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The conformal flatness approximation to the Einstein equations has been successfully used in many
astrophysical applications such as initial data constructions and dynamical simulations. Although it has
been shown that full general relativistic strongly differentially rotating equilibrium models deviate by at
most a few percentage from their conformally flat counterparts, whether those conformally flat solutions
remain stable has not been fully addressed. To further understand the limitations of the conformal flatness
approximation, in this work, we construct spatially conformally flat hot hypermassive neutron stars with
postmergerlike rotation laws, and perform conformally flat evolutions and analysis over dynamical
timescales. We find that enforcing conformally flat spacetime could change the equilibrium of quasitoroidal
models with high angular momentum for J ≳ 9 GM2

⊙=c compared to fully general relativistic cases. In
contrast, all the quasispherical models considered in this work remain stable even with high angular
momentum J ¼ 9 GM2

⊙=c. Our investigation suggests that the quasispherical models are suitable initial
data for long-lived hypermassive neutron star modeling in conformally flat spacetime.

DOI: 10.1103/PhysRevD.110.043015

I. INTRODUCTION

The detection of a binary neutron star merger on August
17, 2017, has laid a milestone in multimessenger astronomy.
This event was observed by the coincident detections of
gravitational waves GW170817 [1], the short gamma-ray
burstGRB170817A [2], and in other spectral bands [3]. Even
though this groundbreaking multimessenger detection has
confirmed our basic understanding of neutron star mergers
[4,5], details of the postmerger evolution are poorly under-
stood. A hypermassive neutron star, which is expected to be
hot and supported by strong differential rotation, is one of the
possible outcomes of binary neutron star merger. Studying a
hypermassive neutron star helps us to further understand the
nature of the central engine of the relativistic jets [2,6] and
kilonova transients [7–10].
Detailed investigations of the postmerger phase over

dynamical and secular timescales are extremely challeng-
ing yet significant. Not only does one need to solve Einstein

field equations and general-relativistic magnetohydrody-
namics self-consistently [5], neutrino microphysics is also
required [11]. Moreover, to better understand the post-
merger observational signatures, seconds-long simulations
are required. Hence, any simplification of the simulations is
highly desirable.
The spatially conformally flat spacetime approximation

[12–14] has shown to be useful for modeling neutron star
mergers. Binary neutron star merger simulations based on
the conformally flat approximation have been successfully
carried out (e.g., [15–20]; see also the applications in the
context of core-collapse supernovae [21–23] and isolated
neutron stars [24–34]). In addition, it has been shown in
fully general relativistic simulations that long-lived neutron
star merger remnants are qualitatively axisymmetric, and
the corresponding spacetime is nearly conformally flat
[35,36]. Mapping such postmerger profiles by assuming
conformally flat conditions onto other evolution codes that
impose different symmetries or with different input physics
has been done recently [35,36]. Specifically, the multigrid
based conformally flat spacetime solver of Gmunu [37,38]
has been demonstrated to be very effective for the studies of*Contact author: patrick.cheong@berkeley.edu
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long-lived postmerger neutron star merger remnants over
secular timescales [36].
Understanding the limitation of the conformally flat

spacetime approximation in the context of hypermassive
neutron stars is critical. Despite the success in neutron star
modeling (e.g., [15–20]), the conformally flat condition is
ultimately an approximation. This approximation is no
longer valid in the case of a Kerr black hole [39,40], and it
may also fail with systems that have extreme rotation or
high angular momentum. Studies have shown that the local
and integrated quantities are at most a few percentage
difference between fully general relativistic and confor-
mally flat differentially rotating equilibrium models
[41–44]. However, whether the full and conformally flat
solutions share the same properties of dynamical and
secular stabilities is not clearly addressed. Recently, the
conformally flat approximated dynamical evolutions of
quasitoroidal models with the J-constant rotation law [45]
with polytropic equation of state has been carried out [46].
Nevertheless, the rotation law considered in [46] is
very different from that of postmerger remnants. It is still
unclear whether postmergerlike hypermassive neutron stars
can be accurately modeled under the conformal flatness
approximation.
In this work, we investigate the limitations of the con-

formally flat approximation in high angular momentum
postmergerlike hypermassive neutron star modeling. In
particular, we construct spatially conformally flat postmer-
gerlike hot hypermassive neutron stars, and perform evolu-
tions and analysis over dynamical timescales. We find that
the stellar profiles of conformally flat quasitoroidal models
with high angular momentum for J ≳ 9 GM2

