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We study penetration of interstellar cosmic rays (CRs) into molecular clouds surrounded by nonuniform
diffuse envelopes. The present work generalizes our earlier model of CR self-modulation [Ivlev et al.
Astrophys. J. 855, 23 (2018); Dogiel et al. Astrophys. J. 868, 114 (2018)], in which the value for the
envelope’s gas density where CRs excite MHD waves was treated as a free parameter. Now, we investigate
the case where the density monotonically increases toward the center. Assuming that CRs are relativistic,
we obtain a universal analytical solution which does not depend on the particular shape of gas distribution
in the envelope, and self-consistently derive boundaries of the diffusion zone formed within the envelope,
where CRs are scattered at the self-excited waves. The values of the gas density at the boundaries are found
to be substantially smaller than those assumed in the earlier model, which leads to a significantly stronger
modulation of penetrating CRs. We compute the impact of CR self-modulation on the gamma-ray emission
and show that the results of our theoretical model are in excellent agreement with recent observations of
nearby giant molecular clouds by Yang et al. [Nat. Astron. 7, 351 (2023)].
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I. INTRODUCTION

Understanding penetration of interstellar cosmic rays
(CRs) into molecular clouds is a long-standing problem in
astrophysics. A general consensus is that MHD waves
resonantly excited by streaming CRs in diffuse envelopes
surrounding the clouds can inhibit their free penetration. As
a result, the CR spectrum in the cloud interior may be
reduced at energies contributing to the wave excitation (see,
e.g., Refs. [1–7]). For a long time, this phenomenon of CR
self-modulation has been of merely theoretical interest, but
recent rapid development in observational astronomy has
made it possible to start testing the theory against the
acquired data.
Numerous data available on the CR ionization rate in

molecular clouds, derived from observed abundances of
various ions generated due to CR ionizing collisions with
gas, clearly shows a tendency for the ionization rate to
decrease with the cloud column density (see Refs. [8–11]
and references therein). While such behavior generally

agrees with theoretical expectations of CR attenuation due
to ionization losses (see, e.g., Ref. [12]), it may also reflect
the effect of CR self-modulation that should be most
pronounced at lower energies. However, it is rather difficult
to discriminate between the two mechanisms using these
data—on the one hand, the attenuation models contain
many poorly constrained parameters; on the other hand, the
ionization rate alone cannot be used to identify the
predicted changes in the CR spectrum.
At the same time, gamma-ray diffuse emission produced

by relativistic CRs interacting with dense gas has an ability
to reveal the CR spectrum (see Refs. [13–15] and review by
Tibaldo et al. [16]). Measurements of gamma-ray spectra in
individual molecular clouds is a challenging task, both for
local clouds (see, e.g., Refs. [17–21]) and for clouds in the
Galactic Center (see, e.g., Refs. [22–28]). Nevertheless,
there are hints that the spectrum of relativistic CRs in the
central molecular zone is suppressed compared to the
surrounding “sea” spectrum [29]. Furthermore, a recent
analysis of the gamma-ray emission in the direction of
nearby giant molecular clouds provides clear evidence that
the emission from the dense clumps is reduced at GeV
energies [30]. One of the possible mechanisms that can
explain these observations is CR self-modulation.
Earlier, we have studied the effects of CR self-

modulation on the gamma-ray emission from dense mole-
cular clouds [31]. Our conclusion, consistent with the
results by Skilling and Strong [1], was that the expected
impact of self-modulation on the emission is typically
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marginal, and may be reliably detected only in very massive
clouds with a column density well over 1023 cm−2.
However, in that paper, we assumed the diffuse envelopes
around molecular clouds to have a constant gas density and
treated its value as a free model parameter.
In the present paper, we generalize our earlier

models [5,31] and study penetration of relativistic inter-
stellar CRs into molecular clouds surrounded by nonuni-
form envelopes. The paper is organized as follows: in
Sec. II, we discuss the qualitative picture of the process and
summarize the basic phenomenology, and also present the
governing equations and the boundary conditions. A self-
consistent solution of the problem for CR protons is given
in Sec. III. In Sec. IV, we expand the solution for multiple
CR nuclei and in Sec. V, discuss the relative impact of
individual nuclei. In Sec. VI, we compute the effect of CR
self-modulation on the gamma-ray emission and compare
the theoretical results with observational data by Yang
et al. [30]. In Sec. VII, we summarize the principal finding
of the paper, and highlight the essential role of gas
inhomogeneity in the self-modulation process.

II. PROBLEM SETUP

In Ref. [5], we have shown that CRs penetrating dense
molecular clouds excite MHD turbulence in diffuse enve-
lopes of the clouds. This leads to the formation of a
turbulent diffusion zone, where CRs are efficiently scattered
at the self-excited waves. The diffusion zone has a crescent
shape in the plane spanned by the CR energy/momentum
and the depth, with the tip set by the excitation threshold—
the maximum energy above which the CR flux is insuffi-
cient to generate turbulence. Depending on the interstellar
(ISM) spectrum and the cloud column density, the density
of CRs in the cloud interior may be significantly modulated
at energies below the excitation threshold [5,31]. However,
in these papers, we considered a simplified model of diffuse
envelopes, assuming the gas density has a certain constant
value ∼10 cm−3 across the whole envelope.
Recently developed dust extinction maps [32,33] allow

us to reconstruct the 3D dust/gas distribution within≈1 kpc
proximity to the Sun, with a spatial resolution of 1 pc.
These maps are therefore an excellent tool to resolve the gas
distribution in envelopes of nearby molecular clouds:
they show that gas is highly nonuniform, with the density
typically varying from well below ∼1 cm−3 in most of the
ISM volume up to dozens of cm−3 near the peaks of gas
clumps (where unresolved sub-pc dense cores tend to
concentrate). The maps suggest that gas inhomogeneities
in the envelopes may play an essential role, and that typical
density values relevant for wave excitation may be sub-
stantially lower than those assumed in Refs. [5,31].
In the present paper, we generalize the problem studied in

Ivlev et al. [5] and Dogiel et al. [31] to nonuniform
envelopes. As demonstrated in the following sections, this
step not only allows us to solve the problem self-consistently,

without assuming the value for the gas density where CRs
excite waves, but also makes it possible to obtain a general
analytical solution for the diffusion zone and to derive the
corresponding diffusion coefficient of relativistic CRs.
Interstellar CRs penetrate molecular clouds along the

local magnetic field lines, making the problem essentially
one-dimensional. We assume the gas density n in envelopes
to increase monotonically toward dense clumps, versus the
distance z measured along the field lines. Thus, n can be
employed as a new coordinate instead of z: in Sec. III, we
show that the resulting solution becomes universal and
independent on a particular shape of nðzÞ.
We point out that outer regions of diffuse envelopes have

negligible contribution to the total column density of
molecular clouds. This implies that attenuation of relativ-
istic CRs penetrating a cloud and, therefore, the net velocity
of their flux into the cloud is completely determined by the
column density of the dense clump, as given by Eq. (42) in
Sec. VI. At the same time, generation of self-excited waves
by the net CR flux is only possible in diffuse envelopes, as
the waves are efficiently damped at higher densities. Thus,
the self-consistent treatment of the problem, including the
solution for the diffusion zone, is reduced to analysis of the
processes occurring in the envelope, while the dense clump
only sets the value of the net flux velocity.
The diffusion zone in the ðp; nÞ plane is sketched in

