top and
bottom panels correspond to frequencies of 10−4 and 1 Hz,
respectively.

FIG. 11. Real and imaginary parts of the antenna pattern of the TianQinþ LISA network, which are plotted on a Mollweide projection
of the sky in ecliptic coordinates. The top and bottom panels correspond to frequencies of 10−4 and 10−2 Hz, respectively.
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pattern for the TianQinþ LISA network. In the low-
frequency limit, the real part of the antenna pattern
dominates over the imaginary part, and the ORF does
not experience a significant decline due to the limited
positive and negative cancellations within this frequency
range. As the frequency surpasses the characteristic fre-
quency of c=ð2πjΔx⃗jÞ, the exponential term e−i2πfk̂·Δx⃗=c

in Eq. (18) introduces multiple positive and negative
oscillations in both the real and imaginary parts of the
antenna pattern. This phenomenon is also observed
when cross-correlating Laser Interferometer Gravia-
tional Wave Observatory (LIGO) Hanford and LIGO
Livingston [62]. Despite no significant change in the peak
intensity of the antenna pattern due to the unchanged
response function, these oscillations caused by the expo-
nential term lead to a decrease in the ORF at this fre-
quency range.

C. Power-law integrated sensitivity curve

The next step involves demonstrating the detection
sensitivity to the SGWB through the PLIS curve. To
evaluate the sensitivity, we consider all possible channel
combinations, including the null channel T, which becomes
a sensitive channel at high frequencies [61]. Furthermore,
the operating time for each scenario is set to one year.
Specifically, for a single TianQin, a single LISA, the

TianQin Iþ II network, and the TianQinþ LISA network,
the total correlation times are one year, half a year, four
months, and half a year, respectively [10].
In Fig. 12, we show the PLIS curve for both individual

detectors and detector networks using Eq. (34). To high-
light the improved detection capability of a detector net-
work compared to a single detector in anisotropic SGWB
detection, we compare the performance of a single TianQin
with that of the TianQin Iþ II network, as well as the
performance of a single LISA with that of the TianQinþ
LISA network.2 The detector network exhibits a compa-
rable detection capability to a single detector for multipole
moments with l ¼ 0, 2, and 4. Furthermore, for the
remaining multipole moments, combining multiple detec-
tors can significantly improve the detection capability
beyond that of a single detector. For instance, in the case
of detecting the dipole (l ¼ 1), when TianQin is combined
with TianQin II, the detection sensitivity improves from
1 × 10−8 to 4 × 10−11. Alternatively, when LISA is com-
bined with TianQin, the detection sensitivity improves
from 3 × 10−11 to 3 × 10−13. Additional cases are listed
in Table II.

FIG. 12. PLIS sensitivity to different multipole moments of the SGWB for a single TianQin, a single LISA, the TianQin Iþ II
network, and the TianQinþ LISA network. The SNR threshold is set to 1, and the operating time is set to one year. It is important to note
that, for single detectors, both autocorrelations within the same channel and cross-correlations between different channels are taken into
account. However, in the case of a detector network, only the cross-correlation between channels belonging to different detectors is
considered.

2It is crucial to emphasize that the detection of the monopole,
which represents the isotropic SGWB, cannot benefit from the
cross-correlation within a single detector.
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VI. CONCLUSION AND DISCUSSION

In this paper, we analyze the sensitivity of space-borne
detector networks to the anisotropic SGWB and conclude
that the separation between detectors plays a significant
role in the sensitivity. We first derive the dependency of the
ORF on detector separation in both the low- and the high-
frequency limits. In the low-frequency limit, the ORF of
anisotropy exhibits improved performance with increased
detector separation, as shown in Eq. (38). This improve-
ment is particularly notable for high-order multipoles.
Conversely, in the high-frequency limit, the ORF is sup-
pressed as detector separation increases, as indicated in
Eq. (39). Based on these findings, it becomes essential
to carefully choose an appropriate detector separation
within the network so that the frequency bands with the
boosted sensitivity align with the detector’s sensitive
frequency range. For illustration purposes, we employed
the TianQinþ LISA network with different separations as
an example and calculated the PLIS curve by combining
the ORF with the detector noise. Our results indicated
that, compared to scenarios with no separation, 0.1 A.U.
separation, and 1 A.U. separation, the current design
(0.35 A.U. separation) stands out as the best choice for
anisotropy detection.
Furthermore, we expanded our analysis to compare the

