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We present an in-depth analysis of the LISA Pathfinder differential acceleration performance over the
entire course of its science operations, spanning approximately 500 days. We find: (1) The evolution of
the Brownian noise that dominates the acceleration amplitude spectral density (ASD), for frequencies
f ≳ 1 mHz, is consistent with the decaying pressure due to the outgassing of a single gaseous species.
(2) Between f ¼ 36 μHz and 1 mHz, the acceleration ASD shows a 1=f tail in excess of the Brownian
noise of almost constant amplitude, with ≃20% fluctuations over a period of a few days, with no particular
time pattern over the course of the mission. (3) At the lowest considered frequency of f ¼ 18 μHz, the
ASD significantly deviates from the 1=f behavior, because of temperature fluctuations that appear to
modulate a quasistatic pressure gradient, sustained by the asymmetries of the outgassing pattern. We also
present the results of a projection of the observed acceleration noise on the potential sources for which we
had either a direct correlation measurement or a quantitative estimate from dedicated experiments. These
sources account for approximately 40% of the noise power in the 1=f tail. Finally, we analyze the possible
sources of the remaining unexplained fraction and identify the possible measures that may be taken to keep
those under control in LISA.

DOI: 10.1103/PhysRevD.110.042004

I. INTRODUCTION

LISA [1] is a gravitational wave observatory being
developed by the European Space Agency (ESA) in
collaboration with international partners, which has
recently entered its final implementation phase. LISA
targets a frequency range between 20 μHz and 1 Hz, which
is inaccessible to ground-based observatories due to ter-
restrial gravitational noise.
In this frequency range, LISA is expected to detect an

extremely rich spectrum of new sources [1], examples

being binaries of black holes with masses millions of times
that of the Sun, formed in galaxy collisions, observable
throughout the entire Universe; the plunge of compact
objects into massive black holes, allowing the study of the
gravitational field close to the event horizon of these; tens
of thousands of detached stellar binaries in the Milky Way,
including the inspiral stage of ultracompact binaries, with
black holes and neutron stars, that will appear years later as
merging sources in the audio band of terrestrial detectors.
To prepare for LISA, ESA launched and operated the

LISA Pathfinder (LPF) mission [2,3] between December
2015 and July 2017. The scientific goal of LPF was to
demonstrate that parasitic forces on a test mass (TM), to be
used as a geodesic reference in LISA, may be suppressed
below the required noise level.
To that aim, the mission carried a miniature version of

one of the LISA interferometric arms, that is, 2 kg-size
free-orbiting TMs, separated by a few tens of centimeters,
and an interferometric readout measuring their relative
acceleration along the line joining their respective centers
of mass [4].
The main results of the mission have been reported

in [2,3], showing that the mission had surpassed its goals.
In the interest of brevity, those papers focused on just two
experimental acceleration measurement runs, and we pre-
sented a rather synthetic discussion on the possible physical
origin of the observed residual acceleration noise.
Throughout the 16 months of the mission, however,

we performed many more acceleration measurements that
allowed us to observe the time evolution of the performance,
and its sensitivity to the mission operating conditions.
In addition, during all those acceleration noise measure-

ments, we have been measuring a set of other physical
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parameters, like magnetic fields, temperatures, parasitic
torques acting on the TMs, and others. Those measure-
ments have allowed us to set limits on the role of some
of the possible physical sources of the observed acceler-
ation noise.
In this paper, we present the evolution of the acceleration

performance of the mission and present a quantitative
analysis of the correlation of acceleration data with those
additional physical parameters. Based on that, we present a
more in-depth analysis of the possible physical origin of the
observed acceleration noise and discuss the implication for
the performance of the LISA observatory.
The paper is organized as follows:
(i) In Sec. II we summarize the key features of the

experiment, the operating conditions, and the meas-
urement runs.

(ii) In Sec. III we describe, for all runs, the measured
acceleration power spectra and their key features.

(iii) Section IV focuses on Brownian noise and its time
evolution.

(iv) Section V describes the evolution of the noise in the
excess of the Brownian contribution, including some
long-term drift of the acceleration.

Section V concludes the part of the paper dedicated to
experimental findings. To make the main text more read-
able, we have put significant information on these sections
in the Appendixes. In particular, Appendix B contains a
detailed description of our spectral estimation methods,
some aspects of which we could not trace in the standard
literature on data processing.
The paper then proceeds to the discussion of the findings

above. Such discussion is based on many extensive
analyses, some of which could merit stand-alone papers.
To ensure comprehensive coverage of the relevant LPF
experimental evidence within a single article, we have
included these analyses here. To maintain readability, these
analyses are presented in a series of Appendixes, and we
specify in the title of each discussion section the relevant
Appendixes where the details of the underlying analyses
can be found.
As for the discussion within the main body of the paper,

this is organized as follows:
(i) In Sec. VI A we discuss the implication of the

findings on the Brownian noise and very-low-
frequency behavior for the gas environment of the
test masses.

(ii) In Secs. VI B and VI C we discuss several possible
noise contributions for which we have quantitative
estimates.

(iii) In Sec. VII we discuss the possible sources for the
part of the noise that we could not account for in the
previous sections and identify possible measures to
keep it under control in LISA.

(iv) In Sec. VIII we finally give some short concluding
remarks.

II. SUMMARY DESCRIPTION OF THE
EXPERIMENT

A. The LISA technology package

The instrument flown on LPF, the LISA technology
package (LTP), has been described in detail in [4]. Here we
summarize its essential features.
The LTP, depicted in Fig. 1, carried two cubic Au-Pt

TMs each with a mass ofM¼1.928 kg and size l¼46mm.
During operations, these TMs had no mechanical contact
with their surroundings and were nominally “free falling,”
each one at the center of a housing leaving 3–4 mm
clearance gaps to the faces of the TM. Each of these
“electrode housings” (EHs) carried a series of electrodes
facing all faces of the respective TM. These electrodes were
used for two purposes. First, they were part of a capacitive
sensor of the motion of the TM, relative to its housing,
for all degrees of freedom (d.o.f.). Second, they were
used to apply electrostatic forces and torques to the TM,
whenever needed.
Each EH, with its respective TM, was hosted inside a

vacuum chamber, called a vacuum enclosure (VE), sealed
by a dedicated vacuum valve. The valve connected the VE
to a second outer volume that was connected by a vent duct
to the outside of the spacecraft.
The VE was needed both to allow for vacuum prepa-

ration on ground and to shield the TM from the spacecraft
internal outgassing that had been predicted to be too
large to achieve the desired vacuum level around a

FIG. 1. Rendering of the LISA technology package. The
rendering shows the two test masses hosted inside their respective
electrode housings (some of the electrodes are not represented)
and the vacuum chambers enclosing both test masses and
electrode housings. The picture also shows the high stability
optical bench hosting all interferometric readouts and many other
features of the instrument, such as the launch lock, UV-light-
based test mass neutralizer, etc. that are not relevant here.
(Credits: ESA/ATG medialab.).
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nonshielded TM. Further details about the vacuum prepa-
ration and handling are given a bit later.
In what follows we call the gravitational reference sensor

(GRS) the system of the TM, its EH and VE, and all related
accessories.
The main sensor for the relative motion of the TMs was a

heterodyne laser interferometric system, called the optical
metrology system (OMS) [5]. For the purpose of this paper,
it is important to recall that the interferometer measured six
different d.o.f.: the relative displacementΔxðtÞ between the
TMs along the sensitive x axis, joining their respective
centers of mass; the relative displacement x1ðtÞ, along the
x axis, of one of the TM, called TM1, relative to the
interferometer optical bench and, as a consequence, also
relative to the spacecraft; the two angles of rotation ηðtÞ and
ϕðtÞ for both TMs, around the y axis and z axis,
respectively. These six TM d.o.f., and also the remaining
six, were also measured at all times by the capacitive
sensors [6]. However, the interferometric readout was
approximately 3 orders of magnitude more sensitive than
the capacitive one for all d.o.f. for which they were both
available. All the data series analyzed in this paper have a
sampling rate of 10 Hz.
In addition to the measurement of the TM motion, other

physical quantities have been measured, by dedicated instru-
ments, throughout the mission. In particular, we measured
the magnetic field vector at various locations, via a dedicated
set of magnetometers [7]; the temperature at various critical
locations, via a dedicated set of thermistors [8]; the cosmic
ray flux with a radiation monitor [9,10].
Before closing this section, we want to specify some

details of the vacuum handling that are useful for some of
the discussions in the following sections.
Once the VE was evacuated on ground, the vacuum

valve was closed and the VE remained sealed for a few
months until the valve was opened again once in orbit.
Valve opening took place, within an hour for both VE, on
February 3, 2016, i.e., 62.4 d after the launch. In the rest of
the paper, we call tv this time of valve opening, while we
call t0 the time of the launch, December 3, 2015 04∶04∶00
UTC. The outer volume, with its vent duct, was not
evacuated on ground and, having no seal, was exposed
to space immediately after t0.
In addition to the TM and EH, the VE contained

various metal structural elements, two piezoelectric
motors, used to center the TM within the EH and release
it into free fall, and various thermistors and heaters. The
VE also contained the ∼40 cables needed for all these
appliances, which crossed the VE wall through a set of
vacuum feedthroughs. Finally, also included in the VE
was a ∼2 kg tungsten balance mass used to suppress the
gravitational field at TM location [11]. The outer chamber
contained a high-output paraffin motor [12] used to
activate the vacuum valve and the TM launch lock, with
all the necessary cables.

B. Dynamical controls and data series formation

LPF was a controlled dynamical system consisting of
the spacecraft and the two TMs. More specifically, the
spacecraft was forced to follow one of the TMs (TM1)
along x via an active control loop, using the spacecraft cold
gas microthrusters as actuators [13], known as drag-free
control.
Each TM rotation along ϕ and η was kept fixed relative

to the spacecraft by an active loop using electrostatic
torques. These torques were applied via the above-
mentioned electrodes.
No electrostatic actuation force was applied along x

on TM1, while a control loop (electrostatic suspension)
kept the distance between the two TMs nominally fixed,
by applying a suitable electrostatic force along x on the
other TM (TM2). All other degrees of freedom were also
controlled, but the details are not relevant here.
As the distance between the TMs was actively controlled

using the Δx signal, the relative acceleration Δẍ could not
be taken as a measurement of the differential disturbance
force per unit mass that would act on the TMs in the
absence of the control [3]. However, the applied feedback
forces per unit mass gcðtÞ were known, so that they could
be subtracted from Δẍ, which had been estimated numeri-
cally [14], to give an accurate estimate of Δgext.
In addition, acceleration data series were also corrected

for the following effects:
(i) The effect of the measured inertial forces per unit

mass due to spacecraft rotation giðtÞ, which include
the centrifugal and the Euler force [2]. These effects
will not be relevant for LISA [15].

(ii) The effect of the forces per unit mass generated by the
motion of the TMs through static force gradients in
the spacecraft, as LISA data can also be corrected for
those. Such force acting on TMi is well approximated
by the linear model −ω2

i xi, as described in [2].
(iii) The effect of the interferometer spurious pickup

gCTðtÞ of spacecraft motion along d.o.f. different
from x, due to crosstalk [16,17]. This also includes
the pickup of the common mode motion of the TMs,
described by a term δx1 ẍ1. Some of these effects will
also be present in LISA and will be analogously
corrected [15].

Thus the corrected differential force per unit mass data
series used in the following analyses can be written as

ΔgðtÞ ¼ ΔẍOMSðtÞ þ ω2
2ΔxOMSðtÞ þ ðω2

2 − ω2
1Þx1;OMSðtÞ

− gcðtÞ − giðtÞ − gCTðtÞ: ð1Þ

Note that, in Eq. (1), we have attached the suffix OMS to all
coordinates to indicate that these have been measured by
the relevant interferometers and not by the capacitive
sensors. For these we will use the GRS suffix. Note also
that ω2

1 and ω2
2 above, as well as δx1 , have been measured
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in dedicated calibration experiments [18]. In particular,
ω2
2 ≈ −4.5 × 10−7 s−2 is negative, while the differential

stiffness ðω2
2 − ω2

1Þ is roughly 20 times smaller and thus
neglected in this discussion here.
The feedback force gcðtÞ in Eq. (1) is the time series

of the force that the onboard computer has commanded to
the electrostatic force system. It was calibrated through an
extensive series of experiments [18], consisting of the
application to the TMs of a series of forces oscillating at
frequencies ≳1 mHz and of the measurement of the
resulting acceleration, a quantity which is intrinsically
calibrated in terms of the laser wavelength and of the
onboard clock calibration.
This calibration campaign led us to discover a system-

atic, nonlinear error in the electronics, originating from an
overlooked truncation of the digital voltage commands [19]
that resulted in an amplitude-dependent fluctuation of the
calibration. Therefore gc had to be recalculated considering
such an extra truncation. After this crucial correction, the
calibration of gc was found to be stable at better than< 1%,
independent of the amplitude of the applied forces and
torques, throughout the entire mission [18].
ΔgðtÞ in Eq. (1) is our best estimate for the external

differential force per unit mass Δgext. However, the series
is corrupted by the noise nOMSðtÞ in the differential
interferometer readout ΔxOMS. Such disturbance enters
into ΔgðtÞ in Eq. (1), both through ΔẍOMSðtÞ and through
ω2
2ΔxOMSðtÞ. Thus, the residual noise in Δg can be

evaluated as

Δg ¼ ΔgextðtÞ þ n̈OMSðtÞ þ ω2
2nOMSðtÞ: ð2Þ

Finally, it is important to mention that occasional force
transients were observed in the data [20]. In ordinary runs
these glitches occurred at an average rate of ≃1 d−1. These
glitches have been removed from the data, as described in
Ref. [20], before any noise analysis.

C. Data runs

The mission scientific operations lasted from March 1,
2016 to July 18, 2017. During these more than 16months, we
performed many uninterrupted “noise runs” during which the
TMs and the satellite were in steady control conditions, with
no purposely applied stimulus of any nature.
We have performed many such noise runs, however, we

restrict the main analysis to those with an overall duration
of at least 2.5 days. Such a duration allows an estimate
of acceleration power spectral density (PSD), down to
about ≃18 μHz with reasonable accuracy (see following
sections).
We list in Table I, for all these runs, the start and stop

dates, the duration, and the instrument operating temper-
atures. Temperature values are the average of the eight
thermometers placed on the two GRSs as described in [8].
We note that 11 of these runs were performed at an

operating temperature around 21–22 °C, while runs 10
and 11 were operated at around 11 °C.
The detailed operating conditions have been slightly

different for different runs. We have listed in Table II, in
Appendix A, the few differences of settings that may bear
some relevance for the noise performance.
For runs 1–11, the total charge of both TMs was

maintained within the interval of �3 × 107 e [21], in
order to keep the noise caused by voltage fluctuations
negligible [22] (see Sec. VI D). For those runs, charge was
measured just before and just after each run. For runs 12
and 13, the charge was measured just once before run 12.
We could, however, extrapolate the missing final
values from the measurement of cosmic ray flux [21,23].
For run 12, such extrapolated final value is still in the
aforementioned interval, while for run 13 it might have
gone up to 4 × 107 e.
TM neutralization was performed using a noncontacting

UV discharging system [24] before the start of each run. As
cosmic rays resulted in a steady increase of the charge, for
most of the runs the charge was brought to a negative value
within the �3 × 107 e interval at the start of the run, to
have it drifting through zero during the run.
Two major events must be mentioned. First ESA

operated LPF, until April 6, 2017, on a Lissajous orbit
near the L1 point of the Earth-Sun system. This orbit was
unstable, and mission control had to make station-keeping
maneuvers every few weeks to maintain it. On April 6,
2017, in preparation for the end of the mission, mission
control performed a final maneuver, called “deorbiting

TABLE I. List of the considered noise runs. Run 2, of April
2016, overlaps the data published in [3]. The data in Ref. [3],
however, were presented without glitch removal, and as such four
days at the beginning of the run were omitted from analysis due to
a large glitch. In addition, for homogeneity with the other runs,
we have removed about one day at the end of the time series of
Ref. [3] which contained a calibration signal. Run 10 is the
February 2017 run published in [2].

No. Start date
Duration

(d)

Mean time
from

launch (d)
Temperature

(K)

1 March 21, 2016 5.3 112 295.37� 0.04
2 April 4, 2016 9.3 127 295.30� 0.03
3 May 16, 2016 3.2 166 294.97� 0.06
4 June 19, 2016 4.8 202 294.93� 0.01
5 July 17, 2016 2.8 229 296.62� 0.05
6 July 24, 2016 5.3 237 296.50� 0.02
7 September 28, 2016 2.8 302 296.50� 0.02
8 November 16, 2016 9.9 354 296.86� 0.04
9 December 26, 2016 18.5 398 295.38� 0.04
10 February 14, 2017 13.3 446 284.72� 0.03
11 May 18, 2017 4.3 535 284.2� 0.1
12 May 29, 2017 6.8 547 295.78� 0.01
13 June 8, 2017 8.6 558 295.91� 0.03
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burn,” to place the spacecraft on a trajectory that would not
risk intercepting Earth. The maneuver lasted a few days,
and after that, until the end of the mission, no further
station-keeping maneuver was performed.
In addition, between April 30, 2017 and May 16, 2017,

with the purpose of further reducing noise beyond the level
reached in February 2017 [2], we tried to operate the
instrument near 0 °C, a value well outside its nominal
operating range. The instrument entered into a rather
unstable state with a very high rate of glitches [20] and
went back to its ordinary behavior only when the temper-
ature was raised back to a value within its operating range.
During such 0 °C cooling, we were able to perform a

noise run lasting from May 3 to 9, 2017 (for a total of
5.8 d), not listed in Table I. In this run, despite the low
quality of the data, we were able to perform some noise
measurements at frequencies around 1 mHz, which we will
mention later in the paper, in Sec. IV.
Unfortunately, the temperature of this “cold run,” has not

been measured directly, as the electronics of the GRS
thermometers clipped at ≃7 °C. However, we found that,
upon a proper calibration, the average of a group of
thermometers just outside the instrument bay was a good
proxy of the average of the GRS thermometers, at all
temperatures above ≃7 °C. This proxy gives, for the cold
run, T ≃ 1.7 °C ≃ 274.8 K with an overall uncertainty not
larger than 0.5 K.
As a final note we want to mention that the station-

keeping maneuvers limited the maximum duration of noise
runs to one week until May 2016, then to two weeks
through November 2016, and finally to three weeks until
the deorbiting maneuver in April 2017. In addition, run
duration planning had also to take into account the need to
use operation time for a variety of other planned experi-
ments [25]. Nevertheless, given that LPF science require-
ments [4] required to match acceleration requirements
down to just 1 mHz, and to just measure acceleration
noise down to 0.1 mHz, run durations are all fulfilling such
frequency requirements with significant margin.

III. ACCELERATION PSD

During all noise runs we have estimated the PSD of
ΔgðtÞ, SΔgðfÞ [or, equivalently, its square root, the
amplitude spectral density (ASD)], as a function of
frequency f, by using the periodogram estimation method
explained in Appendix B 2. The method gives a Bayesian
estimate for the posterior distribution of SΔgðfiÞ over a
given set of frequencies fi. The frequencies within the
set have been chosen such that the PSD estimates at
different frequencies have minimal statistical correlations
(see Appendix C and [2]). In addition, for practical
reasons, we have adjusted the selection such that the
fourth frequency is 0.1 mHz, the lower bound of the
official LISA band.

The blue points in Fig. 2 illustrate the result of the
procedure for run 10 of Table I, which is the February 2017
run that we published in [2].
The figure shows that, as already noted in [2], the ASD

and the PSD have three different branches:
(1) a low-frequency branch with an approximate f−1

behavior (f−2 for the PSD);
(2) an approximately frequency-independent branch

above about 1 mHz; and
(3) a rising branch above about 10 mHz.

As explained in [3], the rising branch is due to the
interferometer readout noise nOMS. The details on the
origin of this branch, dominated by interferometer phase
readout and frequency fluctuations, may be found in [5].
We will not discuss it any further.
In [3] we have attributed the frequency-independent

branch, with PSD value SBrown, to Brownian noise due to
gas damping. To separate it from the other two branches,
we use, for each run, the following procedure.

(i) We fit the experimental PSD data ΠΔg;kðfiÞ of run k
to the PSD model

SΔg;kðfiÞ ¼ SΔge;kðfiÞ þ SBrown;k; ð3Þ

that is, with a frequency-independent term SBrown;k,
plus the excess SΔge;kðfiÞ that depends on the
frequency fi.

(ii) To avoid numerical instabilities, we limit the
analysis to f < 3 mHz, that is, to the lowest ten
frequencies of Table VI in Appendix C. However,
to better constrain SBrown;k we add one further
data point consisting of the minimum value of

FIG. 2. Blue points, ASD of ΔgðtÞ, S1=2Δg for run 10 of Table I
(February 2017) as a function of frequency f. The vertical error
bars delimit the 1σ interval [See Appendix B 2 for the definition].
The horizontal bars indicate the effective width of the spectral
window contributing to each of the points. Red points, estimated
excess over Brownian noise; green thin band, uncertainty band
for the estimate of the Brownian noise.
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ΠΔg;kðfiÞ for i > 10, ΠΔg;k;min. We fit this data
point with the simpler model SΔg;k;min ¼ SBrown;k,
that is, with no excess over the Brownian noise;
this is a reasonable assumption, also supported by
the results of the following analyses. This addi-
tional term also prevents the fit to put SBrown;k
to zero.

