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It is currently unknown how matter behaves at the extreme densities found within the cores of neutron
stars. Gravitational waves from binary neutron star mergers encode rich information about the stars’
deformability, allowing the equation of state—and hence nuclear physics—to be inferred. Planned third-
generation gravitational-wave observatories, having vastly improved sensitivity, are expected to provide
tight constraints on the neutron star equation of state. We combine simulated observations of binary neutron
star mergers by the third-generation observatories Cosmic Explorer and Einstein Telescope to determine
future constraints on the equation of state across a plausible neutron star mass range. In one year of
operation, a network consisting of one Cosmic Explorer and the Einstein Telescope is expected to detect
≳3 × 105 binary neutron star mergers. By considering only the 75 loudest events, we show that such a
network will be able to constrain the neutron star radius to at least ≲200 m (90% credibility) in the mass
range 1–1.97M⊙—about ten times better than current constraints from LIGO-Virgo-KAGRA and NICER.
The constraint is ≲75 m (90% credibility) near 1.4–1.6M⊙ where we assume the binary neutron star mass
distribution is peaked. This constraint is driven primarily from the loudest ∼20 events.
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I. INTRODUCTION

The cores of neutron stars host the densest baryonic
matter in the Universe. Traveling from the neutron star
surface down toward the core, it is conjectured that matter
first forms a homogeneous neutron liquid before the
appearance of strange baryons and/or deconfined quarks;
see Ref. [1] for a review. Theoretical calculations of nuclear
physics describing the interiors of neutron stars are noto-
riously difficult, and laboratory experiments do not begin to
approach the necessary densities. Therefore, astronomical
measurements of the neutron star equation of state provide
a unique probe of nuclear physics at the most extreme
possible densities.
Gravitational waves contain rich information about

the tidal deformations experienced by coalescing neutron
stars, encoding details about the mysterious physics of their
interiors [2]. The susceptibility of a neutron star to
deformation by tidal forces is determined by the equation

of state of the material composing the star and is quantified
by the dimensionless tidal deformability

Λ ¼ 2

3
k2

�
c2R
Gm

�
5

: ð1Þ

Here, k2 is the tidal Love number while m and R are the
mass and radius of the star. The effects of deformations
on the gravitational waveform are subtle. Nevertheless,
current observations have ruled out some of the “stiffest”
[3] proposed equations of state [4,5]. These constraints are
expected to improve dramatically with the advent of third
generation observatories such as Cosmic Explorer [6–8]
and the Einstein Telescope [9–11], which aim to probe
gravitational-wave strains more than an order of magnitude
weaker than is possible with current observatories.
The precision to which the neutron star equation of state

can be measured has been explored in a number of works in
the context of second generation observatories [12–19]. In
the first fully Bayesian analysis, the authors of [13] consid-
ered a linear approximationofΛðmÞ and found that a few tens
of mock events observed by the Advanced LIGO-Virgo
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network are sufficient to constrain the tidal deformability to
10% accuracy at a reference mass of 1.4M⊙. This work was
extended in [15], which considered a piecewise polytropic
parametrization of the equation of state and showed that—
with a network of two Advanced LIGO and one Advanced
VIRGO detectors—Λ can be constrained to 10%-50%
accuracy across the mass range 1–2M⊙. Reference [19]
added additional realism, estimating the constraints available
after the first 40 binary neutron star detections.
Some recent work has begun to establish the constraints

that will be possible with third-generation observatories.
Ref. [20] illustrates the ability of Cosmic Explorer or the
Einstein Telescope to discriminate between equation of state
models. Refs. [21,22] use Fisher matrix methods to predict
constraints by third-generation observatories on the pressure
and radius, respectively. Ref. [23] uses a Bayesian method to
estimate the equation of state from simulated f-mode
oscillations of isolated pulsars, while [24–26] similarly
use Bayesian methods to estimate the equation of state from
simulated binary neutron star mergers.
However, despite these predictions, computational diffi-

culties have so far prevented a realistic analysis. Thus,
previous work has resorted to approximate methods to deal
with the high computational cost of inferring binary
neutron star parameters from such long-duration signals.
In particular, these analyses have either restricted to only
the high-frequency part of the signal (e.g. [24,26]), or used
Fisher matrix estimation to approximate the binary neutron
star posterior distribution as a multivariate Gaussian
(e.g. [21,22]). However, the former misses a significant
amount of signal information, while the latter may not
accurately describe the true distribution of some waveform
parameters [27].
In this paper, we use reduced-order modeling [28] to