Fig. 1. While it appears qualitatively similar to that plotted
in Fig. 2 of Ivlev et al. [5], the location of the zone

FIG. 1. A sketch illustrating penetration of CRs from the ISM
into a nonuniform envelope of a molecular cloud. The border
between the ISM and the envelope is set at the gas density n ¼ n0,
CRs are able to excite Alfven waves at n ≥ n0. For a given CR
momentum p, the region of self-excited turbulence is bound
between the outer boundary n1ðpÞ and the inner boundary
n2ðpÞ (depicted by the solid and dashed lines, respectively). These
boundaries identify the diffusion zone for CRs in the ðp; nÞ plane
(shaded region). Two regimes of the diffusion zone can be realized:
(i) either bothn1ðpÞ andn2ðpÞ end atn ¼ n0, or (ii) they intersect at
n > n0. The respective excitation threshold (i.e., the maximum
momentum at which CRs are able to excite waves) is denoted by

pðiÞ
ex andp

ðiiÞ
ex , the transition between the two regimes is atpex ¼ ptr.

CHERNYSHOV, IVLEV, and KISELEV PHYS. REV. D 110, 043012 (2024)

043012-2



boundaries as well as the underlying formation mecha-
nisms turn out to be quite different. In Ref. [5], the diffusion
zone emerges near an artificial sharp border between a low-
density envelope and a high-density clump. In the present
model, the diffusion zone forms naturally, as a result of
intrinsic inhomogeneity, which controls the locations of the
boundaries for a given p.
We truncate a nonuniform diffuse envelope at a certain

density n0, which identifies a border through which CRs
enter the envelope from the ISM. The border is located at a
local minimum of the wave damping rate, which is
associated with a transition between different dominant
ions in the envelope and the ISM (see Sec. II A), such that
penetrating CRs excite waves only at n ≥ n0.
Figure 1 illustrates characteristic realizations of the

diffusion zone for a given spectrum of interstellar CRs,
plotted for three different values of the cloud column
density N . For a given p, the diffusion region is bound
between the outer boundary n1ðpÞ (solid line) and the
inner boundary n2ðpÞ (dashed lines). The position of n1
depends on the magnetic field, the border gas density, the
ionization fraction and composition of the gas, as well as
the ISM spectrum. The column density—which is a
measure of CR attenuation in the cloud interior—controls
the relative position of n2 with respect to n1 and, hence,
the value of the excitation threshold pex. The latter is an
increasing function of N [5,31]. Therefore, regime
(ii) depicted in Fig. 1 corresponds to a lower value of
N , regime (i) to a higher one, and the transition
between the regimes to a medium one. As discussed in
Sec. VI, regime (i) is expected to be realized for
nearby giant molecular clouds and the local spectrum
of Galactic CRs.

A. General governing equations

Propagation of CRs within the diffusion zone should
take into account their interaction with the self-generated
turbulence. This process is generally described by a set of
coupled equations for the CR spectrum and the turbulent
spectrum. The problem is similar to that studied in
Refs. [5,31], but now gas inhomogeneity in the envelope
is also included.
Propagation of protons is governed by the advection-

diffusion transport equation (see, e.g., Refs. [1,4,34]),

∂

∂z

�
vAf −D

∂f
∂z

�
−

∂

∂p
ðṗfÞ ¼ 0; ð1Þ

where fðp; zÞ is the CR distribution function (spectrum) in
the momentum space [normalized such that the local
number density of protons is

R
fðp; zÞdp], and ṗ > 0

describes continuous energy losses due to interaction with
gas. The CR advection is set by the velocity of self-excited
waves, equal to the Alfven velocity,

vAðzÞ ¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πmiξin
p ; ð2Þ

which is determined by the longitudinal magnetic field
BðzÞ, the gas density nðzÞ, and the massmi of the dominant
ion with the abundance ξi. We assume ionized carbon with
ξi ¼ 1.5 × 10−4 [35] to dominate in the envelope. The CR
diffusion coefficient [36],

Dðp; zÞ ≃ 1

6π2
vB2

k2W
; ð3Þ

is determined by the spectral energy density of self-excited
turbulence, Wðk; zÞ, where the wave number k is related to
p via the resonance condition k ¼ eB=pc.
Following Refs. [1,5], the wave equation for Wðk; zÞ in

diffuse envelopes of molecular clouds can be reduced to the
excitation-damping balance,

γCR ¼ νin: ð4Þ

The wave excitation rate by CRs, γCR, is described by the
following equation [4,36]:

γCRðk; zÞ ≃ −π2
e2vA

mpc2Ωp
pD

∂f
∂z

; ð5Þ

where Ωp ¼ eB=mpc is the nonrelativistic girofrequency
of protons. The rate of wave damping, νin, is equal to
one half of the momentum transfer rate for ion-neutral
collisions,

νinðzÞ ¼
1

2

mnn
mn þmi

hσinvi≡ ν0
n
n0

; ð6Þ

where hσinvi is the corresponding momentum-transfer rate
coefficient. For atomic neutral hydrogen and carbon ions,
we have hσinvi ≈ 2.4 × 10−9 cm3=s [35].
In the outer envelope regions, where the gas density

drops below ∼1 cm−3, the dominant ions are Hþ with
hσinvi ≈ 3.3 × 10−9 cm3=s [35]. For a given gas density,
this change in the ion composition leads to an increase in
the damping rate νin by a factor of ≈8.9. Therefore, we
assume that turbulence exists only where carbon ions
dominate, and the density n ¼ n0, where this change occurs
identifies the border between the ISM and the diffuse
envelope. For n0 ¼ 1 cm−3, we obtain ν0 ≈ 9 × 10−11 s−1.
The excitation-damping balance, Eq. (4), allows us to

obtain the exact expression for the diffusion flux,

−D
∂f
∂z

¼ Bcνin
π2evAp

≡ SDðp; zÞ: ð7Þ

One can see that SD ∝ n3=2 and does not depend
on B explicitly. Equation (7) represents the universal,
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diffusion-dominated flux of penetrating CRs. It was derived
in Ivlev et al. [5] for the limit, where the advection
contribution is small, and should not be confused with
the total CR flux S within the diffusion zone,

Sðp; zÞ ¼ SD þ vAf; ð8Þ

which is obtained by solving the transport equation (1).

