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In this paper, we propose a method to detect the interaction of a hypothetical coherently evolving
cosmological scalar field with an orbital network of quantum sensors, focusing on the Global Positioning
System (GPS) satellite network as a test example. Cosmological scenarios, such as a scalar-tensor theory
for dark energy or the axi-Higgs model, suggest that such a field may exist. As this field would be
(approximately) at rest in the cosmic microwave background (CMB) frame, it would exhibit a dipole as a
result of the movement of our terrestrial observers relative to the CMB. While the current sensitivity of the
GPS network is insufficient to detect a cosmological dipole, future networks of quantum sensors on
heliocentric orbits, using state-of-the-art atomic clocks, can reach and exceed this requirement.
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I. INTRODUCTION

One of the most successful predictions of the cosmo-
logical big bang theory has been the existence of a relic gas
of radiation, first discovered as cosmic microwave back-
ground (CMB) [1]. This profound discovery and the
subsequent measurement of its dipole associated with
our motion relative to the CMB frame [2] have been our
first tangible exposure to a cosmological reference frame,
on scales that are at least 20 orders of magnitude larger than
our planet. But is it possible to have other local probes of
this cosmic frame on Earth? For example, the cosmic
neutrino background, also predicted by big bang theory,
remains out of experimental reach for now because of the
weak interaction of relic neutrinos. In this paper, we instead
explore the potential for detecting a coherent cosmic scalar
field, based on an entirely different technology.
In recent work [3–6] there has been an interest in signal

candidates observable by a network of quantum sensors,
such as the network of atomic clocks that makes up the
Global Positioning System (GPS) or the Global Network of
Optical Magnetometers for Exotic Physics (GNOME). The
signal candidates that have been proposed tend to be
transient signals that pass through the network, such as
the Galactic domain walls that are coupled to GPS [4] or
GNOME [6]. There have also been proposals to search for
other exotic physics using these networks, such as extra-
galactic exotic low-mass fields [3], which may be emitted
by high energy astrophysical events such as binary black
hole mergers and binary neutron star mergers, with com-
parable waveforms to those detected by gravitational wave
observatories.

In contrast, here we consider a candidate that is not
transient but rather sourced by a coherent cosmological
scalar field such as those suggested by axi-Higgs cosmol-
ogy [7] or coupling to a quintessence dark energy fluid
(e.g., [8,9]). Such a field would evolve slowly in the frame
of the CMB and, thus, as seen by us on Earth, would exhibit
a dipole due to the velocity of Earth through the field. We
propose to detect this coherent dipole by assuming various
couplings detectable by atomic clocks or magnetometers.
On a separate front, the nature of the CMB dipole has

been a topic of considerable fascination among cosmolo-
gists over the past few decades. For example, it is not clear
that the gravity of the observed large-scale structure can
entirely explain the velocity of the local group (which is the
largest contributor to the CMB dipole), in the context of
the standard cosmological model (e.g., [10]). Moreover, the
kinematic dipole inferred from the distribution of distant
galaxies and quasars is arguably in conflict with the CMB
dipole [11,12] (but see [13]). Because of the special nature
of constant acceleration in the general equivalence princi-
ple, it is not easy to explain such an anomaly without
introducing new physics (e.g., [14–16]). Therefore, an
independent measurement of the cosmological dipole
may shed light on the nature of these anomalies.
As the average dipole signal from this scalar field over a

year would be approximately constant in direction and
time, a long integration period from a network of quantum
sensors, such as the 25 years of GPS data publicly
available, can act to make sensitive measurements. We
shall first start by motivating the theoretical scenarios that
we shall consider for our exploration.
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II. COSMOLOGICAL SCALAR FIELDS