⊙=c can be
distorted noticeably over dynamical timescales even in fully
general relativistic evolutions. However, the fully general
relativistic variant of such stars remains stable in fully general
relativistic evolutions within the time we simulated. This
implies that a conformally flat approximation either makes
such a high angular momentum star not an equilibrium or
makes it an unstable equilibrium. On the other hand, all the
quasispherical models considered in this work remain stable
even with high angular momentum J ¼ 9 GM2

⊙=c. Our
study suggests that the quasispherical models are a better
choice to be used as hypermassive neutron star modeling
because of their rotation properties and stabilities.
The paper is organized as follows. In Sec. II we outline

the methods we used in this work. The results are presented
in Sec. III. This paper ends with a discussion in Sec. IV.
Unless explicitly stated, we use the units in which the speed
of light c, gravitational constant G, and solar mass M⊙ are
all equal to 1 (c ¼ G ¼ M⊙ ¼ 1).

II. METHODS

A. Initial conditions

Conformally flat, axisymmetric, differentially rotating hot
neutron stars in quasiequilibrium are constructed using the

RotNS code [47], and serve as our initial data. RotNS [47] was
used to construct equilibrium sequences of rotating poly-
tropes in general relativity. The code has been recently
updated to support tabulated equations of state and the
four-parameter rotation law of Uryū et al. [48]. For the
implementation details, we refer readers to [49]. Below, we
will only highlight the key setup of the initial data
construction.
Although RotNS [47] is a fully general relativistic code,

the spatially conformally flat conditions can easily be
enforced by imposing an additional condition of the metric
potentials, as shown in [41–44]. Here we adopt the same
modification in RotNS to construct conformally flat initial
data. Unless explicitly stated, all the initial data are
constructed in conformally flat spacetime. To construct
mergerlike hypermassive neutron star profiles, we adopt the
four-parameter rotation law of Uryū et al. [48]. In particu-
lar, we implement the following rotation law:

Ωðj;ΩcÞ ¼ Ωc
1þ ½j=ðB2ΩcÞ�p
1þ ½j=ðA2ΩcÞ�qþp ; ð1Þ

where j is the specific angular momentum; Ωc is the central
angular velocity of the star; while A, B, q, and p are
parameters. In this work, we choose p ¼ 1 and q ¼ 3. Note
that this rotation profile is nonmonotonic, with the maxi-
mum angular velocityΩmax between the center and surface.
The characteristic of the models can be controlled by
specifying parameters A and B. Alternatively, parameters A
and B can be obtained by fixing angular velocity ratios
Ωmax=Ωc and Ωeq=Ωc [43,44,48], where Ωeq is the equa-
torial angular velocity of the star. Different choices of the
angular velocity ratios can result in either quasitoroidal or
quasispherical models.
In this work, we consider two sets of the ratios

fΩmax=Ωc;Ωeq=Ωcg, namely, (i) f2; 0.5g which results
in quasitoroidal models, and (ii) f1.6; 1g which results
in quasispherical models (see Fig. 1 for examples of the rest

FIG. 1. Two-dimensional rest mass density profiles ρ in the
units of ½g cm−3� of the rotating neutron star models. Left
panel: quasitoroidal (type C) model with fΩmax=Ωc ¼ 2;
Ωeq=Ωc ¼ 0.5g. This star has the angular momentum J ¼
11 GM2

⊙=c with the maximum energy density ϵmax ¼
7.073 × 1014 g cm−3. Right panel: quasispherical (type A) model
with fΩmax=Ωc ¼ 1.6;Ωeq=Ωc ¼ 1g. This star has the angular
momentum J ¼ 9 GM2

⊙=c with the maximum energy density
ϵmax ¼ 9.411 × 1014 g cm−3.
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mass density profiles of both types of stars). They can be
classified as type C and type A solutions according to [50].
Note that the latter set of the ratios is chosen to match the
results of the numerical relativity simulations of binary
neutron star mergers (e.g., [51,52]; see [43,44]). Therefore,
the quasispherical type models are by construction more
“postmergerlike” compared to quasitoroidal models.
All the equilibrium models in this work are constructed

with equation of state DD2 [53] with a constant entropy per
baryon s ¼ 1 kB=baryon and in neutrinoless β equilibrium.
The temperature is roughly 30 MeVat the center of the star.
Note that, such a choice of entropy profile and the resulting
temperature profile do not match the numerical relativity
simulations, where the temperature at the center is expected
to be lower than the surface. Nevertheless, we consider only
the constant entropy profile for simplicity. The investigations
of different choice of entropy profiles will be left as future
work. The resolution of the compacted radius and angular
grid (see their definitions in [47]) in RotNS is 600 × 600.