B. Boundary conditions for relativistic CRs

Continuous losses ṗ are proportional to the gas density
and therefore play a minor role in diffuse envelopes. Hence,
this term can be safely neglected at relativistic energies,
which reduces Eq. (1) to the total flux conservation,

Sðp; zÞ ¼ S0ðpÞ: ð9Þ

To solve the problem, we need to determine the outer and
inner boundaries of the diffusion zone, z1 and z2, and to set
the boundary conditions. We assume no CR scattering
outside the diffusion zone and hence, no CR gradient.
Therefore, the outer boundary condition is

fðp; zÞjz¼z1 ¼ f0ðpÞ; ð10Þ

where f0ðpÞ is the ISM spectrum of CRs. For the inner
boundary, we follow Ref. [31] and introduce the net flux
velocity uðpÞ, which is determined by the absorption of
CRs in the interior of a molecular cloud. The boundary
condition at z ¼ z2 is

uðpÞfðp; zÞjz¼z2 ¼ S0ðpÞ: ð11Þ

The value of u increases with the total column density of
the cloud (see Sec. VI).
For brevity, below we denote the values of parameters at

z ¼ zi by the corresponding indexes, e.g., njz¼z1 ¼ n1,
vAjz¼z2 ¼ vA2; SDjz¼z2 ¼ SD2, etc.

III. SOLUTION FOR PROTONS

We assume B ¼ const, which is a very reasonable
assumption in diffuse envelopes of molecular clouds [37].
For a monotonically increasing nðzÞ, we write at n > n0,

f
dvA
dz

¼ −
vAf
2n

dn
dz

¼ SD − S0
2n

dn
dz

: ð12Þ

Differentiating Eq. (8) over z and using Eq. (12), we
arrive to

df
dz

¼ S0 − 4SD
2vAn

dn
dz

: ð13Þ

The diffusion coefficient must be finite within the
diffusion zone, which requires γCR > 0. According to

Eq. (5), this in turn requires ∂f=∂z < 0. Hence, the outer
boundary of the diffusion zone for nðzÞ > n0, denoted by
zcrðpÞ, is determined from the condition ∂f=∂zjz¼zcr ¼ 0.
Combining this with Eq. (13), we obtain S0 ¼ 4SDjz¼zcr and
by virtue of Eq. (8), reduce it to

3SDjz¼zcr ¼ vAjz¼zcrf0: ð14Þ
Substituting SD from Eq. (7), we finally derive the critical
density ncrðpÞ≡ nðzÞjz¼zcrðpÞ,

ncrðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πpf0ðpÞn0

12ξi

Ωi

ν0

s
; ð15Þ

where Ωi ¼ eB=mic is the ion gyrofrequency. If ncr is
smaller than n0, we set n1 ¼ n0. Thus, the outer boundary
of the diffusion zone is

n1ðpÞ ¼ n0max

�
ncrðpÞ
n0

; 1

�
: ð16Þ

We write the total flux as

S0 ¼ SD1 þ vA1f0; ð17Þ
where

vA1f0 ¼ vAjz¼zcrf0

�
ncr
n1

�
1=2

¼ 3 SDjz¼zcr

�
ncr
n1

�
1=2

: ð18Þ

According to Eq. (7), SDjz¼zcr ¼ SD1ðncr=n1Þ3=2. Then, by
introducing the following factor:

KðpÞ ¼ 3

�
ncrðpÞ
n1ðpÞ

�
2

þ 1; ð19Þ

we can express S0 as

S0ðpÞ

¼KSD1

�¼4SDðncrÞ∝p−1=4f3=40 ðpÞ if ncrðpÞ>n0;

≈ SDðn0Þ∝p−1 if ncrðpÞ≪n0=
ffiffiffi
3

p
:

ð20Þ

Unlike the case of uniform envelopes studied in Ivlev
et al. [5], where the diffusion term was shown to domi-
nate the modulated flux at higher energies and the avection
term—at lower energies, now the magnitude of S0ðpÞ is
always set by the universal diffusion flux SD, determined
by Eq. (7).
Using Eqs. (8) and (11) we rewrite the condition on the

inner boundary of the diffusion zone as

SD2 ¼ S0 − vA2f2 ¼ S0

�
1 −

vA2
u

�
: ð21Þ
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Substituting SD2 ¼ SD1ðn2=n1Þ3=2 and using Eq. (20), we
obtain an algebraic equation for n2,

n2ðpÞ ¼ n1ðpÞ
�
K
�
1 −

vA2
u

��
2=3

: ð22Þ

Solution of this equation is only valid for n2ðpÞ > n1ðpÞ,
and hence, the excitation threshold is given by the
condition,

pex∶ n2ðpexÞ ¼ n1ðpexÞ: ð23Þ

Thus, the diffusion zone in the ðn; pÞ plane is completely
characterized by two similarity numbers, ncrðpÞ=n0 and
uðpÞ=vA0. We note that u at (sub)relativistic energies
strongly depends on p due to ionization losses, while
for ultrarelativistic energies u ≈ const [31,38].
As illustrated in Fig. 1, two regimes of the diffusion zone

can be realized: (i) either both n1ðpÞ and n2ðpÞ end at
n ¼ n0, or (ii) they intersect at n > n0. A transition
between the regimes occurs if the two boundaries intersect
exactly at n ¼ n0, i.e., when n1ðpexÞ ¼ n2ðpexÞ ¼ n0. In
this case KðpexÞ ¼ 4, and from Eq. (22), we derive the
following transition condition:

vA0 ¼
3

4
uðptrÞ; ð24Þ

where the transition momentum (i.e., the value of pex at the
transition point) is given by the condition,

ptr∶ ncrðptrÞ ¼ n0: ð25Þ

Regime (i) is realized if vA0 <
3
4
u. It is worth noting that

u is proportional to the total gas column density (see
Sec. VI), and therefore, this regime is expected to operate
in denser molecular clouds. The corresponding value of

pexð>ptrÞ, denoted by pðiÞ
ex in Fig. 1, is set by condition

n2ðpexÞ ¼ n0. Equations (19) and (22) yield

ncrðpexÞ
n0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vA0
3½uðpexÞ − vA0�

r
: ð26Þ

Regime (ii) corresponds to vA0 >
3
4
u. Then pexð<ptrÞ,

denoted by pðiiÞ
ex in Fig. 1, is derived from n1ðpexÞ¼n2ðpexÞ.