Although the simplest type of quantum field theories
involve scalar fields, the only fundamental scalar field
observed in nature so far is the Higgs field. Nonetheless,
light scalar fields are often invoked as simple possible
models for inflation, dark matter, and/or dark energy in
cosmology. Furthermore, a variety of light pseudoscalar
fields (of different masses), i.e., axions, may be expected
from theories such as string theory (e.g., [17]). Such light
scalars are expected to evolve coherently in the cosmo-
logical rest frame, if they are stable and their mass is
comparable to the Hubble rate (∼10−33 eV today) [18]. For
example, if such a light field is responsible for the recent
onset of the acceleration of cosmic expansion, it may play
the role of a dynamical dark energy. Current cosmological
observations place an upper limit on the rate of change of
this field ϕ̇, compared to the energy density ρDE and
pressure pDE of dark energy (e.g., [19]),

1

2
ϕ̇2 < ρDE þ pDE ≲ ð1.3 meVÞ4: ð1Þ

While such a field may only couple gravitationally to the
standard model, it is also possible that it directly couples to
local clocks and rulers.
A concrete example is the axi-Higgs model that may ease

certain tensions in the standard cosmological model [7],
i.e., the Hubble tension (e.g., [20]) and the lithium problem
(e.g., [21]), by shifting the vacuum expectation value
(VEV) of the Higgs field by ∼1% in the early Universe.
In this model, the Higgs VEV v is modulated by an axion

field ϕ [7],

δv
v

¼ C
ϕ2

2M2
Pl

; ð2Þ

where MPl ≃ 2.4 × 1018 GeV is the reduced Planck mass
[22] and C is the coupling constant of the Higgs with axion
[23]. In the single-axion model, the axion’s evolution is
governed by a damped harmonic oscillator,

ϕ̈þ 3HðtÞϕ̇þ ∂V
∂ϕ

¼ 0; ð3Þ

where V is the total scalar potential, this evolution equation
has a general solution,

ϕðtÞ ¼ AðtÞϕ0 cosðmϕtÞ; ð4Þ
where AðtÞ is a dimensionless amplitude that exponentially
decreases with reciprocal Hubble constantHðtÞ−1, ϕ0 is the
initial amplitude of the field, andmϕ is the mass of the field
in natural units.
There are a variety of couplings that can render the field

ϕ (such as axi-Higgs) detectable by networks of atomic
clocks. Common ones proposed include

Lint ¼ ϕ2

�
Γfmfc2ψ̄fψf þ

Γα

4
FμνFμν

�
: ð5Þ

Here, the subscript f sums over all fermion fields ψf and
describes a quadratic coupling of ϕ to the mass terms of the
fermions, as well as a quadratic coupling to the electro-
magnetic term, with coupling constants ΓX. As discussed in
[4,5], these couplings lead to an apparent modulation of
fundamental constants, such as the fermion masses mf and
the fine structure constant α,

αeff ≈ ð1þ Γαϕ
2Þα; ð6Þ

meff
f ¼ ð1þ Γfϕ

2Þmf: ð7Þ

Since atomic transition frequencies are highly sensitive to
the masses of the proton mp and electron me, as well as the
strength of the electromagnetic field governed by α, this
will lead to an apparent shift in an atomic clock frequency.
Magnetometers couple instead to the spins of fermions [6],

Lint ¼
ðℏcÞ3=2

fl
ψ̄fγ

μγ5ψf∂μϕ; ð8Þ

where the strength of the coupling is modulated by fl. This
termdescribes a coupling of thegradient ofϕ to the fermionic
spin terms in the standard model Lagrangian.

III. DIPOLE MODULATION OF FREQUENCY

Although we consider many possible couplings above,
let us first consider only couplings to atomic clocks as an
example. These couplings will cause the transition frequen-
cies of atomic clock sensors of type a to have a uniform
time dependence in the CMB frame,

δνaðx; tÞ
ν

¼ Γeff
a δϕ2ðtCMBÞ ¼ gaδϕðtCMBÞ; ð9Þ

where ga ≡ 2Γeff
a ϕðtCMBÞ quantifies the effective coupling

of the sensor to the small variation of the cosmologi-
cal field.
Comparing different transitions of terrestrial atomic

clocks already puts limits on jðga − ga0 Þϕ̇j [24],

jðga − ga0 Þϕ̇j ≲ 10−16 yr−1; ð10Þ

where ga and ga0 are for couplings to transitions a and a0 to
the ϕ field (namely, 467 and 436 nm transitions of 171Ybþ
in [24]).
However, this bound is not applicable if the coupling to