(iii) The fit is a Monte Carlo Markov chain (MCMC)
estimate of the posterior

pðSΔge;kðfiÞ; SBrown;kjΠΔg;kðfiÞ;ΠΔg;k;minÞi∈ ½1;10�

∝
Y10
i¼1

pðΠΔg;kðfiÞjSΔge;kðfiÞ þ SBrown;kÞ

× pðΠΔg;k;minjSBrown;kÞ: ð4Þ

Here the function pðΠjSÞ, the probability distribu-
tion of the experimental PSD, is that given in
Appendix B 2.

(iv) We scan the domain of the logarithm of all param-
eters SΔge;kðfiÞ and SBrown;k and do not multiply
the posterior in Eq. (4) by any explicit prior.
This is equivalent to using the Jeffreys prior on
all parameters [26]. However, again to avoid numeri-
cal instabilities, we constrain all PSD parameters,
both Brownian and excess, to be larger than
1 am2 s−4=Hz.

The results of such procedure are again shown in Fig. 2
for run 10 of Table I and for all runs in Figs. 18 and 19 in
Appendix D.
Note that Figs. 18 and 19 show that the procedure gives

consistent results for all runs, with the Brownian uncer-
tainty band always very close to the average of native data
in the range 2 ≤ f ≤ 5 mHz.

IV. TIME EVOLUTION OF BROWNIAN NOISE

From the procedure described in the previous section, we
obtain an estimate of SBrown for all runs. Results are plotted
in Fig. 3 as blue dots, as a function of t − tv, the time since
venting to space of the VE.
As discussed in [2,3], the PSD of Brownian noise due to

gas damping is

SBrown ¼
4kBT
M2

Pl2ϵ

�
32m
πkBT

�
1=2 ≡ κP; ð5Þ

where P is the gas pressure, l, as already defined, is the side
length of the test mass, m is the mass of the gas molecules,
and ϵ is a coefficient of proportionality that depends on the
EH and TM geometry. Reference [27] estimates κ to be
κ ≃ 1.7 fm2 s−4 Hz−1=μPa, for a single LPF TM, for
T ¼ 293 K, and for a gas consisting of water molecules.
Thus, if indeed the frequency-independent branch

represents Brownian noise, PH2O ¼ SBrown=ð2κÞ, which
can be read on the right vertical axis of Fig. 3, gives a
measurement of the mean of the pressures of the two GRSs.
Note that, with the effective conductance from the interior
of the EH to the outer space estimated to be ≃19 L=s for
water, a pressure of 1 μPa corresponds to an outgassing rate
of 1.9 × 10−7 mbar L=s.
The figure also shows that, remarkably, the data can

be scaled to follow a straight line, by just multiplying

them by a single “activation” factor e−Tað1T − 1
T0
Þ, with Ta a

properly chosen activation temperature, and T0 an
arbitrarily chosen, convenient common temperature
for the scaled data. Note that this is a much stronger
temperature dependence, a factor 2.5 for a change in
temperature of approximately 10 K, than that due to the
T3=2 factor in Eq. (5), ≃3% for the same 10 K, and is
dominated by the temperature dependence of the out-
gassing, and thus of P.
The scaled data may be fit to

SBrownðtÞ ¼ a

�
tv

t − tv

�
γ

; ð6Þ

where a and γ are two fitting parameters (see Fig. 3).
Actually, a simultaneous fit leaving also Ta as a free
parameter gives Ta ¼ ð7.0� 0.2Þ kK, γ ¼ ð0.80� 0.02Þ,
and finally a ¼ ð27.0� 0.7Þ fm2 s−4 =Hz.
Such power-law behavior is commonly observed, after

an initial rapid pressure decay phase, during the pump
down of vacuum systems1 [28]. The exponent γ is found to
be γ ≃ 0.5 in the case of diffusion-dominated outgassing,
and γ ≃ 1 in the case of isothermal quasiequilibrium of
water with the vacuum chamber metal walls, in both cases
with good agreement with simple models for the under-
lying phenomena. Intermediate values for γ are found for
more complex systems [29].
Given the uncertainty on the temperature and on the

quality of the PSD data, we have left the cold run datum
out of rescaling and fitting. This is further discussed in
Sec. VI A. Here we only note that the cold run datum is
lower than those for the lowest temperature ordinary runs.
This shows that the TM acceleration noise in the milli-
hertz bandwidth is truly Brownian down to a level well
below 2 fm s−2=

ffiffiffiffiffiffi
Hz

p
per TM and not saturating to a

significant level reflecting other important noise sources
in this band.
For the sake of the discussion in Sec. VI A, we also report

in Fig. 3 the best fit for one common model for vacuum
evolution under the hypothesis of quasiequilibrium between
surfacewater readsorption andoutgassing. The discussionon

1The presence of the initial decay phase implies that the law
should not be extrapolated back to the start of the pump down,
that is when t → tv in Eq. (6).
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Brownian and vacuum environment continues in the men-
tioned Sec. VI A.

V. STABILITY AND TIME EVOLUTION
OF EXCESS NOISE

In this section we discuss the stability and evolution of
SΔge , the excess noise over Brownian, over the duration
of the mission. The details of the variations of SΔge can be
tracked in Figs. 18 and 19 in Appendix D. Here we present
a few summary analyses with the main aim of quantifying
noise stationarity.
We first discuss the compatibility of the observations

at each frequency with a model considering a single,
stationary, run-independent noise process.
Having identified significant variations from run to run

of the lowest frequency datum, mostly in the initial phase
of the mission, we separate the discussion on the time
evolution of the excess noise for f > 18 μHz from that
at f ¼ 18 μHz, which we treat in Sec. V F together with
long-term drifts.

A. Fit to a common stationary Gaussian excess
for all runs

In Fig. 4 we report, at each frequency fi, the inferred
posterior distribution for SΔgeðfiÞ (blue data points)

assuming that the excess is a common number to all runs,
SΔge;kðfiÞ ¼ SΔgeðfiÞ. We call this the “common-noise
model.” The inference is done by using a collective
posterior consisting of the product of the posteriors in
Eq. (4), for all values of k, having dropped the dependence
of the excess on k.
We have done a simple Akaike information criterion

comparison [31] between the common-noise model and
the model consisting of the separate Bayesian fits to
the data of the 13 different runs discussed in Sec. III.
The posterior for the latter is just the product of the
posteriors used for the separated fits and thus depends on
143 parameters: 10 excess noise coefficients for each of
the 13 runs, plus 13 Brownian noise coefficients. The
common excess noise model depends instead on only 10
excess noise coefficients and 13 Brownian noise ones, for
a total of 23 coefficients.
The Akaike test favors the common-noise model, with

a relative likelihood ratio of ≃10−20. This indicates that
the hypothesis of completely independent excess noise
values across the runs substantially overfits the data.
However, this does not tell if the best of the two fits is a
good fit.
We have then done a posterior predictive check [32]

on the common-noise model described in the following.
We first find the set of parameter values θ̂best ¼ fSΔgeðf1Þ;

FIG. 3. Dark blue dots, PSD of Brownian noise SBrown as a function of ðt − tvÞ, the time since venting of the vacuum enclosure.
Error bars correspond to 1σ intervals. For convenience, call outs repeat the mean temperatures T of the runs from Table I. Light
blue dot, SBrown for the cold run (T ∼ 275 K). Data may be converted into the mean of the pressures PH2O in the two GRSs (right
vertical scale) by using the conversion factor in [27] and by assuming that the residual gas consists of water molecules. Red dots,

PSD of Brownian noise of ordinary runs, scaled as SScaled ¼ SBrowne
−Tað1T − 1

T0
Þ, with T0 ¼ 293 K and Ta ¼ 7.0 kK; Dashed black

line, SScaledðtÞ ∝ ðt − tvÞ−0.80. See text for details. Dotted gray line, best fit assuming adsorption quasiequilibrium. See Sec. VI A
for details.
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SΔgeðf2Þ;…; SBrown;1; SBrown;2;…g that maximizes the pos-
terior likelihood.
Having θ̂best, for any set of data, either observed

or simulated from the posterior, we can then calculate,
as a measure of discrepancy at any given frequency fi,
the log-likelihood of the data at that frequency, conditional
on θ̂best,

Λi ¼
X13
k¼1

logp
�
ΠΔg;kðfiÞjθ̂best

�
: ð7Þ

Note that in an ordinary least square fit to independent
Gaussian data, the log-likelihood would be, modulo an
irrelevant additive constant, just the sum of the square
residuals, a quantity commonly used to measure the
discrepancy between the data and the model. Thus the
use of Λi may be seen as just an extension of the method of
square residuals to Wishart distributed data.
We have then generated simulated data by sampling

the posterior for the parameters fSΔgeðf2Þ; SΔgeðf3Þ;…;
SBrown;1; SBrown;2;…g and by generating then simulated
periodograms ΠΔg;kðfiÞ from the proper Wishart distribu-
tion. For each simulated periodogram, we have calculated
Λi, with 1 ≤ i ≤ 9 obtaining then an expected posterior
predictive distribution for each of these parameters.
We have restricted the analysis to frequencies fi ≤ f9,

as, at higher frequencies, the model breaks down anyway
due to the dominance of Brownian noise, particularly for
the earlier runs.

We have then calculated the probability p that Λi is less
than value Λi;0 calculated for the real data, that is, the
cumulative distribution function for Λi evaluated in Λ0;i.
For i∈ f2; 7; 8; 9g we find that p > 0.2, while for the other
frequencies we find p ≤ 0.002. This shows that the
common-noise model, despite being more informative than
the separated fits, is not predictive of the observations.
To make it predictive, the common-noise model pos-

terior must be widened by a (frequency-dependent) factor.
To estimate how large this factor should be, we have
repeated the simulation above, this time by generating
the simulated periodogram for run k at frequency fi,
by multiplying the sample for S1=2ΔgeðfiÞ from the original
posterior, common to all runs, by a random variable γk;i.
For each frequency fi, all γk;i, were extracted from the same
Γ distribution with unit mean value and standard deviation
σγi . This model in essence allows S1=2ΔgeðfiÞ to fluctuate from
run to run by a mean relative amount σγi . This fluctuation
adds up to the natural fluctuation of the periodogram for
stationary Gaussian time series in generating the observed
data. We call this model the “independent-runs” model.
The independent-runs model becomes predictive of the

observation at all frequencies, p ≥ 0.2, if σγi ¼ 0 for
i∈ f2; 7; 8; 9; 10g, σγi ¼ 0.4 for i ¼ 1, and σγi ¼ 0.2 for
i∈ f3; 4; 5; 6g. We report the data for the independent-runs
posterior in Fig. 4, red points.
Note that the largest variation is for i ¼ 1, that is,

f ¼ 18 μHz. This is dominated by the large initial decrease
of the ASD in the initial part of the mission that can be

FIG. 4. Summary of ASD of Δg excess noise, over all runs of Table I and Figs. 18 and 19, as a function of the frequency. Blue data,
median and�1σ quantiles of the inferred posterior distribution of the excess for the entire set of runs, common-noise model (see text for
details); red data, median and�1σ quantiles of the inferred posterior distribution, independent-runs model (see text for details). Red data
have been slightly shifted in frequency for the sake of readability, but they all refer to the same frequency as that of blue data. Also
reported are current LISA requirements adapted from [30].
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noticed by inspection in Fig. 18 in Appendix D. We will
discuss this further in Sec. V F.
The common-noise model is more predictive for subsets

of data including a reduced number of runs. We find, for
instance, that for the groups including runs 1–4 of Table I,
and for that including runs 11–13, the model is reasonably
predictive at all frequencies, while for the groups 5–8 and
9–10, the model is predictive at all frequencies but one. It
must be said that other groups of runs, with no temporal
continuity, may give similar results, and that this apparent
improvement might just be a consequence of the reduced
discrimination power of the posterior test if applied to a
smaller number of data.

B. 1=f model and evolution of the excess noise
for f > 18 μHz

To study if the observed variations of excess noise level
are correlated with operational conditions we have found
a useful “figure of merit” that summarizes the excess
noise across the entire band f > f1. We introduce it in the
following.
We take advantage of the fact that, as said, the PSD

in this frequency band scales approximately as 1=f2.
Thus the coefficient S̃Δg of the 1=f2 term in a fit with
the model,

SΔgðfiÞ ¼ S̃Δg

�
1 mHz
fi

�
2

þ SBrown; ð8Þ

gives a reasonable measure of the average power,
smoothing any frequency-to-frequency variation.
Consistent with the discussion so far, we will focus
on the evolution of its square root S̃1=2Δg and will call this
the “1=f” model.2

To make the analysis consistent and avoid mixing any
effect of the different duration of the various runs, we have
partitioned the data for all runs in nonoverlapping stretches,
all of the same duration of about 2.75 d. This is the duration
of the shortest of the runs (run 5 of Table I). We have then
fitted the PSD data for the 27 resulting “partitions,” to the
model of Eq. (8).
The fit was again a Bayesian MCMC analysis, supported

by the posterior predictive test based on the likelihood, in
close analogy with that used above to test the common-
noise model. The only difference is that we now sum the
log-likelihood on all frequencies considered. We find that
all fits have p ≥ 0.1 except for one for which p ¼ 0.02.
Actually, for 2=3 of the 27 short runs p > 0.5. The results
for S̃1=2Δg are shown in Fig. 5.
Notice that the LISA requirements for the ASD of Δg in

Fig. 4 include a ∝ 1=f branch, though just down to the
lower corner at 0.1 mHz. This branch would correspond to

FIG. 5. Time evolution of the 1=f tail amplitude of S1=2Δg , expressed as the corresponding ASD at 1 mHz S̃1=2Δge , as a function of time
since launch ðt − t0Þ, over the entire mission duration. Blue data, values for all the 2.75 d long, nonoverlapping stretches of data into
which we partition the full set of the 13 run data series. The gray vertical bands with dashed edges represent the time span of the original
runs to which the partition belongs. The picture also shows the date of the initial venting (red line), that of the beginning of the science
operations (blue line), the epoch of the deorbiting burn (green band), and the date of the end of the science operations (magenta line). In
cyan, the epochs during which the temperature was held at about 11 °C; runs 10 and 11 of Table I are both included in this span. Finally,
in blue, the epoch of the 0 °C cooling.

2We stress that in this model it is the ASD that depends on the
frequency as 1=f. This should not be confused with the popular
model for flicker noise, for example, in electronics, where it is the
PSD that depends on the frequency as 1=f.
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S̃1=2Δge ¼ 1.7 fm s−2=
ffiffiffiffiffiffi
Hz

p
, significantly above all the points

in Fig. 5. This is consistent with Fig. 4.
One feature that stands out in Fig. 5 is that data fluctuate

significantly more than the uncertainty on the single datum,
even for the partitions of the same original run. Actually,
the fluctuation of data from partition of run 9 span a similar
range as that of the remaining data. This large run-to-run
fluctuation appears consistent with the poor fitting to the
common-noise model.
Just to confirm that these two facts are consistent, we

have simulated the data assuming a common value for S̃1=2Δge
for all 27 partitions and Gaussian, stationary noise. This
common value is extracted from the posterior for S̃1=2Δge of a
cumulative fit to all 27 partitions, with a common 1=f
noise. The model is found, as expected, as nonpredictive as
the common-noise model for the general case.
To get a useful quantitative statistics to compare the

simulated data to the actual ones, we form the sample of
the 27 maximum likelihood values for S̃1=2Δge, in essence, for
the real sample, the dots of Fig. 5, and then calculate the
sample standard deviation divided by the sample mean
ρ≡ σS̃Δge =hS̃Δgei. For the sample of the actual data, we

find ρ ≃ 0.23.
The simulation gives instead a mean value for ρ of

hρi ≃ 0.11 and projects a probability< 10−3 of observing a
value as large as ρ ¼ 0.23.
Coherent with findings for the common-noise model,

to give such a large value some reasonable probability, we
had to widen the posterior, allowing for a 0.2 relative
fluctuation of S̃1=2Δge from partition to partition.
This is consistent with the observation that, joining

the posterior for all 27 partitions, we get that S̃1=2Δge ¼
ð1.1� 0.3Þ fm s−2=

ffiffiffiffiffiffi
Hz

p
, while the width of the posterior

for each run fluctuates about ≃0.1 fm s−2=
ffiffiffiffiffiffi
Hz

p
, implying a

true fluctuation of about ≃0.25 fm s−2=
ffiffiffiffiffiffi
Hz

p
from partition

to partition, beyond the statistical uncertainty.
While the data of Fig. 5 do not display any clear

systematic long-term trend or correlation with the exper-
imental configuration parameters of Table II, they show
a comparatively large difference, ≃0.45 fm s−2=

ffiffiffiffiffiffi
Hz

p
,

between the mean value of the four partitions of run 10
(438–451 days after launch in Fig. 5) and that of the six
last partitions of runs 11–13 (531–561 days after launch
in Fig. 5).
Actually the difference is not much less, ≃0.32 fm s−2=ffiffiffiffiffiffi
Hz

p
, if, instead of just taking the mean of the partitions of

run 10, one also adds the six partitions belonging to run 9,
as runs 9 and 10 could be reasonably fit together with
the common-noise model, as could also runs 11–13. The
observation is particularly intriguing, as the 0 °C cooling,
with its rather dramatic consequences [20], and the deor-
biting burn took place just between these two epochs.

In the attempt to assess if the observed variation could
still be due to a random fluctuation, given the compara-
tively large spread of the values in Fig. 5, we have resorted
to a classical permutation test. We have done random
permutations of the time coordinates of the data of
Fig. 5 and counted the number of times a step of any
sign, larger than the observed one, could be found
between two adjoining sets of data, one six-samples long,
like that of runs 11–13, and the other either four- or ten-
samples long.
We find that the fraction of permutations in which we

find a step ≤ 0.45 fm s−2=
ffiffiffiffiffiffi
Hz

p
, between the six-sample

and the four-sample sets, is p ¼ 0.09, while for the ten- and
six-sample case, the chances of a step ≤ 0.32 fm s−2=

ffiffiffiffiffiffi
Hz

p
is p ¼ 0.12. These fractions are both too large to allow us
to rule out the hypothesis that the observed increase is due
to a random fluctuation.

C. Gaussianity

In addition to the lack of stationarity discussed so far,
non-Gaussian distributed data may also contribute to
the discrepancy between a simple common-noise model
and the data. We have performed a coarse test on the
Gaussianity of the periodograms used to calculate all
experimental PSDs.
We have first taken the real and the imaginary parts of all

periodograms used to produce the PSD at a given frequency
and for a given run and merged them into a single sample.
This to increase the statistics for those frequencies and
those runs for which the number of averaged periodograms
was very small. We have done this merging taking
advantage of the fact that for Gaussian data the real and
the imaginary part are independent and have the same
distribution.
We have then standardized each sample, by subtracting

its mean and by dividing by its standard deviation.
Limiting the analysis to the lowest nine frequencies
we then have 9 × 13 ¼ 117 of these samples, as the
number of runs is 13. The number of periodograms in
each sample may vary quite significantly, ranging from 2,
for the lowest frequency bin and the shortest runs, up to
512 for f9 and run 9. We exclude cases with just one
periodogram, as the normalization procedure would be
not significant.
As all elements of these 117 samples are normalized, if

data are Gaussian, they should all come from the same
zero-mean unit variance Gaussian distribution. We have
then merged them all in a single sample containing 12684
standardized periodograms. In Fig. 6 we report the histo-
gram of this sample and, for comparison, the probability
density function of the zero-mean unit variance Gaussian
distribution. The agreement between the two is supported
by an Anderson-Darling test for Gaussianity, that gives
p > 0.15. We note that the test is rather crude, the statistic
being dominated by the longest runs and the higher
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frequencies. However, the absence of any outlier signifi-
cantly above 5σ excludes the presence of significant
long tails.