In this case, KðpexÞ ¼ 4 and

vAjn¼ncrðpexÞ ¼
3

4
uðpexÞ: ð27Þ

According to Eq. (22), the gas density variation within the
diffusion zone always remains moderate: since K ≤ 4, we
have n2=n1 < K2=3 ≤ 24=3 ≈ 2.5.
Finally, using Eqs. (7) and (13), we express D within the

diffusion zone n1 ≤ n ≤ n2 in the following form:

vA
D

¼ 1

2n

�
4 −K

�
n
n1

�
−3=2

�
dn
dz

; ð28Þ

The diffusion coefficient diverges at n → n1 if n1 ¼ ncr but
remains finite otherwise. The mean free path for protons,
∼3D=c, is much smaller than the gas inhomogeneity scale
n=ðdn=dzÞ ∼ 2D=vA. Thus, the diffusion equation is
always applicable within the diffusion zone.
From Eqs. (11) and (20), it is evident that the total CR

flux S0ðpÞ and, hence, spectrum f2ðpÞ in the cloud interior
does not depend on the shape of nðzÞ, provided it is a
monotonically increasing function. The results only depend
on the border density n0 if regime (i) is realized for the
diffusion zone.
In Appendix B, we show that the obtained stationary

solution is stable against small-scale perturbations.
Furthermore, it is interesting to note that the value of total
CR flux is minimized at the outer boundary of the diffusion
zone: by differentiating Eq. (8) over z and keeping in mind
that SD ∝ n3=2 and vA ∝ n−1=2, we immediately conclude
that the total flux reaches the local minimumS0ðpÞ at zcrðpÞ,
as defined byEq. (14) (or at z0 if zcr < z0). Thus, the position
of the outer boundary is stable, too. Regarding stability of
the inner boundary, we keep in mind that fðp; zÞ decreases
monotonically within the diffusion zone. Therefore, small
positive (negative) variations in the boundary position
relative to the equilibrium increase (decrease) the local
CR gradient and thus, induce wave damping (excitation)
pushing the boundary back to equilibrium.

IV. SOLUTION FOR MULTIPLE NUCLEI

If elements heavier than protons are considered, it is
more convenient to express spectra for individual nuclei,
fðαÞ, in terms of the magnetic rigidity R ¼ pc=eZðαÞ. In the
absence of losses, Eq. (1) is then transformed into the
following equations:

vAfðαÞ −DðαÞ ∂f
ðαÞ

∂z
¼ SðαÞ0 ðRÞ; ð29Þ

where ZðαÞ is the atomic number of species α. The rigidity is
convenient because the resulting resonance condition does
not depend on the charge, k ¼ B=R, and then the diffusion
coefficient of relativistic CRs is a function of R only, i.e.,
DðαÞðRÞ≡DðRÞ for all nuclei. The spectra are normalized
in the way that

R
fðαÞðRÞdR is the number density of

nuclei α.
Equation (5) for multiple CR species is rewritten as (see,

e.g., Ref. [39])

γCRðk; zÞ ≃ −π2
e2vA

mpc2Ωp
R
X
α

ZðαÞDðαÞ ∂f
ðαÞ

∂z
: ð30Þ

Assume that all particle are relativistic. By multiplying the
individual fluxes in Eq. (29) by ZðαÞ and summing them up,
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we arrive to a single-species problem with the effective
ISM spectrum given by

fΣðR; zÞ ¼
X
α

ZðαÞfðαÞðR; zÞ: ð31Þ

The resulting equations to solve are

vAfΣ −D
∂fΣ

∂z
¼

X
α

ZðαÞSðαÞ0 ðRÞ≡ SΣ0 ðRÞ; ð32Þ

and

γCRðR; zÞ ≃ −π2
e2vA

mpc2Ωp
RD

∂fΣ

∂z
¼ νinðzÞ: ð33Þ

Hence, we can straightforwardly apply the results of
Sec. III: by replacing pf0ðpÞ with RfΣ0 ðRÞ in Eq. (15),
we immediately derive n1ðRÞ andKðRÞ. Deriving n2ðRÞ is,
however, a more complicated task, since uðαÞ is different for
different species, and the boundary condition (11) cannot
be directly applied for fΣðRÞ.
In Appendix A, we obtain an analytical solution for

fðαÞðR; zÞ within the diffusion zone, and Eq. (A4) gives the
resulting spectra fðαÞ2 ðRÞ at the inner boundary. Substituting
this in the boundary condition SðαÞ0 ¼ uðαÞfðαÞ2 yields the
total flux for each species,

SðαÞ0 ðRÞ ¼ vA1f
ðαÞ
0 e

K
3
ðχ−1Þ

χ4=3 vA1
uðαÞ þ K−1

K e
K
3
ðχ−1Þ − χ þ 1

K

; ð34Þ

where χðRÞ ¼ ðn2=n1Þ−3=2 ≤ 1. Combining it with Eq. (20)
leads to an algebraic equation for χ,

X
ZðαÞSðαÞ0 ¼ KSD1; ð35Þ

which finally gives us the value of n2ðRÞ. Then, Eq. (34)
can be used to calculate fluxes of individual species.

V. CONTRIBUTION OF HEAVIER NUCLEI

Knowing the total fluxes of individual species allows us
to estimate their contribution to the total excitation rate,
Eq. (30). Consider the outer boundary n1ðRÞ of the
diffusion zone. Each contribution is proportional to the
diffusion flux, viz.,

γðαÞCR1ðRÞ ∝ ZðαÞðSðαÞ0 − vA1f
ðαÞ
0 ÞR: ð36Þ

If we introduce an average flux velocity uΣ, defined as

uΣðRÞ ¼ SΣ0
fΣ2

; ð37Þ

then Eq. (22) can be used to express χ − 1
K through uΣ,

χ −
1

K
≡ vA1

uΣ
χ4=3; ð38Þ

and the individual fluxes in Eq. (34) can be rewritten as

SðαÞ0 ðRÞ ¼ vA1f
ðαÞ
0

�
χ4=3

vA1
uðαÞ

�
1−

uðαÞ

uΣ

�
e
K
3
ð1−χÞ þK− 1

K

�−1
:

ð39Þ
Contributions of different nuclei to the excitation rate as

well as the total excitation rate at n ¼ n1ðRÞ are plotted in
Fig. 2 for1 n0 ¼ 0.5 cm−3, assuming N ¼ 6 × 1022 cm−2

for the gas column density and using Eq. (41) for the ISM
spectra (see Sec. VI). The results are multiplied by n0=n1
in order to highlight the excitation-damping balance
γCR1 ¼ ν0ðn1=n0Þ. In the range of R > Rex (bound by the
right vertical line), where the excitation-damping balance is

no longer satisfied,weplot γðαÞCR1ðRÞ∝ ZðαÞðuðαÞ−vA0ÞRfðαÞ0 .
Let us analyze the partial contributions to the excitation

rate. For the chosen values of n0 and N , regime (i) is
realized in Fig. 2 with the value of Rtr a few times smaller
than Rex. As long as R is sufficiently small, so that n1ðRÞ ¼
ncrðRÞ is substantially larger than n0, we have uðαÞ ≫ vA1.
In this case, K ¼ 4 and, according to Eq. (38), χ ≈K−1.
Then the term ∝ χ4=3 in Eq. (39) can be dropped, and the
partial fluxes reduce to

SðαÞ0 ðRÞ ≈ 4

3
vA1f

ðαÞ
0 : ð40Þ

FIG. 2. Contributions γðαÞCR1 of different CR nuclei to the total
wave excitation rate at the outer boundary of the diffusion zone,
plotted versus rigidity R. The left vertical line indicates the
transition rigidity Rtr, where the outer boundary changes from
n1 ¼ ncrðRÞ to n1 ¼ n0, the right vertical line shows the
excitation threshold Rex (see Sec. II and Fig. 1).

1This value of n0 is set smaller than that in Fig. 3 for illustrative
purposes, to widen the gap between Rtr and Rex in Fig. 2.
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Thus, the contributions of different nuclei depicted in Fig. 2
at low R are simply proportional to their charge density.
As vA1=uðαÞ increases with R, the term ∝ χ4=3 in Eq. (39)

eventually becomes important, and its effect then depends
on the sign of 1 − uðαÞ=uΣ. We note that the value of uðαÞ for
protons is typically substantially smaller than that for
heavier CR species, since protons do not experience
fragmentation. Therefore, uðαÞ < uΣ is assumed for protons
and uðαÞ > uΣ for heavier nuclei; i.e., the proton contribu-
tion to the excitation decreases with R while the contribu-
tion heavier species increases, and eventually, the excitation
is dominated by helium nuclei.2 This behavior is seen in
Fig. 2 for the range of R < Rtr (bound by the left vertical
line). The curves for He, O, C, and Fe are similar in this
case, since Eq. (40) remain applicable for all species apart
from protons.
For R > Rtr, we have n1ðRÞ ¼ n0 and hence, vA1 ¼ vA0.

The dependencies SðαÞ0 ðRÞ are then controlled by KðRÞ and
χðRÞ, showing nonmonotonic behavior; specifically, the
dependencies are determined by interplay of χ4=3e

K
3
ð1−χÞ

and K−1
K in Eq. (39). In particular, the curve for protons in

Fig. 2 exhibits a local maximum, while for helium it
decreases monotonically with R.

VI. GAMMA-RAY EMISSION
FROM MOLECULAR CLOUDS

Recent Fermi LAT observations of nearby giant molecu-
lar clouds show deficits in the gamma-ray residual map
when the expected diffuse emission is modeled assuming
uniformly distributed CRs [30]. The authors pointed out
that the observed emission “holes” reflect the lack of
penetration of ≲10 GeV CRs into denser regions and
proposed that the CR deficit is caused by slower CR
diffusion in the clouds.
We apply the presented model of CR self-modulation to

the observations by Yang et al. [30]. The ISM spectra of CR
protons and heavier nuclei are approximated by

fðαÞ0 ðRÞ¼φðαÞ
0 R̃a

�
R̃−1.55

1þðR̃=0.7Þ1.3þ
5.3×10−4R̃−1.8

1þðR̃=1.3×104Þ1.85
�
;

ð41Þ

where R̃ ¼ R=ð1 GVÞ. The functional dependence of the fit
and the abundance factors φðαÞ

0 are chosen to reproduce
observational data in the range of 1 GV≲ R≲ 104 GV [40].
The exponent a takes into account spectral hardening for
heavier nuclei, so that a ¼ 0 for protons and a ¼ 0.1 for
other nuclei.

We assume B ¼ 3 μG for the magnetic field in diffuse
atomic gas [41] and set n0 ¼ 1 cm−3 for the border density.
The average value of the column density for five dense
molecular clumps reported in Yang et al. [30] are estimated
as3 N ¼ ðm=mpÞ=πr2mean, where m and rmean are, respec-
tively, the mass and the mean radius of the clumps listed in
their Table 1. The resulting values of N for clumps C1 to
C5 from that table are, respectively, ≈1 × 1023 cm−2,
≈5 × 1022 cm−2, ≈7 × 1022 cm−2, ≈5 × 1022 cm−2, and
≈1 × 1023 cm−2. For our calculations, we employ a
conservative value of N ¼ 6 × 1022 cm−2. As was shown
in Ref. [38], the net flux velocity u of relativistic CR nuclei
penetrating dense molecular clouds is

uðR;N Þ ≈ 1

2
σlossðRÞN c; ð42Þ

where σloss is the cross section of catastrophic losses in the
clumps (pion production for protons and fragmentation for
heavier nuclei), taken from the GALPROP code (see, e.g.,
Ref. [42] and refernces therein).
For the above parameters, we derive the spectra of self-

modulated CRs and compute the expected gamma-ray
emissivity using parametrization by Kafexhiu et al. [43].
The results include contributions of CR protons, helium,

FIG. 3. Comparison between gamma-ray observations of giant
molecular clouds reported by Yang et al. [30] and our theoretical
model (see text for parameters). The gray and black symbols
represent the measured emissivity derived for the surrounding
diffuse gas and dense molecular clumps, respectively. The gray
solid line represents the theoretical emissivity computed for the
unmodulated ISM spectrum of CRs, Eq. (41). The black lines
show the modulated spectra obtained from our model, with
different lines illustrating contributions of different CR nuclei, as
indicated in the legend.

2In general, the proton flux may even become sub-Alvenic,
SðpÞ0 < vA1f

ðpÞ
0 , making their contribution to the excitation

negative.

3A factor of 1.37 used by Yang et al. [30] to correct for heavy
elements is omitted here, since we are interested in the total
number of nucleons along the line of sight.
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carbon, oxygen, and iron. To explore the impact of different
nuclei, we analyze the following cases: waves are excited
by protons only, by protons and helium, and by all included
species.
The results are shown in Fig. 3 together with the

observational data by Yang et al. [30]. The computed
emissivity is strongly suppressed below ≈2 GeV, where
helium nuclei significantly affect the results while the
contribution of heavier CR species is practically negligible.
We see that our results are in excellent quantitative agree-
ment with the observations.