detection sensitivities of the planned TianQin Iþ II and
TianQinþ LISA networks with those of TianQin and LISA
alone. Our analysis revealed that the detection capabilities
of the TianQin Iþ II network are similar to those of a single
TianQin for the monopole (l ¼ 0), quadrupole (l ¼ 2), and
hexadecapole (l ¼ 4). However, for the remaining multi-
pole moments, the TianQin Iþ II network surpasses the
detection capabilities of a single TianQin by several orders
of magnitude. Similar conclusions can be drawn when
comparing a single LISA with the TianQinþ LISA net-
work. For example, considering the dipole (l ¼ 1), which
may arise from the motion of the solar system bary-
center [68], the detection sensitivity of the detector network
is expected to improve by 2–3 orders of magnitude
compared to that when using a single detector. As for
the hexacontatetrapole (l ¼ 6), the detection sensitivity can
be enhanced by over 3 orders of magnitude.
Additionally, we explored the impact of the detector

plane angle on the performance of the TianQinþ LISA
network. We found that aligning the two detector planes

perpendicular to each other is unfavorable for detecting the
monopole (l ¼ 0) and hexadecapole (l ¼ 4) moments,
although this network design does enhance the detection
of the quadrupole (l ¼ 2). The exact optimization of the
plane angle may vary for different multipole moments,
necessitating a case-by-case analysis.
We remark that our analysis is also valid for ground-

based detectors that are bound on the Earth. However, for
a typical separation of thousands of kilometers, the f�
value is only a few dozen hertz, which is not much higher
than the lower frequency limit for ground-based detectors.
Therefore, for a network of LIGO/Virgo or Cosmic
Explorer/Einstein telescope (ET), the low-frequency limit
fails for most of the sensitive frequency band [69,70], and
they cannot benefit much from larger separations.
Another critical consideration lies in the mapmaking of

the SGWB. Thrane et al. utilized spherical harmonics
decomposition analysis for extended sources [40], while
another approach involved radiometer analyses for point-
like sources [39,71,72]. Despite the different methods
used, the resulting maps have shown a high level of
consistency [42]. Subsequent improvements in mapmaking
techniques have been made, including the implementation
of data folding to enhance the speed of mapmaking
significantly [73–75]. Phase-coherent mapping has also
been developed to map the amplitude and phase parts of the
two GW polarization modes in the sky [44,52,76,77].
Additionally, a spherical harmonic decomposition of the
square-root power has been introduced to prevent negative
GW power in mapmaking [47–49]. Regarding actual
analyses, while definitive proof of anisotropy in pulsar
timing data is still pending official confirmation, there are
indications that the dipole signal may be approaching
significant levels based on current data [78]. Collabo-
rations involving LIGO, Virgo, and KAGRA have used
cross-correlation data from ground-based detector net-
works to construct sky maps of SGWBs, with a focus on
compact object mergers. Their findings suggested that the
dipole resulting from Earth’s peculiar motion is currently
well below the detection limits of existing ground-based
detectors by more than an order of magnitude [79–81].
Future space-borne detectors show similarities in SGWB

detection methods compared to pulsar timing arrays (PTAs)
and ground-based detectors. Although real data is lacking,
studies have performed mapmaking using generated data,

TABLE II. The sensitivity to different multipole moments for four scenarios: a single TianQin, a single LISA, the
TianQin Iþ II network, and the TianQinþ LISA network.