D. Associated angular acceleration noise

For the purpose of characterizing the properties of the
excess acceleration noise described above, we have inves-
tigated if there is any torque associated with it. To this
purpose, we have measured the torque acting on the test
masses around z and y.
As the rotation of the test masses around all axes is

controlled, and as the angular acceleration of the spacecraft,
which is common mode for both TMs, is rather large, in
total analogy with the Δg and the motion along x, we form
the differential open-loop torque (per unit moment of
inertia) acting on the test mass,

Δγϕ ¼ ϕ̈2 − ϕ̈1 −
Nz2 − Nz1

Izz
þ ω2

ϕ2
ϕ2 − ω2

ϕ1
ϕ1;

Δγη ¼ η̈2 − η̈1 −
Ny2 − Ny1

Iyy
þ ω2

η2η2 − ω2
η1η1: ð9Þ

Here ϕi and ηi are the angular displacements of TMi along
z and y, respectively, Nzi , Nyi are the control torques
applied to TMi along z and y, respectively, Izz and Iyy are
the TM moments of inertia around z and y, respectively,
and finally the ω’s are the angular stiffnesses. All signals
had to be properly calibrated to ensure that the large
common mode angular acceleration of the spacecraft
was duly suppressed.
The PSDs SΔγϕðfÞ and SΔγηðfÞ are reported in Fig. 7 for

run 10 of Table I.
The figure also shows the PSD of rotational Brownian

noise along z, projected from the measured value of
the PSD of the Brownian noise in Δg for the same run.
The projection is based on calculating the rotational

viscous damping coefficient from the linear one, as
explained in [27].
Both SΔγϕðfÞ and SΔγηðfÞ show a minimum much larger

than the projected Brownian noise. This minimum is set by
the crossover between the torque noise and the readout
noise due to the angular interferometer, which is compa-
ratively more noisy than the linear one.
To assess if the excess Δg noise carries any torque, we

have measured, together with the PSDs, also the cross-
spectral densities among Δγϕ, Δγη, and Δg.
To get a simple parametrization of the associated torque

we use the simple model of a vector pointlike force fðtÞ,
applied to one of the test masses at the point ðx0; y0; z0Þ,
relative to the test mass center, and with component
ðfxðtÞ; fyðtÞ; fzðtÞÞ. Such force would also apply a torque
NðtÞ with z and y components given, respectively, by
NzðtÞ ¼ x0fyðtÞ − y0fxðtÞ and NyðtÞ ¼ z0fxðtÞ − x0fzðtÞ.
For such a force,

8<
:

SΔγϕðfÞ ¼ SΔγϕ;0ðfÞ þ y20ðMIzzÞ2SΔgðfÞ
SΔγϕΔgðfÞ ¼ −y0ðMIzzÞSΔgðfÞ

ð10Þ

and similarly for y, with −y0 → z0. Here, SΔγϕ;0ðfÞ
[SΔγη;0ðfÞ] is the spectral density of any part of ΔγϕðtÞ
[ΔγηðtÞ] that is not correlated to ΔgðtÞ.
The parametrization holds for an arbitrary system

of forces, but while for a real pointlike force
jy0j; jz0j ≤ l ¼ 46 mm, for an arbitrary system both param-
eters can take any value. One important example is that of
the force due to a voltage on only one of the electrodes

FIG. 7. PSD of ΔγϕðfÞ and ΔγηðfÞ, as a function of frequency
f, for run 10 of Table I (February 2017). The green band
represents the uncertainty range for the projection of the PSD of
the rotational Brownian noise around ϕ, from the corresponding
Brownian noise for Δg (see text for details). The reported error on
the projected value accounts just for the propagation of statistical
errors. Additional inaccuracy due to various sources may amount
to some additional 10%.

FIG. 6. Gaussianity test of periodograms. Green bars, histo-
gram of the periodogram amplitudes standardized as explained in
the text; solid black line, probability density function of the zero-
mean unit variance Gaussian distribution.
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facing the x faces of the TM, for which jy0j ≃ 11 mm
while z0 ¼ 0.
We have estimated the Bayesian posterior for the

parameters SΔγϕ;0ðfÞ, SΔγη;0ðfÞ, y0, and z0 with an MCMC
calculation, assuming Gaussian data, a Jeffreys prior for
SΔγϕ;0ðfÞ, SΔγη;0ðfÞ, and a uniform prior for y0 and z0. We
performed this analysis including frequencies from the
second to the seventh frequency bins (36 μHz–60 mHz), as
in some of the runs, some eighth-frequency data already
include the interferometer rising branch.
We have performed the calculation for both the individ-

ual runs and also by assuming that the same value of y0 or
z0 may fit all runs. The results are reported in Fig. 8.
We note that for y0 a systematic pattern appears,

with the global fit giving y0 ¼ ð1.13� 0.15Þ mm, exclud-
ing then y0 ¼ 0 and y0 ¼ 11 mm with very large signifi-
cance. On the contrary, for z0 data scatter on both sides of
zero and the global fit gives z0 ¼ ð0.5� 0.8Þ mm, i.e., a
lever arm not significantly different from zero, though
within an error which is significantly larger than that
for y0.
Reference [33] analyzes the force and torque noise due

to gain fluctuations in the LPF TM actuation systems (see
also Sec. VI D). That study has found that the ϕ angular
acceleration noise excess at low frequencies is largely
explained by actuation gain fluctuations in the circuitry
used to produce both x forces and ϕ torques. Additionally,
that study observes a slight correlation between Δg and
Δγϕ arising from the gain fluctuations in these shared x-ϕ

actuators, a correlation that is consistent with the y0 arm
length in the top panel of Fig. 8. The slightly positive arm
length comes from a slight asymmetry in the electrode
voltage noises, as better explained in Ref. [33].
We have compared the results of our analysis, in

particular for run 10 of Table I, to those in [33] and have
found full compatibility between them, indicating that the
detected torque noise correlated with Δg is entirely
explained by the shared gain fluctuations. We will further
discuss the implications of these findings later in the paper,
in Sec. VII.

E. Summary note on the 1=f tail

In conclusion, the overall picture is that, for frequencies
in the range [36 μHz–0.60 mHz], the following is noted for
noise ASD for Δge:

(i) it is basically compatible with the 1=f model within
a single run of ≃2.5 d duration;

(ii) the “true” amplitude of the 1=f branch may fluctuate
on average by ≃� 20% from one of these runs to
another, this fluctuation being in addition to that
expected from Gaussian stationary noise;

(iii) the amplitude of such a nonstationary extra fluc-
tuation does not seem to follow any long-term
pattern, neither decaying nor increasing over the
course of the mission;

(iv) there is no proven correlation between these extra
fluctuations and any identifiable operational con-
dition, though we cannot exclude that the 0 °C
cooling or the deorbiting burst may have had some
effect on the noise after day 460 (runs 11–13);

(v) there is a small correlated torque associated with
such 1=f force noise. The millimeter-size effective
radius points to forces acting toward the center
of the TM or to forces that are almost uniform over
the TM faces, ruling out simple possibilities like
the force due to a noisy voltage on one of the x
electrodes; and

(vi) finally, it is worth noting that the approximate
stability of the 1=f tail’s amplitude persisted despite
numerous changes to the operational environment
including station-keeping maneuvers, planned ex-
periments with the LTP and disturbance reduction
system [34] payloads, and unplanned spacecraft
anomalies. By comparison, LISA operations will
be simpler with no orbital station keeping or planned
experiments postcommissioning.

F. Evolution of the lowest frequency datum
and of long-term drifts

In Sec. V, we noted that the first-frequency point
(f1 ¼ 18 μHz) deviates from the 1=f ASD behavior,
consistently showing a noise level above that predicted
by the 1=f fit model. To quantify the deviation from

FIG. 8. Top: data points, effective lever arm y0 of force noise
around the z axis as a function of the epoch t of the run.
Error bars are 1σ width of the posterior. Light gray band,
y0 ¼ ð1.13� 0.15Þ mm, the estimated value of the lever arm
assuming a common value for all runs. Bottom: same as the top
panel, but for the effective lever arm z0 of force noise around the y
axis. The light gray band is for z0 ¼ ð0.5� 0.8Þ mm.
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the model, we define S̃Δgeðf1Þ, i.e., the excess noise at
frequency f1, above S̃Δg,

S̃Δgeðf1Þ≡ ðf1=1 mHzÞ2SΔgeðf1Þ − S̃Δg: ð11Þ

We have multiplied the data by the frequency factor
ðf1=1 mHzÞ2 to make the comparison with the 1=f branch
more immediate.
In Fig. 9 (gray points) we show the time evolution of

S̃Δgeðf1Þ at the lowest frequency.3 Despite the large errors,
the picture shows a significant initial decay pattern. In
addition, all values of S̃Δgeðf1Þ are significantly above zero,
i.e., there is a noise excess above the 1=f model at 18 μHz
at all times during the mission.
Before discussing this behavior in further detail and

before introducing the temperature correction shown by the
red points in the figure, we have to discuss the long-term
drift, over scales of several hours and days, that affects Δg
data for all runs. We will show that such drifts share many
of the features shown by S̃Δg;eðf1Þ.
This is not surprising, as the relative width of the spectral

window at f1 is wider, by construction, than that for all
other frequencies (see Appendix B 2). Thus a significant
spectral leakage from the frequency band f ≪ f1, i.e., from
the long-term drifts may be naturally expected.
An example of the drift that, in addition to quasista-

tionary noise, affects Δg data for all runs is shown
in Fig. 10.
The sources for such a drift may be many. There are two

predictable ones:

(i) motion of massive parts of the instrument relative to
the TMs, due to any kind of mechanical distortion,
also produces a time-varying gravitational field and
then a time-varying ΔgDist. One important mechani-
cal distortion is the rigid translation, along x, of each
GRS relative to its own TM due to expansion and
contraction of the optical bench to GRS separation.
By GRS we mean here vacuum chamber, electrode
housing, etc., but not the TM itself.

Such distortion is rather likely, as the GRS has a
rather complex interface, on one hand to the satellite,
via a set of tens of centimeters long ceramics struts,
and, on the other, to the optical metrology, through a
sophisticated metal-glass interface. This mounting
method is rather “soft’ and prone to strain, while the
GRS itself is a much more rigid assembly.

Fortunately, the capacitive motion sensor gives a
measurement of the relative motion of the GRS
relative to its own TM, ΔX ≡ ðΔxOMS − ΔxGRSÞ,
and allows one to predict ΔgDist, as ΔgDist ¼ ω2

dΔX
(see Fig. 10) with ω2

d a stiffness factor which is
known to within a sufficient accuracy. This is again
explained in Appendix E.

We note that this contribution to the overall drift is
rather small, if not negligible, for all runs, except that
for runs 7, 11, and 12 of Table I.

(ii) The use of propellant for the drag-free control slowly
depletes the propellant tanks [13]. The propellant in
the tanks produces a gravitational field at the TM’s
location that results in a differential acceleration of
the TMs with a significant component ΔgTanks along
x. Due to depletion, this acceleration drifts in time
(see Fig. 10). In Appendix E we show that, for a run
in which the propellant tank i and the thruster branch
j are used, ΔgTanksðtÞ ¼ κt;iκb;jΔgTank;0;i;jðtÞ þ c,

FIG. 10. Long-term evolution of Δg for run 7 of Table I (purple
line) and of various disturbances that may contribute to it. Green
line, gravitational signal from propellant tank depletion; yellow
line, mechanical distortion calculated assuming the nominal
value of effective stiffness ω2

d; orange line, temperature contri-
bution from best fit to data; dashed cyan line, residual drift. See
text for details.

FIG. 9. Evolution of the excess noise at the lowest frequency
f1 ¼ 18 μHz over the course of the mission. Gray points,
S̃Δge;1 ≡ ðf1=1 mHzÞ2SΔgeðf1Þ for the 13 runs of Table I, as a
function of the mean time of the run since launch ðt − t0Þ; red
points, residual after correcting for the effect of the temperature
(see text at the end of the section for details). Only data for runs
with more than one periodogram at 18 μHz could be corrected,
hence in some cases there is no red point (see Appendix H 2 a).

3Note that some of the PSD values in Fig. 9 take negative
values, which would make the ASD imaginary. This is the reason
why we prefer to use PSD.
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where ΔgTank;0;i;jðtÞ is a signal that can be entirely
calculated, and κt;i and κb;j (where t stands for tanks
and b stands for branch) are two factors that reflect
calibration uncertainty and that are both 1 for the
nominal case; c is a constant, depending on i and j,
with no real relevance for the following discussion.

Once the two sources above have been subtracted from
theΔg data series, the residual shows an evident correlation
with the instrument temperature T, defined in Sec. II C, and
its long-term variations (Fig. 10). Once also such correla-
tion has been suppressed, by linear least squares fitting T to
Δg and by subtracting the best fit, some residual drift still
remains (Fig. 10).
We note from Fig. 10 that the raw drift (purple line) is of

order 0.5 pm s−2=d, while the residual unmodeled drift
(dashed blue line) is of order 60 fm s−2=d.
To get some quantitative estimate of this residual drift,

we have preliminarily corrected the data for the two
predictable effects, ΔgTanks and ΔgDist, and then fitted
the corrected data to a linear combination of temperature
and time as described in Appendix E. As explained therein,
such fitting gives, for each run, a value for the mean partial
derivative ofΔg relative to temperature ∂Δg=∂T and one for
that relative to time ∂Δg=∂t.
The above-mentioned preliminary correction requires

some assumptions on the value of ω2
d and on those for κt;i

and κb;j. The results for the nominal calibration κt;i ¼
κb;j ¼ 1 and ω2

d ¼ −3.32 × 10−7 s−2 are shown, as black
points, in Fig. 11 as a function of the time of the run.
The relative rapid decay of both quantities in the early
phase of the mission led us to investigate the existence
of any possible correlation with the similar decay of
Brownian noise.
We have found a quite significant linear relation between

∂Δg=∂T and ∂SBrown=∂T; we calculate the latter, from
Sec. IV, as ∂SBrown=∂T ¼ ðTa=T2ÞSBrown (see Fig. 12). A fit
with the simple proportionality relation ∂Δg=∂T ¼
αT∂SBrown=∂T gives αT ¼ ð1.49� 0.07Þ × 1018 s=m (see
Fig. 12). The χ-squared test for the goodness of such fit
gives p ¼ 0.8.
Note, however, that the factor ðTa=T2Þ changes at

most by some 6% from run to run, thus the correlation
between ∂Δg=∂T and SBrown itself is as strong as the
other. Nevertheless, we will continue to discuss the case
for ∂SBrown=∂T for reasons that will be clear in the
following.
A plot of ∂Δg=∂t as a function of SBrown shows a rather

low level of linear correlation. The linear correlation
is instead rather significant between ∂Δg=∂t and
∂SBrown=∂t ¼ ð−γ=ðt − tvÞÞSBrown [following from
Eq. (6)]. A plot is shown in Fig. 13 together with a best
fit to the data with ∂Δg=∂t ¼ αt∂SBrown=∂t that gives
αt ¼ ð1.4� 0.2Þ × 1018 s=m. The goodness of the fit to
nominal data is rather poor, with negligible p-value. As the

gravitational drift is large, even a limited change to the
values of ω2

d, κt;i, and κb;j, used for its subtraction, may
change the value of the residual drift and then of ∂Δg=∂t.
Thus the uncertainty on those coefficients projects a large
uncertainty on the true value of ∂Δg=∂t, uncertainty that is
not taken into account while performing the goodness of
fit test.

FIG. 12. ∂Δg=∂T vs ∂SBrown=∂T for the nominal calibration.
Points are the data, while the dashed line is the linear,
least square best fit ∂Δg=∂T ¼ αT∂SBrown=∂T, with αT ¼
ð1.49� 0.07Þ × 1018 s=m.

FIG. 11. Upper: partial derivative of Δg relative to temperature
T, ∂Δg=∂T, as a function of the time of the run. Data refer to the
nominal configuration, but those for the optimized configuration
(see text for the definition) are numerically indistinguishable
from them. Vertical errors are derived as explained in Appendix E.
Horizontal bars represent the time span of the run. Lower: partial
derivative of Δg relative time t, ∂Δg=∂t, as a function of the time
of the run. Black dots refer to the nominal configuration, while
the red ones refer to the optimized configuration. The meaning of
the error bars is the same as that for the upper panel.
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To show that this is the case, we have searched if values
of ω2

d, κt;i, and κb;j, other than the nominal ones, but still
within the range of their uncertainties, may improve the
quality of the fit. Actually, we have searched for the values
that just give the maximum p-value in the goodness of
fit test.
We find that the maximum is attained when κt;1 ¼ 1.00,

κt;2 ¼ 1.05, κt;3 ¼ 0.95, κb;A ¼ 1.00, κb;B ¼ 0.92, and
ω2
d ¼ −3.31 × 10−7 s−2. With this “optimized” calibration,

αt¼ð1.44�0.07Þ×1018 s=m, and the p-value is p ¼ 0.18
(see Fig. 13). Remarkably, moving to this optimized
calibration, within errors, does not change the slope of
the line.
The most important observation though, is that

αT ¼ αt ≡ α within the errors. This supports, with all
the limitations and caveats that come from the empirical
approach we had to use to process the data, that, for run k,
the long-term evolution of Δg obeys

ΔgkðtÞ ¼ αSBrownðtÞ þ Δg0;k ¼ 2ακPH2O þ Δg0;k; ð12Þ

withΔg0;k a constant that depends on the run and is affected
by many operational factors that may be different in
different runs.
In Eq. (12) we have used the conversion from Brownian

noise PSD to the mean pressure around the TM that we
have discussed in Sec. IV. It is interesting to note that also
Δg may be converted into an equivalent difference of
pressure between the x faces of one of the TMs, as
ΔPH2O ¼ MΔg=L2, with M the mass of the TM and L
the length of one of its edges. Then ΔPH2O ¼
ðð2MακÞ=L2ÞPH2O ¼ ð4.5� 0.2Þ × 10−3PH2O. If the pres-
sure difference was similar and opposite on both TMs, not
unlikely given the mirror symmetry of the instrument, then
all figures should be divided by 2.
The temperature dependence of Δg at these very low

frequencies is consistent with the transient behavior of the

lowest frequency datum reported in Fig. 9. Indeed a
Bayesian decorrelation of temperature, following the
method of Appendix H 2 a, gives the red points in Fig. 9,
which show a suppressed initial transient and a signifi-
cantly reduced discrepancy from the 1=f tail.
Remarkably, the coefficient obtained from the decorre-

lation, ð∂Δge=∂TÞnoise, is in quantitative agreement with
the values of ∂Δge=∂T reported in Fig. 12 (see Fig. 14).
This confirms our modelization.
We will discuss in Sec. VI A the implication of such

findings for the nature of the vacuum environment of
the TMs.

VI. DISCUSSION

In this section we discuss the physical information we
are able to gather from the observations described so far.
Due to the extensive analyses required to gather this
information, we will report only the main conclusions
here. The detailed analyses are provided in the Appendixes.

A. Brownian noise, long-term drift, and the TM vacuum
environment (details in Appendix F)

The conclusion of the analysis reported in Appendix F 1
is that the observed temperature and time dependence of
the Brownian noise is not consistent with a model in which
the vacuum is dominated by water vapor in quasiequili-
brium between thermal outgassing from the metal walls
and readsorption onto them. This model describes well the
behavior of clean, essentially metallic vacuum systems
[29]. A fit to the data of Fig. 3 with a standard isotherm one
would use for such a model, shown in Fig. 3 as the dotted
noisy line, is of relatively poor quality and can only be
obtained with unphysical values for the fitting parameters.
The data are better explained by diffusion-limited out-

gassing from the polymer-rich, complex environment
surrounding the TM. This would naturally lead to the
observed single activation energy and to the fractional

FIG. 14. Temperature coefficient ð∂Δge=∂TÞnoise from the
Bayesian temperature decorrelation of the lowest frequency
datum vs the temperature coefficient ∂Δge=∂T of Fig. 12. The
dashed line is the result of a linear least square fit, which gives
ð∂Δge=∂TÞnoise¼ð1.0�0.1Þ∂Δge=∂Tþð−0.3�0.2Þ pms−2K−1,
with a reduced χ-square χ2 ≃ 0.6.

FIG. 13. ∂Δg=∂t vs ∂SBrown=∂t. Black points are the data for the
nominal calibration, and the black dashed line is the linear, least
square best fit to the black points with ∂Δg=∂t ¼ αt∂SBrown=∂t
and αt ¼ ð1.4� 0.2Þ × 1018 s=m. Red data and line have the
same meaning, but for the optimized calibration. In this case
αt ¼ ð1.44� 0.07Þ × 1018 s=m.
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exponent in the power-law dependence of the data
over time.
In addition, the analysis reported in Appendix F 2

indicates that such complex TM surroundings, which create
a rather asymmetric molecular flow impedance pattern,
may also naturally explain the observed slowly varying
pressure difference discussed in Sec. V F.
Finally, the observed tight link between the total residual

pressure, as measured by the Brownian noise level, and the
decaying drift in Δg, with both time and temperature,
implies, as a minimum, the same desorption properties
for the gas setting the overall residual pressure and the
pressure gradients.
The most simple explanation for this is that the dominant

source of outgassing in the GRS is diffusion out of sources
close to the TM, that is, located inside the EH or just
outside its x walls. These sources may include the electro-
des, the insulators and the structure of the EH, the tungsten
balance mass, the cables placed close to the outer x walls of
the EH, and a few other elements.
These observations lead to the recommendation to

perform, in preparation for LISA, in-depth qualification
studies on the outgassing properties of these elements.

B. Excess noise and possible observational artifacts
(details in Appendix G)

Here we begin discussing the possible sources of the
observed 1=f tail. We first consider the role of some
possible observational artifacts, while a detailed projection
of the noise onto the possible modeled sources is discussed
further down.

1. Role of interferometer noise

The contribution of interferometer noise nOMS, with
ASD S1=2nOMS , to S1=2Δg is S1=2Δg;n ¼ S1=2nOMSð4π2f2 þ jω2

2jÞ.
Thus, for f ≤ jω2j=2π, a branch of S1=2nOMS , raising rapidly

enough upon decreasing frequency, may have contributed
to S1=2Δg;e.
In Appendix G 1 we use two independent methods to put

an upper limit on such a possible contribution. The first
uses data taken with the test masses held fixed by the
blocking mechanism; the second exploits the independent
capacitive measurement of the relative motion of the
TMs ΔXGRS.
The conclusion of the analysis is a rather conservative

upper limit that places this contribution at most at some
1%–2% in power of the total excess noise.