A. Dependence on N , n0, and B

To understand how the column density N and border
density n0 affect the gamma-ray emission, we compute the
emissivity for several characteristic values of N and n0.
The results are summarized in Fig. 4.
For N ¼ 3 × 1022 cm−2, regime (ii) of the diffusion

zone is realized at lower n0 and regime (i)—at higher n0
[see Eq. (24) and Fig. 1]. The CR self-modulation has a
relatively small impact on the gamma-ray emission in this
case, simply because the excitation threshold Rex is too
small and close to the threshold of pion production.
The impact becomes significant for N ¼ 6 × 1022 cm−2

(corresponds to Fig. 3), where regime (i) is primarily
realized. We observe a fairly sharp change with n0 occur-
ring around ∼3 cm−3: the modulation effect tends to
saturate at n0 ≤ 1 cm−3, whereas for n0 ≥ 10 cm−3 it
practically vanishes. This is because for larger n0, corre-
sponding to regime (i), the damping rate in the excitation-
damping balance is proportional to n0. Since Rex decreases
with n0 in this regime, it eventually falls below the range of
R contributing to the emission and the modulation effect
vanishes. On the other hand, a transition to regime
(ii) occurs near the smallest n0, and Rex is then set by
intersection of n1ðRÞ and n2ðRÞ—so that the modulated
spectrum is no longer dependent on n0.
And for N ¼ 1 × 1023 cm−2, we observe a dramatic

suppression which does not saturate as n0 decreases, with
the emission reduced by a factor of a few at GeV energies.
Now Rex is so high that a very broad range of modulated
CR spectrum contributes to the emission, which explains
the strength of the effect. At the same time, the diffusion
zone is now well in regime (i), and therefore, the effect does
not saturate within the selected range of n0.
We note that the reduction in the modulation effect seen

with increasing n0 can be on average compensated by
increasingN . To quantify this trend, let us consider regime
(i) for sufficiently large N and n0: according to Eq. (20),
the modulated CR flux is then given by S0 ¼ SD0 ∝ n3=20

for a broad range of Rtr ≤ R ≤ Rex, and the modulated
CR spectrum, S0=u with u ∝ N , scales as n3=20 =N .
Equation (26) shows that Rex in this regime is also
(approximately) a function of n3=20 =N . Therefore, the

resulting gamma-ray emission (which is an integral quan-
tity of the CR spectrum) is approximately similar for
similar values of n3=20 =N .
In the same way, we can assess the effect of the magnetic

field strength. For sufficiently large N and n0, the modu-
lated CR spectrum is independent of Bwithin a broad range
of Rtr ≤ R ≤ Rex, where also Rex does not depend (approx-
imately) on B, and therefore, the emission is practically
independent of B, too. According to Eqs. (25) and (26),
decreasing n0 and/or N (and/or increasing B) reduces the
gap between Rex and Rtr (which is a function of B), and
thus, dependence on B gradually increases. However, the
dependence remains rather weak: e.g., by changing B in
Fig. 3 from 3 μG to 5 μG [41], we obtain an equally good
fit to the data for N ≈ 8 × 1022 cm−2.

FIG. 4. Effect of the border density n0 and the cloud column
density N on the gamma-ray emissivity. The interstellar CR
spectrum and the magnetic field are the same as in Fig. 3, the
wave excitation is due to protons and helium nuclei. The three
panels show results for three characteristic values of N , the
values of n0 are indicated in the legend. The gray solid line shows
the emissivity for the unmodulated CR spectrum.
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VII. CONCLUSIONS

In this paper, we have investigated penetration of
relativistic interstellar CRs into molecular clouds sur-
rounded by nonuniform diffuse envelopes. The present
work extends and generalizes our earlier model of CR self-
modulation [5,31], where we assumed gas density to be
constant across the whole envelope. While the overall
qualitative picture remains largely unchanged, several
reported findings may have a profound impact on our
understanding of the process:
(1) Gas density in the envelopes typically increases

monotonically going from the ISM to dense molecu-
lar clumps, which makes it possible to use the
density as the relevant coordinate for the problem
of CR penetration. This enables us to obtain a self-
consistent analytical solution of the problem, with-
out assuming the value of density at which the wave
excitation by CRs occurs. The resulting solution is
universal, as it does not depend on a particular shape
of the spatial density distribution.

(2) The border density n0, through which interstellar
CRs enter the envelope, corresponds to a local
minimum of the wave damping rate due to ion-
neutral collisions. The minimum is associated with a
transition between different dominant ions in the
envelope and the ISM, so that waves are only exited
at n ≥ n0.

(3) The diffusion zone, where CRs are scattered at the
self-excited waves, forms as a result of intrinsic
inhomogeneity which controls locations of the zone
boundaries for a given CR energy. The computed
density values for the boundaries turn out to be
substantially smaller than those assumed earlier in
the constant-density model. This implies a propor-
tionally smaller wave damping and, therefore, more
efficient self-modulation for otherwise the same
conditions—thus affecting CRs at substantially
higher energies.

(4) The diffusion zone is relatively narrow: the ratio of
densities at its inner and outer boundaries is shown
not to exceed the value of 24=3 ≈ 2.5. At the same
time, the mean free path of CRs due to their
scattering at the self-generated turbulence is always
much smaller than the inhomogeneity scale and,
therefore, the diffusion approximation is always
applicable.

(5) The magnitude of flux of self-modulated CRs is
always set by the universal diffusion flux SD, Eq. (7),
while in case of uniform envelopes the diffusion
component was shown to dominate the flux at higher
energies and the advection component—at lower
energies [5]. Now, we rigorously show that the flux
of CRs into the cloud interior never exceeds the
value of 4SD computed at the outer boundary of the
diffusion zone.

(6) The present model takes into account contributions
of different CR nuclei, thus extending the results
obtained for constant-density envelopes by Dogiel
et al. [31]. Now we show that the relative contri-
bution of helium nuclei to the wave excitation
increases with energy and can eventually become
dominant.

We estimated the effect of CR self-modulation on the
gamma-ray emission and showed that the emission can be
reduced dramatically at energies below several GeV. The
magnitude of this effect is determined by the cloud column
density N as well as by the border density n0 and the
magnetic field strength B.
The dependence onN exhibits a sharp threshold behavior.

For the local Galactic spectrum of relativistic CRs and
B ¼ 3 μG, the effect is weak forN ≤ 3 × 1022 cm−2, while
for N ¼ 6 × 1022 cm−2 and 1 × 1023 cm−2 the emission at
≲1 GeV is reduced by a factor of ≈2 and ≈4, respectively.
The dependence on n0 is determined by the value of N :

weakening of the modulation effect with increasing n0 can
be on average compensated by increasing N . For suffi-
ciently large N , the gamma-ray emission at ≲1 GeV is
approximately similar for similar values of n3=20 =N . In the
same way, the effect of increasing B is compensated by a
comparable increase in N .
We applied our model to explain recent Fermi LAT

observations of nearby giant molecular clouds [30], showing
deficits in the gamma-ray emission at GeV energies. For a
fairly conservative set of parameters,with themagnetic field of
3–5 μG and the cloud column density of (6–8) × 1022 cm−2,
the computed gamma-ray spectra demonstrate an excellent
agreement with the observations.