B. Simulation setup

We employ the general relativistic magnetohydrodynam-
ics code Gmunu [37,38,54–56] to evolve the neutron star
models in dynamical conformally flat spacetime. All the
simulations here are axisymmetric (i.e., two-dimensional)
in cylindrical coordinates ðR; zÞ, where the computational
domain covers 0 ≤ R ≤ 120 and 0 ≤ z ≤ 120, with the

resolution nR × nz ¼ 128 × 128 and allowing six adaptive
mesh refinement levels. The finest grid size at the center of
the star is ΔR ¼ Δz ≈ 43.27 m. The refinement is fixed
after the initialization since we do not expect the stars to
expand significantly.
Our simulations adopt Harten, Lax and van Leer approxi-

mated Riemann solver [57], third-order reconstruction
method PPM [58], and third-order accurate SSPRK3 time
integrator [59]. Finite temperature equation of stateDD2 [53]
is used for the evolutions. Although neutrinos are not
included, the electron fraction Ye is evolved in these
simulations.
The rest-mass density of the atmosphere ρatmo is set to be

10−10ρmaxðt ¼ 0Þ. For anywhere that the matter has rest-
mass density lower than ρatmo, we reset the rest-mass density
of those regions to be 0.2ρatmo, and zero the velocities (i.e.,
vi ¼ 0). As a result, the angular velocityΩ≡ αvϕ − βϕ has a
sudden drop at the neutron star surface at t ¼ 0 (see, e.g.,
Fig. 3). These areas will be filled with low density gas that
rotateswith similar angular velocity as soon as the simulation
started, and do not affect the dynamics of the neutron star
because of the ultralow rest-mass density.
To initialize the simulations, we map the conservative

variables of the stars into Gmunu, and solve the metric again
with the multigrid metric solver [37,38]. This approach can
also be applied on fully general relativistic profiles, which
was used in [35,36].

FIG. 2. Gravitational massMgrav versus maximum energy density ϵmax for various constant angular momentum sequences. Circles and
diamonds mark the dynamically evolved models without introducing perturbations. The diamonds refer to the models presented in detail
in Figs. 3, 4, and 7. The black diamonds are the two cases presented in Fig. 1. None of the simulations presented here collapse as black
holes. Left panel: quasitoroidal (type C) model with fΩmax=Ωc ¼ 2;Ωeq=Ωc ¼ 0.5g. The angular momentum J ranges from 3 to
11 GM2

⊙=c. The J-constant turning points are marked with black crosses. We find that models with high angular momentum (i.e., J ≳ 9)
fail to preserve their stellar profiles; see Figs. 3 and 4 and the discussions in Sec. III B. Right panel: quasispherical (type A) model with
fΩmax=Ωc ¼ 1.6;Ωeq=Ωc ¼ 1g. The angular momentum J ranges from 3 to 9 GM2

⊙=c. In this type of model, we do not observe
J-constant turning points. The RotNS code fails to converge when the maximum energy density goes beyond the plotted values, which
agrees with [44]. All the dynamically evolved models remain stable up to 20 ms evolutions.