2. Excess noise as a flow of undetected glitches

As soon as transient events, known as glitches, were
observed in the data [20] and removed from them, the
question arose if the excess noise might be due to an
undetected and nonremoved fraction of glitches. Not only

is the question a legitimate one, but it is also made
particularly relevant by the observation that both the glitch
properties and the excess noise appeared rather stable
throughout the mission, despite the changes in operation
conditions [20].
We have addressed the question by performing extensive

simulations. The detail of such simulation work is reported
in Appendix G 2.
The basic conclusion is that the excess noise might be

due to a Poisson flow of undetected glitches, but those
glitches would belong to a distribution quite well separated
in properties from that of the detected ones. In addition, the
flow rate should be high enough that the resulting noise
would be stationary and Gaussian, bearing no detectable
feature proving its Poisson nature.
Thus if the 1=f tail is made of Poisson noise, this is not

related to the observed glitches, and its Poisson nature does
not show up in the data.

C. Projection of excess noise on modeled noise sources
(details in Appendix H)

In this section, we estimate the contribution of modeled
sources of force noise to the observed excess over the
Brownian noise.
Our approach is to give a quantitative estimate of those

contributions whenever they appear to be significantly
different from zero, while we try to establish an upper
limit whenever the resolution of our methods limits the
estimate.
We focus our analysis on the run performed in February

2017, run 10 of Table I, which is the lowest noise one.
We will also discuss, whenever relevant, the case for the
other runs.
We consider two categories of sources: the first includes

the effect of physical quantities that have been measured
during noise runs, synchronously with Δg; the second
includes effects for which we have an estimate from
different experiments, performed at different times from
those of the noise runs.
For sources of the first category, we infer their contri-

bution to the ASD of Δg via a “decorrelation” method
explained in Appendix H. The method also returns the
“susceptibilities” of Δg to these disturbances. For those in
the second category, we just give the best estimate of the
contributed noise ASD.

1. Decorrelation analysis of synchronous time series

During noise runs we have measured, synchronously
with Δg:
(a) the gravitational force loss due to fuel depletion;
(b) the relative motion of the two GRSs;
(c) the temperature;
(d) the two temperature differences across the two elec-

trode housings, in the x direction;
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(e) the three magnetic field components at four different
locations; and

(f) a series of spurious low-frequency voltages that have
unintentionally been applied to the electrodes via the
actuation circuitry nonlinearity.

A more precise definition of the above time series is
contained in Appendix H 1. The decorrelation technique is
described in Appendix H. The three series listed in points
a, b, and c above are separated in this analysis, as these
time series are likely to be affected by significant and
unknown readout noise (see Appendix H 2 b), while for the
remaining ones the readout noise is known to be negligible
(see Appendix H 2 a).
The results of the decorrelation analyses for the

contribution of these sources to Δg (see Appendixes H 3
and H 4) are summarized in Fig. 15.
In addition, whenever the analyses give a posterior

estimate of susceptibility values, these are found to be
compatible with our prior knowledge of the physical
system (see Appendix H 3).

D. Modeled contributions from different experiments

As said, in addition to the disturbances discussed in
the previous section, there is another set of effects that
we could estimate from dedicated measurements
separated from the noise measurements. The results of
these experiments have been published in dedicated pub-
lications [22,33,35]. We list these disturbances in the
following and use the results from those experiments.

(i) Actuation gain noise. This is the largest known
contribution to the LPF noise in Δge. It consists of

the effect of the gain fluctuations of the amplifiers
that apply the audio-frequency actuation voltages to
the TMs. During LPF operations we performed an
extensive experimental campaign to model this
force. The details of the measurements and of their
results are the subject of a dedicated paper [33].
In Fig. 16, blue points, we report from [33] the
�1σ-credible interval of the posterior for its con-
tribution to SΔg. Note that gain fluctuations also
affect rotational actuation [33] and induce a corre-
lation between Δg and Δγϕ. The figures in Fig. 16
are in agreement with the effective crosstalk arm
discussed in Sec. V D.

(ii) In-band voltage noise. Actuation voltage fluctua-
tions within the measurement frequency band induce
noisy forces on the test masses by coupling to their
dc counterparts. Results of the measurements on this
effect performed during LPF operations can also be
found in [33] and are reported again in Fig. 16 as
orange points.

(iii) Random charging. The effect of noisy charging due
to cosmic rays was estimated in [22] to be in
quantitative agreement with an equivalent Poisson
flow of single elementary charges arriving at a rate
λeff ∼ 1 × 103 s−1. This Poisson charge flow con-
verts into a force noise through the effective dc
voltage across the TM electrode capacitor system
Δx, as described in Ref. [22]. Considering residual
dc voltages—after compensation as in Table V—of
jΔx;1j ∼ jΔx;2j ∼ 5 mV, the effect of random charg-
ing noise is shown as brown points in Fig. 16.

(iv) Laser radiation pressure. Fluctuation of the radiation
pressure of the measurement laser beam induces a

FIG. 16. Estimated contributions to acceleration noise, for run 10
and within the [36 μHz, 0.77 mHz] frequency band, of actuation
gain fluctuations (blue points, data adapted from [33]), in-band
voltage fluctuations (orange points, data adapted from [33]),
cosmic ray charging fluctuations (brown points, estimate taken
from [22]), and laser radiation pressure fluctuations (green points,
data adapted from [35]). For reference, we also report the ASD of
the excess noise over Brownian S1=2Δge as in Fig. 2, red points.

FIG. 15. Decorrelation of synchronous time series for run 10,
over the [36 μHz, 0.77 mHz] frequency band. Frequencies are
slightly shifted for clarity. Red points, ASD of total excess noise
over Brownian, S1=2Δge , as in Fig. 2; all other points, Bayesian
posterior�1σ interval for the residual ASD after decorrelation for
the time series indicated in the legend; solid blue line, 1σ upper
bound for the contribution of LTP distortion and of pressure-
mediated temperature effect to S1=2Δge . This figure summarizes
Figs. 24–28 in Appendix H.
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differential force on the TMs. The measurement
beam reflects off TM1 and TM2, with nominal
power P1 ¼ 2.4 and P2 ¼ 1.2 mW, respectively.
Relative fluctuations δP1=P1 and δP2=P2 induce a
force Δg≃ 8 pms−2ðδP1=P1Þ þ 4 pms−2ðδP2=P2Þ.
Unfortunately, on LPF there was no direct meas-
urement of the instantaneous total optical power
reflected off the test masses. However, [35] proposes
a thorough analysis of the range of values of the
contribution of this phenomenon to SΔg. The analy-
sis gets two possible estimates depending on the
(unknown) sign of the correlation between different
light polarizations. In Fig. 16 (green points) we
report the overall range spanned by the �1σ un-
certainty of both options.

E. Summary of modeled contributions to excess noise

In Fig. 17 we report the ASD of the sum Sc;tot of all
contributions to the excess over Brownian SΔge that we
have found to be, at least at some frequency in the [36 μHz,
0.77 mHz] band, statistically different from zero: tank
depletion gravitational noise, magnetic fields, actuation
gain fluctuations (that dominates the sum), in-band voltage
fluctuations, random charging, and laser radiation pressure.
We have built the posterior for Sc;tot by adding,

whenever available, the samples of the Sc posteriors of
the various disturbances. For random charging and laser
radiation pressure, for which we only had an error
interval, we have assumed a Gaussian distribution with
the �1σ interval coinciding with the said error one. Given
the smallness of their contributions, the results are largely
independent of the specific choice of such an equivalent
posterior.

From the posterior for Sc;tot and that for SΔge, we have
built for their difference, our best estimate of the residual
noise after subtraction of the effect of all modeled disturb-
ances listed above. The results are shown again in Fig. 17 as
the ASD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΔge − Sc;tot

p
.

Such an ASD can be fit, in the range 36 ≤ f ≤ 460 μHz,
to a power law S̃1=20 ð1 mHz=fÞ (see Fig. 17), with

S̃1=20 ¼ ð0.67� 0.05Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and a reduced

χ-square ≃1, which allows a direct comparison with
the value of S̃1=2Δge (see Sec. V B) for run 10, of S̃1=2Δge ¼
ð0.91� 0.04Þ fm s−2=

ffiffiffiffiffiffi
Hz

p
. The ratio of their square

S̃0=S̃Δge ¼ ð0.54� 0.09Þ gives the fraction of noise power
that remains unexplained after our noise projection, the
basic result of the procedure.
We have repeated our decorrelation procedure for the

other runs in order to assess if some of the observed
variability of S̃Δge (see Fig. 5) might be due to correspond-
ing variations of some of the considered disturbances, and
we could not find any evidence of that.
Among the disturbances in Sec. VI D, actuation gain

fluctuations are the dominating ones. Unfortunately,
we cannot assess the variability of those sources,
as they were all determined in dedicated experiments.
To justify the observed 20% variability of S̃Δge by a
corresponding variability of those, the latter should be of
order 50%.
On the opposite end, if the entire variability is due to

the 55% unjustified fraction, this should fluctuate by
some 40%.
Finally, we have not included, in the above analysis,

the contributions that we have found to be compatible
with zero: LTP distortion, spurious actuation, and
thermal gradients. While the addition of the latest two
would not change the results in any appreciable way, the
case of the distortion is different. Actually, the sum of
the þ1σ value of Sc;tot in Fig. 17 and the 1σ limit for
Sc;tot of Fig. 28, falls within the �1σ-credible interval of
SΔge for f ≥ f5.
As said in Appendix H 4 b, however, this limit is likely to

be significantly overestimated. The argument discussed in
Appendix H 4 b, for instance, would reduce this contribu-
tion to no more than some 10% in power at the highest
frequencies.

VII. THE UNEXPLAINED EXCESS: SUMMARY
OF POSSIBLE SOURCES AND IMPLICATIONS

FOR LISA (DETAILS IN APPENDIX I)

The previous section concludes that (0.54� 0.09) of the
measured excess noise power remains unexplained by the
sources for which we had a quantitative estimate. In
Appendix I we discuss the most likely sources of this
unexplained fraction and the measures one can possibly
take to ensure that they do not compromise the LISA

FIG. 17. Total modeled contributions to S1=2Δge , for run 10 in the
[36 μHz, 0.77 mHz] frequency band. Red points, ASD S1=2Δge of
excess over Brownian; dark blue points, modeled contributions
S1=2c;tot, as described in the text; light brown points, posterior
for difference

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΔge − Sc;tot

p
. The dashed line is the best fit

to the difference with exponent n ¼ 1.00,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΔge − Sc;tot

p ¼
0.67 fm s−2=

ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ1.00.
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performance. In summary, the discussion considers the
following disturbances:

(i) Interaction of the quasistatic part of patch potentials
with the time fluctuations of these (see Appendix I 1).
This is an effect due to patch potentials that is not
covered by Sec. VI D.

(ii) Inaccuracy in the calibration of the applied forces
gcðtÞ (see Appendix I 2), which dominate the spec-
trum at submillihertz frequencies, including that
resulting from unaccounted nonlinearities in the
applied voltages time series.

(iii) Unmodeled gravitational noise, excluding modeled
contributions from propellant tank depletion and
LTP distortion, which are addressed in Appendix I 3.
Indeed any other mass motion, either because of
distortion of solid parts or because of evaporation of
volatile fractions, may cause gravitational force
noise and may have contributed to excess noise.

(iv) Pressure fluctuations (see Appendix I 4). As the
complex geometry of the TM environment may
create quasistatic pressure gradients, any in-band
fluctuation of such gradients would directly translate
into an in-band acceleration fluctuation.

(v) High-frequency magnetic field noise (see
Appendix I 5). In addition to low-frequency effects,
discussed in Sec. VI C, magnetic fields at high
frequency may induce eddy currents within the test
masses and then exert Lorentz forces on them [36].
The effect is thus quadratic and would convert the
low-frequency amplitude fluctuations of a high-
frequency magnetic spectral line into a correspond-
ing low-frequency force.

Based on the analysis of the disturbances mentioned
above, we outline in Appendix I several measures to control
these potential noise sources. These measures include a
series of ground tests focusing on the nature of the
atmosphere and surface adsorbates within the VE, the
magnetic characterization of the spacecraft in the audio-
frequency band, and the properties of the front-end elec-
tronics (FEE). Additionally, a cautious and conservative
approach in designing some key features of the LISA
spacecraft and GRS is recommended to minimize devia-
tions from the LPF design.

VIII. CONCLUDING REMARKS

LISA Pathfinder reached an acceleration noise perfor-
mance achieving the LISA requirements with margin and
better than both its requirements and what had been
estimated before launch [36].
This last achievement was mostly allowed by two facts:
(i) a much better self-gravity cancellation than what had

been very cautiously estimated on ground, which in
turn allowed using much less electrostatic force
authority than predicted [3] and suppressing accord-
ingly the actuation noise; and

(ii) the achievement, over the course of the mission,
of a lower base pressure, and thus a lower
Brownian noise, than had been assumed in prel-
aunch estimates [36].

Both these facts revealed the existence of an excess noise
above the Brownian noise level, with a 1=f2 PSD.
Based on this starting framework, in this paper we have
(i) shown that the Brownian noise evolved in agreement

with the outgassing of a single gaseous species
diffusing out of the immediate, complex surroundings
of the TM, where such outgassing also maintains a
quasistatic pressure gradient across the TM;

(ii) shown that the temperature stability of the system
was good enough that temperature fluctuation
played a significant role in the acceleration noise
only at the lowest analyzed frequency 18 μHz, well
below the LISA lower frequency of 0.1 mHz;

(iii) shown that the intrinsic stability of the 1=f2 excess
PSD (referred to in the article as 1=f excess for ASD)
was �20% in amplitude over more than 16 months,
with the residual fluctuations being independent of
any traceable change in the operational conditions
that were needed to run the mission;

(iv) analyzed all sources of noise for which we had a
verified model, either from correlation analysis or
from dedicated experiments, and concluded that
these sources account for a fraction 0.46� 0.09
of the total power of the excess; and

(v) finally discussed all possible explanations we could
trace for the unaccounted part of the excess, patch
potentials, actuation electronics nonlinearity, gravi-
tational noise, audio-frequency magnetic fields, and
pressure fluctuations and identified possible mea-
sures to keep them under full control during the
implementation of LISA.
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APPENDIXES

The following Appendixes contain some rather impor-
tant information, tables, and calculations.

In Appendix A, we give details about the analyzed
noise runs.

In Appendix B, we describe our spectral analysis tools
and PSD estimation methods.

In Appendix C, we list the frequencies used in PSD
estimation.

In Appendix D, we provide the ASD of ΔgðtÞ for all
analyzed noise runs.

In Appendix E, we present the calculations for instru-
ment distortion analysis and the drift evaluation
procedure.

In Appendix F, we discuss the evolution of Brownian
noise and the long-term drift.

In Appendix G, we discuss possible observational
artifacts: the role of interferometer noise and under-
threshold glitches.

In Appendix H, we present the decorrelation of mea-
sured time series. First, we describe the analysis
framework and our statistical methods, then we apply
them to measurements.

In Appendix I, we provide a rather detailed discussion
about the possible sources behind the unmodeled
excess noise.

APPENDIX A: EXPERIMENTAL
CONFIGURATIONS FOR THE 13 RUNS

There were minor differences in the operating conditions
of the 13 runs of Table I. We describe them in the following
and summarize the different configurations in Table II.

(i) Thruster propellant was stored in three different
tanks. The gravitational signal from the depletion of
these tanks was different, due to the different
positions. In Table II, we name these three tanks
as 1, 2, and 3.

(ii) For redundancy reasons, LPF carried two indepen-
dent branches of microthrusters [13]. In Table II,
we call them A and B.

(iii) The electrostatic controllers needed a setting for
the maximum force/torque authority they could
deliver within a linear regime [19]. These settings

TABLE II. Experimental configuration for the 12 different runs of Table I. The meaning of the numeric labels is
explained in the text.

Run
Propellant

tank
Thruster
branch

Actuation
authority

TM
alignment

Voltage
compensation

Heater
configuration

ST7
state

1 2 A URLA 1 1 1 OFF
2 2 A UURLA 1 1 1 OFF
3 2 A UURLA 1 2 1 OFF
4 3 A UURLA 2 3 1 OFF
5 3 A UURLA 3 3 2 DIAG
6 1 A UURLA 3 3 2 DIAG
7 3 B UURLA 3 3 2 DIAG
8 1 B UURLA 3 3 3 DIAG
9 1 B UURLA 3 4 4 OFF
10 1 B UURLA 3 4 5 OFF
11 3 A UURLA 3 4 6 OFF
12 3 A UURLA 3 4 1 OFF
13 3 A UURLA 3 4 1 OFF
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determine the zero-actuation voltages commanded
to the various electrodes. The settings were identical
for all the considered runs except for the first one.
Values are reported in Table III.

(iv) In the attempt to reduce crosstalk between the
differential interferometer readout and the motion
of the remaining TM degrees of freedom [16], we
performed three different adjustments of the zero set
points of all control loops. The most relevant ones
were those for the angular orientations of the
TM along z and y. The three set points, named 1,
2, and 3, are listed in Table IV.

(v) Random TM charging due to cosmic rays couples to
dc voltage differences between the TM and the
surrounding metal surfaces to produce random force
and torque [22]. This noise may be suppressed by
purposely applying some dc voltages to the various
electrodes, in order to compensate the parasitic ones
that are found on metal surfaces because of work
function differences [22]. In particular, the force
along x and the torque along ϕ may be compensated
by a proper combination of voltages on the electrodes
facing the x faces of the TMs. These compensation
voltages may be described by just voltage parameters
Δx and Δϕ as explained in [22]. In the course of the
mission we have made some adjustments of these

parameters for both TMs. The various configurations
are listed in Table V.

(vi) While the noise runs in Table I were all performed
by using the satellite cold gas thrusters for drag-free
control [13], LPF also carried a set of alternative
thrusters based on colloidal propellant technology,
in the framework of NASA ST7 mission [34]. These
thrusters were used intermittently, leaving them, for
purpose of diagnostics, in some activated state even
when not in use, in the two epochs from June 27,
2016 to December 7, 2016 and fromMarch 18, 2017
to April 29, 2017. In Table II we indicate such state
as DIAG, while the completely off state is indicated
with OFF.

APPENDIX B: SPECTRAL ESTIMATION
METHODS

1. Periodograms and their spectral properties

We use, for the elementary periodogram XðkÞ of the
N-sample series x½n�, sampled with sampling time T, the
standard definition

XðkÞ ¼
ffiffiffiffi
T
N

r XN−1

n¼0

x½n�w½n�e−2πikn=N; ðB1Þ

where w½n� are the coefficients of a Blackman-
Harris spectral window, which gives good side-lobe
suppression [37].
Following the Welch method [38], we section our data

series in as many 50% overlapping data stretches of length
N as they fit into the length of the data series and define the
average, one-sided experimental PSD at frequency f,

Π
�
f ¼ k

NT

�
¼ 2

M

XM
l¼1

XðlÞðkÞX�
ðlÞðkÞ; ðB2Þ

where the index l runs over the M data stretches, and k is
the frequency index.
For multiple synchronously measured data series xi½n�,

with 1 ≤ i ≤ p, Eq. (B2) generalizes to the (one-sided)
experimental cross-power-spectral-density (CPSD) matrix
Π, with elements

TABLE V. Compensation voltages for the four adopted set-
tings. The index indicates the TM.

Voltage (mV) Setting 1 Setting 2 Setting 3 Setting 4

Δx;1 0 þ24 þ12 þ24

Δx;2 0 0 0 0
Δϕ;1 0 0 0 þ32

Δϕ;2 0 0 0 −116

TABLE III. Actuation authorities, Fa;i and Na;i, respectively,
the maximum force and the maximum torque applicable on TMi
along axis a.

URLA UURLA

Fx;1 (pN) 0 0
Fx;2 (pN) 50 50
Nx;1 (pN m) 16.37 4
Nx;2 (pN m) 16.37 4
Fy;1 (pN) 3670 1000
Fy;2 (pN) 3670 1000
Ny;1 (pN m) 13.32 4
Ny;2 (pN m) 13.32 4
Fz;1 (pN) 5820 500
Fz;2 (pN) 5820 500
Nz;1 (pN m) 1.5 1.5
Nz;2 (pN m) 1 1

TABLE IV. The three different set points for the angular
orientations of the TMs along z (ϕ) and y (η), used during the
noise runs. The index indicates which TM each angle refers to.
Angles are relative to a reference frame defined by the OMS.

Angle (μrad) Set point 1 Set point 2 Set point 3

ϕ1 −59.25 −56.32 −61.2
ϕ2 −21.35 −33.01 −9.7
η1 −3.5 −2.14 −4.9
η2 3.5 10.3 −3.3
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Πij

�
f ¼ k

NT

�
¼ 2

M

XM
l¼1

Xi;ðlÞðkÞX�
j;ðlÞðkÞ; ðB3Þ

a complex and Hermitian matrix. It is also positive definite
if M ≥ p. Our founding point is that, if the xiðtÞ are
Gaussian, zero-mean stationary stochastic processes, with
a theoretical cross-spectral density matrix Σ, then the
matrix W, whose elements are Wij ¼ MΠij, is distributed
like a complex Wishart distribution [39,40],

pðWjΣÞ ¼ jWjM−p

Γ̃pðMÞjΣjM etr½−Σ−1W�; ðB4Þ

where j · j is the determinant, etr is the exponential trace
etrð·Þ ¼ exp ðtrð·ÞÞ, and Γ̃pðMÞ is the multivariate complex
Γ function, defined by

Γ̃pðMÞ ¼ π
1
2
pðp−1ÞYp

i¼1

ΓðM − iþ 1Þ:

We denote this distribution as CWðΣ;MÞ and indicate
that W follows this distribution as W ∼ CWðΣ;MÞ.
Note that in Eq. (B4) it is required thatM ≥ p, otherwise

the matrixW is singular. This distribution is the basis of our
spectral analysis method.