APPENDIX A: ANALYTICAL SOLUTION
FOR INDIVIDUAL NUCLEI IN THE

DIFFUSION ZONE

We write the solution of Eq. (29) in the following form:

fðαÞðR; zÞ ¼ eη
�
fðαÞ0 − SðαÞ0

Zη
0

e−η
0

vA
dη0

�
; ðA1Þ

where

ηðR; zÞ ¼
Zz
z1

vA
D

dz0: ðA2Þ

Substituting vA=D from Eq. (28) into Eq. (A2) yields

ηðR; nÞ ¼ 2 ln
n
n1

−
K
3

�
1 −

�
n
n1

�
−3=2

�
: ðA3Þ

By inserting η into Eq. (A1), we notice that the resulting
integral can be calculated analytically and expressed
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through a new variable ðn=n1Þ−3=2. This gives us the
following spectrum at the inner boundary:

fðαÞ2 ðRÞ¼χ−4=3
��

fðαÞ0 −
K−1

K
SðαÞ0

vA1

�
e
K
3
ðχ−1Þþ

�
χ−

1

K

�
SðαÞ0

vA1

�
;

ðA4Þ

where χðRÞ ¼ ðn2=n1Þ−3=2. Similarly to what is derived for

CR protons in Sec. III, we see that also spectra fðαÞ2 ðRÞ of
other nuclei penetrating the cloud do not depend on the
shape of nðzÞ.

APPENDIX B: STABILITY OF THE
STATIONARY SOLUTION

Assume that the stationary solution, which is described
by the CR transport equation (without losses), Eq. (1), and
the wave excitation-damping balance, Eq. (4), is disturbed
such that fðz; tÞ ¼ f̄ðzÞ þ δfðz; tÞ and Wðz; tÞ ¼ W̄ðzÞ þ
δWðz; tÞ. Here, f̄ and W̄ denote the derived stationary
solution, and the perturbations are assumed to be small,
δf ≪ f̄ and δW ≪ W̄. Employing the nonstationary wave

equation, ∂W=∂t ¼ 2ðγCR − νinÞW, and utilizing Eq. (3) to
relate W̄ and D̄, we obtain

∂δf
∂t

¼ ∂

∂z

�
D̄
∂δf
∂z

− vAδf þ 6mpΩp

vvAp3
D̄νinδW

�
; ðB1Þ

∂δW
∂t

¼ −
vvAp3

3mpΩp

∂δf
∂z

− 2νinδW: ðB2Þ

For small-scale perturbations, bothvA and D̄ can be treated as
constants. Assuming the perturbations ∝ expð−iωtþ ikzÞ,
the above equations lead to the following dispersion relation:

ω2 þ ðiD̄k2 þ 2iνin − vAkÞω − 2iνinvAk ¼ 0: ðB3Þ
To analyze stability of the obtained polynomial, we apply
the Hermite-Biehler theorem (see, e.g., Ref. [44]): all the
zeros of a complex polynomialαðωÞ þ ilβðωÞ lie in the lower
half-plane if l > 0 and zeros of the real polynomials αðωÞ
and βðωÞ strictly interlace. In our case, α ¼ ω2 − vAkω,
β ¼ ω − 2νin

D̄k2þ2νin
vAk, and l ¼ D̄k2 þ 2νin. Since l > 0, the

zeros of α and β are real, and the zero of β is strictly between
the zeros of α, Eq. (B3) has only stable solutions.

[1] J. Skilling and A.W. Strong, Astron. Astrophys. 53, 253
(1976), https://adsabs.harvard.edu/abs/1976A%26A....53.
.253S.

[2] C. J. Cesarsky and H. J. Volk, Astron. Astrophys. 70, 367
(1978), https://adsabs.harvard.edu/abs/1978A%26A....70.
.367C.

[3] J. E. Everett and E. G. Zweibel, Astrophys. J. 739, 60 (2011).
[4] G. Morlino and S. Gabici, Mon. Not. R. Astron. Soc. 451,

L100 (2015).
[5] A. V. Ivlev, V. A. Dogiel, D. O. Chernyshov, P. Caselli,

C. M. Ko, and K. S. Cheng, Astrophys. J. 855, 23 (2018).
[6] V. H. M. Phan, G. Morlino, and S. Gabici, Mon. Not. R.

Astron. Soc. 480, 5167 (2018).
[7] C. Bustard and E. G. Zweibel, Astrophys. J. 913, 106 (2021).
[8] N. Indriolo and B. J. McCall, Astrophys. J. 745, 91 (2012).
[9] N. Indriolo et al., Astrophys. J. 800, 40 (2015).

[10] X. L. Bacalla, H. Linnartz, N. L. J. Cox, J. Cami, E. Roueff,
J. V. Smoker, A. Farhang, J. Bouwman, and D. Zhao,
Astron. Astrophys. 622, A31 (2019).

[11] G. Sabatini, S. Bovino, and E. Redaelli, Astrophys. J. Lett.
947, L18 (2023).

[12] M. Padovani, A. V. Ivlev, D. Galli, S. S. R. Offner, N.
Indriolo, D. Rodgers-Lee, A. Marcowith, P. Girichidis,
A. M. Bykov, and J. M. D. Kruijssen, Space Sci. Rev.
216, 29 (2020).

[13] J. H. Black and G. G. Fazio, Astrophys. J. Lett. 185, L7
(1973).

[14] M. R. Issa and A.W. Wolfendale, Nature (London) 292, 430
(1981).

[15] F. A. Aharonian, Astrophys. Space Sci. 180, 305 (1991).
[16] L. Tibaldo, D. Gaggero, and P. Martin, Universe 7, 141

(2021).
[17] M. Ackermann et al., Astrophys. J. 755, 22 (2012).
[18] M. Ackermann et al., Astrophys. J. 778, 82 (2013).
[19] R.-z. Yang, E. de Oña Wilhelmi, and F. Aharonian, Astron.

Astrophys. 566, A142 (2014).
[20] A. Neronov, D. Malyshev, and D. V. Semikoz, Astron.

Astrophys. 606, A22 (2017).
[21] Q. Remy, I. A. Grenier, D. J. Marshall, and J. M.

Casandjian, Astron. Astrophys. 601, A78 (2017).
[22] M. Ackermann et al., Astrophys. J. 750, 3 (2012).
[23] F. Calore, I. Cholis, and C. Weniger, J. Cosmol. Astropart.