ϕðtÞ does not change the ratio of different atomic transition
frequencies at the same location (i.e., ga ¼ ga0 ). As such, it
makes sense to explore a purely spatial modulation of these
transitions.
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The coupling between the transition frequencies of the
sensors and the cosmological scalar field yields a dipole in
the satellite data. To see this, consider the Lorentz trans-
formation between tCMB and Earth time tE,

tCMB ¼ γ

�
tE þ

viCMBri
c2

�
; ð11Þ

where viCMB is the velocity of Earth relative to the cosmic
frame and ri is the position of the satellite in the Earth-
centered inertial (ECI) frame. Here, we have ignored
the relative motion of the satellites to Earth, since vCMB
is dominant (vCMB ∼ 400 and vsat ∼ 3 km=s). Since
vCMB ≪ c, we have

ϕðtCMBÞ ¼ ϕ

�
tE þ

viCMBri
c2

�
≈ ϕðtEÞ þ ϕ̇ðtEÞ

viCMBri
c2

:

ð12Þ

When substituted into Eq. (9), we obtain an expression for
the modulation of the GPS atomic clock frequencies,

δνaðri; tÞ
ν

¼ δνaðriE; tEÞ
ν

þ gaϕ̇ðtEÞ
viCMBri
c2

≃
δνaðriE; tEÞ

ν
þ ga∂μϕðtEÞΔrμ: ð13Þ

In the last line, we wrote the relative difference clock
frequencies in an explicit Lorentz-invariant form, where
Δrμ is the spacelike four-vector, which connects one
satellite’s worldline to another, and is normal to their
4-velocities. Figure 1 shows the spacetime diagram of
these vectors in both CMB and ECI frames.

IV. GPS DATA ANALYSIS

Let us briefly discuss the type of information provided
by the atomic clocks on top of GPS constellations.
Available publicly from the GPS division of the Jet

Propulsion Laboratory, the daily clock solutions are a least
squares optimization solution that yields the Cartesian
positions and timing bias of each GPS satellite, at each
measurement sample interval. The solutions also subtract
out several known physical phenomena, such as time
dilation and ionospheric effects. The timing bias is the
difference in clock phase between a specific satellite’s
clock and a common reference clock, as yielded by the
solution procedure above (see [5,25] for a review). The
basic idea is that if we have clock phase measurements
taken (via microwave communication) by more than 4
terrestrial stations for each satellite, we have enough
information to solve for both the timing bias and the
positions of the satellites. Therefore, we can search for a
position-dependent modulation of timing bias, as a result of
coupling to a cosmological scalar field, even for a single
type of clock.
Let us denote the recorded timing bias as dsn for the

satellite s and time sample index n. These data can be
expressed as an integral over the time sample interval

dsn ¼ c
Z

tn δνsðtÞ
ν

dt: ð14Þ

Note that dsn has the dimension of length, which is the
convention used in the original timing bias data from
NASA [26]. Equation (14) allows the transition frequency
change to be approximated by a first-order finite differ-
encing scheme,

δνsðtnÞ
ν

≈
dsn − dsn−1
cðtn − tn−1Þ

: ð15Þ

FIG. 1. Spacetime diagrams of two satellites s1 and s2, their separation vectorΔrμ, and the gradient of the cosmic scalar that modulates
their clocks ∂μϕ. Vectors in the (a) CMB frame and (b) ECI frame.