HIGH ANGULAR MOMENTUM HOT DIFFERENTIALLY ROTATING … PHYS. REV. D 110, 043015 (2024)

043015-3



III. RESULTS

A. Sequences of equilibrium models

Figure 2 shows the gravitational mass Mgrav versus
maximum energy density ϵmax of constant angular momen-
tum sequences constructed in this work. Note again that
the spatial conformally flat condition is enforced in all the
sequences reported here. Circles and diamonds mark the

dynamically evolved models without introducing perturba-
tions. The diamonds refer to themodels presented in detail in
Figs. 3, 4, and 7. None of the simulations presented here
collapses as black holes. However, we note that these
noncollapsing models are not necessarily stable; see further
discussions in Secs. III B and III C below.
The left panel of Fig. 2 shows quasitoroidal (type C)

models with fΩmax=Ωc ¼ 2;Ωeq=Ωc ¼ 0.5g, where the

FIG. 3. Comparison of the dynamical evolutions of the quasitoroidal (type C) models with angular momentum J ¼ 9 with different
maximum energy densities ϵmax. Three cases are shown in this plot, namely, ϵmax ¼ 7.073 × 1014 g cm−3 (left column), ϵmax ¼
9.638 × 1015 g cm−3 (middle column), and ϵmax ¼ 1.0254 × 1015 g cm−3 (right column), respectively. The first and second rows show
the relative variation of the rest mass densities and angular velocities in time (blue solid lines are for central values while the orange
dashed lines are for maximum values). In all cases, the rest mass densities oscillate, and gradually settle to a slightly lower value. The
central angular velocity Ωc oscillates strongly at around 10 ms, but relaxes back to initial values later. For the high maximum energy
density ϵmax case, the final central rest mass density ρcðt ¼ 20 msÞ is about 18% smaller than the initial value. The third and fourth rows
compare the initial (black solid lines) and final (t ¼ 20 ms, red dots) profiles of the rest mass density ρ and the angular velocity Ω along
R axis (i.e., z ¼ 0). The higher the maximum energy density ϵmax is, the lower of the final maximum rest mass density ρmax, and the
stronger the distortion of the rest mass density ρ and the angular velocity Ω profiles. Despite the significant distortions of the rest mass
density profiles ρðR; z ¼ 0Þ, the angular velocity profiles ΩðR; z ¼ 0Þ in all the cases considered here are qualitatively preserved.
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angular momentum J ranges from 3 to 11 GM2
⊙=c. The J-

constant turning points are observed in all the quasitoroidal
sequences, which are marked with black crosses in the plot.
According to the turning point criterion [45], the J-constant
turning points mark the onset of instability. However, this is
not an exact threshold to collapse. The situation becomes
more complicated for differentially rotating cases. The
stability and maximum mass of differentially rotating
stars with J-constant rotation law [45] has been studied

[46,60,61]. More recently, Muhammed et al. [49] show that
the turning point criterion seems to also hold in the cases of
Uryū et al. [48] rotation law. In this work, we only
dynamically evolve the models that have smaller maximum
energy density ϵmax than the J-constant turning points.
The right panel of Fig. 2 on the other hand shows the

quasispherical (type A) model with fΩmax=Ωc ¼ 1.6;
Ωeq=Ωc ¼ 1g, where the angular momentum J ranges from
3 to 9 GM2

⊙=c. Unlike the quasitoroidal cases, we do not

FIG. 4. Comparison of the dynamical evolutions of the quasitoroidal (type C) models with maximum energy density ϵmax ¼
7.073 × 1014 g cm−3 with high angular momentum J ≥ 9. Three cases are shown in this plot, namely, J ¼ 9 (left column), J ¼ 10
(middle column), and J ¼ 11 (right column), respectively. The first and second rows show the relative variation of the rest mass densities
and angular velocities in time (blue solid lines are for central values while the orange dashed lines are for maximum values). The third
and fourth rows compare the initial (black solid lines) and final (t ¼ 20 ms, red dots) profiles of the rest mass density ρ and the angular
velocityΩ along the R axis. The angular velocity profile ΩðR; z ¼ 0Þ for J > 9 cases changes significantly at the center of the stars, and
the rotation law of Uryū et al. [48] no longer holds. Moreover, in the highest angular momentum J ¼ 11 case, although the change of the
maximum rest mass density ρmax is small, the central rest mass density ρc decreases by about 20% compared to the initial value. Both the
central and maximum angular velocities oscillate quasiperiodically. The amplitudes of the oscillation are very large; the angular
velocities can be a few times higher during the evolutions. Note that all the models presented in this plot are the least massive models at a
given angular momentum (i.e., far from the J-turning points); such strong oscillations and deformations of the stars are unexpected.
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observe J-constant turning points in these sequences. As the
maximum energy density ϵmax goes beyond the plotted
values, the RotNS code fails to converge. This behavior agrees
with the discussion in the Section III B in [44]. The origin of
this issue is still unknown, which is beyond the scope of this
work and will be investigated in a future study.