0 1 2 3 4 5 6

TianQin 2 × 10−13 1 × 10−8 7 × 10−13 2 × 10−10 4 × 10−12 6 × 10−9 4 × 10−7

LISA 2 × 10−14 3 × 10−11 8 × 10−14 4 × 10−12 4 × 10−13 9 × 10−11 1 × 10−9

TianQin Iþ II 5 × 10−13 4 × 10−11 5 × 10−13 2 × 10−10 4 × 10−12 3 × 10−9 4 × 10−7

TianQinþ LISA 4 × 10−13 3 × 10−13 4 × 10−13 4 × 10−13 5 × 10−13 7 × 10−13 9 × 10−13
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primarily focusing on the individual LISA detector. Taruya
et al. reconstructed sky maps of SGWBs at both low
and high frequencies, free from detector noise [82,83].
Their studies emphasized the potential to increase the
maximum angular resolution lmax for high-frequency sky
maps from 5 to 10 in comparison to low-frequency sky
maps. Considering the impact of detector noise, lmax can be
extended up to 15 when clear signals are above the noise
level up to 10−2 Hz but may remain below 7 due to the
dominant Galactic foreground at frequencies below
10−2 Hz [43]. Utilizing the Bayesian spherical harmonic
approach, Banagiri et al. [49] mapped the Galactic fore-
ground with lmax ≤ 2. Apart from LISA, other space-borne
detectors are anticipated in the future. The strategic
placement of space-borne detectors enables optimal detec-
tor separation, promising a significant boost in sensitivity to
anisotropy. This advancement is expected to open up new
possibilities for high-resolution mapmaking. The imple-
mentation of data analysis for the mapmaking of SGWBs in
the mHz band is a crucial step that we plan to undertake
in the near future.
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APPENDIX: USEFUL DERIVATION FOR
OVERLAP REDUCTION FUNCTION

To begin, let us first establish the definition of the total
ORF for the detector network, assuming the noise PSDs of
the I and J channels within the same detector are equal:

ΓðlÞ
totðf;Δx⃗; fpigÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I¼A;E
J¼A0 ;E0




ΓðlÞ
IJ ðf;Δx⃗; fpigÞ




2s

¼ 1

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
IJ

Xl

m¼−l





 X
P¼þ;×

Z
S2
dΩ̂k̂Y IJðf; k̂; fpigÞ

Ylmðk̂Þ
Y00ðk̂Þ

e−i2πfk̂·Δx⃗=c




2

vuut ; ðA1Þ

where the parameter group pi is related to the geometry of the detector network, such as the detector plane angle, the angle
between the separation vector and the two detector planes. The function

Y IJðf; k̂; fpigÞ ¼ FP
I ðf; k̂; fpigÞFP�

J ðf; k̂; fpigÞ: ðA2Þ
When f ≪ c=ð2πLÞ, for two gravitational waves propagating in opposite directions,

Y IJðf; k̂; fpigÞ ¼ Y IJðf;−k̂; fpigÞ: ðA3Þ
Since the spherical harmonics

Ylmðk̂Þ ¼ ð−1ÞlYlmð−k̂Þ; ðA4Þ
by summing the integral terms of ORF for two gravitational waves propagating in opposite directions, we have

Y IJðf; k̂; fpigÞYlmðk̂Þe−i2πfk̂·Δx⃗=c þ Y IJðf;−k̂; fpigÞYlmð−k̂Þe−i2πfð−k̂Þ·Δx⃗=c

¼ �
e−i2πfk̂·Δx⃗=c þ ð−1Þlei2πfk̂·Δx⃗=c�Y IJðf; k̂; fpigÞYlmðk̂Þ

¼
8<
:

2Y IJðf; k̂; fpigÞYlmðk̂Þ cos
h
2πfk̂·Δx⃗

c

i
; l ¼ even

−i2Y IJðf; k̂; fpigÞYlmðk̂Þ sin
h
2πfk̂·Δx⃗

c

i
; l ¼ odd

: ðA5Þ

The e-index term in the ORF leads to a cancellation effect of gravitational waves propagating in the opposite direction,
resulting in a significant drop in the ORF near the frequencies c=ð4Δjx⃗jÞ and c=ð2Δjx⃗jÞ for even and odd orders,
respectively. For a given value of l andm, ORF Γlm

IJ exhibits a pattern of transitioning from positive to negative values, with
its zero point located near the characteristic frequency.