2. PSD estimation

For p ¼ 1, CWðΣ;MÞ ¼ CWðSx;MÞ ¼ ΓðM;M=SxÞ,
with Γðα; θÞ the Γ distribution with shape parameter α
and scale parameter θ, and with Sx the theoretical PSD of
the sole series xðtÞ.
This distribution can be used, along with a proper prior,

to build the Bayesian posterior for Sx. According to
standard, physically sound practice, we take an uninform-
ative flat prior in the logarithm of S, which is a prior
proportional to 1=S. For p ¼ 1 this also coincides with the
Jeffreys reparametrization-independent prior [26].
Such choice gives a posterior for S that is distributed as

an inverse-Γ distribution, with shape parameterM and scale
parameter MΠ,

pðSjΠ;MÞ ∼ invΓðM;MΠÞ: ðB5Þ
The expected value of this posterior, hSi¼MΠ=ðM−1Þ,

is slightly biased and diverges for M → 1. However, the
posterior probability density function remains well behaved
even in such limit case. We have checked, by a simple
numerical simulation, that, for all values of M and for
Gaussian data, the theoretical value lies in the p-credible
interval with probability p.
Based on this posterior distribution, we compute the

equally tailed p-credible interval from the ð1� pÞ=2 quan-
tiles of the distribution. Unless otherwise specified, error bars
in our plots correspond top ¼ 68.3%, as for the�1σ interval
in a normal distribution. The dots in those same plots

represent the median of the distribution, which remains well
behaved also forM ¼ 1 and has a smaller bias than themean.
Note that, more in general, everywhere in the paper with the
“nσ interval” we indicate the equal-tailed, p-credible interval
of any probability distribution, with p the probability for a
normal random variable to fall in the interval�nσ, with σ its
standard deviation.
Note that the adoption of the Jeffreys prior represents a

slight modification with respect to the choice adopted
in [2]. There the adopted prior was flat in S, as opposed
to flat in its logarithm. Such a choice gives a distribution
pðSjΠ;MÞ ∼ invΓðM − 1;MΠÞ, which has a slightly larger
bias, MΠ=ðM − 2Þ, relative to ΓðM − 1;MΠÞ.
In the data of [2], thanks to the large number of

periodograms allowed by the long duration of the run,
such an increase in bias, at the two lowest frequencies for
whichM ¼ 9, is ≃15%, a figure still significantly less than
width of the posterior. At higher frequencies the increase
in bias becomes completely negligible. For some of the
shortest runs discussed here, however, the bias resulting
from a prior flat in S may become significant.

APPENDIX C: CHOICE OF
QUASI-INDEPENDENT FREQUENCIES

As presented in Supplemental Material of [2], we evaluate
the CPSD at log-spaced frequencies, such that the correlation
among adjacent frequencies is kept below 5%. The number
of averaged periodograms M varies with frequency, so that
the variance is optimally reduced as more periodograms are
available. However, M is the same for the first and second
frequencies: even though this induces a slightly higher
correlation, it allows us to analyze the lowest frequency,
18 μHz. Frequencies are chosen so that the lowest bins
always have a fair amount of periodograms, and the fourth
one (0.1 mHz) is the lower bound of the official LISA
frequency band. The frequencies are listed in Table VI.

TABLE VI. List of frequencies used for spectral estimation.

f (mHz)

1 0.018
2 0.036
3 0.060
4 0.10
5 0.17
6 0.28
7 0.46
8 0.77
9 1.3
10 2.1
11 3.6
12 6.0
13 9.9
14 17
15 28
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APPENDIX D: ASD OF ΔgðtÞ FOR ALL RUNS

Figures 18 and 19 show the ASD for all runs of Table I,
except for run 10 which is shown in Fig. 2.

APPENDIX E: CALCULATION OF
GRAVITATIONAL LONG-TERM VARIATIONS

1. Instrument distortion

As already said in Sec. V F, the capacitive motion sensor
gives a measurement of the relative motion of the GRS
relative to its own test mass, xGRS;i ¼ xi − Xi. Here the
suffix i indicates the test mass, and Xi is the coordinate of
the GRS surrounding TMi.
As we are only interested in time variations of

differences of coordinates, here the reference frame may
be taken as that of the spacecraft, and each coordinate is
zero at the nominal position of the body it belongs to, that
is, at the position of the body in the absence of distortion.
The variation of gravitational field due to such distortion-

induced motion of both GRS and the TMs can be written as

ΔgDist;0¼−ω2
2;2ðx2−X2Þ−ω2

SC;2x2−ω2
2;1ðx2−X1Þ

þω2
1;1ðx1−X1Þþω2

SC;1x1þω2
1;2ðx1−X2Þ: ðE1Þ

Here −ω2
i;j is the force gradient (per unit mass) caused by

GRS j on TM i and −ω2
SC;i is that caused by all the

remaining parts of the spacecraft, mostly the OMS,
on TM i. Notice that ω2

i in Eq. (1) is given by ω2
i ¼

ðω2
i;i þ ω2

SC;i þ ω2
i;jÞ.

Within this model the Δg time series is expected to be
affected by a distortion-induced component,

ΔgDist ¼ ΔgDist;0 þ ω2
2ðx2 − x1Þ þ ðω2

2 − ω2
1Þx1

¼ ðω2
2;2 − ω2

2;1ÞX2 − ðω2
1;1 − ω2

1;2ÞX1

≃ ðω2
2;2 − ω2

2;1ÞðX2 − X1Þ: ðE2Þ

The last simplification comes from the fact that, due the
symmetry of the instrument, ðω2

2;2 − ω2
2;1Þ ≃ ðω2

1;1 − ω2
1;2Þ

FIG. 18. PSD of ΔgðtÞ for runs from 1 to 6. The meaning of all symbols is the same as in Fig. 2.
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within the same accuracy within which ω2
1 ≃ ω2

2, as dis-
cussed in Sec. II B.
The relative motion of the two GRSs, Δx ¼ X2 − X1,

can be obtained as

ΔX ¼ X2 − X1 ¼ ΔxOMS − ΔxGRS
¼ x2 − x1 − ððx2 − X2Þ − ðx1 − X1ÞÞ: ðE3Þ

Thus, in conclusion,

ΔgDist ¼ ðω2
2;2 − ω2

2;1ÞðΔxOMS − ΔxGRSÞ
≡ ω2

dðΔxOMS − ΔxGRSÞ: ðE4Þ

ω2
2;2 is dominated by both gravitational and electrical

effects [18], while the origin of ω2
2;1 is just gravitational. We

can get an estimate of the electrical terms from [18], while
the gravitational components have been estimated in [41],
within the work to suppress the gravitational field at the TM
location [11].

Based on these references, we calculate ω2
d ¼

ð−3.32� 0.05Þ × 10−7 s−2.

2. Propellant tank depletion

The sign and the magnitude of ΔgTanks depends on the
specific tanks from which the propellant is taken. Tanks 1
and 2 of Table II in Appendix A produce, respectively, a
ΔgTanks of λt;1 ≃þ39 and λt;2 ≃þ37 pm s−2 kg−1 per unit
mass of contained propellant, while for tank 3 this figure is
instead λt;3 ≃ −43 pm s−2 kg−1. These figures are the result
of a numerical calculation on the geometry and location of
the tanks and are affected by a relative error of ≃5%.
The mass loss is monitored by set of flow meters, one for

each of the thrusters, that measure the instantaneous flow of
mass through that thruster. As the thrusting system contains
two branches (see Appendix A), the measurement of the
total flow of mass from the tank in use during any given run
ṁ is the sum of the readings of the six flow meters of the
thrusters belonging to the branch in use during that specific

FIG. 19. PSD of ΔgðtÞ for runs from 7 to 13, except for run 10 which has already been shown in Fig. 2. The meaning of all symbols is
the same as in Fig. 2.
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run. We estimate an absolute accuracy on ṁ, for both
branches, of the order of 10%.
From the figures above, one can estimate ΔgTank, during

a specific run that uses tank i and branch j, as

ΔgTankðtÞ ¼ κt;iλt;iκb;j

�
mjð0Þ −

Z
t

0

ṁjðtÞdt
�

≡ κt;iκb;jΔgTank;0;i;jðtÞ þ c: ðE5Þ

Here we have introduced
(i) a calibration factor κt;i for the gravitational gradient

of tank i,
(ii) a calibration factor κb;j for the reading ṁjðtÞ of the

mass outflow from tank j,
(iii) the initial propellant mass mjð0Þ,
(iv) the nominal signal ΔgTank;0;i;jðtÞ ¼

−λt;i
R
t
0 ṁjðtÞdt, and

(v) the constant c ¼ λt;iκt;iκb;jmjð0Þ that has no rel-
evance for the discussion.

In Sec. V F we discuss both the nominal case κt;i¼ κb;j¼1

and some other options.

3. Drift evaluation procedure

On the long timescale of days or more we are considering
here, all data series have strong autocorrelation. Thus the
linear square fitting to data, which we do to estimate the
residual drift, does not allow a consistent and unbiased
estimate of errors. To partially circumvent this limitation
we have resorted to the following procedure.

(i) We chose the values for κt;i, κb;j, and ω2
d. One

obvious choice is κt;i ¼ κb;j ¼ 1 for all values of i
and j, and ω2

d ¼ −3.32 × 10−7 s−2 that we call the
nominal calibration.

(ii) For each run, we partition all relevant data series into
one-day-long nonoverlapping stretches. Let us call
Nk the resulting number of stretches for run k.

(iii) For each of the stretches in one run, we form
the “corrected” data series ΔgcðtÞ ¼ ΔgðtÞ − κt;
iκb;jΔgTank;0;i;jðtÞ − ω2

dðΔxOMS − ΔxGRSÞ, using
the proper values for tank i and branch j used in
that same run.

(iv) Again for each of the stretches in one run, we
perform a least square fitting of ΔgcðtÞ with the
model

ΔgcðtÞ ¼ cTT þ cttþ c: ðE6Þ

(v) From the Nk long sample of fitting coefficient pairs
cT;j; ct;j, with 1 ≤ j ≤ Nk, obtained by fitting the Nk

stretches of run k, we form the average partial
derivatives ð∂Δg=∂TÞk ≡ ð1=NÞPN

k¼1 cT;k and
ð∂Δg=∂tÞk ≡ ð1=NÞPN

k¼1 ct;k and the correspond-
ing variances σ2T;k and σ2t;k.

(vi) As Nk is quite small for many of the runs, to get
a more solid estimate of the mean fluctuation of a
single determination of coefficients, we make a
weighted average over the variance on the entire
set of run,

σT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

13
k¼1 ðNk − 1Þσ2T;kP

13
k¼1 ðNk − 1Þ

s
;

σt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

13
k¼1 ðNk − 1Þσ2t;kP
13
k¼1 ðNk − 1Þ

s
:

(vii) Finally, we take σT=
ffiffiffiffiffiffi
Nk

p
and σt=

ffiffiffiffiffiffi
Nk

p
as the

uncertainty on ð∂Δg=∂TÞk and ð∂Δg=∂tÞk,
respectively.

It is worth stressing that such a procedure remains largely
empirical and that coefficients from stretches within the
same run may still be correlated so that the errors may be
still underestimated. However, the main results of the
discussion in Sec. V F should depend only weakly on
the details of the procedure.

APPENDIX F: BROWNIAN NOISE AND
LONG-TERM DRIFT

1. Brownian noise

Power-law evolution of pressure over time is very
often observed in vacuum systems during initial pump
down [28]. When the outgassing surfaces consist predomi-
nantly of metals, like stainless steel, aluminum, or titanium,
a ∝ 1=t behavior is very often observed, consistent with
models in which water vapor is in quasiequilibrium
between thermal outgassing from the metal walls and
readsorption onto them. To check if this model would be
consistent also with our observed ∝ 1=t0.8 behavior, we
have attempted to fit our observations to it. To this aim, we
have integrated the differential equation (see [29])

1

P
dP
dt

¼ −
1
τ þ Ps

P
dθ
dT

dT
dt

1þ Ps
dθ
dP

ðF1Þ

that, within such model, describes the time evolution of
pressure. Here

(i) θðP; TÞ is the fraction of occupied adsorption sites;
(ii) Ps ¼ NskBT=V, with Ns the total number of avail-

able adsorption sites and V the vacuum enclosure
volume; and

(iii) τ is the vacuum relaxation time of the vacuum
enclosure, in the absence of outgassing and
adsorption, which is set by V and by the
pumping speed of the vent duct and is of the
order of 0.2 s.

Equation (F1) can only be solved in combination with a
choice for the functional form of θðP; TÞ. A versatile form
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that reproduces observations in many cases is the Temkin
isotherm [42],

θðP; TÞ ¼ T
T2 − T1

log

 
1þ P

P0e−T2=T

1þ P
P0e−T1=T

!
; ðF2Þ

with P0, T1, and T2 as free parameters of the model. We
have done a least squares fit of the observed values of
SBrown=ð2κÞ to the prediction of Eq. (F1), as a function of
Ps, τ, P0, T1, and T2. For each choice of the parameters
we have integrated Eq. (F1) and calculated the χ-square
of the deviation of the data from the resulting solution. To
integrate the equation, we have used the mean measured
GRS temperature, mentioned before, throughout the
entire integration time interval, except for the short
duration epoch of the cold run, where we have used
the proxy made with the LTP bay thermometers, also
mentioned before.
The best-fit line is the dotted gray line in Fig. 3. The

reduced χ-square of the minimum is rather poor ≃2.0,
though this can be, at least in part, due to a significant
underestimation of the true uncertainties in the model.
A more serious limitation with such an interpretation

lies in the best-fit parameter values. Let us first mention
that, provided P0e−T2=T ≪ P ≪ P0e−T1=T , the χ-square is
found to depend only on P0 and on the combination
c ¼ ðT2 − T1Þ=ðτPsÞ. Such a simplification can also be
readily derived from an inspection of Eqs. (F1) and (F2).
For these two parameters, the fit gives a broad minimum for
logP0, log10ðP0=1 kPaÞ ¼ ð1.4� 0.3Þ and a relatively
narrow minimum for c, c ¼ ð0.328� 0.004Þ Kd−1 μPa−1.
The value for P0, P0 ≃ 25 kPa ≃ 200 Torr is orders of

magnitude smaller than the quoted, for instance, in [42] of
about 6 × 108 Torr, and within the theory discussed in that
same reference, the only way to get such a small number
would be to assume an unreasonably low density of
adsorbing sites or an equally unreasonably high molecular
attempt frequency.
Furthermore, of the four parameters that enter in the

definition of c, τ can be independently evaluated from the
estimated conductance of the vacuum valve and the vent
duct, and from the volume of the vacuum enclosure, to be
τ ≃ 0.3 s. A possible choice for the temperature values is
given in [42] and is T1 ≃ 5.3 and T2 ≃ 11 kK. The value
for T1 is only marginally fulfilling the condition on
the pressure range. The closest value that still keeps the
χ-square at its minimum is T1 ¼ 4.5 kK. With this choice
for τ, T1, and T2, we get PS ¼ ð6.0� 0.1Þ kPa. In turn,
from this value for Ps, assuming, as in [42] a density of sites
≃3 × 1015 cm−2, we get an estimate for the internal area of
the vacuum enclosure of ≃180 m2, a couple of orders of
magnitude larger than the physical area.
Thus to reconcile P0 with the model, one would need

fewer absorption sites, while for Ps one would need

more. We believe that the chance that water read-
sorption has played a major role in our vacuum system
is highly unlikely.
An alternative to the model of water desorption from

walls, known to show as well power-law evolution over
time, is diffusion-limited outgassing. In the case of hydro-
gen outgassing from stainless steel, for instance, a 1=

ffiffi
t

p
evolution is often observed, in agreement with Fick’s
law prediction for one-dimensional diffusion [29].
Approximate outgassing power-law evolution with an
exponent even larger than 0.5 is observed in the presence
of polymers and is attributed to water diffusion through
them. In addition, experiments on polymer samples show
that the temperature dependence of the outgassing rate is
well described by a single activation exponential, as is the
case of our observation [29].
Given the abundance of polymers in cable bundles,

motors, and connectors within the GRS, and given in
general the complex geometry of the TM surroundings with
abundant solid interfaces, it looks rather likely that desorp-
tion from walls is playing a minor role, and that gas
diffusion out of some of the GRS components is domi-
nating the pressure environment.

2. Long-term drift, very-low-frequency noise,
and pressure gradient

The results of Sec. V F support the idea that there was a
permanent difference of pressure across one or both the
TMs, whose amplitude scales with the overall pressure
as measured by the Brownian noise level. This pressure
gradient makes Δg both sensitive to temperature, because
of the corresponding temperature sensitivity of pressure,
and drifting, because of the pressure drift due to venting
to space.
We have simulated with MolFlow+ [43] the effect of

localized outgassing on the pressure on the TM. Simulations
consistently show that, due to the rather complex geometry
of the TM surroundings, which creates a rather asymmetric
molecular flow impedance pattern, it takes very little
asymmetry of outgassing to support a pressure gradient
across the TM.
To give a scale of the phenomenon, a large fraction of

any flow of molecules out of the cavity formed by the outer
wall of the EH and the tungsten balance mass (see Fig. 15
of Ref. [20]) penetrates inside the EH, through a hole in the
EH x wall, symmetric to that for the laser beam. These
molecules diffuse in the gaps surrounding the TM and, in a
time of the order of milliseconds, eventually leave the EH.
In their flow within the EH, these molecules exert both a
mean pressure on the TM and a pressure difference across
the x axis. We find that this difference is approximately
30% of the overall mean pressure contribution around
the TM.
On the contrary, simulations show that outgassing from

sources farther away from the EH, like, for instance, from
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the inner wall of the VE, diffuses and equalizes outside the
EH and does not create any significant pressure difference
across the TM.

APPENDIX G: POSSIBLE OBSERVATIONAL
ARTIFACTS

1. Role of interferometer noise

The contribution of interferometer noise nOMS, with
ASD S1=2nOMS , to S1=2Δg is S1=2Δg;n ¼ S1=2nOMSð4π2f2 þ jω2

2jÞ.
Thus, for f ≤ jω2j=2π, a branch of S1=2nOMS , raising rapidly

enough upon decreasing frequency, may have contributed
to S1=2Δg;e.
In our ordinary noise measurements, there was no way to

separate S1=2Δg;n from the contribution of true forces. We
have, however, two independent methods to put an upper
limit to the former.
The first method is to use the interferometer data we

collected during an epoch in which the test masses were
held fixed by the blocking mechanism [44]. This gave us
the chance to measure the interferometer output noise in
open loop, that is, with no active control of the TM
positions, which is the quantity appearing in Eq. (2).
The results for S1=2Δg;n are reported in Fig. 20 and compared

to the lowest S1=2Δge data, that is, those from run 10 of
Table I.4

The second method exploits the independent capacitive
measurement of the relative motion of the TMs ΔXGRS. As
the ordinary Δg is calculated using ΔXOMS, we can
calculate the analogous ΔgGRS, using ΔXGRS. ΔgGRS is
significantly more noisy than Δg at all frequencies above
80 μHz, while the agreement of Δg and ΔgGRS at lower
frequencies, with their independent readouts, indicates that
we are observing the true force noise.
Neglecting any distortion, the difference between the

two is just Δg − ΔgGRS ¼ jω2
2jðnOMS − nGRSÞ þ

n̈OMS − n̈GRS, and the ASD of this difference is then
S1=2Δg−ΔgGRS ¼ ðjω2

2j þ ð2πfÞ2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnOMS

þ SnGRS
p

. This pro-

vides then an upper limit for ðjω2
2j þ ð2πfÞ2ÞS1=2nOMS. Note

that nGRS is an all encompassing figure and includes
not just electronic noise but also the spurious pickup of
degrees of freedom other than Δx.
Figure 20 shows the values S1=2Δg−ΔgGRS for run 10. It is

worth to add that the values for ðjω2
2j þ ð2πfÞ2ÞS1=2ΔXGRS

≃
ðjω2

2j þ ð2πfÞ2ÞS1=2nGRS , not shown in the figure, coincide

almost exactly with those for S1=2Δg−ΔgGRS, which shows that
the role of nOMS in these is negligible.

Both methods give an upper limit to the interferometer
contribution, likely rather pessimistic. Indeed within the
blocked TM measurement the contrast was poor and the
interferometer performance at f > 10 mHz was at least 1
order of magnitude worse than that with the free TMs. In
addition, the interferometer output might still have included
some residual relative motion of the TMs, due to any
mechanical distortion of the instrument. On the other hand,
the data S1=2Δg−ΔgGRS are clearly dominated by the GRS noise,
with the noise from the interferometer, and the TM motion,
not contributing more than 1% in power.
In conclusion we consider the value measured with the

TM fixed, as the relevant upper limit on interferometry
noise contribution to Δg, a contribution which is less
than some 1%–2% in power, and probably significantly
less than this figure.