B. Evolutions of quasitoroidal profiles

In this subsection, we present some evolutions of the
quasitoroidal (type C) models with different angular
momentum J and maximum energy density ϵmax. All the
models considered here have lower maximum energy
density ϵmax than the J-constant turning points. We do
not introduce any perturbations into the evolutions. Since
all the low angular momentum cases are found to be stable

and trivial, in this section we discuss only the high angular
momentum cases (i.e., J ≥ 9).
Figure 3 compares the dynamical evolutions of the

quasitoroidal (type C) models with angular momentum
J ¼ 9 with different maximum energy densities ϵmax. In all
cases, the maximum rest mass densities ρmax oscillate, and
gradually relax to a slightly lower value. For the high
maximum energy density ϵmax ¼ 1.0245 × 1015 g cm−3

case, the final central rest mass density ρcðt ¼ 20 msÞ is
about 18% smaller than the initial value, which is not
ignorable and indicates that the star migrates into another
configuration. The rest mass density ρ and the angular
velocity Ω along the R axis (i.e., z ¼ 0) at the end of the
simulation (t ¼ 20 ms) are significantly distorted except in
the low maximum energy density case. The distortions are
stronger in the higher maximum energy density ϵmax cases.
Although none of these neutron stars collapse to black
holes, the medium and high energy density cases were not
stable against the evolution up to 20 ms.
Figure 4 compares the dynamical evolutions of also the

quasitoroidal models with maximum energy density ϵmax ¼
7.073 × 1014 g cm−3 with high angular momentum J ≥ 9.
The evolutions of the rest mass densities behave similarly,
i.e., they oscillate, and gradually relax to a lower value. The
higher the angular momentum J is, the stronger the
distortion of the rest mass density ρ and the angular

FIG. 5. The relative variation of the central and maximum rest
mass densities and angular velocities of the same models with or
without conformally flat approximation. The quasitoroidal (type
C) models with maximum energy density ϵmax ¼ 7.073 ×
1014 g cm−3 with angular momentum J ¼ 11 are used in these
simulations. All the evolutions have significant deviations except
cases where both the initial profile and evolution are fully general
relativistic (red lines). Although the conformally flat equilibrium
solutions have only a few percentage deviations from their fully
general relativistic counterpart [41–44], the dynamical stabilities
of high angular momentum equilibrium models could be changed
under conformally flat approximation.

FIG. 6. Comparison of the rest mass density and angular
velocity profiles at the beginning (t ¼ 0 ms, black dotted lines)
and at t ≈ 6 ms (solid lines) of the same models with or without
conformally flat approximation. The quasitoroidal (type C)
models with maximum energy density ϵmax ¼ 7.073 ×
1014 g cm−3 with angular momentum J ¼ 11 are used in these
simulations. The profiles are well preserved only in the case
where both the initial profile and evolution are fully general
relativistic (red lines).
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velocity Ω profiles. Although the maximum energy density
of all the models considered here are noticeably lower than
the J-constant turning points, we found that the angular
velocity profiles ΩðR; zÞ are not preserved in some high
angular momentum cases. For instance, in the highest
angular momentum J ¼ 11 case, the central rest mass
density ρc decreases significantly by about 20% compared

to the initial value. Also, the angular velocity profile
ΩðR; z ¼ 0Þ changes significantly at the center of the stars;
the rotation law of Uryū et al. [48] is violated. Both the
central and maximum angular velocities oscillate quasiper-
iodically with large amplitudes; the angular velocities can
sometime be a few times higher than the initial values
during the evolutions. Note again that all the models