DETECTING COSMOLOGICAL SCALAR FIELDS USING … PHYS. REV. D 110, 043028 (2024)

043028-3



To begin our analysis, we define χ2 for the comparison of
our dipole model with data, assuming uncorrelated noise in
the Fourier domain,

χ2 ¼
X
s;n

jqir̃si ðfnÞ − δν̃sðfnÞ
ν j2

σ2sðfnÞ
; ð16Þ

where

σ2sðfnÞ≡
����� δν̃sðfÞν

����2
�

fn�Δf
; qi ≡ gaϕ̇

viCMB

c2
: ð17Þ

Here, δν̃sðfÞ is the Fourier transform of δνsðtÞ, and σ2sðfnÞ
is its band-limited variance within the frequency range
ðfn − Δf; fn þ ΔfÞ. Similarly, r̃si ðfÞ is the Fourier trans-
form of the satellite position in the ECI frame rsi ðtÞ. The
ECI frame is used in the satellite position data from NASA
[26]. This choice of reference frame seems arbitrary, but
ultimately the frame choice should not matter since the
monopole of the orbital trajectory in ECI is zero. In other
words, the difference between the position of the target and
the reference clock modulates the dipole effect [27].
Finding the minimum value of χ2, the mean and the

covariance of qi can be determined,

hqii ¼ ðA−1ÞijBj; hΔqiΔqji ¼ ðA−1Þij; ð18Þ
where the Fisher matrix is given by

Aij ¼
X
s;n

r̃si ðfnÞr̃s�j ðfnÞ
σ2sðfnÞ

; ð19Þ

and

Bi ¼ Re
X
s;n

r̃si ðfnÞ
σ2sðfnÞ

δν̃s�ðfnÞ
ν

: ð20Þ

Note that, according to the definition of the qi variables in
Eq. (17), the three-vector qi is predicted to be in the same
direction as viCMB. However, treating q

i as a free vector [with
the best-fit value and its covariance given in Eq. (18)]
provides an additional sanity check for the consistency of
the direction of measured qi with viCMB, which could
otherwise be impacted by unknown systematics. However,
at the expense of losing sight of such potential systematics,
we may achieve a smaller error by assuming qi ∝ viCMB,

gaϕ̇ ¼ viCMBBic2

AijviCMBv
j
CMB

� c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AijviCMBv

j
CMB

q : ð21Þ

Ultimately, a reliable detection requires both high statistical
significance and passing all the sanity checks, such as
pointing in the right direction as the cosmological dipole.

V. RESULTS

We have performed the above linear regression tech-
nique in Fourier space with the publicly available GPS
timing bias (sampled every 30 s) and GPS position data
[26]. Note that we have not used all satellites in the GPS
constellation for data analysis, as the publicly available
timing bias data in [26] have missing data points during our
time range of interest, so we have chosen satellites with
complete data for this analysis. Figure 2 (left) shows the
orbits of these GPS satellites in the ECI frame.
Another remark is that we fit the data in frequency space

because the noise in real time is correlated, as the noise
power spectrum σ2sðfnÞ [Fig. 2 (right)] is not constant.
However, as long as the noise is statistically invariant under
time translations, it will remain uncorrelated in frequency,
which justifies the use of Eq. (16) for χ2 in the Gaussian
approximation.
As a concrete example, we can analyze the GPS data for

the half-day data extracted for July 29, 2023,

q̄x ¼ ð−2.23� 1.76Þ × 10−25 m−1;

q̄y ¼ ðþ0.21� 1.41Þ × 10−25 m−1;

q̄z ¼ ðþ3.34� 1.64Þ × 10−25 m−1: ð22Þ

Extending this to the full day yields smaller errors,

q̄x ¼ ð−1.02� 1.30Þ × 10−25 m−1;

q̄y ¼ ðþ1.56� 1.48Þ × 10−25 m−1;

q̄z ¼ ðþ1.76� 1.41Þ × 10−25 m−1: ð23Þ

Finally, for the 10-day interval from July 20–29, 2023, we
can get even tighter constraints,

q̄x ¼ ðþ6.18� 6.74Þ × 10−26 m−1;

q̄y ¼ ðþ2.97� 5.88Þ × 10−26 m−1;