2. Noise from Poisson flow of glitches

Avery simple model for a stochastic process that shows a
1=f ASD is a flow of steps ΔgðtÞ ¼ giΘðt − tiÞ, with ΘðtÞ
the Heaviside theta function, gi a random amplitude,
and with the arrival times ti following Poisson event
statistics. Such a process has indeed an ASD given by
S1=2Δg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λhg2i i=ð2πfÞ2

p
, with λ the event rate.5

The process can be generalized. Specifically, one
can calculate the ASD of a flow of Poisson events
ΔgðtÞ ¼ gihiðt − tiÞΘðt − tiÞ, with hiðtÞ the unit peak
amplitude version of a randomly selected glitch among
those observed during ordinary LPF noise runs [20].
As we only observed Ng ¼ 98 glitches, to generate an

FIG. 20. Role of interferometer noise in the overall ASD of Δg:
red points, S1=2Δge for run 10 (February 2017), as in Fig. 2; dark blue

points, S1=2Δg;n measured with blocked TMs; light blue points, ASD
of the difference Δg − ΔgGRS for run 10.

4The measurement epoch is the same as that used by Ref. [44],
though we have used a longer and possibly noisier data series, in
order to be able to reach the lowest possible frequency.

5Strictly speaking the calculation must be done for steps
ΔgðtÞ ¼ gie−ðt−tiÞ=τΘðt − tiÞ, and the result is valid for
f ≪ 1=ð2πτÞ.
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arbitrary long time series, in this process glitch shapes
need to be repeated.
The PSD of such a process would be

SΔg;glðfÞ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λhg2i i

1

Ng

XNg

l¼1

jhlðfÞj2
vuut : ðG1Þ

Here hlðtÞ is the shape of the lth observed glitch, and
hlðfÞ is its Fourier transform. For the sake of the current
discussion, all 98 glitches had hlðtÞ ∝ e−t=τ2;l − e−t=τ1;l with
τ2;l and τ1;l two time constants6 [20].
Figure 21 compares the ASD calculated from Eq. (G1)

taking 2λhg2i i ¼ 9.8 × 10−5 fm2 s−5 (the dashed black line)
to data from run 10 (the black dots). To ease the compari-
son, the figure reports

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SΔg;gl þ SBrown

p
, with SBrown the

maximum likelihood value for run 10.
It must be said the indistinguishable results, except for

the numerical value of 2λhg2i i, are obtained by taking just
the 54 glitches for which τ2;l; τ1;l ≥ 10 s.
The figure shows that such a simple model may well be

fit to the observed ASDs, at least for frequencies
f ≳ 30 μHz. However, below that limit the predicted
ASD saturate, as none of the observed time constants ever
exceeded ≃8ks [20]. To achieve a better result one needs
then to slightly extend the family of templates hðtÞ.
To do that, we first note that more than 90% of the

glitches for which τ2;l; τ1;l ≥ 10 s, had τ2;l ¼ τ1;l ≡ τl, a

case in which hlðtÞ → eðt=τlÞe−t=τl . For these glitches the
distribution of log10ðτl=1 sÞ is quantitatively compatible
with a uniform one in the range 1–4.
The simplest model extension is then to a flow of glitches

of the kind ΔgðtÞ ¼ gieðt=τiÞe−t=τiΘðt − tiÞ with the dis-
tribution of log10ðτi=1 sÞ, extended up to 5, instead of
being limited to 4.
The results for such an extended model, with a fitting

constant 2λhg2i i ¼ 8.0 × 10−5 fm2 s−5, are reported again in
Fig. 21 (blue dot-dashed line).
We now discuss the possibility that the glitches that

form this hypothetical random flow, the “noise glitches,”
may be the same that occasionally become large enough to
be detected as isolated signals in the data series, the
“isolated glitches.” To do that let us first discuss the
possible parameter distribution of the noise glitches.
The model above would reproduce our observations if

the values for 2λhg2i i would only refer to glitches with
amplitude gi small enough to be undetectable against the
background noise. Indeed the data series on which we have
calculated noise ASD have been purged of any detectable
glitch [3] and thus of their contribution to the ASD. This
puts a constraint on the distribution of gi for the noise
glitches that depends on our ability to detect a glitch against
the background noise.
Our empirical glitch detection method has been

described in [20], and its detection ability found in
substantial agreement with the prediction of a search based
on a matched filter. We have repeated such an analysis for
the amplitude normalization we use here, calculating the
joint Fisher matrix for gi, τ1;i, τ2;i and the glitch arrival time,
and confirmed such an agreement.
Specifically, all detected glitches have signal-to-noise

ratio SNR ≥ 3.6, with SNR ¼ jgij=σg, and σg the uncer-
tainty on gi predicted by the Fisher matrix, and all but four
have a signal-to-noise ratio SNR ≥ 5. Indeed visual inspec-
tion confirms that our empirical method would detect
almost certainly any glitch with SNR ¼ 5, and would
almost certainly not detect a glitch with SNR ≤ 3.5.
For a given amplitude gi, SNR depends on SBrown, but

also on both τ1;i and τ2;i. For run 10, the run with best noise,
the SNR reaches a maximum for τ1;i ¼ τ2;i ≃ 85 s.
Putting all these elements together and reminding the

reader of the stability of the observed noise in the course
of the mission, the distribution of gi and τi for the noise
glitches should fulfill the following conditions:

(i) gi and τi should be independent;
(ii) their distributions should both be independent of

the run;
(iii) log10ðτi=1 sÞ should be uniformly distributed be-

tween 1 and 5;
(iv) the distribution of gi should fulfill 2λhg2i i≃

8.0 × 10−5 fm2 s−5; and
(v) the distribution of gi should assign a probability pt

to gi þ si ≥ 5σg, with si the random amplitude

FIG. 21. ASD from a Poisson flow of glitches. Dashed black
line, calculated ASD of a flow of glitches taken at random
from the sample of the observed ones and with 2λhg2i i ¼ 9.8 ×
10−5 fm2 s−5 (see text for definition of symbols); blue dot-dashed
line, calculated ASD of a flow of glitches with time parameters
taken at random from the extended distribution described in the
text and with 2λhg2i i ¼ 8.0 × 10−5 fm2 s−5; red dots, ASD of a
simulated time series with the same length as that of run 10, with
glitch parameters extracted from the extended simulation, gi
extracted from a uniform distribution in the interval �0.9 fm s−2,
and with a rate of λ ¼ 105d−1.

6Note that here we normalize hlðtÞ to have unit peak force-per-
unit-mass amplitude, at variance with the normalization adopted
in Ref. [20], where hlðtÞ had unit impulse per unit mass.
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measurement error, such that λpt is much less
than the observed rate of ≃1 d−1 of the isolated
glitches. Here all quantities refer to run 10 and to
τ1;i ¼ τ2;i ≃ 85 s which is the most favorable case
for glitch detection.

Thus the question if the isolated glitches are just a sample
of large amplitude tail of an overall distribution of glitch
parameters translates in that if the amplitude distribution of
the noise glitches, fulfilling the constraints above, merges at
high amplitude into that of the isolated glitches, without the
need of too many pathological assumptions to fill up the
gaps between the two.
In order to start with the minimum such gap, in the

condition for 2λhg2i i one should pick the lowest possible
value for λ corresponding to the largest for hg2i i. Barring the
nonphysical assumption of all equal gi’s, the simple
distribution that maximizes hg2i i for a given upper bound
gmax, is a uniform distribution −gmax ≤ gi ≤ gmax for
which hg2i i ¼ ð1=3Þg2max.
To decide the value of gmax we take the conditions of

run 10, with τ1;i ¼ τ2;i ≃ 85 s, recast gmax ¼ nmaxσg, and
calculate the probability that a sample from a uniform
distribution −nmaxσg ≤ gi ≤ nmaxσg, plus an independent
sample from a zero-mean normal distribution with variance
s2g, representing the measurement error, exceeds in absolute
value, the threshold 5σg. We pick nmax when this proba-
bility is low enough to detect at most one detectable glitch
in a run with the same duration of run 10. The procedure
requires a few trial and error loops involving adjusting the
value of λ that try to minimize.
Figure 21 shows the ASD (red dots) of simulated data

assuming λ ¼ 102 d−1, nmax ¼ 3, σg ¼ 0.1 fm s−2, and the
Brownian noise level and the time duration of run 10.
Inspection of the data shows no glitch we would have
detected with our empirical method.
We have simulated noise glitches to reproduce the noise

for all runs in which we have observed the glitches [20], by
generating amplitudes and time constants from the same
distributions, independent of the run. For each of the
simulated glitches, we have also generated the amplitude
that would have been measured by the matched filter, by
adding a simulated measurement error, and tested if the
glitch would have been detected within the specific run to
which it belonged. The results of such collective simulation
are shown in Fig. 22. The parameter space for these
simulations is rather vast, and the criterion for detectability
is not free of ambiguity. Nevertheless, the picture strongly
suggests that
(1) there is an abrupt, order of magnitude large jump in

the probability density between the upper edge of the
noise glitches distribution and that of the iso-
lated ones;

(2) there is a large void in the population of isolated
glitches for τi ≳ 200 s, between the amplitude of the

observed glitches and that of the noise one. This void
is real, glitches with amplitude in the void would be
observable with high SNR; and

(3) as already noted, glitches with τi ≥ 104 s, necessary
to reproduce the noise, are missing in the observed
sample.

These features are unlikely to disappear as a result of the
tuning of any of the model details.
Thus it may be that the noise is due to a flow of

undetectable glitches, but these appear to belong to a
distribution so significantly separated from that of the
observed ones, to make the conclusion that we may be
witnessing two aspects of the same physical phenomenon,
highly speculative.
It is also worth noting that, already at the minimal rate

of λ ≃ 100–200 d−1, the simulated time series appear
Gaussian and stationary within the statistical uncertainty,
making their Poisson nature undetectable from the data.
Thus again the hypothesis that ΔgeðtÞ is Poisson in origin
remains a speculation.

APPENDIX H: DECORRELATION OF
SYNCHRONOUS TIME SERIES

In this appendix, we give the details of the decorrelation
analyses mentioned in Sec. VI C on the contribution to Δge
of disturbances for which we had a measurement synchro-
nous with Δg.

1. Decorrelation of synchronous time series:
Framework

During noise runs we have measured, synchronously
with Δg:
(a) the gravitational force loss due to fuel depletion,

ΔgTanks defined in Sec. V F;

FIG. 22. Measured amplitude gi;m vs time constant τi for both
simulated noise glitches and observed isolated ones. Black dots,
all observed isolated glitches with τ2;i ¼ τ1;i ≡ τi and τi > 10 s.
The remaining dots refer to all noise glitches from a simulation
aimed at reproducing the noise ASD of all runs in which isolated
glitches have been observed [20]. Red dots refer to glitches with
SNR < 5, while blue dots refer to those with SNR ≥ 5 that would
have almost certainly been detected in real data.
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(b) the relative motion of the two GRSs, instrument
distortion ΔX, as defined in Appendix E;

(c) temperature T, defined in Sec. II C;
(d) the two temperature differences across the two elec-

trode housings, in the x direction;
(e) the three magnetic field components at four different

locations; and
(f) a series of spurious low-frequency voltages that have

unintentionally been applied to the electrodes via the
actuation circuitry nonlinearity [19].

We treat these disturbances as small and Gaussian and
consider their effect only to first order, within the simple
model

�
ΔgðtÞ ¼ Δg0ðtÞ þ

P
r
i¼1

R
∞
0 αiðt0Þyiðt − t0Þdt0

ziðtÞ ¼ yiðtÞ þ niðtÞ;
ðH1Þ

where ziðtÞ is any of the measured time series above,
consisting of the “true” physical disturbance yiðtÞ, super-
imposed to its readout noise niðtÞ. Δg0 is the “residual”
acceleration, not correlating to yi.
Given the nature of the disturbances considered, the

susceptibilities αiðfÞ, i.e., the Fourier transforms of the
αiðtÞ, should be, for most of them, real and constant,
but we also consider the general case to take into account
the possibilities of delays and other more complex
correlations.
With the model in Eq. (H1), the elements of the cross-

spectral density matrix Σ of Δg and the zi are given by

Σ1;1 ¼ SΔgðfÞ ¼ SΔg0ðfÞ þ
Xr
i;j¼1

αiðfÞα�jðfÞSyi;yjðfÞ;

Σiþ1;1 ¼ Syi;ΔgðfÞ ¼
Xr
j¼1

α�jðfÞSyi;yjðfÞ;

Σiþ1;jþ1 ¼ Szi;zjðfÞ ¼ Syi;yjðfÞ þ δi;jSniðfÞ: ðH2Þ

In Eq. (H2), Syi;yjðfÞ is the cross-spectral density between
yi and yj, while Sni is the PSD of ni. In all cases, except for
instrument distortion and fuel depletion which we discuss
separately, the readout noise ni is assumed to be indepen-
dent of any of the other time series.
We deal with two broad cases. In the first case, we have

limited knowledge of αiðfÞ, but we are confident that
the readout noise SniðfÞ is negligible for the purpose of
noise analysis. In the second case, we have an independent
knowledge of the value of αiðfÞ, but we know or suspect
that the readout noise SniðfÞ is significant, even dominating
Szi;zjðfÞ. These two cases are separately treated in the
following. The general case of unknown susceptibilities
and unknown readout noise is overdetermined and cannot
be treated.

2. Decorrelation: Data analysis and statistical methods

a. Decorrelation of disturbances with unknown
susceptibilities and negligible readout noise

In the case of unknown susceptibilities and negligible
readout noise, we evaluate SΔg0ðfÞ and the susceptibilities
assuming the physically realistic model of real and fre-
quency-independent susceptibilities.
The starting point is that one can transform the complex-

Wishart distribution in Eq. (B4) to separate its dependence
on SΔg0 , and the αi, from that on the CPSD of the
disturbances Syi;yj .
To do that consider that Eq. (H1) defines a linear

transformation Δg0 → Δg; yi → yi whose matrix is

U ¼

0
BBBBB@

1 α1 … αr

0 1 … 0

..

. . .
. ..

.

0 … … 1

1
CCCCCA: ðH3Þ

Note that jUj ¼ 1 and that the inverse of U is obtained with
the transformation αi → −αi.
As Δg0 is independent of the yi, before the trans-

formation, the processes have a CPSD matrix with block
representation

Σ0 ¼
�
SΔg0 0

0 Σyy

�
; ðH4Þ

where Σyy is the r × r CPSD of the yi. Note that

Σ0−1 ¼
�
1=SΔg0 0

0 Σ−1
yy

�
ðH5Þ

and that Σ ¼ UΣ0UT , with UT the transpose of U, so
that jΣj ¼ jΣ0j ¼ SΔg0 jΣyyj.
Furthermore, in Eq. (B4) one can calculate that

etr½−Σ−1W� ¼ etr½−ðUTÞ−1Σ0−1U−1W� ¼ etr½−Σ0−1W 0�,
having defined W 0 ¼ U−1WðUTÞ−1.
We need one more step to get our separation. W and W 0

have block representation

W ¼
 
W1;1 W1;y

W†
1;y Wyy

!
W 0 ¼

 
W0

1;1 W 0
1;y

W 0†
1;y Wyy

!
; ðH6Þ

where one can calculate that

W0
1;1 ¼ W1;1 − 2α · ReW1;y þ α · ReWyy · α; ðH7Þ

with α the r vector the components of which are the
susceptibilities.
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The consequence of Eqs. (H5)–(H7) is that

etr½−Σ−1W� ¼ etr½−Σ0−1W̃�

¼ e
−

W0
1;1

SΔg0
−tr½Σ−1

yyWyy�

¼ e
−
W1;1−2α·ReW1;yþα·ReWyy ·α

SΔg0
−tr½Σ−1

yyWyy�: ðH8Þ

Putting all together, the distribution ofW, conditional on
the susceptibilities, the PSD of the residual noise, and the
CPSD of the disturbances, becomes then

pðWjαi; SΔg0 ;ΣyyÞ ¼
jWjM−p

Γ̃pðMÞ
1

SMΔg0
e
−
W1;1−2α·ReW1;yþα·ReWyy ·α

SΔg0

×
1

jΣyyjM
etr½−Σ−1

yyWyy�: ðH9Þ

The distribution in Eq. (H9) can be used to build a joint
posterior for S−1Δg0 and the α’s and an independent posterior
for Σyy.
Treating the data at the different frequencies as inde-

pendent, and assuming that SΔg0 and Σyy depend on the
frequency, while the α’s do not, the joint likelihood for the
Bayesian inference of SΔg0 and αi becomes

pðαi; SΔg0ðf1Þ; SΔg0ðf2Þ;…jWÞ

∝
Y
k

p̃ðSΔg0ðfkÞÞ
SΔg0ðfkÞMðfkÞ e

−
P

k

W1;1ðfkÞ
SΔg0 ðfkÞ

× e
2α·
P

k

ReW1;yðfkÞ
SΔg0 ðfkÞ

−α·
�P

k

ReWyyðfkÞ
SΔg0 ðfkÞ

�
·α
; ðH10Þ

having taken a flat prior for the α’s and the prior
p̃ðSΔg0ðfkÞÞ for SΔg0ðfkÞ. As for this one, to take into
account the presence of the Brownian noise, we split it as
SΔg0ðfkÞ → SΔg0ðfkÞ þ SBrown, and we take a uniform prior
for the logarithms of SΔg0ðfkÞ. For SBrown we use as prior
the posterior obtained for its Bayesian estimate (see
Sec. III). At frequencies low enough that the Brownian
noise is negligible, which is where the excess is best
measured, this is fully equivalent to taking the Jeffreys
prior for SΔg0ðfkÞ−1, which is indeed a uniform prior on its
logarithm.
To estimate the posterior of the parameters, we employ

a parallel-tempering Monte Carlo Markov chain
algorithm [45]. We always find smooth distributions, no
bimodalities and no strong cross-correlation among param-
eters. To implement the prior, the MCMC algorithm
explores the parameter space of the susceptibilities and
of the logarithms of SΔg0ðfkÞ and of SBrown.
As for Σyy, Eq. (H9) shows that, using the intermediate

prior, Σ−1
yy ðfiÞ ∼ CWðW−1

yy ðfiÞ;MðfiÞ þ r − 1Þ. Thus the

evaluation of the statistical properties of the posterior
can be obtained numerically from the relative Wishart
distribution.
Once the posteriors for SΔg0ðfkÞ, SBrown, αi, and possibly

for Σyy, have been obtained, one can calculate the posterior
for Sc ¼

P
i;j αiαjSyi;yj ¼

P
i;j αiαjðΣyyÞi;j. However, for

small values of Sc=SΔg0 , the statistics of such a posterior
is biased toward high values, with the bias increasing
with r. This is due to the positive-definite quadratic nature
of Sc, which gets rapidly dominated by susceptibility
fluctuations.
To deal with this problem we have resorted to calibrating

the bias via simulations. Our simulation consists of the
following steps:

(i) We extract a sample of ΣyyðfÞ from its calculated
posterior and form a corresponding sample for ΣðfÞ
assuming SΔg0 ¼ 0.

(ii) We generate a random vector of susceptibilities αi
from a normal distribution with zero mean and
standard deviation adjusted such that, at some
preferred frequency, Sc ≃ ρSΔge , with ρ a desired
value of the noise power fraction.

(iii) From the susceptibility vector we form the matrix U
of Eq. (H3), and with it we form the sample of the
(provisional) matrix ΣðfÞ ¼ U · Σ0ðfÞ · UT . This
matrix has Σ1;1 ¼ SΔgðfÞ ¼ ScðfÞ, a number we
store as we need for our calibration procedure.

(iv) We then form the final value of the matrix Σ by
substituting the value of Σ1;1 above, with a random
sample extracted from the posterior distribution of
SΔgðfÞ [see Eq. (B5)]. This our theoretical CPSD
matrix, which has a value of ScðfÞ, coherent with its
elements Σ1;jðfÞ, a value for SΔg ¼ SΔg0ðfÞ þ Sc
coherent with its posterior, and a value of ΣyyðfÞ
also coherent with its posterior.

(v) From the matrix ΣðfÞ above we generate a random
sample of the simulatedW matrix, using the Wishart
distribution in Eq. (B4). On each of these simulated
samples of W we perform our entire Bayesian
procedure thus getting, among others, a posterior
for ScðfÞ.