perform the first realistic, fully Bayesian analysis of
simulated long-duration (∼12 min) gravitational wave-
forms from coalescing neutron stars—as observed by a
network consisting of one Cosmic Explorer and one
Einstein Telescope—to derive constraints on the neutron
star equation of state across the full neutron star mass range.
We simulate the loudest binary neutron star events from

one year of coincident data from the network. We consider
Cosmic Explorer located at the site of LIGOHanford, and the
Einstein Telescope located at the site of Virgo [29], both with
target specifications as described in [7]. For each event, we
obtainmeasurements of themass and tidal deformability. The
dependence of the tidal deformability on the mass, ΛðmÞ, is
uniquely determined by the equation of state through the
Tolman-Oppenheimer-Volkoff equation. Using a spectral
decomposition, we apply hierarchical inference to constrain
the equation of state across the mass range 1–1.97M⊙.

II. METHOD

Our first step is to generate a set of the 75 loudest binary
neutron star mergers likely to be observed by an

observatory array consisting of one Cosmic Explorer and
one Einstein Telescope in one year of coincident data [7].
The merger distances are sampled from the neutron
star merger rate density model given in [30], which is
parametrized by the minimum merger timescale tmin
and exponent α of the merger time distribution
dN=dtmerger ¼ tα. While there is significant freedom in
the choice of these parameters, the resulting difference in
detection rate is insignificant in the case of Cosmic
Explorer þ Einstein Telescope at the low redshifts of the
75 loudest events. We therefore simply choose tmin ¼
10 Myr and α ¼ −1=2. The other extrinsic parameters
are drawn from standard distributions. In light of the low
observed spins of neutron star binaries [31–33], we take all
the neutron stars to have zero spin for simplicity (though we
note that the presence of spin can have an effect on the
inferred equation of state [34,35]). We sample the masses
from a Gaussian approximation to the observed Galactic
neutron star mass distribution [36], though, see Ref. [37].
For this analysis we assume an SLy equation of state [38],
which determines the tidal deformabilities from the masses.
For each event, we calculate the gravitational waveform
using the IMRPhenomPv2_NRTidal approximant
included in the LALSuite software suite [39]. The waveforms
have a typical low-frequency cutoff of ∼11 Hz, corre-
sponding to an average signal duration of ∼12 min.
To measure the equation of state from the mock events,

we use the following procedure:
(1) We use the DYNESTY dynamic nested sampling

package [40] included in BILBY [41–43] to perform
Bayesian inference on each event i with data di. The
priors are chosen to be the same distributions from
which the mock binaries are sampled. We use the
ROQGravitationalWaveTransient likeli-
hood, which implements a reduced-order quadrature
integration rule togreatly speedupevaluation [28,44].
This yields posterior distribution samples for the
binary parameters, θi. For this investigation, we are
interested only in the component massesm1, m2 and
the tidal deformabilities Λ1, Λ2. We therefore mar-
ginalize over the other parameters to obtain the
marginal posteriors, which are proportional to the
marginal likelihoods Lðdijmi

1; m
i
2;Λi

1;Λi
2Þ. An ex-

ample is shown in Fig. 1. The distributions are highly
non-Gaussian,making a Fishermatrix approximation
inappropriate for analyzing these signals.

(2) As discussed in [19], it is necessary to interpolate
between posterior samples in order to integrate the
Lðdijmi

1; m
i
2;Λi

1;Λi
2Þ along the different equation-

of-state curves. We therefore use a kernel density
estimate (KDE)—calculated using an Epanechnikov
kernel—to obtain a continuous representation of the
marginal likelihood function [45].

(3) To obtain the marginal likelihood for the data given
a particular equation of state, we integrate each
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Lðdijmi
1; m

i
2;Λi

1;Λi
2Þ along the predicted ΛðmÞ

curve and take their product to obtain the total
likelihood.

To model the equation of state, we use a four-parameter
spectral decomposition. In this representation, the adiabatic
index is given as a function of the pressure p by

ΓðpÞ ¼ exp
�X3

k¼0

γk lnðp=p0Þk
�
; ð2Þ

where p0 ¼ 1.64 × 1032 Pa is a reference pressure, and γk
are coefficients determined by the equation of state. The
equation of state (energy density as a function of pressure)
ϵðpÞ is obtained by solving

ϵþ p
p

dp
dϵ

¼ ΓðpÞ: ð3Þ

Truncating the spectral decomposition at four terms has
been shown to produce reasonably good fits to realistic
equations of state, including SLy [46].
The equation of state—and hence the set of parameters