q̄z ¼ ð−5.04� 6.59Þ × 10−26 m−1; ð24Þ

where x, y, z refers to the directions of the coordinate axes
of the ECI frame. Note that we have usedΔf ¼ 0.185 mHz
when calculating the variance in Eq. (17), which corre-
sponds to the average over 40 adjacent data points. As
expected, the errors decrease as we use longer time
intervals (see Fig. 3), but there is no significant deviation
from zero, which suggests that there is no systematic error
at this level of precision.
We can now translate this result into bounds on gaϕ̇. By

using Eq. (17), we have

jgaϕ̇j≲ 10−6 yr−1 ð25Þ

for a 1-day observation period and
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jgaϕ̇j≲ 10−7 yr−1 ð26Þ

for a 10-day observation period. The bounds obtained here
are worse than the naive bound in Eq. (10) imposed by
atomic clocks on Earth. However, as we noted before, the
bound in Eq. (10) from terrestrial atomic clocks does not
apply if the coupling to ϕðtÞ does not change the ratio of
different atomic transition frequencies.

VI. DIPOLE MODULATION OF DISTANCE

There is another effect, ignored in the previous calcu-
lation, that may cancel any observable frequency modula-
tion of atomic clocks. If the same gradient that modulates
the frequency of atomic clocks, modulates their mass, this
will lead to an additional constant acceleration. As a result,
in the rest frame of the clocks, the two gradient effects
cancel. Nonetheless, photons that travel between Earth and
GPS satellites do not experience this gradient, and thus
their travel times will instead be modulated by the dipole,
which we shall work out below.
We shall then assume that, similar to the transition

frequencies, the mass of the satellite will be modulated
by the scalar field that changes over time. Under the
influence of this field, the action of the satellite becomes

S ¼
Z

MsðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2

c2

s
dt; ð27Þ

where v is the speed of the satellite relative to the scalar
background.

Similar to Eq. (9), we can write

δMs

Ms
¼ gaδϕ: ð28Þ

To obtain the travel distance, the acceleration of the moving
satellite is needed. By setting δS ¼ 0 we have

ai ¼ −
Ṁs

Ms
vi: ð29Þ

If we assume that the coupling Ṁs=Ms with the scalar field
is universal for all clocks (and satellites), it will be locally
unobservable. However, given that the coupling does not
affect the propagation of electromagnetic signals (as
photons are massless), this acceleration can have an
observable effect on timing for sending or receiving signals
across well-separated clocks.
To account for the constant acceleration of massive

objects, we can go the Rindler frame with the metric

ds2 ¼ −c2ðκx − 1Þ2dt2 þ dx2 þ dy2: ð30Þ

Here, we can consider a 2D space since each satellite
travels in its own orbital plane. Note that κ ¼ ðṀs=MsÞv is
the acceleration for the static observer at x ¼ 0.
By subtracting and integrating the time, we have

ct ¼
Z

r

0

dr0

1 − κx
¼ r −

1

2
κr2 cosðθÞ: ð31Þ

Here we have x ¼ r cos θ, where r is the radius of the
satellite orbit, and θ is the relative angle between the

FIG. 2. Left: the orbits of the GPS satellites in 3D space in the ECI reference frame. Right: noise power spectrum of each satellite,
calculated based on the GPS public timing bias data during the time period of July 20–29, 2023. The noise power spectrum has been
smoothed by taking the moving average with Δf ¼ 0.185 mHz. The plot legends label the satellite vehicle number of each satellite.
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satellite and the CMB dipole (assuming that it coincides
with the direction of acceleration), as seen from Earth (see
Fig. 4). Therefore, the timing bias can be expressed as

d ¼ −
vCMB

2c2
Ṁs

Ms
r2 cosðθÞ: ð32Þ

In this equation, we havemade the approximation v ≈ vCMB.
This is because we are considering the scalar background to
be at rest in the cosmological frame, sowe can approximate v
as vCMB, the speed of Earth in the cosmological frame, since
vsat is much smaller in comparison.
Taking a time derivative, we find