FIG. 7. Comparison of the dynamical evolutions of the quasispherical (type A) models with different maximum energy densities ϵmax
and angular momentum J. In this plot, we show the most massive models with three given angular momentum, i.e., J ¼ 3 (left column),
J ¼ 6 (middle column), and J ¼ 9 (right column). The first and second rows show the relative variation of the rest mass densities and
angular velocities in time (blue solid lines are for central values while the orange dashed lines are for maximum values). The evolutions
of the maximum and central rest mass densities ρ are identical in the quasispherical models. All the relative variations shown here are
within 5%. The third and fourth rows compare the rest mass density ρ and the angular velocity Ω profiles along the R axis at the
beginning (t ¼ 0 ms, black solid lines) and a later time t ¼ 18 ms (red dots). As shown at the first two rows, the J ¼ 6 and J ¼ 9models
are not yet relaxed to stationary states by the end of the simulations (t ¼ 20 ms); the oscillation is still noticeable in the scale we are
plotting. Such oscillations result in small quasiperiodic distortions of the stellar profiles (e.g., angular velocity Ω). Therefore, instead of
plotting the profiles at the end of the simulations, we pick the slightly earlier time (i.e., at t ¼ 18 ms) for better visualizations. Unlike the
cases in quasitoroidal (see Figs. 4 and 3), the profiles are preserved better in this case, and the decrease of the maximum rest mass density
ρ is about 2% even for the most massive case with the highest angular momentum J ¼ 9. These results suggest that these quasispherical
(type A) models are dynamically stable in conformally flat simulations within 20 ms.
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presented in this plot are the least massive models at a given
angular momentum (i.e., far from the J-turning points);
such strong oscillations and deformations of the stars are
unexpected.

1. Comparison to fully general relativistic cases

To better understand the origin of the nonstable behavior,
we further compare different combinations of conformally
flat and fully general relativistic initial profiles and evolu-
tions of selected quasitoroidal (type C) models. In this
section, we focus on the quasitoroidal (type C) model with
maximum energy density ϵmax ¼ 7.073 × 1014 g cm−3 with
angular momentum J ¼ 11. The Spectral Einstein Code
(SpEC) [62] is used for the fully general relativistic
evolutions. The details of the numerical setup in SpEC

can be found at [49,63].
In this subsection, we consider four cases, namely,

(i) conformally flat initial data with conformally flat
evolution; (ii) general relativistic initial data with confor-
mally flat evolution; (iii) conformally flat initial data with
fully general relativistic evolution; and (iv) general rela-
tivistic initial data with fully general relativistic evolution.
One may argue that it is not necessary to consider case
(ii) since it is more or less similar to case (i). After all,
nonspherically symmetric full general relativistic initial
data are in general not conformally flat, and there is no self-
consistent way to map such initial data into a conformally
flat evolution code. To evolve such a star, we solve the
conformally flat metric equations with the conserved
variables of the fully general relativistic star, as discussed
in Sec. II B. This is effectively enforcing the initial data to
be conformally flat at the beginning. However, this does not
guarantee that the profile will still be an equilibrium. In this
work, we nevertheless include this case to discuss the
validity of mapping a fully general relativistic profile into a
conformally flat evolution code as in [36].
Comparisons of the rest mass densities and angular

velocities of the same models with or without a confor-
mally flat approximation are shown in Figs. 5 and 6. In
particular, Fig. 5 shows the absolute values of the relative
variation of the central and maximum rest mass densities
and angular velocities while Fig. 6 compares the profiles at
t ≈ 6 ms. Interestingly, the conformally flat initial profile is
always unstable even with fully general relativistic evolu-
tion. The star remains stable only when the profile and
evolution are fully general relativistic [case (iv), red lines].
This implies that the conformally flat approximation either
makes such a high angular momentum star not an equi-
librium or makes it an unstable equilibrium.

C. Evolutions of quasispherical profiles

In this subsection, we present some evolutions of the
quasispherical (type A) models with different angular
momentum J and maximum energy density ϵmax. As

mentioned, we do not observe any J-constant turning
points when we construct the fixed angular momentum
sequences. Therefore, we simulate models at both ends,
i.e., from low to high maximum energy density ϵmax.
Figure 7 compares the dynamical evolutions of the

quasispherical (type A) models with the most massive
models at three given angular momentums, J ¼ 3, J ¼ 6,
and J ¼ 9. Although they are the most extreme type A
models we have constructed, all of them are dynamically
stable in conformally flat simulations. Indeed, all the
simulations we have done (the green circles in the right
panel of Fig. 2) of this type of model remain stable.