ϒ ¼ fγ0; γ1; γ2; γ3g—determines how the tidal deformabil-
ity depends on mass: Λðϒ;mÞ. The likelihood for the full
set of data d given these parameters is

LðdjϒÞ ¼
YN
i¼1

Z
dmi

1

Z
dmi

2πðmi
1; m

i
2Þ

× Lκðdijmi
1; m

i
2;Λðϒ;mi

1Þ;Λðϒ;mi
2ÞÞ; ð4Þ

where Lκðdij � � �Þ are the single-event likelihoods.
Meanwhile, πðmi

1; m
i
2Þ is the prior on the component

masses, which we take to be the distribution from [36]
used to simulate our population of binary neutron stars. We
evaluate this marginal likelihood with a Riemann sum over
bins a, b of each KDE Ki:

LðdjϒÞ ≈
YN
i¼1

Δmi
1Δmi

2

X
a;b

πðma
1; m

b
2Þ

×Kiðma
1; m

b
2;Λðϒ;ma

1Þ;Λðϒ;mb
2ÞÞ: ð5Þ

The posterior probability is then

pðϒjdÞ ∝ LðdjϒÞπðϒÞ ð6Þ

where we take the prior πðϒÞ on the equation of state
parameters to be uniform in the ranges γ0 ∈ ½0.2; 2.0�,
γ1 ∈ ½−1.6; 1.7�, γ2 ∈ ½−0.6; 0.6�, and γ3 ∈ ½−0.02; 0.02�.
This translates to a prior in the radius shown in Fig. 4.

III. RESULTS AND DISCUSSION

The 90% credible intervals for pðϵÞ and RðmÞ are shown
in Fig. 2. The different shading shows how the constraints
vary depending on the number of events used in the fit: the
5 loudest (light), the 10 loudest (medium), and the 75
loudest (dark). The SLy equation of state used to generate
the data is the dashed black curve. The dashed black curve
is enclosed within the one-sigma credible interval, indicat-
ing that we successfully estimate the true equation of state.
The 75 loudest events allow us to constrain RðmÞ to

within an average of ∼200 m over the interval 1–1.97M⊙.
The constraint is ∼75 m around 1.4–1.6M⊙, near where
our distribution of binary neutron stars peaks. We constrain
the pressure to within an average of ∼18% in the energy
density range 2 × 1034 − 2 × 1035 Jm−3. The constraint is
∼4% at ϵ ≈ 5.2 × 1034 Jm−3.
Our ability to constrain the equation of state starts to

plateau at around the first 20 loudest events. Including
additional events improves the constraints, but with dimin-
ishing returns.
Figure 3 shows the width of the RðmÞ credible interval as

a function the number of loudest events, Nloudest, included
in the analysis. The width shows little change beyond
Nloudest ≳ 20 for all values of the mass. We conclude
that the loudest events play an outsize role constraining
the equation of state. However, given the sheer volume of
binary neutron star detections (≈3 × 105 per year of
Cosmic Explorer [6]), the effect of so many small

FIG. 1. Themarginalizedm-Λ posteriors (blue andorangepoints)
fromparameter estimation on amerger event overlayed on the black
ΛðmÞ curve predicted by the SLy equation of state. Because
individual measurements produce a set of (zero-dimensional)
discrete posterior samples, there is vanishingly small probability
that any equation of state curve will pass through even a single
posterior sample (see inset). We therefore estimate a continuous
probability density from the samples that can be integrated along a
curve passing through it.
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improvements may become significant. Indeed, the curves
are well-fit by both a decaying exponential and a power-law
with exponent −1=2 (shown in the figure). The former
predicts negligible improvement even with the full set of
data, while the latter predicts an improvement by at least a
factor of two. Our sensitivity estimates are therefore
conservative. A mock study to estimate the sensitivity
gained from including every binary neutron star detected by

Cosmic Explorer and the Einstein Telescope would require
significant computational resources.
Figure 3 shows the results for the 75 loudest events in

one year of simulated data. The exact shape of this
constraint will vary with each simulated dataset due to
cosmic variance—random variation in the set of binary
neutron stars. However, we expect this variance to be small
compared to the statistical uncertainty.
These results are based on the SLy equation of state, but