We repeat the procedure 100 times for different values
of the power fraction ρ and we get then, at each value of ρ
and at each of the considered frequencies, a distribution
of the true values of Sc;tðfÞ and a global distribution
of the estimated values Sc;eðfÞ for the same quantity (see
Fig. 23). We use mean and standard deviations of these
distributions to do a linear, weighted least square fit
Sc;tðfÞ ¼ ASe;tðfÞ þ B, that we use to correct the observed
data. The procedure gives a result close to what one would
obtain by just subtracting, from the estimated value of
ScðfÞ, the median from the simulation for ρ ¼ 0. Indeed, in
some cases, to avoid repeating time-consuming simulations
at different values of ρ, we adopted this second method.
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With simulations, we have also checked that the method
is unbiased for the estimate of both SΔg0 and the
susceptibilities.
As a final note, the case of the evaluation of the effect of

the temperature on the first bin involves just one frequency
and one disturbance. In such case the likelihood in
Eq. (H10) can be integrated analytically, to give a marginal
probability density for SΔg;0 ∼ invΓðM − 1;M=ðΠ−1Þ1;1Þ,
for the general case of a complex α, and SΔg;0 ∼
invΓðM − 1=2;M=ðReΠ−1Þ1;1Þ if α is real. We have used
these formulas to evaluate the effect of the temperature.

b. Decorrelation of noisy series
with known susceptibilities

This is the case when we have a relatively narrow
posterior distribution fðαiÞ for the susceptibility αi, but
Sni may be large, actually may even dominate Szi;zi in
Eq. (H2), and refers to the joint analysis of fluctuations of
the average temperature and of LTP distortion in
Appendix H 4 b and to that of the tank depletion gravita-
tional signal in Appendix H 4 a.
Though the two cases differ substantially, they both

share the step of estimating the Bayesian posterior for Σ,
the theoretical CPSD.
To that purpose, our starting point is again the distribu-

tion in Eq. (B4) that can be directly used to estimate the
Bayesian posterior for Σ, or its inverse Q ¼ Σ−1, from the
observation ofW, once a prior distribution for either Σ orQ
has been assumed.
Natural, noninformative choices are either a uniform

prior on all elements of Q or the Jeffreys prior [26], which,
for a p × p-dimensional Q matrix, is ∝ jQj−p [46,47]. For

the uniform prior, the posterior is Q ∼ CWðW−1;M þ pÞ,
while for the Jeffreys prior Q ∼ CWðW−1;MÞ.
Both choices have limitations. Of those of the uniform

prior when p ¼ 1 we have discussed in Appendix B 2. On
the other hand, the Jeffreys prior is affected by bias and by a
significant inconsistency when p > 1.
The bias consists of the fact that, while the mean value

of Q is unbiased, the mean value of Σ is equal to
ΠM=ðM − pÞ. Thus the bias depends on p and may
become large at low values of M.
The inconsistency stays in the fact that, when p > 1, the

marginal posterior of any of the diagonal elements of Σ is
not the same as the posterior in Eq. (B5), which one would
calculate from the Jeffreys prior with p ¼ 1.
The bias can be reduced and made independent of p and

the inconsistency solved, if one takes the “intermediate”
prior ∝ jQj−1, that still coincides with the logarithmic prior
for the case p ¼ 1.
Note that, also with this choice, Q is Wishart distributed,

Q ∼ CWðW−1;M þ p − 1Þ, which guarantees, without
imposing any further prior constraint, that Q and its inverse
are positive-definite matrices, a fundamental constraint for
CPSD. We use this posterior to estimate both the entire
matrix, in the case of temperature/LTP distortion, or its
Szi;ΔgðfÞ elements, in the case of the tank depletion noise.
As we have a closed formula, we generate random

samples both from such posterior for Q and from the
posterior for the αi and then calculate the samples of the
quantities needed in the two cases, as discussed in their
relative sections.

3. Decorrelation of synchronous time series:
Results for series with negligible readout noise

For the time series we analyze here, we have limited
prior knowledge about the susceptibilities, except that they
are real and frequency independent. This is because delays
between the time series and the forces they exert on the
TMs are negligible.
We then do a simultaneous Bayesian fit at all frequencies

as explained in Appendix H 2 a. This way we get a
posterior for the residual SΔg0ðfÞ, for the susceptibilities
αi, and for the joint contribution to SΔg, ScðfÞ ¼P

r
i;j¼1 αiαjSyi;yjðfÞ [see Eq. (H2)].
ScðfÞ may be subject to a large positive bias in

case of large r. For that reason we calibrate the method
with extensive simulations, as explained again in
Appendix H 2 a.

a. Spurious actuation due to in-band noise from
digitized electrostatic actuation

The capacitive actuation design employed digitally
synthesized audio-frequency sinusoidal voltages [19]. As
the force is quadratic in the voltage, this applies a force at

FIG. 23. �1σ intervals for the distributions of the true (Tr.)
values of ScðfÞ and for their global estimated posteriors (Est.)
over 100 simulations for each case. The power fraction ρ is an
approximation of the average at the three highest frequencies. In
particular, ρ ¼ 0 is in reality calculated at ρ ≃ 4 × 10−6. Data are
plotted for clarity at slightly shifted frequency coordinates, but
have all been calculated at one of the frequencies fi with
4 ≤ i ≤ 8.
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low frequency, proportional to the mean square value of the
sinusoid, while avoiding mixing down low-frequency
voltage noise from the final amplifiers.
The truncation error mentioned earlier affects the above

mean square value and, if uncorrected, gives a wrong
estimate of the applied force.
The nominal sinusoidal voltage signal has zero time

average and then zero dc value. The truncated signal
acquires a nonzero average, that is, quasi-dc voltages
δViðtÞ of order ∼μV amplitude that we were able to
calculate from the commanded voltages with negligible
numerical noise.
These voltages are able to apply electrostatic forces onto

the test masses by coupling to its charge and to the parasitic
voltages biasing the electrodes [48]. To linear terms in the
δViðtÞ’s this force is given by

ΔgDðtÞ ¼
X

i∈ ½1;24�
αiδViðtÞ; ðH11Þ

where the sum is over the 24 electrodes that surround
the two TMs, and where the susceptibility αi is a linear
combination of charge and patch potentials and cannot be
predicted except, possibly, in order of magnitude.
In reality, due to cosmic rays, the TM charge is subject to

an approximately linear variation in time, qðtÞ ∼ q0 þ q̇t
[21], with q̇ ∼þ23 e=s. On the charge itself the relative
effect may be large, as we have often operated by putting a
proper negative charge on both TMs at the beginning of a
noise run, to find an equal but opposite charge on them at
the end of the run.
Hence, a complete analysis should, in principle, include

48 charge parameters. To circumvent this problem, we have
taken advantage of the fact that the differential force
contribution due to the coupling of the δViðtÞ to the
drifting charge is ðq̇2tΔx;2 − q̇1tΔx;1Þ. Here Δx;i is linear
combination, with �1 coefficients, of the δViðtÞ of the x
electrodes of GRSi, as defined in [48], and q̇i is the
charging rate of TMi [48].
We have then formed the two time series tΔx;1ðtÞ and

tΔx;2ðtÞ and added them to our analysis. This obviously
breaks the hypothesis of noise stationarity, but should still
help highlight the existence of significant correlation.
To keep r not too large, we have done two separate

analyses. In the first we have included the 24 voltage series
only. Note that with r ¼ 24 the analysis could only be
performed for f ≥ f4 (0.1 mHz) as lower frequencies
would not have a sufficient number of periodograms
(see Appendix H 2 a).
In the second we have considered the two series tΔx;1ðtÞ

and tΔx;2ðtÞ, but we have also added the two series Δx;1ðtÞ
and Δx;2ðtÞ, to consider the complete effect of the
charge and to reduce the bias due to direct correlation
between Δg and the δViðtÞ involved in the Δx;i. This allows
us to include just four signal time series, hence being able

to analyze a wider set of frequencies. We show in Fig. 24
the results of the second analysis.
The results of Fig. 24 clearly show that this effect is

compatible with zero within the resolution of the meas-
urement. The 1σ error, on the other hand, is compatible
with a contribution slightly less than ≃1% of total power at
f ≥ f5 and much less below that. A similar result is
obtained from the analysis of the 24 voltage series.
The posteriors of the susceptibilities are all compatible

with zero, except, perhaps, for one. More specifically, we
have analyzed, for all the 24 αi, the likelihood, that we call
L0, assigned by the posterior to the less likely of the two
tails αi < 0 and αi > 0, as a very low likelihood of one of
the two tails would indicate that αi has a well-defined sign.
All likelihoods are found to be larger than 5%, except for
one, the voltage applied to one of the x electrodes of TM1,
which is L0 ≃ 1%. For this last series the susceptibility is
α ¼ ð10� 5Þ fm s−2=mV. To give an order of magnitude,
if the coupling was due to a uniform stray voltage on the
said electrode, this should be ð0.07� 0.03Þ V, a figure in
the range of observed patch potentials [48].
This slightly significant susceptibility is reflected, in the

analysis with a linearly drifting charge, in an equivalently
significant susceptibility to Δx;1ðtÞ, that contains the series
above, while the susceptibilities to tΔx;1ðtÞ and tΔx;2ðtÞ are,
within their large uncertainty, both compatible with zero
and with the observed values of the charging rates [22].

b. Magnetic fields

Below ∼ 1 mHz, the noise part of our magnetometer
signals, as shown by their almost complete cross-correlation
and by the absence of any measurable fluctuating gradient
[7], was dominated by the interplanetary magnetic field
and had negligible readout noise. Because of their negligible

FIG. 24. Decorrelation of the coupling of spurious actuation to
TM charging for run 10, over the [36 μHz, 0.77 mHz] frequency
band. Frequencies are slightly shifted for clarity. Gray points,
ASD of total excess noise over Brownian, S1=2Δge , as in Fig. 2; red
points, Bayesian posterior�1σ interval for the residual ASD after
decorrelation of the spurious actuation along the x axis; blue
points: estimated ASD S1=2c of the contribution of spurious
actuation along the x axis.
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gradient, the interplanetary field fluctuations interact with
the TMs only as they induce, via the TM residual diamag-
netism, a fluctuating magnetic moment that couples to any
static magnetic field gradient at the TM location. The force
due to this interaction is given by

ΔgðtÞ ¼ χL3

Mμ0
ð∇Bx;dc;2 − ∇Bx;dc;1Þ · BðtÞ; ðH12Þ

where ∇Bx;dc;i is the magnetic gradient of the static Bx

component averaged over the volume of TMi, μ0 is the
vacuum magnetic permeability, and χ ¼ ð−3.37� 0.15Þ ×
10−5 is the magnetic susceptibility of the test masses [49,50].
Note that the static magnetic gradient may be different

from the value that can be extrapolated, at the test mass
location, from the differences of the magnetometer read-
ings, which typically is ≃0.5 μT=m. Indeed a gradient up to
10 μT=m is expected to be created by a series of therm-
istors, containing ferromagnetic materials, placed on the
outer surface of the EH.
These thermistors are too far away from the magnetom-

eters to give any significant measurable signal. Thus we
had no in-flight information on the gradient that these
thermistors were creating at the location of both TMs. A
dedicated, in-flight experiment using oscillating magnetic
fields [50] was able to give an estimate just for ∂xBx;dc;1,
that is, just for one of the three required components of the
static magnetic gradient and at the location of just one of
the TMs.
This lack of knowledge of the static magnetic gradient

difference at the TM locations left us with only a possible
order of magnitude estimate of the corresponding suscep-
tibilities. Hence, we have performed our decorrelation
analysis with no prior assumptions on the susceptibilities.
The results are shown in Fig. 25.
At all frequencies, ScðfÞ is significant at 1σ, while the

lower 2σ quantile of the posterior is negative.
Some significance is also supported by the susceptibil-

ities. In particular, while L0 ≥ 0.16 for the x and z
components of the field, L0 ≃ 0.001 for the y component.
The corresponding susceptibility is αy¼ð−8�2Þ fms−2=μT,
that, if due to a gradient acting on just one of the two
TMs, would correspond to jδ∂yBx;dcj ¼ ð6� 2Þ μT=m,
close to what one would expect because of the magnetic
thermistors [50]. The δ is meant to highlight that the
measured quantity is the difference of magnetic gradients
at the two TM locations.
We note that our estimate of the magnetic force noise

ASD, based on decorrelation, is consistent with that
reported in [49], which is based instead on a calculation
from measured or estimated values of all the involved
quantities. In particular, in addition to the in-flight mea-
surements of the magnetic field fluctuations that we also
use, Ref. [49] uses the aforementioned measured value
for ∂xBx;dc;1, while the other components of ∇Bx;dc;i are

estimated based on a model for the statistical distribution
of the magnetic dipoles associated with above-mentioned
thermistors.

c. Thermal gradients

In addition to single thermistor readout that we used to
form the average temperature signal, we also had two
differential readouts, one for each GRS, each reading a pair
of the thermistors located on the opposite faces of the EH of
the corresponding GRS.
As the drift, which was the source of extra noise on

the single readouts, is largely common mode among the
thermistors, these channels were basically immune to the
nonlinearity noise that plagued the average temperature and
fall then in the category of negligible noise time series.

FIG. 26. Decorrelation of thermal gradients for run 10, over the
[36 μHz, 0.77 mHz] frequency band. Frequencies are slightly
shifted for clarity. Gray points, ASD of total excess noise over
Brownian, S1=2Δge , as in Fig. 2; red points, Bayesian posterior �1σ

interval for the residual ASD after decorrelation of the two
thermal gradients time series; blue points, estimated ASD S1=2c of
the contribution of thermal gradients to Δge.

FIG. 25. Decorrelation of low-frequency magnetic fields for
run 10, over the [36 μHz, 0.77 mHz] frequency band. Frequen-
cies are slightly shifted for clarity. Gray points, ASD of total
excess noise over Brownian, S1=2Δge , as in Fig. 2; red points,
Bayesian posterior �1σ interval for the residual ASD after
decorrelation of the three magnetic field time series; blue points,
estimated ASD S1=2c of the contribution of magnetic fields to Δge.
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Thermal gradients are the source of various forces,
dominating ones being radiometer effect and asymmetric
outgassing [51]. While for the radiometer effect the
susceptibility can be estimated to within some 30%,
αR ≃ 2 × 103 fm s−2=K, for asymmetric outgassing the
uncertainty is much larger [51], not better than an order
of magnitude. The results of the decorrelation procedure are
shown in Fig. 26.
This contribution is clearly undetectable. Note that the

susceptibilities, ð1� 5Þ × 103 and ð1�7Þ×103 fms−2=K,
are zero within errors, errors that comfortably include
the value expected of the radiometric effect. This lack of
contribution is due substantially to the good stability of
the thermal gradient, with an ASD in the considered range
of ≃40 μK=

ffiffiffiffiffiffi
Hz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1 mHz=f

p
.

4. Decorrelation of synchronous time series:
Results for noisy series

a. Tank depletion

For the case of the gravitational signal from tank
depletion, the PSD of the readout noise of the propellant
flow meter is unknown. The susceptibility is αTanks¼ κt1κbB
(see Sec. V F) a real, frequency-independent figure known
to within a 10% uncertainty.
We estimate the contribution of this source of noise to

the total excess noise as αTanksSΔg;ΔgTanks , as explained in
Appendix H 2 b, with Δg̃Tanks the true gravitational noise,
free of any readout noise contamination.
We take the posterior for SΔg;ΔgTanks from the proper

Wishart distribution (see Appendix H 2 b) and that for
αTanks to be a normal distribution with mean and standard
deviation, respectively, 0.92 and 0.10 (see Sec. V F).
Results are shown in Fig. 27.
Note that

P
r
i;j¼1 αiðfÞα�jðfÞSyi;yjðfÞ is a positive real

number, while there is no guarantee that a posterior sample
for
P

r
i¼1 αiðfÞSyi;ΔgðfÞ is even real.

We have dealt with this problem in two ways. We have
first checked that the posterior distribution of the imaginary
part of

P
r
i¼1 αiðfÞSyi;ΔgðfÞ was statistically compatible

with zero.
We have then taken the posterior just for the real part ofP
r
i¼1 αiðfÞSyi;ΔgðfÞ, checking that, whenever the distribu-

tion extended to negative values, the zero was within the
�1σ-credible interval.
Except for the lowest frequency, the þ1σ limit is well

below 10% in power. At the opposite end, except for one
frequency, zero falls always within the �1σ interval.

b. Temperature effects and LTP distortion

The instrument distortion ΔXðtÞ and temperature TðtÞ
give rather significant contributions, ΔgDistðtÞ ¼ ω2

dΔXðtÞ
and ΔgTðtÞ ¼ ∂Δg=∂T × TðtÞ, to the quasi-dc long-term
evolution of Δg (see Sec. V F). In this section, we address
their possible roles in contributing to the in-band excess
noise, for f ≥ f2. As we found a significant correlation
between these series [52], we consider them together.
Unfortunately, these two series are affected by a signifi-

cant readout noise. Here briefly follows our knowledge of
the properties of such noise.
Instrument distortion. The experimental PSD of ΔX

peaks at about 0.1 mHz and slowly decays above that [52].
The experimental CPSD between ΔX and Δg parallels
somewhat this behavior, its real part becoming significantly
different from zero and positive above about 0.3 mHz,
slowly decaying above that. In the frequency range in
which the real part is significant, the imaginary part is also
significantly different from zero, this time with a frequency-
dependent sign. This behavior of the CPSD is hardly
compatible with the gravitational signal from mechanical
distortion, which is virtually instantaneous, and then free of
imaginary CPSD and supports instead the existence of a
dominating readout noise of electrical origin.
Actually, the linear instrument distortion ΔX is the

combination of four signals. Each of these signals
consists of an independent differential capacitance meas-
urement [6]. We find that only two of these signals bear
some significant correlation with Δg, the correlation being
in different frequency ranges for the two signals.
Both these signals refer to TM2, to whom the largest

actuation is applied, and cross-correlation is likely due to
electronic crosstalk between the actuation command sig-
nals and the TM motion sensing ones. At low frequencies
the ΔgðtÞ time series is dominated by the actuation
contribution gcðtÞ in Eq. (1), which brings an indirect
correlation between Δg and TM motion sensing within
the GRS.
Analogously to the linear distortion ΔX, the GRS

allows one to measure the angular distortion ΔΦ≡
ðΔϕOMS − ΔϕGRSÞ, which is built with different combina-
tions of the same four capacitance measurements. Once
corrected with the analogous interferometer signal ΔϕOMS,

FIG. 27. Contribution of gravitational noise due to tank
depletion to the ASD of Δge. Red data, ASD of the excess over
Brownian Δge from Sec. III; blue data, �1σ posterior interval for
the gravitational noise contribution from CPSD and susceptibility
posteriors.
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this signal measures the much suppressed angular distor-
tion, while being insensitive to the linear one. Hence, it
carries the same readout noise that affects ΔX, though in a
different combination. Including ΔΦ in our model should
lead to a better constraint of the contribution of these
sources to Δg.
Temperature. The average temperature at the location of

the test masses was measured by averaging the readings of
various thermistors located on the external x faces of the
two electrode housings.
The time series of these thermistors were dominated,

above about ∼30 μHz, by excess electronic noise [8]. This
fact was made particularly evident by the loss of mutual
coherence among the time series of the different thermistors
above that frequency, a coherence that below ∼30 μHz was
nearly complete.
The noise was caused by a subtle interaction between

drift and a nonlinearity of the analog-to-digital con-
verter. For two of the eight available thermistors, such
noise was so large that we had to discard the corre-
sponding time series.
Susceptibilities. Regarding susceptibilities, we take those

from the long-term behavior discussed in Sec. V F. In
addition, we measured the dependence ofΔX on T by using
the “low distortion” runs, that is by excluding runs 7, 11,
and 12 (see Sec. V F). We find consistent results both by
measuring the slope γ ¼ ∂ΔX=∂T in a linear fit over one-
day-long data stretches and from the CPSD between the
two data series at 18 μHz. A set of thermal experiments
[53] has shown the possibility of delay effects between T
and the other time series, reasonably represented by a
simple pole filter with a cutoff frequency in the μHz range.
We summarize all this information by taking the following
distributions for the susceptibilities. We recall here that ω2

d,
αTðfÞ, and γðfÞ are, respectively, the susceptibilities of
ðΔg;ΔXÞ, ðΔg; TÞ, and ðΔX; TÞ.

(i) ω2
d is frequency independent and normally distrib-

uted with ω2
d ¼ ð−0.33� 0.03Þ × 10−6 s−2.

(ii) αTðfÞ, the susceptibility of Δg to T, is given
by αTðfÞ ¼ αT;0ð1þ if=f0Þ−1, with αT;0 normally
distributed with αT;0 ¼ ð0.4� 0.2Þ pm s−2K−1 and
log f0 uniformly distributed between of logð1 μHzÞ
and logð100 μHzÞ.

(iii) γðfÞ, the susceptibility of ΔX to T, is given by
γðfÞ ¼ γ0ð1þ if=f1Þ−1, with γ0 normally distrib-
uted with γ0 ¼ ð1.04� 0.07Þ μmK−1 and f1 with
the same distribution as for f0.

We address the problem with two different approaches.
The first approach is “naive,” as it assumes that the time

series are not affected by any readout noise. It is repre-
sented as a dashed line in Fig. 28. The bound is completely
dominated by the instrument distortion term, the effect
of temperature alone being orders of magnitude smaller.
However, it overcomes the entire excess noise above

0.1 mHz, resulting in a nonphysical limit. Hence, this
result carries no information.
The second approach, on the contrary, is more refined as

it takes into account that time series are affected by readout
noises, possibly cross-correlating. The 1σ upper bound is
reported in Fig. 28, solid line.
First approach. The first obvious, naive way to put an

upper limit to the combined contribution of ΔgDist and ΔgT
to the PSD of Δg, is to assume that these are not affected by
any readout noise; take the posterior for the joint CPSD of
ΔX, ΔT, and Δg from the proper distribution, as explained
in Appendix H 2 b; and take the posterior for the suscep-
tibilities as explained above. From all this, the total
contribution to SΔg of ΔX and ΔT would be

ω4
dSΔXðfÞ þ ð2Re½ω2

dαTðfÞγ�ðfÞ� þ jαTðfÞj2ÞSTðfÞ;
ðH13Þ

Second approach. A more informative bound can be
obtained explicitly including the presence of the readout
noise affecting the time series. We include the following
considerations:
(1) The measured ΔX and T are affected by unmodeled

and uncorrelated readout noises. Moreover, the noise
affecting ΔX correlates to Δg0 in Eq. (H2).