IV. DISCUSSION

The goal of this work is to investigate how well the
differentially rotating quasiequilibrium models with high
angular momentum remain stable in spatially conformally
flat simulations. To this end, we have constructed both
quasitoroidal and quasispherical types of spatially confor-
mally flat mergerlike hot hypermassive neutron stars. In
particular, the “postmergerlike” rotation law of Uryū et al.
[48] is introduced, and assumes constant entropy per
baryon s ¼ 1 kB=baryon and in neutrinoless β equilibrium.
We further assess their stability by performing dynamical
simulations in conformally flat spacetime using Gmunu.
We show that a conformally flat approximation could alter

the dynamical stability of the quasitoroidal models despite
only a few percentage difference with their fully general-
relativistic variation [41–44]. Our simulations show that not
all conformally flat quasitoroidal models remain dynami-
cally stable even for cases where the maximum energy
density ϵmax is considerably smaller than the J-constant
turning points. In high angular momentum (i.e., J ≳ 9)
conformally flat cases, both the restmass density and angular
velocity can be distorted significantly evenwith fully general
relativistic evolutions. However, this is not the case when
both the initial profile and evolutions are fully general
relativistic. This implies that a conformally flat approxima-
tion either makes such a high angular momentum star not an
equilibrium or makes it an unstable equilibrium. Mapping
these stellar profiles from fully general relativistic simula-
tions to other codes by assuming conformally flat conditions
(e.g., [35,36]) could result in a very different lifetime of the
star, therefore affecting the modeling of the matter outflow.
The origin of such behavior can be better understood by
studying its hydrodynamical instability (e.g., [64]), which is
left as future work.
On the other hand, unlike the quasitoroidal models, we

show that all the quasispherical models considered in this
work remain stable. The quasispherical models are not only
by construction more postmergerlike compared to the
quasitoroidal models; they are dynamically stable even
for the most extreme cases we considered. These properties
make them ideal choices for long-lived hypermassive
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neutron star modeling. Generating different sequences with
different parameters (e.g., mass, angular momentum, equa-
tion of state) enables us to systemically study how these
parameters affect the outcomes of the postmerger. In the
future, we will attempt to deliver postmerger modeling with
such quasispherical models together with magnetic fields
and neutrino transport.

ACKNOWLEDGMENTS

P. C. K. C. gratefully acknowledges support from NSF
Grant No. PHY-2020275 [Network for Neutrinos, Nuclear
Astrophysics, and Symmetries (N3AS)]. F. F. gratefully
acknowledges support from the Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-05CH11231 and from the NSF
through Grant No. AST-2107932. M. D. gratefully
acknowledges support from the NSF through Grant
No. PHY-2110287. M. D. and F. F. gratefully acknowledge
support from NASA through Grant No. 80NSSC22K0719.
P. C. K. C. is N3AS Postdoctoral fellow. The simulations in
this work have been performed on the third UNH super-
computer Marvin, also known as Plasma, which is
supported by the NSF/MRI program under Grant
No. AGS-1919310. The data of the simulations were
postprocessed and visualized with YT [65], NumPy [66],
PANDAS [67,68], SciPy [69], and Matplotlib [70,71].

APPENDIX: CONVERGENCE TESTS

Here we present the convergence tests. The simulations
have the same setup as in the paper, except that we
introduce initial ingoing velocity perturbation, as shown
in Fig. 8. As shown in the plot, the oscillation amplitudes
are mostly the same at the very beginning, and gradually
decrease as time goes on. At low resolution, the simulations
are very diffusive, and relax to the stationary state sooner.
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C. L. Cadenhead, F. Hébert, L. E. Kidder, H. P. Pfeiffer, and
M. A. Scheel, Axisymmetric hydrodynamics in numerical
relativity using a multipatch method, Classical Quantum
Gravity 37, 235010 (2020).

[64] K. N. Gourgouliatos and S. S. Komissarov, Relativistic
centrifugal instability, Mon. Not. R. Astron. Soc. 475,
L125 (2018).

[65] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W.
Skillman, T. Abel, and M. L. Norman, YT: A multi-code
analysis toolkit for astrophysical simulation data, Astro-
phys. J. Suppl. Ser. 192, 9 (2011).

[66] C. R. Harris et al., Array programming with NumPy, Nature
(London) 585, 357 (2020).

[67] T. Pandas Development Team, pandas-dev/pandas: PANDAS
(2020), https://zenodo.org/records/10957263.

[68] Wes McKinney, Data structures for statistical computing in
Python, in Proceedings of the 9th Python in Science
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