SENSITIVITY TO ANISOTROPIC GRAVITATIONAL-WAVE … PHYS. REV. D 110, 043031 (2024)

043031-15



Next, let us delve deeper into the ORF. Based on the
coordinate rotation invariance of the total ORF, it is
possible to align the separation vector Δx⃗ along the
Z-axis. Subsequently, utilizing the spherical wave expan-
sion with the spherical Bessel function jl, the exponential
term of Eq. (A1) can be expressed as follows:

e−i2πfk̂·Δx⃗=c ¼ 4π
X
lm

ilY�
lmð−k̂ÞYlmðẐÞjl

�
f
f�

	

¼
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
ilYl0ðk̂Þjl

�
f
f�

	
; ðA6Þ

where the characteristic frequency f� ¼ c=ð2πfjΔx⃗jÞ.
Additionally, we can break down the following function

into spherical harmonics:

1

8πY00ðk̂Þ
X
P

FP
I ðf; k̂; fpigÞFP�

J ðf; k̂; fpigÞ

¼
X
lm

F IJ
lmðf; fpigÞYlmðk̂Þ; ðA7Þ

with the coefficient

F IJ
lmðf; fpigÞ ¼

1

8πY00ðk̂Þ
X
P

Z
S2
dΩ̂k̂F

P
I ðf; k̂; fpigÞ

× FP�
J ðf; k̂; fpigÞY�

lmðk̂Þ: ðA8Þ

Combining Eq. (A6) with Eq. (A8), we have

ΓðlÞ
IJ ðf;Δx⃗;fpigÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m






Z
S2
dΩ̂k̂

X
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F IJ
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ðf;fpigÞYlfmf
ðk̂ÞYlmðk̂Þ

X
lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lx þ 1Þ

p
ilxYlx0ðk̂Þjlx

�
f
f�

	



2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m





X
lf lx

ilx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lf þ 1

p
ð2lx þ 1Þ

�
lf l lx
−m m 0

	�
lf l lx
0 0 0

	
F IJ

lf−mðf;fpigÞjlx
�
f
f�

	



2
vuut ; ðA9Þ

where the integral of a product of spin-weighted spherical harmonics can be obtained by multiplying two Wigner-3j
symbols [62,84,85]:

Z
S2
dΩ̂k̂s1Yl1m1

ðk̂Þs2Yl2m2
ðk̂Þs3Yl3m3

ðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
m1 m2 m3

	�
l1 l2 l3
−s1 −s2 −s3

	
; ðA10Þ

with the following conditions that ensure the Wigner-3j symbols are not equal to 0:

jl2 − l1j ≤ l3 ≤ jlþ l1j
l1 þ l2 þ l3 ¼ even

m1 þm2 þm3 ¼ 0

: ðA11Þ

Furthermore, when f ≪ c=ð2πLÞ with the detector arm length L, the nonvanishing terms of F IJ
lfmf

are given by lf ¼ 0, 2,
and 4, and, as such,

lx ¼

8><
>:

0; 2;…; lþ 4; l ¼ 0; 2; 4

1; 3;…; lþ 4; l ¼ 1; 3; 5

l − 4; l − 2;…; lþ 2; lþ 4; l ≥ 6

: ðA12Þ

Then according to Eq. (A9), one can calculate the zero-valued solution of ORF. For l ¼ 0, the total ORF is solely
contributed by harmonics with m ¼ 0:

Γ00
totðf;Δx⃗; fpigÞ ¼

3
ffiffiffi
π

p
70

sin ½2πfL=c� sin ½2πfL0=c�
�
42j0

�
f
f�

	
− 12

ffiffiffi
5

p
j2

�
f
f�

	
þ j4

�
f
f�

	�
; ðA13Þ

where the two detectors are positioned in the Y-Z plane and the X-Y plane. Within the frequency range where f=f� is less
than 10, the zero-valued solutions for f=f� within Eq. (A13) are f2.66; 6.07; 9.29g. Consequently, the total ORF for l ¼ 0

can reach zero near the characteristic frequency. Regarding l ¼ 1, it is noteworthy that jΓlm
tot j ¼ jΓl−m

tot j, allowing us to
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concentrate on the harmonics with m ¼ 0, 1:

Γ10
totðf;Δx⃗; fpigÞ ¼

ffiffiffi
π

p
70

sin ½2πfL=c� sin ½2πfL0=c�
�
198j1

�
f
f�

	
− 112j3

�
f
f�

	
þ 5j5

�
f
f�

	�
;

Γ11
totðf;Δx⃗; fpigÞ ¼

ffiffiffi
π

p
35

sin ½2πfL=c� sin ½2πfL0=c�
�
54j1

�
f
f�

	
þ 49j3

�
f
f�

	
− 5j5

�
f
f�

	�
: ðA14Þ

The corresponding zero-valued solutions for f=f� within
Eq. (A14) are f3.96; 7.45g and f5.57; 8.98g, respectively.
For l ¼ 1, the total ORF is contributed by harmonics with
m ¼ 0;�1, and therefore, it can no longer drop to zero near
the characteristic frequency. This conclusion also holds true
for higher-order ORFs. In addition to analyzing the zero
value point of the ORF, let us further explore its properties
at the low-frequency and high-frequency limits.
In the low-frequency limit, the spherical Bessel func-

tion [86]

jl

�
f
f�

	
≃

1

ð2lþ 1Þ!!
�
f
f�

	
l
∝ jΔx⃗jl: ðA15Þ

Here, the symbol !! denotes the double factorial. Then in
terms of Eqs. (A1), (A9), (A12), and (A15), when f ≪
c=ð2πjΔx⃗jÞ, the total ORF

ΓðlÞ
totðfÞ ∝

8>><
>>:

f2; l ¼ 0; 2; 4
jΔx⃗j
c f3; l ¼ 1; 3; 5

jΔx⃗jl−4
c fl−2; l ≥ 6

; f ≪ c=ð2πjΔx⃗jÞ;

ðA16Þ

where f2 is derived from the normalized factor CTDI.
Equations (A9) and (A12) indicate that as the order l of
the ORF increases, the order of the spherical Bessel func-
tions involved in its calculation also increases. This higher
order corresponds to larger first nonzero roots of the
spherical Bessel function. However, it is crucial to note
that the above conclusion may not hold true when the
dropping frequency exceeds c=ð2πLÞ.
In the high-frequency limit, the spherical Bessel func-

tion [86]

jlðxÞ ≃
1

x
sin ðx − lπ=2Þ: ðA17Þ

Then one can define

J lðxÞ ¼ il
1

x
sin ðx − lπ=2Þ ¼

(
1
x sin x; l ¼ even
i
x cos x; l ¼ odd

; ðA18Þ

of which the amplitude is independent of the order l.
Furthermore, through the orthogonality relation of Wigner
3j symbols [84]

X
lm

ð2lþ 1Þ
�

l1 l2 l

m1 m2 m

	�
l1 l2 l

m0
1 m0

2 m

	
¼ δm1m0

1
δm2m0

2
; ðA19Þ

we have

X
lxmx

ð2lx þ 1Þ
�

lf l lx
−m m mx

	�
lf l lx
0 0 mx

	
¼

X
lx

ð2lx þ 1Þ
�

lf l lx
−m m 0

	�
lf l lx
0 0 0

	
¼ δm0; ðA20Þ

where δab is the Kronecker delta function, and the third line of Eq. (A11) is adopted. To satisfy the condition for the second
Wigner-3j symbol in Eq. (A20) to be nonzero, which is lf þ lþ lx ¼ even [84], it is necessary to have
lx ¼ jl − lfj; jl − lfj þ 2;…; jlþ lfj − 2; jlþ lfj. By following the above rule and employing Eqs. (A18) and (A20),
Eq. (A9) can be simplified to

ΓðlÞ
IJ ðf;Δx⃗; fpigÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



X
lf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lf þ 1

p
F IJ

lf0
ðf; fpigÞJ lfþl

�
f
f�

	



2
s

∝
1

jΔx⃗j ; ðA21Þ

which implies that, in the high-frequency limit, the total ORF is inversely proportional to the detector separation and
remains independent of the order l. Taking the TianQinþ LISA network as an example, Fig. 13 shows that the ORF
decreases with the increase of detector separation in the high-frequency limit.
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