(2) ΔΦ is also affected by readout noise, which corre-
lates with ΔX.

(3) The angular distortion ΔΦ has a negligible contri-
bution to the linear acceleration noise Δg.

We define the matrices ΣΔX, ΣT , and Σ0 so that the
CPSD matrix of ðΔg;ΔX; T;ΔΦÞ can be written as

Σ ¼ Σ0 þ SΔXΣΔX þ STΣT þ SΔΦΣΔΦ: ðH14Þ

FIG. 28. Upper bound (1σ) of the contribution of LTP
distortion and of pressure-mediated temperature effect to S1=2Δge .
Red data, ASD of the excess over Brownian Δge from Sec. III;
dashed blue line, 1σ upper quantile of the estimate assuming
time series free of readout noise, naive model; solid blue line, 1σ
upper quantile considering the presence of readout noise, as
described in the text.

IN-DEPTH ANALYSIS OF LISA PATHFINDER PERFORMANCE … PHYS. REV. D 110, 042004 (2024)

042004-37



Here, Σ0 represents the CPSD betweenΔg0 and the readout
noise part of ΔX, T, and ΔΦ. According to the previous
assumptions, the matrices read

ΣT ¼

0
BBBB@

jαT j2 þ 2ReðαTω2
dγ

�Þ αTγ
� ω2

dγ þ αT 0

α�Tγ 0 γ 0

ω2
dγ

� þ α�T γ� 1 0

0 0 0 0

1
CCCCA;

ΣΔX ¼

0
BBBB@

ω4
d ω2

d 0 0

ω2
d 1 0 0

0 0 0 0

0 0 0 0

1
CCCCA: ðH15Þ

Within this model, we estimate the contribution to SΔg.
First, we take a sample from the posterior of Σ (see
Appendix H 2 b) and one from that of the susceptibilities,
from which we build Σ0 using Eqs. (H14) and (H15). Then,
we search the values of SΔX, ST , and SΔΦ that give the
maximum noise contribution ðSΔXΣΔX þ STΣTÞ1;1, subject
to the condition that Σ0 is a positive definite matrix, as a
CPSD should always be. We repeat the calculation over a
thousand different posterior samples, deriving a posterior
also for this upper limit.
This upper limit is once again dominated by the effect of

ΔX and constrained by its correlation with ΔΦ; the role of
temperature is completely negligible. Despite being tighter
than the naive one, this upper limit is still set by the large
correlation between Δg and the readout noise of ΔX. Note
that, as the temperature is irrelevant, the effect would
amount to some nonthermal distortion of the LTP, such as
long-term creep due to stress release. One would expect
that, below the system mechanical resonances, all greater
than 10 Hz, the ASD of this kind of effect to be some,
possibly rather steep power law of frequency [54]. But
even for a ∝ f−1=2 dependence, the value of the limit at f2
would set an upper limit at the highest frequencies at least a
factor 4 in power smaller than that indicated by the solid
line in Fig. 28. Thus this limit again probably significantly
overestimates the effect.
Finally, note that this technique does not give an explicit

lower limit, as the hypothesis that time series are con-
stituted by readout noise only is fully compatible with the
observations (solution SX ¼ 0, ST ¼ 0).

APPENDIX I: THE UNEXPLAINED EXCESS:
POSSIBLE SOURCES AND IMPLICATIONS

FOR LISA

In this appendix, we discuss the most likely sources of
the unexplained fraction of the excess noise and the
measures one can possibly take to ensure that they do
not compromise LISA performance.

1. Patch potential fluctuations

Patch potentials [55] may cause force noise in many
ways [48]: through the interaction of their time fluctuations
with any static potential applied to the TM, including that
due to the TM charge; by creating a quasistatic potential
difference that may interact with electronic noise and
charge fluctuations; through the interaction of their quasi-
static part with their own fluctuations.
The first two effects have already been discussed in

Sec. VI D. An analysis of the third effect, the self-
interaction of the patch fields [56], also based on the
results of the experiments with charge bias [33] in LPF, has
appeared recently. The analysis indicates contamination as
the most likely source of patches and shows that a model
of diffusion-driven fluctuations of contaminant density,
that has been considered to explain self-heating in ion
traps [57], may indeed predict force noise with ∝ 1=f2

PSD, with an amplitude in the range of the observed excess
for model parameter values that are not unreasonable.
Though such scenario remains unproven, its possibility

would suggest a few precautions to be followed in the
development of LISA. These have been discussed in [56],
and we report them here for convenience.
First, torsion pendulum experiments with LISA-like TM

have achieved sensitivities [48,58] that may allow a direct
detection of, or a significant upper limit to, the noise we are
discussing here. This would require though to reduce the
gaps around the TM to around 1 mm or smaller. Needless to
say, a direct measurement would bring this potential source
of noise under full control.
In the absence of a direct measurement, a measure of

precaution is to investigate the nature and the extent of the
adsorbate that may have been present on the surface of LPF
TM and EH during its operations. The objective is that of
keeping TM contamination in LISA close to or better than
that in LPF.
This requires a campaign of surface characterization on

samples that have undergone a similar preparation history
to that of LPF test masses. A systematic experimental study,
with the Kelvin probe technique, of the quasistatic dis-
tribution of patch potentials, would be an important part of
such a characterization campaign.
It is reasonable to assume that if no new contaminants are

introduced in LISA, that had not been present in LPF, and if
the amount of contamination can be kept below that of LPF,
the noise performance of LPF that fulfills LISA require-
ments may confidently be reproduced.

2. Actuation force calibration
and additional voltage noise

An obvious source of excess noise could be an inaccur-
acy in the calibration of the applied forces gcðtÞ, which
dominate the spectrum at submillihertz frequencies; sim-
ilarly, unaccounted nonlinearities in the applied voltages
time series could lead to inaccuracies in the applied forces
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time series. Experiments were carried out in flight
to calibrate the actuation system, against differences
between commanded and applied forces/torques. In par-
ticular [18,33], sinusoidal “calibration tones” of amplitude
100 fN and frequency 10 mHz were injected out of loop,
effectively inducing a controlled force on TM2. These
experiments yielded fluctuations in the calibration coef-
ficient < 0.5%, which could not account for the observed
excess noise.
However, these experiments also led to the discovery of

the truncation error, already introduced in Sec. II B [19],
which required a deterministic correction on the actuation
voltage amplitudes of the order of 10 μV rms out of a
nominal bit resolution of 153 μV. This correction was
relevant to the success of the calibration tone experi-
ments: the injection of external sinusoidal forces resulted
in an apparently time-varying actuation gain factor, as
well as a series of spurious lines at several harmonics of
the injection frequency. These lines could be effectively
suppressed—within statistical errors—only by taking
into account such correction.
Driven by these results, we performed simulations to

understand if additional nonlinearities, smaller than the
truncation error rms value, could result in increased
noise levels in noise-only runs, but at the same time go
unnoticed in calibration tone experiments. We showed that,
if the effective amplitudes of applied voltages Vx and Vϕ

(see [18,33] for definitions) were affected by additional
small nonlinearities of the order of 1–2 μV rms—i.e., of the
order of 1=100th of the nominal bit resolution—neither the
calibration tone experiment nor any other in-flight experi-
ment could rule out the presence of such nonlinearities.
These nonlinearities would, however, have a non-neg-

ligible impact on noise-only runs. With forces applied
during February 2017, run 10 of Table I, the presence of a 1
or a 2 μV rms nonlinearity would indeed have a relevant
impact on the total modeled noise as shown in Fig. 29. For
each level of rms deviation (1–2 μV), we simulated ten
realizations and showed their joint posterior distribution. In
Fig. 29, the red points and blue span represent, respectively,
the excess S1=2Δg;e and the total modeled noise, as in Fig. 17.
Adding deviations of 1 and 2 μV rms, respectively, the total
modeled noise becomes the one represented by the green
and yellow spans.
Potentially, an inaccuracy of 2 μV rms, or even less,

could result in non-negligible force noise, explaining a
relevant fraction of the detected excess noise. At the same
time, it would go undetected in in-flight calibration experi-
ments. Preliminary measurements on LPF-prototype FEE
models show that the presence of residual nonlinearities of
the magnitude above can not be excluded, i.e., measure-
ments are compatible with the presence of a nonlinearity of
1 μV rms. However, we are currently planning deeper and
more systematic tests to better characterize nonlinearities
and assess their impact.

Another mechanism through which voltage disturb-
ances could lead to increased in-band force noise and,
at the same time, go undetected in dedicated measure-
ment campaigns is through down-conversion of high-
frequency spurious disturbances. If voltage anomalies
should be present at frequencies outside the measure-
ment band, they would down-convert into the band
because of the quadratic nature of the electrostatic force.
In addition, due to the lack of significant associated
torque, the voltage anomaly should have involved one or
more pairs of electrodes facing the same face of the
same TM.
To fix the amplitude scale of such a disturbance, the force

due to the voltage V, when applied to both electrodes in
one such pair, exerts a force jΔgj ¼ ð1=MÞj∂Cx=∂xjV2 ≃
0.15 pm s−2ðV=100 mVÞ2. Thus a line with a mean ampli-
tude of 100 mV and a noisy relative amplitude fluctuation
with ASD ≃ 5 × 10−3=

ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ would produce the
observed noise. We note that the actuation circuitry con-
nected to the electrodes includes a passive two-stage low-
pass filter with a bandpass near 2 kHz, thus this putative
high-frequency disturbance would have needed to be
accordingly higher at the amplifier outputs for frequencies
larger than 2 kHz.
No such line has been detected either during the ground

testing of the FEE flight hardware or during laboratory
testing of its various prototypes, but we cannot exclude, for
instance, some damage due to the launch stresses.
As a final note, we want to emphasize that detecting any

of these effects in the LISA GRS FEE is feasible through
ground testing, either via electronic measurements or by
using torsion pendulum measurements of the induced
forces.

FIG. 29. Total modeled noise, including potential inaccuracies
in the applied actuation voltage amplitudes. Red points and blue
span, respectively, excess noise S1=2Δg;e and total modeled noise, as
in Fig. 17; green and yellow spans, modeled noise, summed to
voltage amplitude nonlinearities with 1 and 2 μV, respectively.
The additional PSD due to such inaccuracies is the joint posterior
distribution of ten independent realizations with the given rms, as
described in the text.
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3. Unmodeled gravitational noise

We have discussed the gravitational noise due to pro-
pellant tank depletion and that due to LTP distortion. We
have accounted for the first and estimated that it is unlikely
that the second may have caused more than 10% of the
unaccounted noise.
In addition to those effects, any other mass motion, either

because of distortion of solid parts or because of evapo-
ration of volatile fractions, may cause gravitational force
noise and may have contributed to excess noise. We discuss
here a few possibilities, first for the case of distortion and
then for that of evaporation.
The tungsten balance mass is the most intense source of

gravitational field gradient at the TM location. The LTP
distortion, already discussed, moves the balance mass,
relative to the TM, together with the entire GRS.
However, in addition to that, any internal GRS distortion
may also have moved the balance mass relative to the TM.
With a gravitational gradient ≃∂gx=∂xs ≃ 5 × 10−7 s−2, a

random jitter δx of the balance mass position with ASD
S1=2δx ≃ 1.5 nm=

ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ would account for the
entire unexplained excess. Such a jitter, if thermally
induced, given the construction materials and the geometry
of the GRS, would amount to thermal fluctuations with an
ASD of S1=2T ≃ 4 mK=

ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ, definitely larger
than the measured one [8].
As for nonthermal deformation, an obvious example

would be long-term, noisy mechanical secondary creep due
to stress release, like that due to the unlock of the TM on
orbit. Crudely approximating this creep as a Poisson
sequence of steps with rms amplitude δx and average
relaxation rate δẋ, one would need δxδẋ ≃ 0.2 μm2=yr.
As realistically δẋ ≪ μm2=yr, this would require steps of
0.2 μm, happening then at a rate of less than 5 per year,
very different from the observed time series.
Thermal or nonthermal distortion resulting in the motion

of massive components farther away from the TMs may
also exert significant forces. Calculations [59] show,
for instance, that the spacecraft alone, without the LTP,
exerts a static difference of force on the TM of Δgsc ≃
5 × 10−9 ms−2, very similar to that of a homogeneous
square toroid with an inner diameter of 1 m, an outer one of
2 m, and a mass of ≃300 kg, a crude approximation to the
spacecraft shape.
One can calculate that a homogeneous relative distortion

δ of any of the toroid dimensions causes a variation of
differential force δ × Δgsc. It would thus take δ to be a
random process with ASD S1=2δ ≃ 1.4 × 10−7 Hz−1=2 ×
ð1 mHz=fÞ to justify the unexplained noise.
We have no way of assessing if such mechanical

distortions of the spacecraft (about 0.1 μm root-mean-
square variation of the corresponding dimension over
1 day) did take place during operations. A correlation
analysis of Δg with the solar power hitting the spacecraft

gave no significant results. A simulation of thermal induced
distortion and of the resulting gravitational noise performed
during mission development [59] pointed to 1 order of
magnitude smaller figures. This simulation was done
though on a simplified model and was significant only
for f ≳ 2 mHz.
All that said, detailed thermomechanical simulations

are standard practice in aerospace engineering. In addi-
tion, for LPF rather complete tools have been set up
to interface the thermomechanical model of the system
with the gravitational one. We calculate that a thorough
dynamical simulation of the LISA spacecraft’s gravita-
tional field should have the accuracy and the sensitivity to
keep gravitational noise due to mechanical distortion
under control.
Outgassing of volatile fractions from spacecraft has

been observed, for instance, in the Rosetta mission, to
continue years after launch [60]. In particular, after a
water desorption-dominated phase lasting 100–200 days,
a longer, possibly diffusion-dominated phase was
observed with a very slowly, if at all, decaying evapo-
ration rate, at least for the following 500 days.
Given the nonsymmetric geometry of the LPF space-

craft, even a spatially homogeneous noisy outgassing
would have caused some Δg noise. Definitely more so if
the outgassing had also some patchy pattern that would
have further reduced the spatial symmetry.
To fix the scale of the effect, we have considered the

spacecraft structure, which is made out of sandwich panels
of carbon fiber reinforced plastic with an aluminum
honeycomb core. We have considered the case of N
outgassing patches of size small enough to approximate
sums with integrals, having noisy evaporation rates all with
same ASD, incoherently adding up to a total evaporation
rate with ASD S1=2

Ṁ
.

We calculate that S1=2Δg ≃ 0.5ðG=L2
0ÞS1=2Ṁ

=ð2πfÞ, with
L0 ¼ 37.6 cm the distance between the centers of the
two TMs and G the gravitational constant. To match our
observation of S1=2Δg ≃0.7 fms−2=

ffiffiffiffiffiffi
Hz

p ð1mHz=fÞ, we need

a frequency-independent value S1=2Ṁ ≃ 0.02 mg s−1=
ffiffiffiffiffiffi
Hz

p
.

Just for the sake of discussion, we note that such a
“white” evaporation rate behavior would naturally be
obtained if the outgassing on LPF consisted of a Poisson
succession, with mean evaporation rate hṀi, of discrete
outgassing events from any of the patches, with a rms value
δm. This process would indeed give S1=2

Ṁ
¼ ðδmhṀiÞ1=2.

Reference [60] estimates the mass loss of Rosetta in
several hundred grams per year. LPF was a lighter satellite,
by almost a factor 3, but with more plastic and closer to the
Sun. Thus a direct projection of the outgassing properties
may be rather speculative.
Nevertheless, a crude estimate based on the outgassing

properties of LPF materials gives a lower limit for hṀi at
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hṀi ≃ 0.1 kg y−1 ¼ 3 μg s−1, not far from what one
would extrapolate from Rosetta based just on the mass
ratio of the two satellites. Using this figure for hṀi in the
Poisson noise ASD formula, one gets δm ≃ 0.2 mg and
λ ¼ hṀi=δm ≃ 0.01 s−1.
To our knowledge, there are no studies on the spatial

distribution of outgassing in spacecraft, nor on its dynam-
ics. Thus this crude scenario of noisy outgassing remains
rather speculative. We note, however, that nothing in the
figures above or in the current knowledge allows us to rule
it out. We conclude that a cautious approach for LISA
would be to stay as close as possible to the LPF design in
terms of quantity and distribution of materials with sig-
nificant volatile components.

4. Pressure fluctuation

As said in Sec. V F, the complex geometry of the TM
environment may create quasistatic pressure gradients. Any
in-band fluctuation of such gradients would directly trans-
late into an in-band acceleration fluctuation.
To account for the measured excess S1=2Δge of about

0.7 fm s−2=
ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ, the ASD of these fluctuations
should be S1=2Δp ∼ 0.6 × 10−12 Pa=

ffiffiffiffiffiffi
Hz

p ð1 mHz=fÞ.
We note that the process at the basis of this hypothetical

fluctuating pressure should necessarily be different from
that generating the static gradient discussed in Sec. V F.
Indeed (see Sec. IV), the latter steadily decreased during
the mission, following the general decay of the pressure,
whereas the former (Sec. V B) did not.
Hence, if the process responsible for the 1=f noise has

been due to the outgassing of some species for the TM
environment, it must have been substantially stable over the
entire mission and independent of the outgassing rate of
the main fraction. This observation parallels that on the
possible outgassing origin of force glitches in LPF [20] that
also had properties that have been stable over the course of
the entire mission.
It does not require much outgassing to produce the 1=f

noise. If, for instance, such hypothetical gas phase were
hydrogen diffusing out of the various elements of the TM
environment, and if the noisy outgassing took place as the
series of undetectable glitches discussed in Sec. VI B 2 and
in Appendix G 2, it would only take a mean outgassing rate
of ≃6 pg=d, that is, some 3 ng of total emission over the
course of the entire mission, to explain the noise. We have
no specific piece of experimental evidence to support this
hypothesis, neither could we trace any relevant study on
pressure fluctuations in vacuum systems. Neither have we,
however, any evidence proving the model false or unlikely,
neither from our own experiments nor from the literature.
It is also unlikely that we could devise a laboratory
experiment able to detect such tiny pressure fluctuations.
For this reason, we conclude again that the LISA GRS

outgassing environment should be kept as close as possible

to that of LPF to retire the risk of unwanted large pressure
gradient fluctuations.

5. High-frequency magnetic field noise

In addition to low-frequency effects, discussed in
Sec. VI C, magnetic fields at high frequency may induce
eddy currents within the test masses and then exert Lorentz
forces on them [36]. The effect is thus quadratic and would
convert the low-frequency amplitude fluctuations of a
high-frequency magnetic spectral line into a corresponding
low-frequency force.
To give a scale of the effect, a recent finite-element

electromagnetic calculation by the LISA project [61] has
shown that the effect of a dipole of 1 mAm2 located at a
distance d ¼ 20 cm from the test mass and oscillating at
the frequency of 100 Hz would cause a force of
Δg ≃ 4 fm=s2. The effect reaches its peak at 100 Hz, while
at lower frequency the induced current decreases, and
above that, the screening effect of the metallic electrode
housing attenuates the oscillating field. The effect of a
dipole source decreases with d−7, so that at the closest
distances of about 0.4 m between the test mass and any
active device on the LPF spacecraft the effect might be
∼100 times smaller.
The spacecraft prime contractor, during LPF develop-

ment, performed a test campaign on ground against
audio-frequency magnetic lines [62]. A few, barely
significant lines have been identified, with peak ampli-
tudes ≪ 1 nT at the position of the test masses. In the
point dipole model at a distance of d ≃ 0.4 m, a 1 nT
line would be generated by a dipole of ≃0.3 mAm2 at
most and would exert a static force Δg ≃ 4 × 10−3 fm s−2.
To reproduce the observed excess noise with a noisy
amplitude modulation of one of these lines 1 nT,
one would need a relative amplitude modulation with
ASD ≃ 2.5 × 102 Hz−1=2ð1 mHz=fÞ.
One can calculate that the rms fluctuation of a

process x with ASD given by Sx ¼ S1=20 ðf0=fÞ, over a

data stretch of duration T, is hxrmsi ¼ S1=20 πf0
ffiffiffiffiffiffiffiffi
T=3

p
. With

S1=20 ≃ 2.5 × 102 Hz−1=2, it would take about 5 s to make
the relative rms fluctuation of the line amplitude 100%.
Such a large fluctuation would have been noticed during
testing.
The required amplitude fluctuation for such lines would

become smaller in the presence of more than one line.
However, consider that 1 nT is a real conservative upper
limit for the observed lines and that the effect is quadratic in
the amplitude of the lines, so that the combined effect
of many lines would be dominated by the few brightest
among them.
Despite these considerations that would rule out this

source of noise, it must be stressed that unfortunately we
had no magnetometer on board sensitive to the audio band.
Thus, as the operating conditions may have been different
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from those during testing, we cannot exclude that addi-
tional, more intense, amplitude-modulated lines had been
generated once on orbit.
For instance, a single line generated by a dipole of

≃2 mAm2 located at a distance d ¼ 20 cm from the test
mass, with a more reasonable relative amplitude fluctuation
ASD ≃ 0.2 Hz−1=2ð1 mHz=fÞ, would explain the excess

noise. This is a relatively large magnetic dipole, for
instance, 32 mA in a fully uncompensated square loop
of 25 cm size, the existence of which we are not aware.
Nevertheless, we certainly recommend that in LISA
thorough testing is performed on ground and that onboard
diagnostic magnetometers with sensitivity up to, at least,
1 kHz are seriously considered.
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