Phys. 03 (2015) 038.
[24] D. Gaggero, A. Urbano, M. Valli, and P. Ullio, Phys. Rev. D

91, 083012 (2015).
[25] R.-z. Yang, D. I. Jones, and F. Aharonian, Astron. Astrophys.

580, A90 (2015).
[26] F. Acero et al., Astrophys. J. Suppl. Ser. 223, 26 (2016).
[27] M. Ajello et al., Astrophys. J. 819, 44 (2016).
[28] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N.

Portillo, N. L. Rodd, and T. R. Slatyer, Phys. Dark Universe
12, 1 (2016).

[29] X. Huang, Q. Yuan, and Y.-Z. Fan, Nat. Commun. 12, 6169
(2021).

CHERNYSHOV, IVLEV, and KISELEV PHYS. REV. D 110, 043012 (2024)

043012-10

https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1976A%26A....53..253S
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://adsabs.harvard.edu/abs/1978A%26A....70..367C
https://doi.org/10.1088/0004-637X/739/2/60
https://doi.org/10.1093/mnrasl/slv074
https://doi.org/10.1093/mnrasl/slv074
https://doi.org/10.3847/1538-4357/aaadb9
https://doi.org/10.1093/mnras/sty2235
https://doi.org/10.1093/mnras/sty2235
https://doi.org/10.3847/1538-4357/abf64c
https://doi.org/10.1088/0004-637X/745/1/91
https://doi.org/10.1088/0004-637X/800/1/40
https://doi.org/10.1051/0004-6361/201833039
https://doi.org/10.3847/2041-8213/acc940
https://doi.org/10.3847/2041-8213/acc940
https://doi.org/10.1007/s11214-020-00654-1
https://doi.org/10.1007/s11214-020-00654-1
https://doi.org/10.1086/181310
https://doi.org/10.1086/181310
https://doi.org/10.1038/292430a0
https://doi.org/10.1038/292430a0
https://doi.org/10.1007/BF00648185
https://doi.org/10.3390/universe7050141
https://doi.org/10.3390/universe7050141
https://doi.org/10.1088/0004-637X/755/1/22
https://doi.org/10.1088/0004-637X/778/1/82
https://doi.org/10.1051/0004-6361/201321044
https://doi.org/10.1051/0004-6361/201321044
https://doi.org/10.1051/0004-6361/201731149
https://doi.org/10.1051/0004-6361/201731149
https://doi.org/10.1051/0004-6361/201629632
https://doi.org/10.1088/0004-637X/750/1/3
https://doi.org/10.1088/1475-7516/2015/03/038
https://doi.org/10.1088/1475-7516/2015/03/038
https://doi.org/10.1103/PhysRevD.91.083012
https://doi.org/10.1103/PhysRevD.91.083012
https://doi.org/10.1051/0004-6361/201425233
https://doi.org/10.1051/0004-6361/201425233
https://doi.org/10.3847/0067-0049/223/2/26
https://doi.org/10.3847/0004-637X/819/1/44
https://doi.org/10.1016/j.dark.2015.12.005
https://doi.org/10.1016/j.dark.2015.12.005
https://doi.org/10.1038/s41467-021-26436-z
https://doi.org/10.1038/s41467-021-26436-z


[30] R.-z. Yang, G.-X. Li, E. d. O. Wilhelmi, Y.-D. Cui, B. Liu,
and F. Aharonian, Nat. Astron. 7, 351 (2023).

[31] V. A. Dogiel, D. O. Chernyshov, A. V. Ivlev, D. Malyshev,
A.W. Strong, and K. S. Cheng, Astrophys. J. 868, 114
(2018).

[32] R. H. Leike, M. Glatzle, and T. A. Enßlin, Astron. Astrophys.
639, A138 (2020).

[33] G. Edenhofer, C. Zucker, P. Frank, A. K. Saydjari, J. S.
Speagle, D. Finkbeiner, and T. A. Enßlin, Astron. Astrophys.
685, A82 (2024).

[34] V. S. Ptuskin, I. V. Moskalenko, F. C. Jones, A.W. Strong,
and V. N. Zirakashvili, Astrophys. J. 642, 902 (2006).

[35] B. T. Draine, Physics of the Interstellar and Intergalactic
Medium (Princeton University Press, Princeton, NJ, 2011).

[36] J. Skilling, Mon. Not. R. Astron. Soc. 173, 255 (1975).

[37] R.M.Crutcher, Annu. Rev.Astron. Astrophys. 50, 29 (2012).
[38] V. A. Dogiel, D. O. Chernyshov, A. V. Ivlev, A. M. Kiselev,

and A. V. Kopyev, Astrophys. J. 921, 43 (2021).
[39] R. Kulsrud and W. P. Pearce, Astrophys. J. 156, 445 (1969).
[40] M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N.

Attig, F. Barao, L. Barrin, A. Bartoloni, S. Başeğmez-du
Pree, J. Bates et al., Phys. Rep. 894, 1 (2021).

[41] R. Jansson and G. R. Farrar, Astrophys. J. Lett. 761, L11
(2012).

[42] A.W. Strong and I. V. Moskalenko, Astrophys. J. 509, 212
(1998).

[43] E. Kafexhiu, F. Aharonian, A. M. Taylor, and G. S. Vila,
Phys. Rev. D 90, 123014 (2014).

[44] R. Kozhan and M. Tyaglov, J. Math. Anal. Appl. 536,
128241 (2024).

SELF-CONSISTENT THEORY OF COSMIC RAY PENETRATION … PHYS. REV. D 110, 043012 (2024)

043012-11

https://doi.org/10.1038/s41550-022-01868-9
https://doi.org/10.3847/1538-4357/aae827
https://doi.org/10.3847/1538-4357/aae827
https://doi.org/10.1051/0004-6361/202038169
https://doi.org/10.1051/0004-6361/202038169
https://doi.org/10.1051/0004-6361/202347628
https://doi.org/10.1051/0004-6361/202347628
https://doi.org/10.1086/501117
https://doi.org/10.1093/mnras/173.2.255
https://doi.org/10.1146/annurev-astro-081811-125514
https://doi.org/10.3847/1538-4357/ac1e8f
https://doi.org/10.1086/149981
https://doi.org/10.1016/j.physrep.2020.09.003
https://doi.org/10.1088/2041-8205/761/1/L11
https://doi.org/10.1088/2041-8205/761/1/L11
https://doi.org/10.1086/306470
https://doi.org/10.1086/306470
https://doi.org/10.1103/PhysRevD.90.123014
https://doi.org/10.1016/j.jmaa.2024.128241
https://doi.org/10.1016/j.jmaa.2024.128241