ḋ ¼ vCMBvsat
2c2

gaϕ̇r sinðθÞ: ð33Þ

Comparing this to Eqs. (13)–(15), we notice that

ḋDM
ḋFM

∼
vsat
c

; ð34Þ

where the subscripts DM and FM stand for distance
modulation and frequency modulation respectively.
This implies that the error for the distance modulated
case is bigger by ðvsat=cÞ−1 ¼ 105 (104) for mid-Earth

(heliocentric) orbits, which is reflected on the right vertical
axis of Fig. 3.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed the possibility of
utilizing networks of quantum sensors to detect cosmo-
logical scalar fields predicted by various theoretical mod-
els. We have examined two mechanisms: the direct
coupling of the scalar field to transition frequencies of
atomic clocks and the modulation of distance resulting
from a universal coupling between a scalar field and the
effective mass of matter. We then used publicly available
GPS timing bias and position data for primary data
analysis. The results of these analyses have shown that,
given the current GPS network and relatively short obser-
vation period, we cannot yet obtain interesting bounds on
the existence of the cosmic scalar background. The error
bound imposed by such data analysis seems to be worse
than the naive upper bound implied by [24], although that
upper bound is not applicable to a universal frequency
modulation.
There are a few ways to improve the bound of gaϕ̇

imposed by orbital atomic clock networks. First, a longer
observation period, such as 1–10 yr, would improve this
bound. This is, in principle, feasible at present, since GPS

FIG. 3. The error in gaϕ̇ as a function of observation time. The left vertical axis depicts the scale in the “dipole modulation of
frequency” mechanism discussed in Sec. III, while the right vertical axis depicts the scale in the “dipole modulation of distance”
mechanism discussed in Sec. VI. The blue dots show the bounds obtained in this work, and the gray dotted line extrapolates these results
for longer integration times. Better bounds can be obtained with data from GPS-type clocks (Sr optical clocks) in a heliocentric orbital
pattern shown in green (in red). The horizontal black lines indicate the Hubble rate ≃10−10 yr−1 as possible cosmological targets for
these measurements.
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timing bias and position data are publicly available in [26].
However, we defer a full analysis of these data to future
work, due to its large volume, and especially because some
of the datasets have quality issues, such as missing data
points. In addition to this, the precision of the atomic clocks
currently used in GPS satellites is much worse than that of
the newest terrestrial clocks [28]. Therefore, technological
advances and the deployment of orbital atomic clock
networks with better clocks in the future will continue to
improve this bound. Finally, the bound can be improved by
deploying an orbital sensor network with a much larger
orbital radius compared to GPS, such as a heliocentric

orbital pattern. In Fig. 3, we show how the bound on gaϕ̇
decreases for several network configurations.
We should note that, while we have focused on the

statistical error budget for detection of coupling to cos-
mological scalar fields, potential systematic errors in
modeling standard physics may further contaminate such
endeavor, and thus any claim of detection (rather than upper
limit) will require a careful accounting of such possible
degeneracies.
A clear error target for a cosmological scalar background

is gaϕ̇ ∼ 10−10 yr−1, which implies anOð1Þ change in mass
over a Hubble time. As can be seen in Fig. 3, this is in
principle realizable for both mechanisms, by deploying
GPS-type atomic clocks and Sr lattice optical clocks at mid-
Earth/heliocentric orbits and observing for a sufficiently
long period. Although such detection networks might not
be realistic in the near future, the improvement of current
technologies, such as the deployment of the new generation
of GPS satellites, will continue to improve the current
result. Moreover, NASA has launched a series of missions
aiming to send high-sensitivity atomic clocks into space,
namely, the deep space atomic clock missions [29]. Its first
stage, which included a mercury ion clock on a low-Earth-
orbit satellite, was terminated on September 18, 2021. A
follow-up mission to Venus will be launched in 2028,
which can lead to possible improvements of the upper
bound on gaϕ̇ if its timing bias data can be accessed for data
analysis.
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