we expect them to be representative of the constraints
achievable for any smooth equation of state that is well-fit
by parametric models. To test this, we repeat the analysis
using the ALF2 model, which predicts larger tidal deform-
abilities and radii 1–2 km larger than SLy. The resulting
constraints (Fig. 5) are not appreciably different from those
reported above, with the average credible interval being only
2% smaller and the best constraint 10% smaller. However,
while these results capture smooth equations of state, the true
equation of state may not be so “nice” and could potentially
exhibit discontinuous behavior in the speed of sound due to
e.g. phase transitions [47,48]. This can result in uncertainties
in derived quantities such as the radius being underre-
ported when using smooth parametric models [49,50].
Next-generation x-ray pulse profile observations—such as
those by the planned STROBE-X—will allow neutron star
radii to bemeasured to∼2% − 4% [51], providing a valuable
check on the constraints from tidal deformability measure-
ments using gravitational waves.
By adopting a zero-spin prior, we obtain a narrower mass

posterior than wewould if we allowed for non-zero spin. We
test how this might affect our equation of state constraints by

FIG. 3. The width of the 90% RðmÞ credible interval as a
function of the number of loudest events used in the analysis
Nloudest. The relationship is well fit by a 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nloudest

p
law that

approaches a nonzero value at large Nloudest, as shown by the
dashed curves. The improvement in the credible interval begins to
diminish significantly beyond about Nloudest ¼ 20.

FIG. 2. Constraints on the neutron star equation of state. The
shaded purple regions show the 90% credible intervals. The light
contours are derived using only the 5 loudest events; the medium
contours using the 10 loudest events; and the dark contours using
the 75 loudest events. Top: pressure p as a function of energy
density ϵ. The upper panel shows the pressure in units of Pa. The
lower panel shows the pressure relative to the SLy equation of
state used to generate the data. Bottom: the radius R as a function
of mass m. In all three panels, the SLy curve is indicated with the
dashed black curve.
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repeating the analysis using a uniform prior on the dimen-
sionless spin parameter χ ∈ ½−0.1; 0.1�. Despite a significant
broadening in the mass posterior, we find only a small
difference in the constraints when using the uniform prior
(see Figure 6), with the average credible interval being only
9% larger and the best constraint 17% larger. This suggests
that for such precise measurements of the mass, the equation
of state estimation is relatively insensitive to assumptions
about neutron star spin.

IV. COMPARISON WITH CURRENT
CONSTRAINTS

Observations of the binary neutron star merger
GW170817 by LIGO-Virgo [52] constrained the neutron-
star radius with a precision of 2.8 km at 90% credibility [4].
Our results therefore suggest that a network consisting of
Cosmic Explorer þ Einstein Telescope will improve on this
constraint by a factor of≳10 after 1 year of observations. The
neutron star equation of state is also constrained by the
Neutron Star Interior Composition Explorer (NICER) and
X-ray Multi-Mirror (XMM-Newton) observatories, using
fits to emission from rotating hot spots [53,54]. When the
NICER and XMM-Newton measurements are combined
with the tidal deformability constraints from GW170817 [4]
and GW190425 [55], the radius at 1.4M⊙ is constrained to
16% at 90% credibility [54,56,57] The constraint from third-
generation gravitational-wave observatorieswill be≲2%. Of
course, in this work we include only the 75 loudest events
detected in one year of data. The constraints obtained from
the addition of hundreds of thousands of weaker events will
improve the constraints by an unknown amount.

V. LIMITATIONS

There are some limitations with this analysis that are
worthy of further investigation. The binary neutron star
merger rate remains highly uncertain [52,58]. A higher
merger rate at small redshift will result in an increased
number of loud events. Since the constraint on the equation
of state appears to be driven by the loudest sources, we
expect such an enhanced merger rate to lead to a better
constraint.
For this analysis we use a Gaussian approximation to the

observed Galactic binary neutron star distribution.
However, this is unlikely to be entirely representative of
the extragalactic distribution, with measurements of
GW190425 [55] suggesting a that the extragalactic dis-
tribution is broader [59].
It has been shown that a poorly chosen prior for the mass

can bias the inferred equation of state [16]. We find no
noticeable difference in the results even in the extreme case of
a uniform prior in the component masses. This is expected in

the case of measurements by third-generation observatories,
since any non-pathological prior will vary little over the
narrow range in mass on which the likelihood has support.
Finally, we note that these results are only as accurate as

the waveforms used to produce the mock measurements.
Such precise measurements require highly accurate wave-
forms to avoid mismodeling biases, potentially making the
effects of additional resonant modes and higher post-
Newtonian orders significant [60,61]. Recently, [21] has
shown that including the effects of resonant r-modes in
Einstein Telescope observations has a noticeable impact on
the inferred equation of state.
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FIG. 4. Radius priors used for hyperparameter estimation of the
spectral parameters.
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